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Introduction and Overview

Life is rich with moments of uncertainty about the future. In economics, predicting the
future state of the economy is a key issue for the decision making of economic agents and
policy makers alike. On the one hand, firms and households require information about
future economic conditions to determine their savings and investment decisions. On the
other hand, accurate forecasts of key macroeconomic variables such as output, inflation or
unemployment rates are important determinants for policy makers such as central banks,
international organizations or fiscal authorities. By providing a “language to model stochas-
tic dynamics” (Diebold 2019), time series econometrics is a natural workhorse to tackle the
task of economic forecasting and the cornerstone of this dissertation.
Economic forecasting frequently goes beyond predicting the future values of economic
variables to additionally forecast the uncertainty and risk around their expected future
paths in order to obtain an even more complete picture of the future. All of these moments
are effectively captured by a predictive density. Therefore, density forecasts have developed
into an essential area of economic forecasting. The Bank of England’s regular publishing
of density forecasts for inflation is a notable example (Clements 2004). Additionally, the
seminal article of Tobias Adrian, Nina Boryaschenko and Domenico Giannone (2019) has
renewed attention on the significance of density forecasting for policy makers with their
recent study on asymmetric risks to future US GDP growth.
Yet, while the importance of prediction has led to a plethora of methods for economic
forecasting (see for example Elliott and Timmermann (2013) or Clements and Hendry
(2011)) it turns out that knowing the current state of the economy poses an equally impor-
tant problem to policy makers. As shown for example in Orphanides (2001) or Croushore
(2011), data revisions due to measurement errors, incomplete information or time lags pose
a serious challenge to policy decision making. This has motivated a large literature on so
called “Nowcasting” that analyses the nature of revisions and aims to predict the revision
making process to macroeconomic variables (Clements and Galvão 2019). Closely tied to
the significance of nowcasting is also the real-time assessment of economic fluctuations, such



as business or financial cycles. This is crucial for assessing the status of the economy and
accurately determine macroprudential and economic policies. However, as demonstrated by
Orphanides and van Norden (2002) or Edge and Meisenzahl (2011) problems to accurately
measure econometric fluctuations in real time go beyond data revisions and are also re-
lated to the time series methods that are commonly applied by researchers and policy makers.

With the COVID pandemic and the Russian invasion of Ukraine putting a sudden end
to a long period of economic stability, econometric methods to accurately measure the
state of our economy as well as to predict and quantify the future distributions of key
macroeconomic variables play an important role in the toolkit of national and international
economic policy institutions and statistical agencies. Therefore, this thesis aims to apply
and develop new time series methods to determine the current state of the economy in real
time as well as to predict the future path of the economy together with its associated risks
in form of density forecasts. Following a chronological order (along several dimensions), the
first two chapters focus on the analysis of the present state of the economy, while chapter
three and four seek to provide new methods in the field of density forecasting. Another
overarching topic of the last two chapters is the focus on modelling and predicting time
variation in the higher moments of the forecasting distribution such as the volatility and
skewness, a subject that has recently gained high popularity amongst academics and policy
makers alike.
From a methodological point of view, Chapter 1 and 2 rely on well established time series
methods using spectral analysis and linear state space methods in a frequentist framework.
Chapter 3 and 4 move to more recent methods using state of the art particle filtering
and Sequential Monte Carlo methods developed by Herbst and Schorfheide (2014) and
Herbst and Schorfheide (2019) to capture non-linear and non-Gaussian behavior of economic
time-series in a Bayesian estimation framework.

The first chapter, which is joint work with Yves Schüler and Frieder Mokinski, investigates
the properties of the one-sided Hodrick-Prescott filter (HP-1s) a popular tool to measure the
business cycle in real time. The two-sided Hodrick-Prescott filter (HP-2s) is a symmetric
moving average and has been heavily criticized for its use of future observations to extract
the cyclical component of time series. This leads to revisions and spurious correlations and
makes HP-2s unsuited for policy makers who need to operate in real time (Hamilton 2018).
HP-1s uses only observations up to the present. Using methods from spectral analysis,
we show that one should not use the one-sided Hodrick-Prescott filter as the real-time

xvi



version of the two-sided Hodrick-Prescott filter: First, in terms of the extracted cyclical
component, HP-1s fails to remove low-frequency fluctuations to the same extent as HP-2s.
Second, HP-1s dampens fluctuations at all frequencies – even those it is meant to extract.
As a remedy, we propose two adjustments to HP-1s, aligning its properties closely with
those of HP-2s: (1) a lower value for the smoothing parameter and (2) a multiplicative
rescaling of the extracted cyclical component. For example, for HP-2s with λ = 1,600, the
value commonly used to extract business cycles (Hodrick and Prescott 1997), the adjusted
one-sided HP filter uses λ∗ = 650 and rescales the extracted cyclical component by a factor
of 1.1513. We illustrate the relevance of these adjustments using simulated and empirical
data for different countries. For instance, financial cycles may appear to be 70% more
volatile than business cycles, where in fact volatilities differ only marginally.

The second chapter is joint work with Till Strohsal and aims to nowcast German macroeco-
nomic variables using vintages for quarterly and monthly data provided by the Bundesbank.
While well-behaved revisions should be unbiased, small and unpredictable (Aruoba 2008), we
find that revisions to German national accounts are biased, large and predictable. Moreover,
using the different filtering techniques presented in Kishor and Koenig (2012) to process data
subject to revisions, we find that the real-time forecasting performance of initial releases
can be increased by up to 23%. For total real GDP growth, however, the initial release is
an optimal forecast. Yet, given the results we find for disaggregated variables, we conclude
that the averaging-out of biases and inefficiencies at the aggregate GDP level appears to be
good luck rather than good forecasting.

Moving from nowcasting to forecasting, the third chapter proposes a Skewed Stochastic
Volatility (SSV) model to estimate asymmetric macroeconomic tail risks in the spirit of
Adrian et al. (2019) seminal paper "Vulnerable Growth". In contrary to their semi-parametric
approach, the SSV model captures the evolution of the conditional density of future US
GDP growth in a parametric, non-linear, non-Gaussian state space model. This allows to
statistically test the effect of exogenous variables on the different moments of the conditional
distribution and provides a law of motion to predict future values of volatility and skewness.
The model is a non-linear and non-Guassian state space model that can be estimated using
a particle MCMC algorithm (Kim et al. 1998). To increase the estimation accuracy of the
algorithm, I use the tempered particle filter introduced by Herbst and Schorfheide (2019).
Given the asymmetric distribution of the measurement error, I modify the filter to take
the time-varying volatility and asymmetry of the densities into account. This reduces the

xvii



number of tempering steps. Estimating the model on the same data as Adrian et al. (2019),
I find that financial conditions affect the mean, variance and skewness of the conditional
distribution of future US GDP growth. Adding to the debate about the importance of
time-varying asymmetries in US GDP growth rates (see Hasenzagl et al. (2020)), I find that
with a Bayes ratio of 1612.18, the Skewed Stochastic Volatility model is strongly favored by
the data over a symmetric Stochastic Volatility model.

The fourth chapter is joint work with Carlos Montes-Galdón and Joan Paredes. We propose
a new and robust methodology to obtain conditional density forecasts, based on information
not contained in an initial econometric model. The methodology allows to condition on
expected marginal densities for a selection of variables in the model, rather than just on
future paths as it is usually done in the conditional forecasting literature (see for example
in Waggoner and Zha (1999) or Bańbura et al. (2015)). The proposed algorithm, is based
on tempered importance sampling introduced into the econometric literature by Herbst and
Schorfheide (2014) and provides a robust alternative the the entropic tilting methodology of
Robertson et al. (2005). As an example, this paper shows how to implement the algorithm
by conditioning the forecasting densities of a BVAR and a DSGE model on information
about the marginal densities of future oil prices. We obtain this information from implied
probability functions of oil price options with different maturities (see for example (Breeden
and Litzenberger 1978)). Most importantly, these options implied densities indicate that
the distribution of future oil prices is positively skewed at different horizons. Our results
show that increased asymmetric upside risks to oil prices result in upside risks to inflation
as well as higher core-inflation over the considered forecasting horizon. Additionally, a
real-time forecasting exercise yields that introducing market-based information on the oil
price improves inflation and GDP forecasts during crises times such as the COVID pandemic.
These results are in line with the findings of the third chapter, where results indicate that
asymmetries seem to matter especially in times of economic turmoil.

xviii



Chapter 1

On Adjusting the One-Sided
Hodrick-Prescott Filter∗

with Yves Schüler and Frieder Mokinski

1.1 Introduction

The one-sided Hodrick Prescott filter (HP-1s) Hodrick and Prescott (1981) is commonly
used as the real-time version of the regular, two-sided HP filter (HP-2s), a popular tool for
detrending macroeconomic time series. As a “one-sided” or “real-time” filter, HP-1s uses
only observations dated t and earlier to filter the time series observation yt.
This makes HP-1s appealing for policy making, where decisions are made in real time
and revisions of past estimates are undesirable. The Basel III regulations are a prominent
example. These regulations recommend the use of HP-1s to calculate the so-called credit-
to-GDP gap (see Basel Committee on Banking Supervision (2010)). The purpose of the
credit-to-GDP gap is to inform the calibration of the countercyclical capital buffer, a cyclical
capital requirement for banks. National authorities rely on this gap to inform the setting
of their countercyclical capital buffer (CCyB) rates. HP-1s also has broader applications
beyond Basel III regulations, including alternative credit-to-GDP gaps based on different
credit data (e.g. Detken et al. (2014); Basset et al. (2015); Tente et al. (2015)), house price
gaps for risk assessments recommended by the European Systemic Risk Board (European

∗This chapter has benefited from valuable comments and suggestions by Robert De Jong, Alessandra
Luati, Elmar Mertens, Christian Schumacher, Lars Winkelmann, Dieter Nautz and Helmut Lütkepohl as
well as participants of the Deutsche Bundesbank research seminar, the EEA 2020 and CMES 2021. An
earlier version of this chapter is published as Bundesbank Discussion Paper 11/2020.



1.1. Introduction

Systemic Risk Board (2019)), and funding gaps or other types of gaps (e.g. Anundson et al.
(2016); Giordani et al. (2017); Lang et al. (2019)). Additionally, HP-1s is often used as a
benchmark for real-time output gap estimates (e.g. Coibion et al. (2018); EU Independent
Fiscal Institutions (2020); Furlanetto et al. (2023)).
In this paper, we demonstrate that HP-1s should not be used as a real time version of
HP-2s due to important differences in the way HP-1s and HP-2s extract a cyclical compo-
nent. Through frequency domain analysis, we identify two important deviations of HP-1s
from HP-2s that have implications for its practical use. First, HP-1s fails to eliminate
low-frequency fluctuations to the same extent as HP-2s, resulting in a cyclical component
that is contaminated with more low-frequency fluctuations. Consequently, when using
the same smoothing parameter, HP-1s extracts longer-duration cycles than HP-2s. Our
finding contradicts the widely held belief that HP-1s with λ = 400, 000 (as specified in
Basel III) extracts fluctuations four times the duration of business cycles, and HP-1s with
λ = 1, 600 extracts business cycle frequencies, just like HP-2s (e.g. Drehmann et al. (2010);
Kauko and Tölö (2020); Jylhä and Lof (2022); Drehmann and Alfaro (2023)). Second,
we find that HP-1s attenuates the higher frequencies, and therefore the variance of the
cyclical component, with the degree of attenuation depending on the chosen value of the
smoothing parameter. This differs from HP-2s, which does not distort the variance of the
cyclical component for the frequencies one aims to extract. Implicitly assuming that HP-1s
behaves similar to HP-2s, studies compare HP-1s gaps estimated with different smoothing
parameters against similar thresholds, such as the one used for the activation of the CCyB
(credit-to-GDP gap > 2 p.p.; e.g. Borio and Lowe (2002); Drehmann et al. (2010); Galan
(2019)). Our finding suggests that this practice in incorrect. Therefore, we argue that
HP-1s should not be use as the one-sided analogue of HP-2s, contrary to common practice
(see also Stock and Watson (1999); Orphanides and van Norden (2002); Christiano and
Fitzgerald (2003); Edge and Meisenzahl (2011); Hamilton (2018); Kamber et al. (2018);
Quast and Wolters (2022)). Ultimately, our results highlight that differences between
cyclical components estimated with HP-1s and HP-2s may be due to deviations of HP-1s
from HP-2s, beyond those attributable to the use of a one-sided filter.1

To address this issue, we propose an adjusted one-sided HP filter (HP-1s∗). HP-1s∗ makes
two simple adjustments to HP-1s that align its properties more closely with those of HP-2s:
(1) a lower value for the smoothing parameter and (2) a multiplicative rescaling of the
cyclical component. For instance, consider HP-2s with λ = 1,600 (6.25; 400,000). In this

1Unlike two-sided filters, one-sided filters shift phases, altering the timing relationships of fluctuations at
different frequencies.
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case, HP-1s∗ uses λ∗ = 650 (2.45; 163,101) as a smoothing parameter and rescales the
cyclical component by a factor of 1.1513 (1.7962; 1.0360).
Using simulated and empirical data, we show the relevance of these adjustments. For
instance, given discussions on volatile financial cycles (e.g. Borio (2014)), we show that
financial cycles may appear to be 72% more volatile than business cycles, where in fact
volatilities are only marginally different.

Our paper is specifically targeted at researchers who use the Hodrick-Prescott (HP) filter and
assume that HP-1s, the real-time version of HP-2s behaves like HP-2s. This is because we
align the properties of HP-1s∗ closely to those of HP-2s by minimizing the squared distance
of HP-1s’ power transfer function (PTF) with the PTF of HP-2s. It is essential to emphasize
these differences because many researchers believe that HP filtering is misguided due to
spurious cycles, ad hoc filter settings, and end-of-sample biases. This view is echoed in the
literature, with previous critiques by researchers such as Harvey and Jaeger (1993), Cogley
and Nason (1995), Orphanides and van Norden (2002), and more recently Hamilton (2018).
Despite these criticisms, the HP filter continues to be widely used, as also acknowledged
by Hamilton (2018), and several recent studies suggest that it outperforms other filters
for a wide range of data generating processes (DGPs; e.g. Hodrick (2020); Jönsson (2020);
Canova (2021); Schüler (2021); Phillips and Shi (2021)). Therefore, our aim is to provide the
adjusted HP-1s to researchers who actively use the HP filter in real-time settings, without
attempting to convince critics of the HP filter otherwise.
The first chapter is structured as follows: Sections 1.2 and 1.3 provide a theoretical overview
of HP Filter and the frequency domain methods we use for our analysis. The differences
between HP-2s and HP-1s as well as our adjustment are explained in sections 1.4 and
1.5 respectively. Sections 1.5.1 and 1.5.2 provides simulation results and our application.
Section 1.6 concludes.

1.2 The Hodrick-Prescott Filter

The HP filter decomposes the time series y1:T = (y1, . . . , yT )′ into a cyclical component
ψ1:T = (ψ1, . . . , ψT )′ and a trend component τ1:T = (τ1, . . . , τT )′:

yt = τt + ψt, (1.1)

where t = 1, . . . , T and T denotes sample size.
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1.2. The Hodrick-Prescott Filter

The regular, two-sided filter: The two-sided HP filter (HP-2s) estimates the trend
component by solving the following minimization problem:

{
τ̂1|T,λ, . . . , τ̂T |T,λ

}
= arg min

τ1,...,τT

(
T∑

s=1
(ys − τs)2 + λ

T −1∑
s=2

(τs+1 − 2τs + τs−1)2
)
, (1.2)

where λ controls the smoothness of the estimated trend component τ̂t|T,λ: The higher its
value, the smoother the extracted trend component will be. λ = 1,600 is a common choice
to extract business cycle fluctuations in quarterly data.
Notice that we have denoted the estimate of the trend component for period t by τ̂t|T,λ

to illustrate that it depends on the full sample of data (1, . . . , T ) and on the choice of
the smoothing parameter λ, see Equation (1.2). Accordingly, ψ̂t|T,λ is the estimate of the
cyclical component obtained as ψ̂t|T,λ = yt − τ̂t|T,λ.

As demonstrated by Hamilton (2018), for instance, the dependency on the full sample leads
to spurious correlations in the resulting trend and cycle components (spurious predictability)
and also to revisions in τ̂t|T,λ and ψ̂t|T,λ once new data become available (end-point bias).
Since both facts pose problems when it comes to real-time applications, the one-sided
HP-Filter (HP-1s) is commonly used as the real-time version of the HP filter.

The one-sided filter: The idea of HP-1s is to decompose yt into trend (τt) and cycle
(ψt) components based only on observations dated t and earlier (and not beyond t, as with
HP-2s). To stress this idea, we denote the corresponding estimates by τ̂t|t,λ and ψ̂t|t,λ. The
trend component is extracted by solving the following expression for all values of t > 2:

τ̂t|t,λ = arg min
τt

(
min

τ1,...,τt−1

(
t∑

s=1
(ys − τs)2 + λ

t−1∑
s=2

(τs+1 − 2τs + τs−1)2
))

. (1.3)

This procedure is equivalent to applying HP-2s recursively on an expanding sample and
keeping, from each recursion step, only the estimate of the trend component for the latest
period. Analogously to HP-2s, the cyclical component is obtained as ψ̂t|t,λ = yt − τ̂t|t,λ. This
means that, by construction, HP-1s does not suffer from spurious predictability or end-point
biases.

1.2.1 Hodrick-Prescott Filter as a Linear Moving Average

Both HP-1s and HP-2s are linear filters. This means that one can express the trend
components and the cyclical components as weighted averages of the data (see, for instance,
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Danthine and Girardin (1989); De Jong and Sakarya (2016); Cornea-Madeira (2017);
Hamilton (2018); Phillips and Jin (2021)). Specifically, the trend components can be
expressed as

HP-1s: τ̂t|t,λ = ∑t
s=1 wt|t,s,λ · ys = Wt|t,λ(L) · yt, (1.4)

HP-2s: τ̂t|T,λ = ∑T
s=1 wt|T,s,λ · ys = Wt|T,λ(L) · yt, (1.5)

where L is the lag operator with Lkτs = τs−k. Wt|t,λ(L) = ∑t
s=1 wt|t,s,λL

t−s and Wt|T,λ(L) =∑T
s=1 wt|T,s,λL

t−s are linear filter polynomials. Analogously, the cyclical components are

HP-1s: ψ̂t|t,λ = yt −∑t
s=1 wt|t,s,λ · ys = (1 −Wt|t,λ(L)) · yt = W t|t,λ(L) · yt, (1.6)

HP-2s: ψ̂t|T,λ = yt −∑T
s=1 wt|T,s,λ · ys = (1 −Wt|T,λ(L)) · yt = W t|T,λ(L) · yt. (1.7)

The notation of the weights (wt|t,s,λ, wt|T,s,λ) illustrates that they depend on the observation
t to be filtered, the sample length t (or T in the two-sided case), the position of the weighted
observation in the sample s, and the value of λ.
In this paper, we use these filter polynomials to analyse the frequency domain properties of
HP-1s and HP-2s. Table 1.1 summarizes them as a brief overview.

Table 1.1: Notation for the Filter Polynomials of the Hodrick-Prescott Filter

Filter Component Filter polynomial

HP-1s Trend (τ̂t|t,λ) Wt|t,λ(L)
HP-1s Cycle (ψ̂t|t,λ) W t|t,λ(L)
HP-2s Trend (τ̂t|T,λ) Wt|T,λ(L)
HP-2s Cycle (ψ̂t|T,λ) W t|T,λ(L)

Specifically, we consider the closed form expressions for the HP-2s filter polynomials for
the cyclical component provided by Phillips and Jin (2021) and King and Rebelo (1993).
Therefore, the filter polynomial of HP-1s for the cyclical component is given by

W t|t,λ(L) = e′
tQ

′
t

(
QtQ

′
t + 1

λ
It−2

)−1
Qtηt, (1.8)

for t = 3, . . . , T and where ηt = (Lt−1, . . . , L1, 1)′, et = (0, . . . , 0, 1)′ is a t-dimensional
column vector, It−2 is an identity matrix with size (t− 2) × (t− 2), and Qt is second order
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differencing matrix with size (t− 2) × t. Specifically,

Qt =



1 −2 1 0 . . . 0 0 0
0 1 −2 1 . . . 0 0 0
... ... ... ... . . .

... ... ...
0 0 0 0 . . . −2 1 0
0 0 0 0 . . . 1 −2 1


. (1.9)

A derivation of the weights is given in Appendix 1.A. In this paper, we use a sample size of
t = T = 1,000 to avoid problems related to the small sample properties of the filter weights
(Schüler (2020)). We ensure that increasing the sample size, does not alter the frequency
domain properties of the filter polynomial for given value of the smoothing parameter.
For the cyclical component of HP-2s, we use the large sample result for the filter polynomial
given in King and Rebelo (1993), i.e.,

W t|T,λ(L) := λ(1 − L)2(1 − L−1)2

1 + λ(1 − L)2(1 − L−1)2 . (1.10)

This assumes that T → ∞ and t being far away from the beginning and the end of the
sample.

1.3 Filtering from a Frequency-Domain Perspective:
The Power Transfer Function

We use the concept of the power transfer function (PTF) to study the cyclical properties of
HP-1s and HP-2s (similar to Baxter and King (1999) or Christiano and Fitzgerald (2003)).
PTFs allow us to analyze the extent to which different variants of the HP filter succeed in
eliminating lower frequencies and preserving higher frequencies. For the HP filters, PTFs
summarize the cyclical properties of the filter independently of any data generating process
(DGP). This is because the filter weights do not depend on the data that is filtered.2

Assume that W(L) is a linear filter polynomial with W(L) = ∑∞
j=−∞ wjL

j and absolutely
summable polynomial coefficients ∑∞

j=−∞ |wj| < ∞. The PTF of the linear filter polynomial
2A counterexample for this is the Hamilton (2018) filter. The PTF of this filter varies with the DGP of

the series to be filtered (see Schüler (2021)).
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W(L) is defined as
PTFW(ω) = |W(e−iω)|2, (1.11)

with i2 = −1. PTFW(ω) is a non-negative and real-valued scalar function that measures
how W(L) dampens (PTFW(ω) < 1), passes (PTFW(ω) = 1), or amplifies (PTFW(ω) > 1)
movements at specific frequencies ω of the time series the researcher aims to filter.
To illustrate the interpretation of PTFW(ω), assume yt is a stationary stochastic process
with autocovariances γk = Cov(yt, yt−k) and define the autocovariance-generating function
of yt as gy(z) = ∑∞

k=−∞ γkz
k, where z denotes a complex scalar and ∑∞

k=−∞ |γk| < ∞.
Evaluating the autocovariance-generating function at z = e−iω and dividing by 2π yields
the spectral density of yt:

Sy(ω) = 1
2πgy(e−iω). (1.12)

Integrating the spectral density over the interval [−π, π] gives the variance of yt, i.e.

Var(yt) =
∫ π

−π
Sy(ω)dω = 2

∫ π

0
Sy(ω)dω,

where we can interpret the value of ω ∈ [0, π] as a cycle frequency measured in radians. This
suggests that we can decompose the variance of yt into portions related to movements at
different frequencies. For instance, integrating the spectral density over the interval [0, ω1]
with ω1 < π, i.e. 2

∫ ω1
0 Sy(ω)dω, would give the portion of variance related to movements at

frequencies less than or equal to ω1.
From this, it is possible to show that the spectral densities of yt and the filtered series
xt = W(L)yt are related through

Sx(ω) = PTFW(ω) · Sy(ω). (1.13)

It is in this sense that PTFW(ω) dampens (PTFW(ω) < 1), passes (PTFW(ω) = 1), or
amplifies (PTFW(ω) > 1) movements at specific frequencies ω of yt.

1.4 Why Adjust the One-Sided HP Filter?

The top two panels of Figure 1.1 show the PTFs of HP-1s and HP-2s for λ = 1,600. The
PTF of HP-2s is that of a high pass filter: Higher-frequency fluctuations in the range from 8
to 0.5 years pass the filter with only moderate or virtually no dampening. Lower-frequency
fluctuations, by contrast, are dampened almost entirely: At a cycle length of approximately

7



1.4. Why Adjust the One-Sided HP Filter?

Figure 1.1: PTFs of HP-1s and HP-2s for λ = 1,600 and λ = 400,000
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Notes: Panels depict PTFs of HP-1s (“One-sided”) and HP-2s (“Two-sided”) for different values of the
smoothing parameter λ. The top panels refer to λ = 1,600, the bottom panels refer to λ = 400,000.

Right-hand panels are magnified versions of the left-hand panels. Red-shaded areas highlight business cycle
frequencies (1.5 to 8 years), while purple areas highlight financial cycle frequencies (8 to 30 years).

17 years, for instance, its PTF reaches a value of 0.01, meaning that the filter dampens
variations at this frequency by 99 percent. As argued by Baxter and King (1999), these are
desirable features of HP-2s because the filter approximates the ideal band pass filter for
this frequency range. While the filter effectively cancels fluctuations at frequencies that are
lower than the targeted frequency range through a sharp cut-off, the frequency components
above the cut-off pass the filter and remain unaffected.
The PTF of HP-1s differs in two respects.3 First, to the left of the two curves’ intersection,
the PTF of HP-1s runs above that of HP-2s. This implies that HP-1s fails to dampen lower
frequencies to the same extent as HP-2s. In fact, differences are relatively pronounced: At a
cycle length of 17 years, for instance, the value of the PTF of HP-1s is 0.08, which is eight
times the value of the PTF of HP-2s. As a consequence, cyclical components extracted using

3In the time domain, differences between HP-2s and HP-1s have been implicitly pointed out as well. For
instance, decomposing the HP-2s weights into eight components, De Jong and Sakarya (2016) show that
one component is only important near the end of the sample.
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HP-1s feature low-frequency fluctuations to a much larger extent than cyclical components
extracted using HP-2s. This also implies that the cyclical components of HP-1s tend to be
more persistent.4 Clearly, this is an undesirable property of HP-1s, as it implies that its
output is more heavily contaminated by the fluctuations that one aims to remove.
Second, to the right of the two curves’ intersection, the PTF of HP-1s starts to run
horizontally at a level of approximately 0.8. The fact that this value is less than 1 implies
that HP-1s dampens higher frequencies. As a consequence, higher-frequency fluctuations
are less prevalent in cyclical components extracted using HP-1s than they are in the original
data. By contrast, these fluctuations pass HP-2s without dampening, as its PTF approaches
a value of one as the frequency rises. This is another drawback of HP-1s compared to HP-2s:
HP-1s dampens exactly the fluctuations that one aims to extract.
Together, these two differences imply that the variability of filtered series will differ between
HP-1s and HP-2s. Yet the direction is not clear and depends on the spectral density of
the series we intend to filter. We elaborate on this in the empirical part of the paper (see
Section 1.5.2).
Lastly, the bottom two panels of Figure 1.1 show the PTFs of HP-1s and HP-2s for
λ = 400,000, which is the parameter value recommended in Basel III regulations to
construct the credit-to-GDP gap. The respective PTFs resemble those for λ = 1,600, though
there are some quantitative differences: Both the lack of dampening of lower frequencies
and the excessive dampening of high frequencies that occur when using HP-1s appear less
pronounced for λ = 400,000 than for λ = 1,600. This suggests that differences between
HP-1s and HP-2s diminish as λ increases.
In this section, we have shown that the PTFs of HP-1s and HP-2s differ and that differences
are more pronounced for small values of the smoothing parameter λ. So why are these
differences important? The reason is that HP-1s is regularly used as the real-time version
of HP-2s, wrongly assuming that it has the same desirable properties. The next section
proposes two adjustments to solve this issue.

1.5 The Adjusted One-Sided HP Filter

We propose two adjustments to HP-1s that harmonize its properties with HP-2s: First, in
order to eliminate the (relatively constant) dampening of higher-frequency fluctuations, we

4We use the word “tend” because persistence, for example, as measured by first-order autocorrelation,
reflects only a proxy for cycle length. First-order autocorrelation crucially depends on the actual DGP of
the series, such as the presence of a unit root.
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rescale the cyclical component. Second, to harmonize PTFs in the range of lower frequencies,
we choose a lower value of λ for HP-1s than for HP-2s.
More formally, the filter polynomial for the cyclical component of the adjusted one-sided
HP filter (HP-1s∗) is:

W̃t|t,λ(L) = κ ·W t|t,λ∗(L), t = 3, . . . , T (1.14)

where W̃t|t,λ(L) denotes the filter polynomial of HP-1s∗ that is harmonized with the two-
sided HP filter (HP-2s) with smoothing parameter λ. κ = k(λ) is the scaling factor, and
Wt|t,λ∗(L) is the standard filter polynomial of the one-sided HP filter (HP-1s) with the
adjusted smoothing parameter λ∗ = l(λ). To clarify notation, consider HP-1s∗ for λ = 1,600.
As we show below, in this case we have

W̃t|t,1600(L) = 1.1513 ·W t|t,650(L),

i.e. HP-1s∗ uses the weight polynomial of the unadjusted one-sided HP filter (HP-1s) with
smoothing parameter λ∗ = 650 and scales the weights by the factor κ = 1.1513.

We obtain κ = k(λ) and λ∗ = l(λ) by minimizing the squared distance between the PTFs
of HP-1s∗ and HP-2s for κ, λ∗ ∈ R2

>0.5 Specifically, we solve the following minimization
problem

minκ,λ∗

(∫ π

0

(
PTFWt|T,λ

(ω) − κ2 · PTFWt|t,λ∗ (ω)
)2
dω
)
. (1.15)

This is similar to Baxter and King (1999) approach to finding an approximate bandpass
filter for economic time series.
Table 1.2 gives an overview of the most commonly used smoothing parameters of HP-2s for
business and financial cycles together with the corresponding parameters we find for HP-1s∗.6

Figure 1.2 shows the PTFs of HP-1s∗ and HP-2s. Though some visible differences remain
between the two PTFs, these are clearly smaller than for HP-1s in Figure 1.1. Notably, in
the immediate neighbourhood of the intersection of the two PTF curves, HP-1s∗ continues
to show a slight lack of dampening at lower frequencies (left of intersection) and a slight
excess of dampening at higher frequencies (right of intersection). Despite these differences,
in terms of the proximity of PTFs, HP-1s∗ is a more closely harmonized real-time version of
HP-2s than HP-1s.

5Restricting the optimization problem to R2
>0 insures that κ is unique such that the optimization problem

is well defined. We also provide contour plots of loss function for the solutions in Table 1.2 in Appendix 1.B.
6Appendix 3.A offers a concise overview of adjustment parameters for a broad range of smoothing

parameters of HP-2s. In addition, software implementing the adjusted HP filter in R, Python and MATLAB
can be downloaded from https://sites.google.com/site/yvesschueler/research
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Table 1.2: Typical Parameters of the Adjusted One-Sided Hodrick-Prescott Filter

Two-sided filter (HP-2s) Adjusted one-sided filter (HP-1s∗)
λ λ∗ κ

Business cycles (yearly data) 6.25 2.45 1.7962
Business cycles (quarterly data) 1,600 650 1.1513
Financial cycles (quarterly data) 400,000 163,101 1.0360

Notes: λ denotes smoothing parameter of the two-sided HP filter; λ∗ and κ denote, respectively, the
corresponding smoothing parameter and scaling factor of the adjusted one-sided HP filter. The scaling

factor is multiplied by the extracted cyclical component of the one-sided HP filter.

Figure 1.2: PTFs of HP-1s∗ and HP-2s for λ = 1,600 and λ = 400,000
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Notes: Panels depict PTFs of HP-1s∗ (“Adjusted one-sided”) and HP-2s (“Two-sided”) for different values
of the smoothing parameter λ. The top panels refer to λ = 1,600, the bottom panels refer to λ = 400,000.
Right-hand panels are magnified versions of the left-hand panels. Red-shaded areas highlight business cycle

frequencies (1.5 to 8 years), while purple areas highlight financial cycle frequencies (8 to 30 years).

Interestingly, the “fourth-power rule” rule of Ravn and Uhlig (2002) also holds for HP-1s∗. In
the context of HP-2s, it is used to adjust the value of the smoothing parameter for different
sampling frequencies or cycle lengths. For instance, the conversion factor when going from
a quarterly to a yearly sampling frequency is s = (1/4)4. Given our value of λ∗ = 650 for
quarterly data, this gives λ∗ = 2.45 for yearly data. Furthermore, when targeting financial
cycles that are four times as long as business cycles, the conversion factor to mirror this
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increase in cycle length is s = 44. Applying this to λ∗ = 650, yields a value of λ∗ = 166, 400.
Since both converted values only differ marginally from the values we find as solutions to
Equation (1.15) (for instance, see Table 1.2), we conclude that the rule also applies to HP-1s∗.

Why do we adjust HP-1s in the manner of Equation (1.14)? Suppose we adjust only the
smoothing parameter λ∗ but apply no scaling factor, i.e. we set κ = 1 in Equation (1.14).
This adjustment does not produce a good fit, because a change in the smoothing parameter
alone will have opposing effects on the degree to which PTFs are harmonized in the range
of higher frequencies vs. the range of lower frequencies. This can be seen from Figure
1.1: Choosing a higher value of λ reduces the undesirable dampening of higher frequencies
but, at the same time, increases the undesirable lack of dampening at lower frequencies.
By contrast, in the specification of Equation (1.14), the scaling factor κ eliminates the
dampening of higher frequencies, where the PTF is almost horizontal, whereas the adjusted
smoothing factor λ∗ harmonizes PTFs in the low-frequency band.

1.5.1 Simulation Exercise

Using simulated data, we analyze how closely the cyclical components of HP-1s∗ and HP-1s
match the cyclical component of HP-2s, considering volatility and persistence. To this end,
we consider three alternative classes of DGPs:

(i) A white noise process with yt = εt and εt ∼ N(0, 1), in which all frequencies
contribute equally to the overall variance;

(ii) A random walk process with yt = yt−1 + εt and εt ∼ N(0, 1), which is a good
representation of the time series behaviour of many macroeconomic variables;

(iii) Four ARIMA processes fitted to log US real GDP and the US credit-to-GDP ratio,
both at a yearly and a quarterly sampling frequency. The sample period of the yearly
(quarterly) data is 1880 to 2019 (1952Q2 to 2019Q4). The lag orders, parameter
estimates and more details on the data are provided in Appendix 1.D.

Although a white noise process is stationary, we use its uniform spectral density where all
frequencies contribute equally to the overall variance to investigate the effects of the three
filters. As argued for example in Hamilton (2018), the second DGP is a good representation
of the time series behaviour of many macroeconomic variables. Roughly speaking, in a
random walk process, lower frequencies contribute relatively more to the total variance
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with a pole at frequency ω = 0. Eventually the fitted ARIMA processes provide a good
approximation of real world data. Additionally, they can generate more complex cyclical
properties than white noise or random walk processes. For instance, they can mirror the
distinct feature of real GDP of having fluctuations at business cycle frequencies (1.5 to eight
years) that contribute heavily to its overall variance. Furthermore, they can mirror the
fact that the credit-to-GDP ratio has fluctuations at medium-term frequencies (eight to 30
years) that contribute heavily to its overall variance.7

For filtering, we use λ = {6.25, 1,600, 400,000} as values for the smoothing parameter of
HP-2s and HP-1s. The respective parameters for HP-1s∗ are λ∗ = {2.45, 650, 163,101} and
κ = {1.7962, 1.1513, 1.0360}. The simulations use 1,000 draws of 100 observations each.
In order to judge the performance of HP-1s∗ and HP-1s, we calculate the standard deviation
and first-order autocorrelation relative to HP-2s. Specifically, we consider the (i) relative
difference in standard deviations: (σ̂HP-1s(∗) − σ̂HP-2s)/σ̂HP-2s, where σ̂HP-2s and σ̂HP-1s(∗) are
the estimated standard deviations of the cyclical components of HP-2s and either HP-1s∗

or HP-1s and (ii) the difference in autocorrelations: ρ̂HP-1s(∗) − ρ̂HP-2s, where ρ̂HP-2s and
ρ̂HP-1s(∗) are the estimated first order autocorrelations of the cyclical components of HP-2s
and either HP-1s∗ or HP-1s. Table 1.3 shows the results of the simulation experiment.
In square brackets, we report the fraction of cases where the statistic of the perspective
one-sided filter is closer to the statistics of HP-2s. In terms of our measure of volatility, the
relative difference in standard deviations, we find that, over all different simulations HP-1s∗

produces an estimate that is closer to HP-2s in about 79% of the cases. The differences are
especially pronounced for yearly data and business cycle frequencies. For example for yearly
data, the standard deviation of the cyclical component obtained with HP-1s is 20% lower
compared to the one of HP-2s while HP-1s∗ matches the second moment well. In terms of
our measure of persistence, the first order autocorrelation, the results favor HP-1s∗ even
more strongly. We find that HP-1s∗ dominates HP-1s in 89% of the cases. The differences
between HP-2s and HP-1s matter especially for business cycles filtering with quarterly data.
These simulation results are also robust with regards to larger and smaller sample sizes
as can be seen from the additional results in Table 1.D.3 in the Appendix. Furthermore,
as shown in Table 1.D.2 in the Appendix of this chapter, differences in the persistence of
the cyclical components are similar or even larger if the comparison is extended to include
higher order autocorrelation coefficients. We conclude that HP-1s∗ outperforms HP-1s with
regard to the two criteria.

7See, for example, Galati et al. (2016); Schüler (2018) and Schüler (2019) and Strohsal et al. (2019).
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1.5. The Adjusted One-Sided HP Filter

Table 1.3: Simulation Exercise

Relative difference in SD Difference in autocorrelations

λ HP-1s∗ HP-1s HP-1s∗ HP-1s

T = 100
White noise
6.25 0.01 [1.00] -0.50 [0.00] 0.02 [0.99] 0.07 [0.01]
1,600 0.01 [1.00] -0.10 [0.00] 0.02 [0.87] 0.03 [0.13]
400,000 0.00 [0.93] -0.03 [0.07] 0.02 [0.67] 0.02 [0.33]
Random walk
6.25 0.04 [1.00] -0.33 [0.00] 0.07 [1.00] 0.20 [0.00]
1,600 0.06 [0.55] 0.06 [0.45] 0.04 [1.00] 0.09 [0.00]
400,000 0.02 [0.45] 0.03 [0.55] 0.02 [0.70] 0.03 [0.30]
ARIMA
Yearly:
6.25 0 [0.94] -0.19 [0.06] 0 [1.00] 0 [0.00]
1,600 0.08 [0.71] 0.11 [0.29] 0.09 [1.00] 0.17 [0.00]
Quarterly:
1,600 0.08 [0.73] 0.1 [0.27] 0.09 [1.00] 0.17 [0.00]
400,000 0.07 [0.55] 0.09 [0.45] 0.1 [0.66] 0.11 [0.34]
Notes: The table compares properties of cyclical components extracted using the adjusted one-sided HP
filter (columns ‘HP-1s∗’) and the unadjusted one-sided HP filter (columns ‘HP-1s’), both relative to the
two-sided HP filter. Column λ gives the value of the smoothing parameter used with the two-sided HP
filter and the unadjusted one-sided HP filter. The adjusted one-sided HP filter uses the corresponding

smoothing and scaling parameter (see, for instance, Table 1.C.1 in Online Appendix 3.A). ‘Relative
difference in standard deviations’: (σ̂HP-1s(∗) − σ̂HP-2s)/σ̂HP-2s, where σ̂HP-2s and σ̂HP-1s(∗) are the

estimated standard deviations of the cyclical components of HP-2s and either HP-1s∗ or HP-1s. ‘Difference
in autocorrelations’: ρ̂HP-1s(∗) − ρ̂HP-2s, where ρ̂HP-2s and ρ̂HP-1s(∗) are the estimated first order

autocorrelations of the cyclical components of HP-2s and either HP-1s∗ or HP-1s. Numbers are the
averages of the summary statistics across simulations. In square brackets, we report the fraction of cases
where the summary statistic of a one-sided filter is in absolute value smaller than the summary statistic of

the other one-sided filter, i.e. matches HP-2s more closely.

1.5.2 Application: How Different Are Financial and Business
Cycles for G7 Countries?

In this section, we illustrate how the use of HP-1s and HP-1s∗ leads to different conclusions
about the properties of financial cycles relative to business cycles. The question of how
the properties of financial cycles relate to those of business cycles is well researched. Borio
(2014) documents that financial cycles have a greater amplitude and are more persistent
than business cycles.8 These differences may matter, for example, in the calibration of
macro-econometric models and in the debate on financial market regulation (see, for example,
Hiebert et al. (2018)).
In our application, we proxy financial cycles with the HP-filtered credit-to-GDP ratio
(λ = 400,000 for quarterly and λ = 1,600 for yearly data) and business cycles with HP-

8Further studies are, for example, Claessens et al. (2012), Aikman et al. (2015), Schüler et al. (2015,0)
or Strohsal et al. (2019).
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1.5. The Adjusted One-Sided HP Filter

Table 1.4: Financial Cycle Statistics Relative to Business Cycle Statistics

Relative difference in standard deviations
Canada France Germany Italy Japan UK US

Yearly data
HP-2s 0.34 1.31 0.77 -0.11 -0.04 1.78 0.25
HP-1s∗ 0.31 1.14 0.67 -0.11 -0.05 1.70 0.25
HP-1s 0.78 1.64 1.18 0.28 0.29 2.55 0.72
Quarterly data
HP-2s 2.83 2.15 2.20 3.23 6.25 2.90 2.65
HP-1s∗ 2.70 2.16 2.17 3.27 6.02 3.04 2.57
HP-1s 2.91 2.62 2.45 4.06 6.79 3.76 2.79

Difference in autocorrelations
Canada France Germany Italy Japan UK US

Yearly data
HP-2s 0.51 0.63 0.50 0.61 0.47 0.59 0.53
HP-1s∗ 0.45 0.53 0.43 0.58 0.44 0.52 0.49
HP-1s 0.36 0.38 0.33 0.51 0.37 0.40 0.41
Quarterly data
HP-2s 0.25 0.45 0.29 0.31 0.28 0.40 0.22
HP-1s∗ 0.24 0.44 0.28 0.29 0.24 0.38 0.20
HP-1s 0.20 0.39 0.24 0.26 0.18 0.33 0.17
Notes: The table compares the properties of financial cycles (measured by filtered credit-to-GDP ratio)

relative to business cycles (measured by filtered log real GDP), relating the two cyclical components of the
two-sided HP filter (rows ‘HP-2s’), the two cyclical components of the adjusted one-sided HP filter (rows
‘HP-1s∗’), and the two cyclical components of the unadjusted one-sided HP filter (row ‘HP-1s’). HP-2s and
HP-1s use λ = {1,600, 400,000} (λ = {6.25, 1,600}) for estimating yearly and quarterly financial (business)
cycles, thereby conducting a comparison in the spirit of Borio (2014). The adjusted one-sided HP filter uses
the corresponding smoothing and scaling parameter (see, for instance, Table 1.C.1 in Online Appendix 3.A).

‘Relative difference in standard deviations’ is the estimated standard deviation of financial cycles (σ̂fc)
minus the estimated standard deviation of business cycles (σ̂bc), relative to the standard deviation of

business cycles, i.e. (σ̂fc − σ̂bc)/σ̂bc. ‘Difference in autocorrelations’ is the difference of the estimated first
order autocorrelation of financial cycles (ρ̂fc) and the estimated first order autocorrelation of business
cycles (ρ̂bc), i.e. ρ̂fc − ρ̂bc. The input for the numbers of the table are in Appendix 1.E Table 1.E.1.

filtered log real GDP (λ = 1,600 for quarterly and λ = 6.25 for yearly data). We also
include the Covid-19 pandemic in the sample period, because structural breaks do not affect
the weights of the HP filter. Therefore, our yearly (quarterly) sample is 1880 until 2020
(1952Q2 until 2022Q2), where starting dates across G7 countries are not equal however.9

Note that, at the time of writing, the yearly database only covers the time period until
2020. For further details, please see Appendix 1.E.
Table 1.4 shows our results. The first metric, the relative difference in standard deviations,
measures how much more volatile the financial cycle is relative to the business cycle. It is
evident from the table that HP-1s has a tendency to exaggerate – relative to HP-2s and
HP-1s – the differences between financial and business cycles. For HP-1s∗, the differences

9For the yearly dataset, France starts in 1990. The starting dates for the quarterly dataset are Canada
(1991Q1), France (1969Q4), Germany and Italy (1960Q4), Japan (1964Q4), United Kingdom (1963Q1),
and United States (1952Q2).
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1.6. Conclusion

are quite similar to the differences reported by HP-2s. For example, HP-1s suggests that
the US financial cycle is 72% more volatile than the US business cycle, looking at the yearly
data. By contrast, HP-2s and HP-1s∗ indicate that the difference is less than half of that,
at about 25%. The second metric, the difference in first-order autocorrelation, measures
how much more persistent financial cycles are relative to business cycles. Here, again, the
conclusions from using HP-2s and HP-1s∗ are relatively similar. In comparison to those
filters, smaller differences in the relative persistence emerge when applying HP-1s.
Overall, we conclude the adjustments succeed at harmonizing the properties of HP-1s with
the properties HP-2s, also when considering actual time series for G7 countries.

1.6 Conclusion

Should the cyclical component obtained from the standard HP-1s be used as the real-time
version of HP-2s’ cyclical component? This paper argues that it should not. The reason is
that important properties of the standard HP-1s are quite different from those of HP-2s.
Specifically, the standard one-sided filter (1) fails to remove low-frequency fluctuations to
the same extent as the two-sided filter and (2) has the undesirable feature of dampening
precisely those fluctuations that one wishes to extract.
As a remedy, this paper proposes HP-1s∗, making two easy-to-implement adjustments to
HP-1s: (1) a lower smoothing parameter and (2) a rescaling of the cyclical component.
Together, these two adjustments address the above-mentioned problems with HP-1s.
We confirm this in applications of HP-1s∗ to both simulated and empirical data. Our
simulation results show that the adjustments yield cyclical components that are more similar
to HP-2s in terms of volatility and persistence. Furthermore, the empirical application
demonstrates that HP-1s needs to be adjusted as it otherwise distorts comparisons of
different economic cycles with regard to the latter properties.
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Appendix

1.A Closed Form Expression for the Filter Polynomials

To derive the closed form of the filter polynomials, we use insights of Hamilton (2018) and
Phillips and Jin (2021). Specifically, the minimization problem of Equation (1.2) has the
matrix representation

τ̂1:T,λ = arg min
τ1:T

{(y1:T − τ1:T )′(y1:T − τ1:T ) + λτ ′
1:TQ

′
TQT τ1:T } , (1.16)

where τ̂1:T,λ = (τ̂1|T,λ, . . . , τ̂T |T,λ)′, τ1:T = (τ1, . . . , τT )′, and y1:T = (y1, . . . , yT )′. Taking the
derivative with respect to τ1:T yields the FOC

−2(y1:T − τ1:T ) + 2λQ′
TQT τ1:T = 0 (1.17)

Rearranging gives the solution

τ̂1:T,λ = (IT + λQ′
TQT )−1y1:T =

{
IT −Q′

T (QTQ
′
T + λ−1IT −2)−1QT

}
y1:T . (1.18)

where the second equality is given by the Woodbury matrix identity. Since the estimated
cyclical component is ψ̂1:T,λ = y1:T − τ̂1:T,λ, similarly defining ψ̂1:T,λ = (ψ̂1|T,λ, . . . , ψ̂1|T,λ)′, it
follows that

ψ̂1:T,λ =
{
IT −

(
IT −Q′

T (QTQ
′
T + λ−1IT −2)−1QT

)}
y1:T (1.19)

= Q′
T (QTQ

′
T + λ−1IT −2)−1QTy1:T (1.20)

= Q′
T (QTQ

′
T + λ−1IT −2)−1QTηTyT , (1.21)



1.B. Optimization Results

where ηT = (LT −1, . . . , L1, 1)′. Finally, the cyclical component of HP-1s ψ̂t|t,λ is obtained by
setting the information set of ψ̂1:T,λ to t (for t = 3, . . . , T ) and picking its last element, i.e.,

ψ̂t|t,λ = e′
tψ̂1:t,λ = e′

tQ
′
t(QtQ

′
t + λ−1It−2)−1Qtηtyt, (1.22)

where et = (0, . . . , 0, 1)′ is a t-dimensional column vector.

1.B Optimization Results

Figure 1.B.1: Contour lines of the loss-function
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problem is well defined with unique minima in the domain of the parameters R2
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1.C. Adjustment Parameters for the One-Sided Hodrick-Prescott Filter

1.C Adjustment Parameters for the One-Sided Hodrick-
Prescott Filter
Table 1.C.1: Smoothing and Rescaling Parameters λ∗ and κ of HP-1s

λ λ∗ κ λ λ∗ κ λ λ∗ κ λ λ∗ κ

1.00 0.35 2.7174 55.00 22.15 1.3921 1000 406 1.1718 55000 22411 1.0598
1.25 0.45 2.5372 57.50 23.16 1.3869 1250 508 1.1617 57500 23431 1.0591
1.50 0.55 2.4111 60.00 24.17 1.3820 1600 650 1.1513 60000 24450 1.0584
1.75 0.65 2.3165 62.50 25.19 1.3774 1750 711 1.1477 62500 25469 1.0578
2.00 0.75 2.2420 65.00 26.20 1.3730 2000 813 1.1425 65000 26488 1.0572
2.25 0.85 2.1814 67.50 27.21 1.3688 2250 915 1.1381 67500 27507 1.0567
2.50 0.95 2.1308 70.00 28.23 1.3648 2500 1017 1.1342 70000 28526 1.0562
2.75 1.04 2.0877 72.50 29.24 1.3610 2750 1118 1.1309 72500 29546 1.0557
3.00 1.14 2.0503 75.00 30.25 1.3574 3000 1220 1.1279 75000 30565 1.0552
3.25 1.24 2.0176 77.50 31.26 1.3540 3250 1322 1.1252 77500 31584 1.0547
3.50 1.34 1.9885 80.00 32.28 1.3506 3500 1424 1.1227 80000 32603 1.0543
3.75 1.44 1.9625 82.50 33.29 1.3475 3750 1525 1.1205 82500 33623 1.0538
4.00 1.55 1.9390 85.00 34.30 1.3444 4000 1627 1.1184 85000 34642 1.0534
4.25 1.65 1.9177 87.50 35.32 1.3415 4250 1729 1.1166 87500 35661 1.0530
4.50 1.75 1.8981 90.00 36.33 1.3387 4500 1831 1.1148 90000 36680 1.0527
4.75 1.85 1.8802 92.50 37.35 1.3359 4750 1933 1.1132 92500 37700 1.0523
5.00 1.95 1.8636 95.00 38.36 1.3333 5000 2034 1.1116 95000 38719 1.0519
5.25 2.05 1.8483 97.50 39.37 1.3308 5250 2136 1.1102 97500 39738 1.0516
5.50 2.15 1.8339 100 40 1.3283 5500 2238 1.1089 100000 40758 1.0512
5.75 2.25 1.8206 125 51 1.3077 5750 2340 1.1076 125000 50951 1.0484
6.00 2.35 1.8080 150 61 1.2919 6000 2442 1.1064 150000 61145 1.0462

6.25 2.45 1.7962 175 71 1.2792 6250 2543 1.1053 175000 71340 1.0444
6.50 2.55 1.7851 200 81 1.2688 6500 2645 1.1042 200000 81534 1.0429
6.75 2.65 1.7746 225 91 1.2599 6750 2747 1.1032 225000 91730 1.0416
7.00 2.75 1.7647 250 101 1.2523 7000 2849 1.1022 250000 101925 1.0405
7.25 2.85 1.7552 275 111 1.2456 7250 2951 1.1012 275000 112120 1.0396
7.50 2.95 1.7463 300 122 1.2397 7500 3053 1.1003 300000 122316 1.0387
7.75 3.05 1.7377 325 132 1.2343 7750 3154 1.0995 325000 132512 1.0379
8.00 3.15 1.7296 350 142 1.2295 8000 3256 1.0986 350000 142708 1.0372
8.25 3.25 1.7218 375 152 1.2251 8250 3358 1.0978 375000 152904 1.0366
8.50 3.35 1.7143 400 162 1.2211 8500 3460 1.0971 400000 163101 1.0360
8.75 3.45 1.7072 425 172 1.2174 8750 3562 1.0964 425000 173297 1.0354
9.00 3.55 1.7004 450 183 1.2140 9000 3664 1.0956 450000 183494 1.0349
9.25 3.65 1.6938 475 193 1.2108 9250 3765 1.0950 475000 193691 1.0344
9.50 3.76 1.6875 500 203 1.2078 9500 3867 1.0943 500000 203887 1.0340
9.75 3.86 1.6814 525 213 1.2051 9750 3969 1.0937 525000 214084 1.0336

10.00 3.96 1.6755 550 223 1.2024 10000 4071 1.0930 550000 224281 1.0332
12.50 4.96 1.6265 575 233 1.2000 12500 5089 1.0878 575000 234478 1.0328
15.00 5.97 1.5897 600 243 1.1976 15000 6108 1.0837 600000 244675 1.0324
17.50 6.98 1.5607 625 254 1.1954 17500 7127 1.0804 625000 254873 1.0321
20.00 7.99 1.5370 650 264 1.1933 20000 8145 1.0776 650000 265070 1.0318
22.50 9.00 1.5172 675 274 1.1913 22500 9164 1.0753 675000 275267 1.0315
25.00 10.01 1.5001 700 284 1.1894 25000 10183 1.0733 700000 285465 1.0312
27.50 11.02 1.4853 725 294 1.1876 27500 11202 1.0715 725000 295662 1.0309
30.00 12.03 1.4723 750 304 1.1859 30000 12221 1.0699 750000 305860 1.0307
32.50 13.04 1.4606 775 315 1.1842 32500 13240 1.0685 775000 316057 1.0304
35.00 14.05 1.4502 800 325 1.1826 35000 14259 1.0672 800000 326255 1.0302
37.50 15.06 1.4407 825 335 1.1811 37500 15278 1.0660 825000 336453 1.0299
40.00 16.08 1.4320 850 345 1.1796 40000 16297 1.0649 850000 346650 1.0297
42.50 17.09 1.4241 875 355 1.1782 42500 17316 1.0639 875000 356848 1.0295
45.00 18.10 1.4167 900 365 1.1768 45000 18335 1.0629 900000 367046 1.0293
47.50 19.11 1.4099 925 376 1.1755 47500 19354 1.0621 925000 377244 1.0291
50.00 20.12 1.4036 950 386 1.1743 50000 20373 1.0612 950000 387442 1.0289
52.50 21.14 1.3977 975 396 1.1730 52500 21392 1.0605 975000 397640 1.0287

1000000 407838 1.0285
Notes: λ denotes the smoothing parameter of the two-sided HP filter. λ∗ is the corresponding adjusted

smoothing parameter, used as an input to the one-sided HP filter.
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1.D. Simulation Exercise

1.D Simulation Exercise

Table 1.D.1: Estimated ARIMA Models

log GDP

Yearly ∆yt = 3.27 + 0.83∆yt−1 − 0.82∆yt−2 − 0.08∆yt−3 + εt − 0.4εt−1 + 0.9εt−2
Quarterly ∆yt = 0.74 − 0.36∆yt−1 + 0.33∆yt−2 + εt + 0.68εt−1

Credit-to-GDP ratio

Yearly ∆yt = 0.32 + 0.57∆yt−1 − 0.84∆yt−2 + 0.29∆yt−3 + εt + 0.07εt−1 + 0.93εt−2
Quarterly ∆yt = 0.38 + 0.92∆yt−1 + 0.99∆yt−2 − 0.93∆yt−3 + εt − 0.64εt−1 − 0.92εt−2 + 0.57εt−3

Notes: The table gives the estimated model equations for each series in logs. We choose the lag orders of
the AR and MA polynomials using the Akaike information criteria. Quarterly data was obtained from the
FRED and BIS databases, yearly series where retrieved from the Jordà-Schularick-Taylor Macrohistory

Database (see Jordà et al. (2017)). The sample period of the yearly (quarterly) data is 1880 to 2019
(1952Q2 to 2019Q4).
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1.D. Simulation Exercise

Table 1.D.2: Simulation Exercise: Higher-Order Autocorrelation

RMSE(4) RMSE(8)

λ HP-1s∗ HP-1s HP-1s∗ HP-1s

T = 100
White noise
6.25 0.01 [1.00] 0.04 [0.00] 0.01 [0.88] 0.03 [0.12]
1,600 0.01 [1.00] 0.02 [0.00] 0.01 [0.88] 0.02 [0.12]
400,000 0.01 [1.00] 0.01 [0.00] 0.01 [1.00] 0.01 [0.00]
Random walk
6.25 0.06 [1.00] 0.14 [0.00] 0.05 [1.00] 0.12 [0.00]
1,600 0.07 [1.00] 0.16 [0.00] 0.08 [1.00] 0.17 [0.00]
400,000 0.04 [1.00] 0.05 [0.00] 0.06 [1.00] 0.09 [0.00]
ARIMA
Yearly:
6.25 0.08 [0.75] 0.16 [0.25] 0.07 [0.88] 0.16 [0.00]
1,600 0.08 [1.00] 0.16 [0.00] 0.10 [1.00] 0.20 [0.00]
Quarterly:
1,600 0.08 [1.00] 0.16 [0.00] 0.10 [1.00] 0.20 [0.00]
400,000 0.04 [1.00] 0.04 [0.00] 0.08 [1.00] 0.09 [0.00]

T = 1000
White noise
6.25 0.01 [1.00] 0.04 [0.00] 0.01 [0.88] 0.03 [0.12]
1,600 0.00 [1.00] 0.01 [0.00] 0.00 [0.88] 0.01 [0.12]
400,000 0.00 [1.00] 0.01 [0.00] 0.00 [1.00] 0.00 [0.00]
Random walk
6.25 0.05 [1.00] 0.14 [0.00] 0.05 [1.00] 0.12 [0.00]
1,600 0.04 [1.00] 0.14 [0.00] 0.06 [1.00] 0.16 [0.00]
400,000 0.02 [1.00] 0.05 [0.00] 0.03 [1.00] 0.08 [0.00]
ARIMA
Yearly:
6.25 0.07 [0.75] 0.15 [0.25] 0.07 [0.88] 0.15 [0.12]
1,600 0.04 [1.00] 0.13 [0.00] 0.07 [1.00] 0.18 [0.00]
Quarterly:
1,600 0.05 [1.00] 0.13 [0.00] 0.07 [1.00] 0.18 [0.00]
400,000 0.00 [1.00] 0.01 [0.00] 0.01 [1.00] 0.02 [0.00]
Notes: The table compares properties of cyclical components extracted using the adjusted one-sided HP
filter (columns ‘HP-1s∗’) and the unadjusted one-sided HP filter (columns ‘HP-1s’), both relative to the
two-sided HP filter. We evaluate the deviation of the higher order autocorrelations of the one-sided filter
based on the RMSE given as RMSE(h) =

√
1/h

∑h
i=1(¯̂ρ(i)

HP-1s(∗) − ¯̂ρ(i)
HP-2s)2, where ¯̂ρ(i)

HP-2s and ¯̂ρ(i)
HP-1s(∗) are

the averages over the estimated autocorrelations at the ith lag of the cyclical components of HP-2s and
either HP-1s∗ or HP-1s. In square brackets, we report the fraction of lags where the summary statistic of a

one-sided filter is in absolute value smaller than the summary statistic of the other one-sided filter, i.e.
matches HP-2s more closely.
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1.D. Simulation Exercise

Table 1.D.3: Simulation Exercise (continued)

Relative difference in SD Difference in autocorrelations

λ HP-1s∗ HP-1s HP-1s∗ HP-1s

T = 50
White noise
6.25 0.01 [1.00] -0.49 [0.00] 0.03 [0.96] 0.08 [0.04]
1,600 0.01 [0.95] -0.10 [0.05] 0.03 [0.80] 0.04 [0.20]
400,000 -0.01 [0.88] -0.04 [0.12] 0.03 [0.59] 0.03 [0.41]
Random walk
6.25 0.05 [0.97] -0.32 [0.03] 0.08 [1.00] 0.21 [0.00]
1,600 0.08 [0.51] 0.06 [0.49] 0.08 [0.95] 0.14 [0.05]
400,000 0.06 [0.43] 0.04 [0.57] 0.05 [0.62] 0.05 [0.38]
ARIMA
Yearly:
6.25 0.08 [0.84] -0.18 [0.16] 0.00 [1.00] 0.00 [0.00]
1,600 0.12 [0.65] 0.13[0.35] 0.11 [0.96] 0.17 [0.04]
Quarterly:
1,600 0.12 [0.64] 0.13 [0.45] 0.10 [0.95] 0.16 [0.05]
400,000 0.14 [0.41] 0.13 [0.59] 0.19 [0.50] 0.20 [0.50]

T = 500
White noise
6.25 0.00 [1.00] -0.51 [0.00] 0.01 [1.00] 0.07 [0.00]
1,600 0.00 [1.00] -0.11 [0.00] 0.00 [1.00] 0.02 [0.00]
400,000 0.00 [1.00] -0.03 [0.00] 0.00 [0.91] 0.01 [0.09]
Random walk
6.25 0.04 [1.00] -0.33 [0.00] 0.06 [1.00] 0.20 [0.00]
1,600 0.04 [0.49] 0.04 [0.51] 0.02 [1.00] 0.07 [0.00]
400,000 0.04 [1.00] 0.11 [0.00] 0.01 [1.00] 0.02 [0.00]
ARIMA
Yearly:
6.25 0.06 [1.00] -0.20 [0.00] 0.00 [0.92] 0.00 [0.08]
1,600 0.05 [0.93] 0.08 [0.07] 0.07 [1.00] 0.16 [0.00]
Quarterly:
1,600 0.05 [0.90] 0.07 [0.10] 0.07 [1.00] 0.16 [0.00]
400,000 0.02 [0.99] 0.07 [0.10] 0.02 [1.00] 0.04 [0.00]

T = 1000
White noise
6.25 0.00 [1.00] -0.51 [0.00] 0.00 [1.00] 0.07 [0.00]
1,600 0.00 [1.00] -0.11 [0.00] 0.00 [1.00] 0.02 [0.00]
400,000 0.00 [1.00] -0.03 [0.00] 0.00 [0.98] 0.01 [0.02]
Random walk
6.25 0.04 [1.00] -0.33 [0.00] 0.06 [1.00] 0.20 [0.00]
1,600 0.04 [0.50] 0.04 [0.50] 0.02 [1.00] 0.07 [0.00]
400,000 0.04 [1.00] 0.11 [0.00] 0.01 [1.00] 0.02 [0.00]
ARIMA
Yearly:
6.25 0.06 [1.00] -0.20 [0.00] 0.00 [0.85] 0.00 [0.15]
1,600 0.05 [0.97] 0.07 [0.03] 0.05 [1.00] 0.13 [0.00]
Quarterly:
1,600 0.05 [0.97] 0.07 [0.03] 0.05 [1.00] 0.13 [0.00]
400,000 0.01 [1.00] 0.05 [0.00] 0.03 [1.00] 0.10 [0.00]
Notes: The table compares properties of cyclical components extracted using the adjusted one-sided HP
filter (columns ‘HP-1s∗’) and the unadjusted one-sided HP filter (columns ‘HP-1s’), both relative to the

two-sided HP filter. For a description of the summary statistics (‘relative difference in standard deviations’
and ‘difference in autocorrelations’), please see Section 1.5.1. Numbers are the averages of the summary
statistics across simulations. In square brackets, we report the fraction that the summary statistic of a
one-sided filter is in absolute value smaller than the summary statistic of the other one-sided filter, i.e.

matches HP-2s more closely.
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1.E Application: How Different Are Financial and
Business Cycles for G7 Countries?

Table 1.E.1: Business and Financial Cycle Statistics for G7 Countries

Standard deviation (%)

Canada France Germany Italy Japan UK US

log GDP

Yearly data
HP-2s 3.06 4.90 6.35 7.03 7.26 1.93 3.49
HP-1s∗ 3.29 5.32 6.86 7.19 7.55 2.04 3.65
HP-1s 2.49 4.10 5.33 5.20 5.58 1.56 2.74
Quarterly data
HP-2s 1.56 1.67 1.67 1.89 1.58 2.29 1.58
HP-1s∗ 1.60 1.68 1.68 1.91 1.68 2.32 1.61
HP-1s 1.58 1.60 1.63 1.81 1.73 2.23 1.59

Credit-to-GDP ratio

Yearly data
HP-2s 4.09 11.34 11.26 6.27 6.95 5.35 4.35
HP-1s∗ 4.30 11.37 11.49 6.37 7.16 5.52 4.57
HP-1s 4.43 10.82 11.60 6.65 7.17 5.52 4.72
Quarterly data
HP-2s 5.99 5.25 5.34 8.02 11.48 8.94 5.78
HP-1s∗ 5.93 5.32 5.33 8.14 11.81 9.38 5.75
HP-1s 6.17 5.79 5.62 9.18 13.47 10.64 6.03

Autocorrelation

Canada France Germany Italy Japan UK US

log GDP

Yearly data
HP-2s 0.27 0.21 0.39 0.29 0.28 0.29 0.34
HP-1s∗ 0.35 0.31 0.47 0.32 0.34 0.38 0.39
HP-1s 0.49 0.48 0.58 0.41 0.45 0.51 0.50
Quarterly data
HP-2s 0.70 0.50 0.69 0.67 0.71 0.59 0.77
HP-1s∗ 0.72 0.51 0.70 0.69 0.76 0.61 0.78
HP-1s 0.77 0.57 0.74 0.73 0.81 0.66 0.82

Credit-to-GDP ratio

Yearly data
HP-2s 0.78 0.84 0.89 0.90 0.76 0.88 0.87
HP-1s∗ 0.80 0.84 0.90 0.90 0.77 0.90 0.88
HP-1s 0.85 0.86 0.92 0.92 0.82 0.91 0.91
Quarterly data
HP-2s 0.96 0.94 0.98 0.98 1.00 0.98 0.99
HP-1s∗ 0.97 0.95 0.98 0.98 0.99 0.98 0.99
HP-1s 0.97 0.96 0.98 0.99 1.00 0.99 0.99
Notes: The table gives the underlying input for the comparison of financial and business cycles of Table 1.4.
‘HP-2s’ refers to the cyclical component obtain via the two-sided HP filter, HP-1s∗ the adjusted one-sided

HP filter, and HP-1s the unadjusted one-sided HP filter. For more details, please see Section 1.5.2.
‘Autocorrelation’ refers to first-order autocorrelation.
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Figure 1.E.1: Yearly Hodrick-Prescott Filtered Data
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Notes: For each country, the top graph shows filtered log real GDP (×100). The bottom graph depicts the filtered credit-to-GDP
ratio.
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Figure 1.E.2: Quarterly Hodrick-Prescott Filtered Data
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Notes: For each country, the top graph shows filtered log real GDP (×100). The bottom graph depicts the filtered credit-to-GDP
ratio.

25





Chapter 2

Data Revisions to German National
Accounts: Are Initial Releases Good
Nowcasts?

with Till Strohsal

For copyright reasons, this chapter (p. 27 - 41) is not included in the online version of the
dissertation. An electronic version of the article can be accessed at:
https://doi.org/10.1016/j.ijforecast.2019.12.006

https://doi.org/10.1016/j.ijforecast.2019.12.006




Chapter 3

Estimating Growth at Risk with
Skewed Stochastic Volatility Models∗

3.1 Introduction

John Maynard Keynes already wrote in his General Theory that economic recessions
tend to be more volatile and more severe than economic expansions. Since then, different
nonlinear or non-Gaussian features of the business cycle have been described in the economic
literature (Pitt et al. (2012)). A recent study on non-linearities in US GDP growth that
gained considerable attention amongst academics and policy makers alike is the seminal
paper ’Vulnerable Growth’ by Tobias Adrian, Nina Boryaschenko and Domenico Giannone
(2019). Based on the results in the Macro-Finance literature, the authors link the non-linear
and non-Gaussian features of economic growth to a country’s national financial conditions.
Borrowing from the Value at Risk concept in financial econometrics, they capture time-
varying tail risks to GDP growth conditional on a country’s national financial conditions
using a semi-parametric estimation procedure. They find that a deterioration in national
financial conditions increases the volatility and skewness of the conditional distribution of

∗This chapter has greatly benefited from valuable comments and suggestions by Frank Schorfheide, Frank
Diebold, Carlos Montes-Galdón, Joan Paredes, Dieter Nautz, Lars Winkelmann, Helmut Lütkepohl, Yves
Schüler, Lea Wolf, Max Diegel, Andrea de Polis, Laura Liu, Minchul Shin, Thorsten Drautzburg, Simon
Freyaldenhoven, Matteo Cicarelli, Michelle Lenza, Mareck Jarochinski, Marta Bańbura as well as other
participants of the University of Pennsylvania Econometrics Lunch Seminar, the reserach seminar at the
Federal Reserve Bank of Philadelphia, the EABCN and Bundesbank Conference on Challenges in Empirical
Macroeconomics in May 2022, the ECB Brownbag Seminar in December 2021, the 11th RCEA Money
Macro Finance Conference in June 2021, and the "Topics in Time Series Econometrics"-Workshop 2020 and
2021 in Tornow. This chapter has been selected as one of the winners of the PhD paper competition of the
13th ECB Forecasting Conference. An earlier version of this chapter is published as FU Discussion Paper
No. 2022/2.



3.1. Introduction

future GDP in the US. Most notably, their results indicate that conditional forecasting
densities of US GDP growth rates are not always symmetric but left skewed in times of
financial distress.
Yet, while the semi-parametric approach proposed by Adrian et al. (2019) is easy to
implement, it is difficult to construct confidence intervals to statistically test the impact
of national financial conditions or potentially other exogenous variables on the different
moments of the conditional densities. Furthermore, since their approach does not assume a
parametric law of motion, it is also not possible to conduct multi-step forecasts to predict
of the evolution of time-varying risks around US-GDP growth several periods in the future.
Nevertheless, as outlined in Prasad et al. (2019) the concept of Growth at Risk has provided
policy makers all over world with an easy risk measure to evaluate a country’s economic
stability.
However, other recent studies by Hasenzagl et al. (2020) or Brownlees and Souza (2021)
have put the results of Adrian et al. (2019) into question. While Hasenzagl et al. (2020)
document little evidence for the effects of national financial conditions on higher moments
such as variance or skewness, the results of Brownlees and Souza (2021) find that quantile
regressions in the style of Adrian et al. (2019) show no predictive gains over symmetric
GARCH models for macroeconomic tail risks.
Adding to the debate about time-varying asymmetries in the conditional densities of
macroeconomic variables, this paper proposes a parametric modeling approach to estimate
macroeconomic tail risks conditional on financial conditions. I build a Skewed Stochastic
Volatility model (SSV) that can capture the variation of the full conditional density of
future US GDP growth parametrically while being equally flexible. In this model, skewness
arises from the assumption that errors follow a skewed normal distribution as introduced
by Azzalini (2013). The model is a non-linear and non-Gaussian state space model that
captures the effects of exogenous variables such as the national financial conditions index on
the first and second moment of the conditional forecasting distribution of US GDP growth.
Additionally, the SSV model provides a law of motion for the volatility and skewness of
the conditional distributions. This makes it easy to iterate the evolution of the conditional
densities forward in time to obtain multi step forecasts of tail risks. The model also nests a
generic Stochastic Volatility (SV) model with symmetric densities, and does not impose
skewness a priori.
Building on established Bayesian estimation methods for non-linear, non-Gaussian state
space models, the SSV model can be estimated using a particle Monte Carlo Markov Chain
(MCMC) algorithm that treats the model coefficients and the unobserved volatility and
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skewness symmetrically as random variables.14 This allows to easily construct credible sets
for both objects to conduct statistical inference. Additionally, the Bayesian estimation
approach makes it possible to compare and select different model specifications based on
the respective marginal data densities. To increase the efficiency of the estimation, I use
the recently introduced tempered particle filter by Herbst and Schorfheide (2019) to obtain
robust estimates of the likelihood and latent states. As discussed in Pitt et al. (2012) the
accuracy of the particle filtering approximation is important for the efficiency of the particle
MCMC algorithm. Improving on the well-documented weakness of standard bootstrap
particle filters to be sensitive to extreme values (see for example Doucet et al. (2001)),
the tempered particle filter is more accurate in periods of high volatility but also more
computationally expensive. Building on the work of Herbst and Schorfheide (2019), I modify
the tempering schedule to take the asymmetry of the measurement density into account.
This results in less tempering iterations and allows to increase the targeted accuracy of the
estimated states by reducing the runtime of the filter.
Estimating the model using US data, the SSV model provides further statistical evidence
that national financial conditions have an impact on the second and third moment of the
conditional forecasting distribution of future US GDP growth. Furthermore, the tempered
particle filter provides significant estimates of the time variation in the variance and skewness
of the forecasting density of US GDP growth rates.
The results are also in line with other recent studies in the Growth at Risk literature such
as delle Monache et al. (2021) or Montes-Galdon and Ortega (2022). With a Bayes ratio
of 1612.18, the SSV model is strongly favoured by the data over a symmetric SV model.
Comparing the conditional densities based on entropy measures developed in Adrian et al.
(2019), the higher marginal likelihood of the SSV model can be attributed to its ability to
better capture the strong increase in downside risks in periods of economic turmoil. These
results provide further statistical evidence that asymmetries are an essential feature of the
conditional densities of macroeconomic variables in times of economic crises.
The chapter is structured as follows: Section 3.2 provides an overview of the Growth at Risk
concept and the methodology developed by Adrian et al. (2019). The Skewed Stochastic
Volatility model and its estimation is introduced in Section 3.3 and 3.4 respectively. Section
3.5 and 3.6 discuss the results for the SSV model based on US data. Section 3.7 concludes.

14Flury and Shephard (2011) have documented that these estimation methods work well for SV models
with symmetric densities in discrete time.
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3.2 Growth at Risk

The concept of Growth at Risk was introduced in the seminal paper by Adrian et al. (2019)
who analyse the variation of the one-period ahead forecast distribution of US GDP growth
(gdpt+1) conditional on the national financial conditions index (dubbed nfcit) to analyse
macro-financial risks in the US economy.15 To obtain an estimate of the one-period ahead
forecasting distribution of US-GDP, the authors develop a semi-parametric approach that
consists of two steps.
In the first step, the 5, 25, 75 and 95% quantiles of the conditional distributions of gdpt+1

are estimated by running quantile regressions of the form

gdpt+1 = β0,τ + β1,τnfcit + εt+1 (3.1)

where the vector of parameters βτ = (β0,τ , β1,τ )′ depends on a predetermined quantile
τ ∈ (0, 1). The parameters are found by minimizing the Koenker Bassett loss (Koenker and
Bassett (1978)) defined as

LKB(βτ ) =
∑(

τ · 1(gdpt+1≥x′
tβτ )|gdpt+1 − x′

tβτ | + (1 − τ) · 1(gdpt+1<x′
tβτ )|gdpt+1 − x′

tβτ |
)

where the vector xt = (1, nfcit)′ contains the explanatory variable plus intercept and 1A(...)
denotes the indicator function. In a second step, the authors match the predicted 5, 25,
75 and 95 percent quantiles from the regressions to the theoretical moments of the skew T

distribution developed in Azzalini (2013). The respective density function is defined as

skew T (y|ξ, ω, α, ν) = 2
ω

· t(z|ν) · T (αz|ν + 1) with z = y − ξ

ω
(3.2)

with ξ, ω, α, ν controlling the location, scale, shape and kurtosis of the distribution. The
resulting densities are flexible and not constrained to be symmetric. Estimating the model
based on US data from the 1970s up to 2017, Adrian et al. (2019) document the following
properties of the one period ahead forecast distributions:

(1) Lower quantiles of the conditional forecast distribution vary a lot over time while the
upper quantiles remain relatively stable.

(2) A deterioration of national financial conditions coincides with increases in the in-
terquartile range and decreases the mean.

15The National Financial Conditions Index is given by the fist principal component of a large number of
financial variables and released by the Federal Reserve Bank of Chicago.
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(3) Distributions are more symmetric in normal times and become left skewed in reces-
sionary periods.

Based on their work, the proposed two-step approach has also been applied to analyze
time-varying forecast distributions of European growth rates (de Santis and van der Veken
(2020)) or other macroeconomic variables such as inflation (López-Salido and Loria (2020)).
However, while the semi-parametric approach by Adrian et al. (2019) provides coefficients
of the quantile regressions in the first step, it does not provide a parametric law of motion
that describes the evolution of the time variation in the volatility and asymmetry of the
conditional forecast distributions. This prevents to directly capture the effect of the national
financial conditions or any other explanatory variable a researcher might include on the
second and third moment. Consequently, it is also not possible to conduct statistical
inference to determine the statistical relevancy of different variables on the moments of the
distributions. The same is true for the estimation uncertainty of the time-varying parameters
of the skew T distribution at each point in time. Furthermore, without a parametric law
of motion that governs the variation in the higher moments over time it is not possible to
obtain multistep forecasts of the evolution of the conditional densities and predict future
risks. 16 Last but not least, it is well known that standard quantile regressions based on
the Koenker Bassett Loss do not insure monotonicity in the estimated coefficients of the
different quantile regressions. Hence, the regression lines for different quantiles can intersect,
a problem that is commonly denoted as quantile crossing (see for example Chernozhukov
et al. (2010)). To remedy these shortcomings, this paper proposes to estimate the evolution
of the full forecasting density in a fully parametric way using a Skewed Stochastic Volatility
Model.

3.3 Skewed Stochastic Volatility Model

The Skewed Stochastic Volatility Model (SSV) model is a non-linear, non-Gaussian state
space model with measurement equation

yt = γ0 +
L∑

l=1
γlxt,l +

P∑
p=1

βpyt−p + εt with εt ∼ skew N (0, σt, αt) (3.3)

16Compared to the approach in this paper, an alternative way to obtain multistep forecasts using the
semi-parametric approach of Adrian et al. (2019) could be to estimate a separate model to obtain a direct
forecast for each horizon in the spirit of a local projections approach. However, this method fails to capture
the uncertainty around the predictions.
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and latent states

ln(σt) = δ1,0 +
Jσ∑

j=1
δ1,jxt,j +

Kσ∑
k=1

β1,k ln(σt−k) + ν1,t (3.4)

αt = δ2,0 +
Jα∑

j=1
δ2,jxt,j +

Kα∑
k=1

β2,kαt−k + ν2,t (3.5)

The innovations of the latent states ν1,t and ν2,t are assumed to be uncorrelated Gaussian
White Noise ν1,t

ν2,t

 ∼ N

0
0

 ,
σν1 0

0 σν2

 (3.6)

Most importantly, the errors in the measurement equation (3.3) are distributed according
to the skew normal distribution of Azzalini (2013). Similar to the normal distribution it has
parameters for the location (µ) and scale (σ) plus an additional shape parameter α that
determines the symmetry of the density function. The probability density function of the
skew normal distribution is given by

skew N (y|µ, σ, α) = 2√
(2π)σ

e− (y−µ)2

2σ2

∫ α y−µ
σ

−∞

1√
2π
e

−z2
2 dz with z = y − µ

σ
. (3.7)

Figure 3.3.1 shows how different values for α affect the skewness of the distribution function.
While α < 0 results in a left skewed distribution, α > 0 tilts the distribution to the right.
Setting α = 0 recovers the symmetric Normal distribution. The evolution of the density

Figure 3.3.1: Skewed Normal Distribution for Different Values of the Shape Parameter α.

Notes: Negative values of α tilt the distribution to the left while positive values skew the distribution to
the right. Setting α = 0 recovers the standard normal distribution.
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of the measurement errors over time is governed by state equations (3.4) and (3.5). The
set of exogenous driving variables is not limited to be equal across Equations (3.3) - (3.5).
Additionally, the lagged states can capture serial correlation in the evolution of the state
variables. To guarantee the stability of the model I restrict the autoregressive coefficients
such that

P∑
p=1

βp < 1 and
Kα∑
k=1

β1,k < 1 and
Kσ∑
k=1

β2,k < 1.

Depending on the value of the static coefficients of the model, Equation (3.4) will affect the
interquartile range of the conditional densities while Equation (3.5) introduces time-varying
asymmetries.
The skew normal distribution can also capture excess kurtosis in the conditional densities of
the SSV model. Given the derivations of Azzalini (2013) the kurtosis of the skew normal is
a function of the scale and shape parameters. Hence, skew normal distribution can capture
all characteristics found by Adrian et al. (2019) while maintaining a parsimonious modelling
approach and without imposing skewness a priori. Furthermore, the SSV model nests a
symmetric SV model with symmetric densities if δ2,0 = δ2,j = β2,k = σν2 = 0 ∀j, k. Last
but not least, given the estimation approach outlined in Section 3.4, it is also possible to
allow for non-zero correlation of the error terms ν1 and ν1 by including their covariance in
the set of static parameters that need to be estimated.
Estimating the model using Bayesian methods yields credible sets for both, the static
parameters of the model as well as the value of the latent states at each time t. This allows
to directly test the significance of the static and time-varying parameters. Additionally, it is
easy to iterate the latent states forward in time to forecast the evolution of the conditional
density of yt several periods ahead.
The results of Adrian et al. (2019) quickly spawned a number of papers that are related to
the research of this paper and that can be categorized in their parameter versus observation-
driven modelling approach. As defined in Koopman et al. (2016), the observation-driven
framework captures time-variation of parameters as deterministic functions of lagged de-
pendent as well as exogenous variables. Prominent examples are the ARCH and GARCH
models by Engle (1982) and Bollerslev (1986). In contrast to these models, the parameter-
driven approach models time-varying parameters as independent stochastic processes with
idiosyncratic errors. A notable example is the stochastic volatility model or the unob-
served component models discussed in Durbin and Koopman (2012). Using a parameter
driven approach, Carriero et al. (2020) work with a time-varying volatility specification in
large BVAR that can capture variation in the second moment of the conditional forecast-
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ing densities. Yet, skewness can only arise in the unconditional density of GDP growth.
Montes-Galdon and Ortega (2022) analyze asymmetric macroeconomic risks in the Euro
Area using an SVAR model with structural errors that follow a multivariate skew normal
distribution with time varying shape parameters. However, the authors limit the effect of
national financial conditions to the shape parameter of the structural errors and restrict
the scale parameter to be constant over time. Similarly, Iseringhausen (2021) develops a
panel model with time-varying skewness. Yet, national financial conditions are restricted
to affect the skewness of the conditional distributions while volatility evolves as a random
walk. Eventually, Hasenzagl et al. (2020) also estimate a time-varying parameter model
using Hamiltonian Monte Carlo methods and a skew T distribution. The authors find that
the time-varying moments cannot be estimated precisely and are generally insignificant.
However, compared to the analysis in this paper, the authors focus on marginal forecasting
gains of financial variables over measures of real activity.
In the observation driven framework, Adrian et al. (2019) already include a simple GARCH-
type model that can capture time variation in the first two moments. Yet, resulting
conditional forecast distributions remain constrained to be symmetric and Gaussian sim-
ilar to Carriero et al. (2020). Using the Generalized Autoregressive Score (GAS) model
framework developed by Creal et al. (2013), the paper by delle Monache et al. (2021) also
allows for time varying skewness. Furthermore, older observation driven models that seek
to model time-varying skewness are proposed in the work of Hansen (1994) or Engle and
Manganelli (2004).
Compared to the other studies, an additional contribution of this paper is the Bayesian
estimation approach of the model using advanced particle filtering methods recently intro-
duced by Herbst and Schorfheide (2019). In contrary to the aforementioned studies, the
SSV model and the Bayesian estimation strategy can capture all features documented by
Adrian et al. (2019) while remaining flexible with regards to other distribution families and
more complex model specifications.
The SSV model in this paper is a parameter driven model and estimated using a combination
of particle filters and Markow Chain Monte Carlo methods. To the best of my knowledge,
this is the first paper that estimates a SV model that also allows for time-varying skewness
using state of the art particle filtering techniques in combination with MCMC methods.
The estimation methods for the non-linear state space model are introduced in detail in the
next section.
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3.4 How to Estimate the Skewed Stochastic Volatility
Model

Due to the skew normal distribution of the measurement errors as well as the non-linearity
in the state equation of the scale parameter, the SSV model is a non-linear, non-Gaussian
state space model. Therefore, one cannot estimate the states and static model parameters
with methods such as Kalman filtering and the EM-algorithm. Yet, non-linear state space
models can feasibly be estimated in a Bayesian framework using a combination of particle
filters and MCMC-Algorithms (Schön et al. 2015). In particular, Kim et al. (1998) show
how symmetric SV models can be estimated using a particle Metropolis Hastings algorithm.
Furthermore, convergence results have been derived in Andrieu et al. (2010).

3.4.1 The Particle Metropolis Hastings Algorithm

In general a non-linear, non-Gaussian state space system consists of measurements yt and
latent states st that evolve according to the densities

yt ∼ p(yt|st, θ) (3.8)
st ∼ p(st|st−1, θ). (3.9)

In the SSV model, the latent states are the time-varying second and third moment of the
measurement density determined by st = (ln σt, αt). The static model parameters are given
in the vector

θ = (γ0, γ1, ..., γL, β1, ..., βP ,

δ1,0, δ1,1, ..., δ1,Jσ , β1,1, ..., β1,Kσ , σν,1,

δ2,0, δ2,1, ...δ2,Kα , β2,1, ..., β2,Kα , σν,2)

and determine the dynamics of the latent states and the mean equation of the observed
measurements. Estimating the model using the the particle Metropolis Hastings Algorithm
consists of two steps:
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Step 1: Posterior distributions of the static model parameters θ are obtained with a
Metropolis Hastings sampler that generates draws from the posterior distribution

p(θ|y1:T , s1:T ) = p(y1:T |s1:T , θ)p(s1:T |θ)p(θ)
p(y1:T ) . (3.10)

The MCMC step of the algorithm constructs a Markov Chain {θn}N
n=1 of length N with

stationary distribution equal to the posterior p(θ|y1:T , s1:T ).

Step 2: The second step uses a particle filter to sequentially estimate the posterior
distributions of the time-varying model parameters

p(st|y1:t, θ) = p(yt|st, θ)p(st|y1:t−1, θ)∫
p(yt|st, θ)p(st|y1:t−1, θ)dst

(3.11)

with p(st|y1:t−1, θ) = p(st|st−1, θ)p(st−1|y1:t−1, θ). (3.12)

using importance sampling. Doucet et al. (2001) give a thorough treatment of importance
sampling and particle filters. For each point in time t, M particles {st,i,Wt,i}M

i=1 are drawn
from a proposal density q(st|y1:t) and resampled based on the importance weights

Wt,i = wt,i∑M
i=1 wt,i

with wt,i = p(st,i|y1:t, θ)
q(st,i|y1:t)

. (3.13)

In principle, the proposal density can be chosen freely, yet a convenient choice generates
draws based on the mixture density

q(st|y1:t, θ) =
M∑

i=1
Wt−1,ip(st,i|st−1,i, θ) with

M∑
i=1

Wt−1,i = 1 (3.14)

Given that the process for st is markovian, this choice yields the standard bootstrap particle
filter where particles are resampled proportional to the likelihood wt,i = p(yt|st,i, θ) of the
measurement yt given the proposed states st,i as discussed in Doucet et al. (2001). At each
t, particles are proposed given the stochastic process of the latent states and weighted based
on how well they explain the observed measurement yt.
Conditional on a draw of parameters θn, the particle filter generates an estimate of the
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models likelihood function p(y1:T |s1:T , θn). This estimate is given by

p̂(y1:T |s1:T , θn) =
T∏

t=1

1
M

M∑
i=1

Wt,i. (3.15)

The particle Metropolis Hastings Algorithm iterates between estimating p̂(y1:T |s1:T , θn)
given a draw θn with the particle filter and drawing a new vector of static model parameters
θn+1 from the posterior distribution p(θ|y1:T , s1:T ) using p̂(y1:T |s1:T , θn) for the Metropolis
Hastings step. Increasing the length N of the Markov chain as well as the number of
particles M improves the accuracy of the estimation but results in more computational
work and longer run times. As shown by Andrieu et al. (2010), the distribution of the
resulting chain {θn}N

n=1 converges to the exact posterior distribution p(θ|y1:T , s1:T ) even if
the likelihood function is estimated using the particle filter. Convergence results for the
particle filter can be found in Doucet et al. (2001) or Chopin (2004).
Yet, it is well known that the proposal distribution of the bootstrap particle filter given by
Equation (3.14) is suboptimal since it ignores information about the states st contained in
yt (Herbst and Schorfheide 2019).
For example, given the SSV model a large increase of US GDP growth will be more likely
under particles that suggest high values in volatility as well as positive skewness in the next
period. However, as particles are proposed conditional on st−1,i only a few particles will
imply large values for the latent states if volatility and skewness are small in t− 1. Since
most proposed particles will have a low likelihood under the model, this results in a high
variance of the normalized weights Wt,i. Consequently, only a few particles are resampled
which leads to a poor approximation of the filtering density p(st|y1:t, θ) and the likelihood of
the static parameters p̂(y1:T |s1:T , θn). This phenomenon is commonly referred to as weight
degeneracy (Pitt and Shephard 1999). Conversely, a smaller variance of Wt,i implies a more
uniform distribution of the weights Wt,i and will lead to a better importance sampling
approximation.
As discussed in Pitt et al. (2012) even though the particle MCMC algorithm is generally
unbiased, the quality of the likelihood approximation of the particle filter is crucial for its
efficiency. A low approximation accuracy results in slow mixing properties of the markow
chains which yields high rejection ratios and a slow convergence to the ergodic distribution
(see for example Flury and Shephard (2011)).
A common measure to gauge the accuracy of the particle approximation at time t is the
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inefficiency ratio

Inefft = 1
M

M∑
i=1

(
wt,i

1
M

∑M
i=1 wt,i

)2

(3.16)

where wt,i are the unormalized weights.17 A high inefficiency ratio indicates that the
distribution of weights is uneven such that the approximation of the target distribution is
bad, while an inefficiency ratio close to one indicates evenly distributed weights and a good
approximation of p̂(st|y1:t, θ) and p̂(y1:T |s1:T , θn).
The recently introduced tempered particle filter by Herbst and Schorfheide (2019) controls
the inefficiency ratio by sequentially adjusting the proposal distribution in each period. This
greatly improves the accuracy of the estimated states and leads to a better approximation
of the likelihood function in the Metropolis Hastings step. Building on annealed importance
sampling that was first proposed by Neal (2001), it is a more complex but also more accurate
filtering algorithm. Given the aim of this paper to estimate tail risks, the ability to handle
outliers and extreme values better then standard particle filters makes the tempered particle
filter a suitable method to obtain precise estimates of the variation in the higher moments.
This property of the tempered particle filter is further elaborated in the next section.

3.4.2 Adjusting the Tempered Particle Filter

The tempered particle filter proposed by Herbst and Schorfheide (2019) adjusts the proposal
distribution to the observation yt using an adaptive version of annealed importance sampling
procedure for each t. Instead of directly reweighting the particles drawn from p(st|st−1,i, θ)
proportional to the likelihood function p(yt|st,i, θ), the particles are sequentially adapted
to a more optimal proposal via a sequence of Nϕ bridge distributions. These bridge
distributions are defined by the "tempered" likelihood function p0(yt|st,i, θ). The tempered
likelihood function has an inflated variance defined as σt,i/ϕn with 0 < ϕn < 1. Intuitively,
the likelihood function is initially "flattened" to ensure that the weights of the proposed
particles are equal. As described in Herbst and Schorfheide (2019), the variance of the
measurement equation is then sequentially reduced to its actual level while targeting a
user-defined inefficiency ratio r∗. Concurrently, the particles are adapted to a better proposal
distribution using a combination of importance sampling and MCMC methods (for a detailed
description of the algorithm see Herbst and Schorfheide (2019), Herbst and Schorfheide
(2014) or Godsill and Clapp (2001) for a simpler outline of the basic idea). In the context

17It can be shown, if one can draw particles from the optimal proposal density p(st|yt, st−1) the weights
become wt,i = 1

M ∀i which gives Inefft = 1. In general this distribution is not available in closed form
since it requires the distributions of the measurement and states to be conjugate to each other.
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of the SSV model this means that for each t, the volatility is assumed to be large and
subsequently shrunk towards a level that fits the data best during the tempering steps. For
each tempering step a new value for ϕn is chosen as

ϕn = argmin
ϕ

Ineff(ϕ) − r∗ = 0 (3.17)

until ϕNϕ
= 1. If the set of particles proposed based on Equation (3.14) satisfies Ineff(1) ≤

r∗ no tempering is required and the filtering step is equal to classic bootstrap particle
filtering. Targeting a lower r∗ will result in a better approximation of the latent states, but
comes at the price of more tempering steps and a longer runtime.
Following the reasoning in Herbst and Schorfheide (2019), I modify the adaptive tempering
schedule such that the asymmetry of pn(yt|st,i, θ) is also taken into account. Since the skew
normal distribution converges to a symmetric normal distribution for α → 0, starting from
a symmetric and flat distribution will result in a value for ϕ0 that is closer to 1 reducing the
number of required tempering iterations. At each step, the targeted inefficiency ratio r∗ can
be achieved with a higher value for ϕn. More formally, in the SSV model the unnormalized
weights wt,i(ϕ0) are given by

wt,i(ϕ0) = 2ϕ1/2
0√

2πσt,i

exp
(

−ϕ0(yt − µt)2

2σ2
t,i

)∫ αt,iϕ
3/2
0

(yt−µt)
σt,i

−∞
exp

(
−z2

2

)
dz. (3.18)

Compared to the unnormalized weights obtained from a normal distribution, the integral
in Equation (3.18) introduces additional variation to wt,i which increases the inefficiency
ratio. The tempering parameter ϕ0 shrinks the upper bound of the integral towards 0 for
limϕ0 → 0 and brings p0(yt|st,i, θ) closer to a normal distribution. Using Equation (3.16)
and taking the limit for ϕ0 shows that the Inefficiency Ratio is decreasing in ϕ and bounded
from below by

lim
ϕ0→0

Inefft(ϕ0) =
1

M

∑M
i=1

(
1

σi,t

)2

(
1

M

∑M
i=1

1
σi,t

)2 > 1

by Jensen’s inequality.18 This is a special feature of the stochastic volatility model and
differs from the lower bound derived in Herbst and Schorfheide (2019) for the DSGE model
case. Without the stochastic volatility component, the lower bound is given by r∗ = 1.

18Note that this also holds for a stochastic volatility model with symmetric densities.
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Hence, I define the target inefficiency ratio as

r∗ =
1

M

∑M
i=1

(
1

σi,t

)2

(
1

M

∑M
i=1

1
σi,t

)2 + ∆r

where ∆r is set by the researcher to determine the accuracy of the filter.
Given Expression (3.7) and Algorithm 2 in Herbst and Schorfheide (2019), the expression
for the unnormalized weights at the nth tempering step is given by

w̃t,i(ϕn) =
(
ϕn

ϕn−1

) 1
2

exp
(

−(ϕn − ϕn−1)(yt − µt)2

2σ2
t,i

)
Λ̃t,i(ϕn) (3.19)

with

Λ̃t,i(ϕn) =
∫ αt,iϕ

2/3
n

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz

∫ αt,iϕ
2/3
n−1

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz

(3.20)

Once again, Expressions (3.19) and (3.20) show that the weights of the skew normal
distribution differ from a symmetric normal density by a factor Λ̃t,i(ϕn) that is greater or
smaller than one depending on the sign of αt,i(yt − µt) (see Appendix 3.A). This introduces
additional variation into the weights and increases the inefficiency ratio for a given ϕn

compared to the weights from a standard normal distribution. Since the limit for ϕn is
given as

lim
ϕn→0

Λ̃t,i(ϕn) = 1, (3.21)

additionally tempering the skewness of the likelihood brings this factor closer to one and
results in weights that are more uniform and less tempering steps.
The example in Figure 3.4.1 illustrates the idea of tempering and provides a comparison of

the two different tempering schedules based on simulated data from the SSV model. The
panels shows an approximation of the filtering distribution based on the proposed particles
for ln(σ2

i,t) at each tempering step. In each iteration the particles are reweighted and
adjusted to the final measurement. The particles are more spread out in the beginning and
slowly moved to the final filtering density at ϕNϕ

= 1. The improvements of the skewness
tempering are obvious. If the skewness of the measurement distribution is not taken into
account, the mean of the filtering distribution is mutated from values of -0.2 to a final value
of approximately 1.2 in 7 tempering steps. Yet, if the skewness is tempered as well it only
takes 3 tempering steps and the approximation of the filtering density is more accurate at
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Figure 3.4.1: Tempering of the State Distributions of ln(σ2
t,i)
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Notes: Illustration of tempering based on simulated data. The mean of the distribution moves from -0.2
(left) or 1.5 (right) to about 1.9. While tempering only the scale of the distribution (left) requires 7

iterations, additionally tempering the shape parameter αt,i reduces the tempering steps to only 3 iterations
(right). Furthermore, in case of skewness tempering the optimal ϕ0 is much closer to one.

the beginning of the tempering. Furthermore, with an optimal value of 0.67, the initial ϕ0

is already much closer to 1 in case of skewness tempering.
Figure 3.4.2 shows a comparison of the total number of tempering steps for US data from
1973 to 1983 for the tempered particle filter with and without skewness tempering. The
filter is run using the model introduced in Section 3.3 and the estimated parameters from
Section 3.5. As highlighted in the upper panel, this decade represents a particularly volatile
period of the sample with large jumps in US GDP growth rates. The lower panel shows the
number of tempering steps that are adaptively chosen in each time period t. Tempering
increases especially if the values of subsequent observations are far apart. In periods where
the standard tempering schedule requires a large number of tempering steps, additionally
tempering the skewness is most effective. For example, in 1975Q2, 1975Q4 or 1977Q1
skewness tempering yields a similar reduction of tempering steps as with simulated data
in Figure 3.4.1. The number of tempering steps required in 1975Q2, 1975Q4 decreases by
more than 60%. While exclusively tempering the scale of the measurement density takes
six or seven tempering iterations additionally tempering the symmetry of the distribution
requires only two iterations.19

19Additionally, a comparison of the performance of the Bootstrap and the Tempered Particle Filter
based on simulated data from the SSV model is given in 3.C. The tempered particle filter leads to a clear
improvement of the MSE for both filtered states.
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Figure 3.4.2: Total Number of Tempering Steps for both Tempering Variants
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Notes: Tempering steps increase during times of high volatility. The plot shows that additionally tempering
the shape of the measurement density requires fewer tempering steps.

3.4.3 Data and Priors

The proposed model is estimated on the same data set as used by Adrian et al. (2019).
Measurements yt are chosen to be one-period ahead realizations of GDP growth (gdpt+1).
To compare the model with the results of Adrian et al. (2019), I use contemporaneous
realizations of the national financial conditions index nfcit as exogenous driving variable in
the measurement and state equations. This introduces time variation of the variance and
skewness of the conditional densities of the one-period ahead US GDP growth. The lag
order of the latent states is determined using the Bayes Ratio as selection criteria. I use
a mixture of uninformative and informative priors on the static parameters. Table 3.D.1
in Appendix 3.D gives a comprehensive overview of the prior specification of the static
parameters as well as the data.
The tempered particle filter is tuned to use M = 10, 000 particles with a targeted inefficiency
ratio ∆r = 0.01 and 2 mutation steps in each tempering iteration. Draws for the static
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model parameters are generated using a standard random walk proposal with four chains
ran in parallel on the HPC-Cluster at the Freie Universität. To increase the efficiency of
the Metropolis Hastings algorithm the constrained parameters such as the autoregressive
coefficients −1 < β < 1 and the variances σνi

> 0 are mapped to the real line using the
following transformations

β = tanh(ψ) ∈ [−1, 1] (3.22)
σ = exp(ζ) ∈ R+ (3.23)

where ψ and ζ can be drawn from the set of real numbers R. This allows to obtain samples
from the transformed unconstrained target distribution of

θ̃ = (γ0, γ1, ..., γL, ψ1, ..., ψP ,

δ1,0, δ1,1, ..., δ1,Jσ , ψ1,1, ..., ψ1,Kσ , ζν,1,

δ2,0, δ2,1, ...δ2,Jα , ψ2,1, ..., ψ2,Kα , ζν,2) ∈ RS

were S = 5 + L+ P + Jσ +Kσ + Jα +Kα. As described in Schön et al. (2015) this requires
to correct the acceptance ratio for the Jacobians of the inverse functions

d tanh−1(ψ)
dψ = 1

1 − ψ2 and d log(ζ)
dζ = 1

ζ

based on the change of variables rule. The posterior distributions of the constrained model
parameters can then be recovered using Equations (3.22) and (3.23). To further improve
the mixing properties of the chains an initial estimate of V ar(θ̃) = Ω is obtained based on
a pre-run with 5000 draws. The proposal variance is scaled to target an acceptance ratio
between 20% and 30% as suggested in Roberts and Rosenthal (2001).

3.5 Results

Table 3.5.1 presents the estimates for the static model parameters from the particle Metropo-
lis Hastings algorithm described in the previous section. The estimated coefficient γ1 gives
a negative impact of nfcit of about -0.69 on the one period ahead realization of gdpt+1.
Furthermore, with an impact of 0.24 on the scale (δ1,1) and -0.29 on the shape (δ2,1) of
the skew normal distribution, the effect of national financial conditions on the different
moments of the conditional densities is in line with the stylized facts described in Adrian
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Table 3.5.1: Posterior Means, Standard Deviations (SD) and 68% and 90% Credible Sets

Model Parameter Mean SD q16 q84 q05 q95
γ0 2.285 0.398 1.898 2.672 1.623 2.94
γ1 -0.686 0.362 -1.045 -0.335 -1.311 -0.119
δ1,0 0.865 0.285 0.573 1.164 0.446 1.372
δ1,1 0.242 0.096 0.147 0.338 0.102 0.412
β1,2 0.108 0.278 -0.192 0.396 -0.375 0.522
δ2,0 0.218 0.221 0.006 0.429 -0.143 0.595
δ2,1 -0.290 0.226 -0.477 -0.103 -0.603 0.042
σν1 0.092 0.059 0.037 0.14 0.023 0.209
σν2 0.020 0.020 0.006 0.032 0.004 0.058

Notes: The model is estimated using N = 20, 000 draws of the tempered particle Metropolis Hastings
Algorithm. The first half of the sample is discarded as burn in. The model specification containing a lagged
value of αt in the state equation of the shape parameter is strongly rejected against a model specification

without an autoregressive term based on a Bayes Ratio of about 200. The marginal data densities are
estimated using the modified harmonic mean estimator of Geweke (1999))

et al. (2019). Consequently, the estimated coefficients of the SSV model imply an inverse
relationship of the second and third moment of the conditional densities. As financial
conditions deteriorate, the expected growth rate decreases while the interquartile range
widens and downside risks of future GDP growth increase.
However, while the 90% credible sets of the coefficients for the effect of current national
financial conditions on the mean and variance of gdpt+1 do not overlap the zero, this is
not the case for the effect on the shape parameter. Significance of the impact of nfcit on
the skewness of the conditional densities is only given by the 68% credible set of δ2,1. This
raises the question about the importance of time-varying asymmetry of the conditional
densities, a topic that will be further investigated in Section 3.6. Additionally, Figure 3.5.1
shows the sample approximations and prior distributions of the parameters γ0 and γ1 in
the measurement equation as well as the parameters that capture the effect of nfcit on the
shape and scale of the conditional distribution of gdpt+1. All posteriors are well-behaved,
uni-modal and clearly centered away from zero. The distributions also differ sufficiently
from the priors indicating that the effects are well identified by the data.
Given the posterior mean estimates of the static model parameters, Figure 3.5.2 shows the
filtered states and the respective 68% and 90% credible sets, an additional feature of the
SSV model that is not available with the quantile approach of Adrian et al. (2019). The
sharp increase in volatility and downside risks in the 1980s as well as during the financial
crises in 2009 is well captured by the evolution of the two latent states. Compared to
the results in Hasenzagl et al. (2020), both states indicate significant time variation in
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Figure 3.5.1: Posterior Distributions Obtained Using the Particle MCMC Algorithm
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Notes: Posterior distributions for the parameters of the measurement equation γ0 and γ1 as well as the
parameters that capture the effect nfcit on the scale (δ1,1) and shape (δ2,1). All posteriors are

well-behaved, unimodal and clearly centered away from zero. The coefficients γ0, γ1 and δ1,1 are
significantly different from zero based on the 90 % credible set constructed from the posterior draws. For

δ2,1 the 68% credible set does not overlap the 0. Grey dashed lines indicate the prior distributions.

the second and third moments of the conditional densities of gdpt+1 based on the 90%
credible sets. Yet, Hasenzagl et al. (2020) approach includes autoregressive components
of GDP growth to investigate time-varying asymmetries from a forecaster’s perspective
who seeks to obtain additional forecasting gains by including financial variables. While
the aim of this paper remains close to the work of Adrian et al. (2019), the SSV model
and estimation algorithm can easily be extended to further investigate these questions and
provide a further comparison with the results of Hasenzagl et al. (2020).20 In general, the
plots show that the proposed model is able to capture the stylized facts given in Section 3.2.
However, even though the distribution is more symmetric in normal times, the estimated
state of αt also exhibits significant levels of positive skewness when levels of volatility are
low. Based on the estimated states, significant upside risks to GDP growth occur during

20Including real macroeconomic variables such as for example the unemployment rate is a natural step
left for further research.
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times of economic moderation for example during the late 1980s and early 1990s. These
results are similar to recent results of delle Monache et al. (2021) who find evidence for
cyclical behavior in the shape of the one-step ahead conditional forecast densities. Based
on a trend-cycle decomposition of the latent states in their model, the authors find that
conditional forecasting distributions of future US GDP growth do not only exhibit negative
skewness during recessions, but become positively skewed in expansionary periods.
Eventually, Figure 3.5.3 shows the resulting conditional densities of the estimated model

Figure 3.5.2: Filtered States Obtained with the Tempered Particle Filter
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Notes: The filter is tuned to target an inefficiency ratio with ∆r = 0.01, 2 Mutation steps and M = 10, 000
particles. The posterior means in table 3.5.1 are used for the value static model parameters. The shaded

areas give the respective 68% and 90% credible sets obtained from the approximations of the filtering
distributions.

with the respective lower and upper 5% and 25% quantiles. The effect of the strong increase
in the scale and shape parameters during the Great Recession as well as during the oil
crises in the 1970s and 80s is clearly visible in the behavior of the lower quantiles. Similar
to stylized fact (1) in 3.2, the upper quantiles of the conditional forecasting distributions
remain relatively stable while the lower quantiles vary significantly over time.
To further illustrate the difference in variation of the tail risks, Figure 3.5.4 shows the
expected shortfall SFt and expected longrise LRt for various probability levels q. The
two measures give the expected GDP growth under a specific distribution and chosen
probability level q. Given the inverse CDF of the skewed Normal distribution together with
the estimated parameters of the SSV model denoted by F−1

yt+1|µ̂t,σ̂t,α̂t
(y) and a chosen target

probability q ∈ [0, 1] values for SFt and LRt are calculated as

SFt(q) = 1
q

∫ q

0
F−1

yt+1|µ̂t,σ̂t,α̂t
(y)dy and LRt(q) = 1

q

∫ 1

1−q
F−1

yt+1|µ̂t,σ̂t,α̂t
(y)dy (3.24)
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Figure 3.5.3: Conditional Distribution for One-Step Ahead GDP Growth
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Notes: Lower and upper 5% and 25% percent quantiles display the same characteristics as found by Adrian
et al. (2019). While the upper quantiles remain relatively stable, the lower quantiles vary strongly over

time indicating increased downside risks to GDP growth in times of financial distress.

Similar to Value at Risk, expected Shortfall and Longrise measure tail risks under a given
probability distribution. However, since they are an average over the outcomes up to a
certain quantile rather than just the upper or lower bound, the behavior of the full tail
is captured more comprehensively. Figure 3.5.4 shows that the complementary effects on
the different moments of the distribution result in downside risks that are larger in size
and vary more strongly over the full sample period. Especially the oil price shocks in the
1970s and early 1980s cause a large variation in downside risks compared to upside risks
captured by the expected Longrise. During the Great Moderation the variation in the tails
becomes more equal. The differences become more pronounced again during the financial
crises in 2008 and 2009. Figure 3.5.4 shows that this feature is not only valid for the lower
and upper 5% but also for the 15, 25 and 35% levels. However, compared to the results of
Adrian et al. (2019) who find values of approximately -18% for the expected 5% shortfall
during the early 1980s, the predicted tail risks of the SSV model are less severe.
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Figure 3.5.4: Expected Longrise and Shortfall
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Notes: The plot shows expected shortfall/longrise for the q = 5, 15, 25, 35 percent quantiles. It gives the
expected GDP growth in the worst/best q percent of the outcomes under the estimated skew normal

distribution for each period. The plot shows that risks to the lower tails are larger in size and vary much
more compared to upside risks to GDP growth.

3.6 Does Skewness Matter?

The estimation results of the SSV model yield significant coefficients for effect of national
financial conditions on the the mean and the variance. However, in case of the skewness
parameter the 90% credible sets for the static parameters overlap the zero. Furthermore, as
argued in papers such as Adrian et al. (2020) or Carriero et al. (2020) the different behavior
of the upper versus the lower quantiles can also be attributed to the inverse relationship of
the mean and variance of the conditional distributions. For example, in the New Keynesian
Volatiltiy Model of Adrian et al. (2020), symmetric conditional densities generate non-zero
skewness in the unconditional distribution of GDP growth that closely aligns with the values
observed in real world data. Additionally, based on the results of Brownlees and Souza
(2021) symmetric GARCH models yield similar predictive gains as quantile regressions that
allow for skewness when forecasting macroeconomic tail risks. This suggests that the inverse
relationship of the mean and variance can capture much of the variation in downside risks.
To further investigate the importance of asymmetries in the conditional densities, I estimate
a symmetric SV model and compare it with the SSV model based on the Bayes ratio. Since
the SV model is nested in the SSV model, this corresponds to testing a joint parameter
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constraint on the latent state. The prior and posterior distributions of the estimated SV
model are given in Appendix 3.E. Since both models are estimated using Bayesian methods,
the two models can easily be compared using their Bayes factor. The Bayes factor determines
which model is favored by the data based on the marginal data densities p(y|Mi). Let M1

be the SSV model and M2 denote the symmetric SV model. The Bayes factor is given by
the ratio of the two marginal data densities p(y|Mi)

p(y|M1)
p(y|M2)

=
∫
p(y|θ,M1)p(θ|M1)dθ∫
p(y|θ,M2)p(θ|M2)dθ

(3.25)

The Bayes factor indicates which model describes the observed data better. In general,
a value larger then one indicates that M1 fits the data better, while values smaller than
one imply a better model fit of M2. The marginal data densities p(y|Mi) are estimated
using the the modified harmonic mean estimator of Geweke (1999).21 Based on the table of
Kass and Raftery (1995) a Bayes factor lager than 10 indicates strong evidence in favor
of M1, a Bayes factor larger than 100 implies decisive evidence. Values lower then three
are considered to be inconclusive. Table 3.6.1 gives the results for the respective quantities.
With a value of 1612.18 the SSV model is clearly favored by the data. Given the alterntive

Table 3.6.1: Model Selection and Evaluation

Bayes Factor log Odds log p(y|M1) log p(y|M2)
1612.18 7.39 -435.78 -443.16

Notes: Bayes Factor and the log of the marginal data densities for the SSV and the SV-Model. The Bayes
factor gives decisive evidence for the SSV-Model.

of a symmetric SV model, this implies that allowing for time varying skewness in the
conditional densities of gdpt+1 increases the model fit.
Based on these results, I also compute the upside and downside entropy LU

t and LD
t defined

in Adrian et al. (2019) to further analyze the differences of the SSV and the SV model.
The upside and downside entropy compare the divergence in the probability mass of two
probability distributions above and below the median. As described in Adrian et al. (2019),
it is a relative measure of the divergence between two distributions in the upper and lower

21The Harmonic Mean Estimator is given by

p̂(y) = 1
N

N∑
n=1

f(θn)
p(y|θn)p(θn) (3.26)

were {θn}N
n=1 are the draws obtained from the Metropolis Hastings sampler.
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tails. Formally, LU
t and LD

t are given by

LU
Mi

= −
∫ F̂ −1

Mi
(0.5)

−∞
(log ĝ(y) − log f̂Mi

(y))f̂Mi
(y)dy (3.27)

LD
Mi

= −
∫ ∞

F̂ −1
Mi

(0.5)
(log ĝ(y) − log f̂Mi

(y))f̂Mi
(y)dy (3.28)

where ĝ(y) denotes the fitted unconditional density of GPD growth. The densities f̂Mi
(y)

are the conditional densities of the SSV model (M1) and the SV model (M2) given the
estimated time-varying parameters. Upside entropy LU

Mi
becomes positive in a given

period if more probability mass is shifted to the upper tail compared the the unconditional
distribution of GDP growth and vice versa. Similarly, high values for downside entropy LU

Mi

indicate that under model Mi, there is more probability mass in the lower tail compared
to the unconditional distribution. Figure 3.6.1 shows LU

Mi
and LU

Mi
for both models. The

Figure 3.6.1: Upside and Downside Entropy of the SSV Model and the SV Model
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Notes: Upside and Downside Entropy for the SSV model (left) and the SV model (right). Relative to the
unconditional distribution, the SSV model shifts more of the probability mass to the downside compared to

the SV model indicating higher tail risks.

two plots indicate that downside entropy for the SSV model is much higher in times of
economic crisis compared to SV model. Yet, the upside risks of the SSV model during
the Great Moderation are visible but less pronounced compared to the downside risks
during economic crises. With regards to the upside entropy, both models are fairly similar.
This indicates that modelling asymmetries matters especially to appropriately capture the
risks to the lower tails of the distribution. This is in line with other recent finding in the
literature of asymmetric forecasting distributions. For example Montes-Galdón et al. (2022)
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find that introducing information on the asymmetry of forecasting densities in a BVAR
strongly improves the probabilistic forecasts of GDP, inflation and core inflation in the Euro
Area during times of economic crisis while there are no substantial gains in periods with
stable economic conditions. In general, these results motivate future research to address
the question of different risk regimes of macroeconomic variables. While models such as
the SSV model can capture these characteristics, the implications of risk regimes suggest
that markov switching models with exogenous driving variables that impact the transition
probabilities could be another class of models to explore in subsequent studies.

3.7 Conclusion

This paper proposes a Skewed Stochastic Volatility (SSV) model as an alternative method
to estimate Growth at Risk as introduced by Adrian et al. (2019). The SSV model can
capture variation in the second and third moments of the conditional forecast distributions
of US GDP growth and allows researchers to estimate and conduct statistical inference on
the estimated parameters. The resulting state space model is non-linear with non-Gaussian
errors and can be estimated with a Particle MCMC algorithm. I obtain accurate estimates
of the model likelihood and the evolution of the latent states, using the tempered particle
filter introduced by Herbst and Schorfheide (2019). Building on the adaptive tempering
schedule proposed by the authors, I modify the tempering schedule to take the asymmetry of
the distribution of the measurement error into account. This reduces the number tempering
steps to save computational time while achieving the same accuracy. Estimating the model
based on US data yields conditional forecast densities that closely resemble the findings by
Adrian et al. (2019).
Exploiting the advantages of the proposed model, I find that national financial conditions
have an effect on the moments of the forecasting distribution. The tempered particle filter
provides significant estimates of the variation in the variance and skewness over time that
imply a strong positive relationship between volatility and downside risks. Times with
high volatility in growth rates coincide with an increase in risks to the lower tail of the
conditional distributions. My results are also in line with results of other recent studies
such as Montes-Galdon and Ortega (2022) or delle Monache et al. (2021). Compared to the
findings of Hasenzagl et al. (2020), my results indicate that there is predictive content in
national financial conditions for downside risks to US GDP growth and significant variation
in the second and third moment of the conditional densities. I further analyze the importance
of time-varying asymmetries by comparing the SSV model with a symmetric SV model
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using Bayesian model selection criteria. With a Bayes Factor of 1612.18, the results provide
decisive evidence for the SSV model. Comparing the upside and downside entropy of the
two models reveals that these advantages arise mainly from the ability of the SSV model to
capture the increased tail risks in times of financial and economic turmoil.
The flexibility of the proposed SSV model and the particle MCMC algorithm allows for
further research to investigate asymmetric risks to macroeconomic variables. Given the
different conclusions of Hasenzagl et al. (2020) and Adrian et al. (2020) in particular,
extending the set of predictors to contain autoregressive components of GDP growth as
well as other predictors can provide more insights on the predictability of time-varying
asymmetries. Additionally, it is straight forward to extend the measurement equation of
the SSV model to a VAR specification with additional variables and lift the exogeneity
assumption of national financial conditions in the original model.
Given the active research field of macro at risk in macro-finance, empirical macroeconomics
and econometrics, the SSV model provides a flexible toolkit for future research.
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Appendix

3.A Inefficiency Ratio Under a Skew Normal Measure-
ment Error

From Herbst and Schorfheide (2019), the weights wi
t(ϕ0) for 0 < ϕ0 ≤ 1 are given by the

tempered likelihood function evaluated at the states st,i

Given the annealed importance sampling method described in Neal (2001) and Algorithm
2 by in Herbst and Schorfheide (2019), the expression of the unnormalized weights wt,i(ϕn)
are defined as the ratio of the bridge distributions

wt,i(ϕn) = pn(yt|si
t)

pn−1(yt|si
t)

(3.29)

Using expression (3.7) for the density of the skew normal distribution yields

wt,i(ϕn) =
(
ϕn

ϕn−1

)1/2

exp
(

−(ϕn − ϕn−1)(yt − µt)2

2σ2
t,i

) ∫ αt,iϕ
1/2
n

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz

∫ αt,iϕ
1/2
n−1

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz

(3.30)

Expression (3.19) shows that in comparison to normally distributed measurement errors,
the weights of the skew normal errors are scaled by a factor

Λt,i(ϕn) =
∫ αt,iϕ

1/2
n

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz

∫ αt,iϕ
1/2
n−1

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz

(3.31)

Additionally tempering the symmetry of the skew normal distribution modifies this factor



3.B. US Data

to

Λ̃t,i(ϕn) =
∫ αt,iϕ

2/3
n

(yt−µt)
σt,i

−∞ exp
(

−t2

2

)
dz

∫ αt,iϕ
2/3
n−1

(yt−µt)
σt,i

−∞ exp
(

−z2

2

)
dz

 < 1 iff αt,i(yt − µt) < 0

> 1 iff αt,i(yt − µt) > 0
∀ 0 > ϕn > 1.

(3.32)
Inequality (3.32) holds since ∫ x

−∞
exp

(
−z2

2

)
dz

is strictly monotonically increasing in x and ϕn > ϕn−1.

3.B US Data

Figure 3.B.1: US GDP and National Financial Conditions Index
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3.C. Bootstrap Particle Filter vs. Tempered Particle Filter

3.C Bootstrap Particle Filter vs. Tempered Particle
Filter

Figure 3.C.1: Mean Squared Errors of the Filtered States
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performance of the Tempered Particle Filter is clear from the mean and standard errors of the distributions.
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3.D SSV-Model: Prior and Posterior Distributions

Table 3.D.1: Priors for the Static Model Parameters of the SSV model.

Model Parameter Distribution Param 1 Param 2
γ0 N 2.69 5
γ1 N -1 0.5
δ1,0 N 0 5
δ1,1 N 0 5
β1,1 N 0 0.5
δ2,0 N 0 0.5
δ2,1 N 0 0.5
σν1 IG 1 0.25
σν2 IG 1 0.15

Notes: N denotes normal priors with Param 1 and Param 2 giving mean and variances. IG denotes the
inverse gamma distribution with Param 1 and Param 2 for shape α and scale β.

Figure 3.D.1: Skewed Stochastic Volatility Model: Posterior Distributions
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Notes: Histograms and kernel density estimates of the posteriors obtained using the particle Metropolis
Hastings algorithm for the SSV model.
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3.E SV-Model: Prior and Posterior Distributions

Table 3.E.1: Priors for the Static Model Parameters of the Symmetric SV model.

Model Parameter Distribution Param 1 Param 2
γ0 N 2.69 5
γ1 N 0 5
δ1,0 N 0 5
δ1,1 N 0 5
β1,1 N 0 0.5
σν1 IG 1 0.25

Notes: N denotes normal priors with Param 1 and Param 2 giving the mean and variances. IG denotes the
inverse Gamma distribution with Param 1 and Param 2 for the scale α and shape β.

Figure 3.E.1: Stochastic Volatility Model: Posterior Distributions
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Chapter 4

Conditional Density Forecasting: A
Tempered Importance Sampling
Approach∗

with Carlos Montes-Galdón and Joan Paredes

4.1 Introduction

For policymakers, it is of the utmost importance to understand risks to their forecasts and
how changes in the risks arising in one economic variable can translate to other variables.
This has been clear for example in 2022 when it has been a challenging task for policymakers
and researchers to gauge the macroeconomic impact of rising risks in energy prices due to
the Russian invasion of Ukraine.
Policymakers and researchers use macroeconometric models to capture the transmission of
changes in one of the model variables to the rest of variables in the model, as well as to
produce forecasts and understand their balance of risks. When off-model information on the
expected evolution of selected model variables is available, the literature provides several
methods on how to condition model-based multivariate forecasts on the future paths of those
variables. These methods usually assume that those paths correspond to a central moment
of those forecast densities (see for example Waggoner and Zha (1999) or Bańbura et al.

∗This paper has benefited from valuable comments of Frank Schorfheide, Matteo Ciccarelli, Marta
Bańbura, Catalina Martínez Hernández and Giorgio Primiceri, Todd Clark, Michele Lenza, Ivan Petrella
and participants of the 2022 Winter Meeting of the Econometric Society in Berlin. An earlier version of
this chapter has been published as Working Paper No. 2754 in the ECB Working paper series. A shorter
and non-technical version has also been published as SUERF Policy Brief, No 547



4.1. Introduction

(2015)). This could also be understood as a scenario analysis or a conditional forecast. For
instance, given an expected path of energy prices, researchers can obtain a model consistent
path for inflation or real GDP.
However, limiting the information set to a central future path ignores the evolution of
risks around these forecasts. So far, less research has considered conditioning forecasting
densities not only on the mean but also on second or even higher moments of some of
their marginal distributions (one notable approach is the entropic tilting methodology
developed by Robertson et al. (2005)). For example, policymakers could have views not only
about the central tendency of the evolution of a variable, but also about other moments
such as the variance, which accounts for uncertainty, and the skewness, which allows to
consider asymmetric upside and downside risks. Therefore, this paper proposes a robust
methodology that allows researchers to condition a model based multivariate forecasting
density on information about the marginal densities of some selected variables in the model,
rather than just on their first moment. Specifically, researchers might want to inform
the unconditional forecasting density from a macroeconometric model with market-based
expectations about the marginal densities of certain economic variables. Therefore, our
methodology can be understood as an extension of the conditional forecasting literature, and
thus we will refer to it as conditional density forecasting. As an illustration of conditional
information a researcher can include, we consider the implied probability densities obtained
from option prices of futures on a specific model variable. Alternatively, information about
the probability densities could be based on other econometric models (Giacomini and Ragusa
(2014)), surveys or expert knowledge/judgement. Additionally, the information set could be
based on assumptions made by researchers or policymakers to conduct risk analysis under
certain scenarios.
Thus we first propose an algorithm that uses tempered importance sampling to adapt the
model-based forecasting densities to the target marginal densities that satisfy the off-model
information. While the motivation for our method is similar to the idea of entropic tilting
developed in Robertson et al. (2005) and Krüger et al. (2017), our methodology is more
flexible with regard to the information that can be introduced to the distributions via our
algorithm. Due to our application of tempered importance sampling in our algorithm, it
is also more robust with regards to the support of the densities, and avoids well-known
problems that arise when using entropic tilting in practice.
Second, we demonstrate our methodology by conditioning the forecasting distribution
obtained from a BVAR model and a DSGE model on asymmetric forecasting densities of
the future oil price. Information about these densities at different horizons is derived from
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option prices of future contracts on oil and implies asymmetric forecasting densities over
the full sample period. Similar to the work of Adrian et al. (2019), we model these densities
using the multivariate skew-T distribution of Azzalini and Capitanio (2003), which we fit to
the option-implied moments. In a first exercise, we document the transmission of upside
risks from future oil prices to inflation risks in the euro area after the onset of the Russian
war in Ukraine. Since the invasion, option-implied densities exhibit high volatility and large
positive skewness at all available forecasting horizons. We find that conditioning forecast
densities on market-based upside risks to oil prices implies upside risks to inflation and core
inflation well above the forecast implied from the BVAR model for all periods. Furthermore,
the median forecast of core inflation would also remain elevated over the forecast period.
In a second exercise, we investigate if historically introducing information from oil-options
would have improved the accuracy of our model-based density forecasts for GDP and
inflation in a BVAR model. While the results indicate no substantial gains in moderate
times, we find substantial increases in the forecasting performance during the onset of the
Covid pandemic.
The chapter is structured as follows: Section 4.2 introduces the necessary information on
importance sampling methods and describes our proposed algorithm. Section 4.3 provides
an example of our methodology based on forecasting conditional distributions of inflation,
given external information on oil prices. Section 4.4 proposes several extensions that make
our method applicable for a wide range of forecasting models and their respective densities.
Section 4.5 concludes and gives an outlook on further research.

4.2 Methodology

This section describes our methodology and presents the technical details on importance
sampling methods that are the workhorse of our algorithm. As introduced in section 4.1
the aim of our method is to condition the forecasting distribution of a model on off-model
information about the marginal densities of a subset of variables. Formally, this amounts
to adapting observations generated from a model distribution Qθ with density qθ(yi) and
parameter vector θ ∈ Θ to another parametric distribution Pη(y) with density pη(yi) and
η ∈ H that satisfies the assumptions made by the researcher and that come from outside
the original macroeconometric model. This off-model information about Pη(y) includes,
but is not limited to, moments or parameters of pη(yi). Furthermore, Qθ and Pη are not
required to belong to same family of distributions such that the parameter spaces Θ and H

77



4.2. Methodology

can have different support and dimensions.22 Most importantly, the external information
may also be restricted to only a subset of variables included in qθ(yi), so that information is
only available for some of the marginal densities of pη(yi).
Our methodology is closely related to the entropic tilting methodology of Robertson et al.
(2005). Entropic tilting uses an optimization procedure to reweight draws from distributions
such that it satisfies a number of constraints on the moments. Yet, the use of entropic tilting
has some drawbacks. First, while in theory entropic tilting is a powerful non-parametric
tool to introduce information into a model based density forecast, its performance crucially
hinges on the support of the original distribution Qθ(y). Even if in theory the support of
the distribution might be unbounded, in practice researchers work with a finite set of draws
from the original distribution. If the original draws of the distribution do not have enough
support for the final density pθ(yi), implying a large Kullback-Leibler Divergence between
the two distributions, entropic tilting will yield unfavourable results and the algorithm
might even fail to find a solution to the optimization problem. Therefore, instead of working
directly with the moments, our algorithm imposes the constraints via a particular choice
of the target density that satisfies these constraints and is chosen by the researcher. We
elaborate more on this point in Section 4.2.5. Second, the methodology also struggles to find
a solution as more conditions are introduced in the optimization problem. A similar point
is raised in Krüger et al. (2017) who show that entropic tilting with higher dimensional
distributions results in poor approximations of the final density since the weights for the
reweighting step become unevenly distributed, a phenomenon commonly referred to as
weight degeneracy.
Our methodology thus aims to provide a robust and flexible alternative to entropic tilting
that can be applied in various circumstances. To overcome the aforementioned problems of
weight degeneracy, our methodology is based on tempered importance sampling methods
which we adapt to our needs. With our methodology, we are able to sequentially mutate
the draws from the original distribution to the final distribution that incorporates the
researcher’s additional information or judgement, even if the original draws do not cover
the support of the final distribution.
In the next subsections, we first describe the standard importance sampling algorithm, as
well as the tempered importance sampling methodology from Herbst and Schorfheide (2014),
so that we can subsequently discuss the modifications that are required for our application.

22For example if Qθ(y) is a normal distribution with θ = (µ, σ) and Pη(y) is a t-distribution with η
denoting the degrees of freedom, then Θ = R × R>0 and H = N the set of natural numbers.
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4.2.1 Importance Sampling for Conditional Density Forecasting

The cornerstone of our methodology is importance sampling as introduced by Kloek and van
Dijk (1978). Since then, importance sampling has been applied in various scientific fields
and its theoretical properties are well understood. Importance sampling is helpful when a
researcher wants to evaluate the properties of a distribution, but has only access to draws
from other distribution that might be similar or not to the final one. In our case, we make
use of importance sampling as follows: Suppose that the researcher wanted to introduce
external information into a model-based density forecast. Let yi be a vector with dimension
L × 1 drawn from a model based forecasting distribution Qθ(y) with dimension L. The
vector ye

i contains a subset of elements ye
i ∈ yi with dimension Le × 1 such that Le < L with

information given by the distribution Pη(y). First, given a set of i.i.d. draws {yi}N
i=1 from

the model-based forecasting density yi ∼ qθ(y), the researcher can use importance sampling
to reweight these draws to adapt them to the target forecasting density, pη(yi) that satisfies
the information that they aim to introduce. The importance weights are calculated as the
ratio

wi = pη(ye
i )

qθ(ye
i )

which are normalized to sum to 1 using Wi = wi∑N

i=1 wi
. The tuples {yi,Wi}N

i=1 provide a
particle approximation of pη(yi) given by

p̂η(dyi) =
N∑
i

Wiδyi
(dyi). (4.1)

Resampling the draws using a multinomial distribution with support points yi and weights
Wi yields

ỹi ∼ MN ({yi}N
i=1|{Wi}N

i=1)

and changes the distribution of the draws yi to Pη(y). Formally, importance sampling
constitutes a change of the measure of a random variable under a measure Q to another
measure P . The weights wi correspond to the Radon Nikodym derivative that is given by
the ratio of the respective density functions (see Brereton et al. (2013)).23

23See for example Theorem 10.6 in Klebaner (2012): Two different measures Q and P are related by

EP [Y ] = EQ[ΛY ] with Λ = dP

dQ
.

The ratio Λ is called the Radon Nikodym derivative. Given the two measures are two absolutely continuous
probability distributions Q and P , the Radon-Nikodym derivative is given by the ratio of the respective
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In typical applications of importance sampling, qθ(yi) serves as a proposal density while
pη(yi) is the target density. Furthermore, given that samples from qθ(y) are drawn i.i.d, the
strong Law of Large Numbers ensures that

lim
N→∞

1
N

N∑
i

h(ỹi) a.s.−−→ EP [h(y)] =
∫
h(y)dPη (4.2)

This insures that moments of interest such as the mean as well as the quantiles and p-values
of the target distribution can be computed from the adapted draws {ỹi}N

i=1.24

4.2.2 Problems

While the choice of a target density pη avoids the optimization problem that is necessary for
entropic tilting of Robertson et al. (2005), the plain vanilla importance sampling algorithm
described in the previous section faces similar drawbacks as the entropic tilting methodology.
It is well known that the quality of the importance sampler depends on the variance of the
weights Wi. A high variance of the weights implies that only few draws are resampled, lead-
ing to a large approximation error a phenomenon commonly dubbed weight degeneracy. If
both density functions are reasonably close with most of their probability mass concentrated
in the same regions of space, the distribution of the weights remains even with a low variance.
However, importance sampling also becomes infeasible if the Kullback-Leibler Divergence
between the two distributions is large and the distribution of the weights degenerates.
Consequently, the right choice of the proposal density is crucial for a good importance
sampling approximation such that researchers try to choose the proposal distribution in a
way that the approximation error is small.

density functions
Λ = p(y)

q(y)
which is equal to the unnormalized weights w(y) that are calculated in the correction step of importance
sampling. Rewriting the integral in Equation (4.2) as

EPη [h(y)] =
∫

h(y)w(y)dQθ = EQθ
[w(y)h(y)]

shows that importance sampling uses a finite sample approximation of Λ to change the measure of the
draws y from Q and P (see also Brereton et al. (2013)).

24Additionally, a Central Limit Theorem can be established that enables statistical inference on the
quantities computed from the draws.
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Yet, in our application we assume that the proposal density is predetermined since it is
a model-based (forecasting) density qθ(yi). Additionally, the target density pη(yi) might
very likely be far apart with a high Kullback-Leibler divergence. For example, external
information that will improve or alter the forecast density of a model might often imply a
very different mean, variance or skewness of pη(yi) compared to qθ(yi). Additionally, this
problem becomes even more severe if the dimension of the model implied density qθ(yi) is
large such that the probability mass is concentrated in a small region of the high dimensional
space (see for example the exhibition in Betancourt (2017)).
However, in contrary to entropic tilting, standard importance sampling can be extended to
so called tempered importance sampling which is able to overcome the problems of weight
degeneracy in many situations. We therefore build our algorithm based on this method that
we present in the next section.

4.2.3 Tempered Importance Sampling

Tempering importance sampling has its roots in the annealed importance sampling method-
ology from Neal (2001) and was introduced to the DSGE modelling literature in Herbst
and Schorfheide (2014) and Herbst and Schorfheide (2019). To remedy the aforementioned
problem of uneven weights when both the proposal and target density are far away from
each other, the idea of tempered importance sampling is to adapt the draws via a sequence
of bridge densities that assign more equal weights to the proposed draws and eventually
converges to the true target. As shown in Herbst and Schorfheide (2019), an easy way to
define such a sequence of bridge distributions is to use an inflated variance that is sequen-
tially reduced to its actual level. More formally, let p(yi|µη,Ση) be a target density with
first and second moments that might depend on a set of model parameters η.25 Tempered
importance sampling uses a sequence of Nϕ bridge distributions

pn(yi|µη,Ση/ϕn) with 0 < ϕ1 < ... < ϕNϕ
= 1 (4.3)

that converge towards the target distribution p(yi|µη,Ση) for ϕn → 1. Starting from a low
value of ϕ1, p1(yi|µη,Ση/ϕ1) assigns weights to the proposed draws {yi}N

t=1 that are more
evenly distributed. It is important to note, that there is freedom in defining the tempering

25Note that the density can also depend on additional parameters controlling the shape or kurtosis which
are dropped in the following exposition for notational convenience.

81



4.2. Methodology

method of the function.26 The tempered importance sampling algorithm is initialized
for ϕ0 = 0 by proposing an initial set of N particles {yi}N

i=1 from p0(yi) = q(yi|µθ,Σθ).
Subsequently, a combination of importance sampling and MCMC-methods adapts the
proposed particles recursivley to the target distribution via the bridge distributions by
cycling through the following three steps until ϕNϕ

= 1:

1. Correction: Compute new importance weights

Wi,n ∝ pn(yi,n−1|µη,Ση/ϕn)
pn−1(yi,n−1|µη,Ση/ϕn−1)

2. Selection: Resample the draws

ỹi,n ∼ MN ({yi,n−1}N
i=1|{Wi,n}N

i=1)

3. Mutation: Propagate the resampled particles {ỹi}N
i=1 using M steps of an MH-

Algorithm with a transition Kernel

yi,n ∼ Kn(yn|ỹi,n)

that has the stationary distribution pn(yi|µη,Ση/ϕn)

In each iteration, the correction and selection steps adapt the draws {yi,n−1}N
i=1 of the

previous iteration to the nth brigde distribution using an importance sampling step (compare
Section 4.2.1). Once the particles are adapted to pn(yi|µη,Ση/ϕn), the mutation step moves
the resampled particles to a region with a higher probability density using M steps of a
Metropolis Hastings sampler.

Figure 4.2.1 provides an illustration of this idea in a simple univariate example. The draws
are proposed from a standard normal distribution (blue solid line) and adapted to a skew-T
distribution with mean 5.16 and positive skewness (red solid line). Clearly, the probability
masses of the two densities are concentrated in different regions of the real line which results

26In general, other tempering methods are possible. Yet, it has to be satisfied that

pn(yi|µη, Ση) = p(yi|µη, Ση) for ϕNϕ
= 1

and
V ar[Wi,n] → 0 for ϕn → 0.

We propose another definition in Section 4.4
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Figure 4.2.1: Proposal, Target and Bridge Distributions
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Notes: Illustration of tempered importance sampling based on a univariate example. The upper panel shows
the proposal and target densities qθ(y) and pη(y) with probability masses concentrated in different regions
of the real line and a high Kullback-Leibler Divergence of 107,22. The lower panel shows how tempered

importance sampling sequentially moves the draws from qθ(y) to pη(y) via the bridge distributions that are
close to each other by construction. The bridge distributions converge to pη(y) as Φn → 1.

in deteriorating importance weights and renders a standard importance sampler infeasible.27

However, as can be seen from the Kernel-density estimates of the draws at different stages
of the tempered importance sampling procedure in the lower plot, the intermediate bridge

27The Kullback-Leibler Divergence of the two densities is 107.22
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distributions are close to each other by construction such that they provide a suitable
proposal density for the next tempering step. This prevents the importance weights in
each iteration from deteriorating. Most importantly, the Metropolis Hastings step insures
that the proposed draws are concentrated in regions with high probability and sequentially
mutates the draws towards the target distribution. As pn(yi|µη,Ση/ϕn) eventually converges
to the target distribution, the particles are gradually adapted to the final distribution.
Convergence results and Central Limit Theory similar to simple importance sampling are
based on the work of Chopin (2004) and established in Herbst and Schorfheide (2014).
It is important to note that without the mutation step, the importance sampling procedure
would face the same limitations as entropic tilting or plain vanilla importance sampling.
If there is no empirical support for the draws from the proposal density, the weights of
the bridge distributions will deteriorate as there are no draws in the region of space where
the target density has most probability mass. Therefore, the key element of the tempered
importance sampling algorithm lies in the mutation step, that mutates the particles and
ensures that there are sufficient draws in the region of the target densities.
In our algorithm we use the ability of tempered importance sampling to adapt draws from
the model based forecasting distribution Qθ(y) sequentially to the target distribution Pη(y)
. The ability to mutate the proposed draws from the model density qθ(yi) towards the
target density makes our methodology more robust then the entropic tilting methodology
of Robertson et al. (2005).
Yet, it is important to highlight that the exposition of the tempered importance sampling
steps up until now only provides an incomplete solution since the aim is to condition only on
a subset of the marginals of the full forecasting distribution Qθ(y) on external information.
Compared to the algorithm of Herbst and Schorfheide (2014), we need to extend the
tempered importance sampling procedure to make it suitable to our applications. First,
researchers may not know a closed form solution to evaluate the model-based density qθ(yi).
This happens for example when trying to evaluate the (marginal) forecasting density of a
BVAR model accounting for parameter uncertainty. Second, external information might
only be available for transformations of the model variables of interest which naturally
implies a change in the respective marginal distributions of the variables that needs to
be accounted for. For example, market-based options are available for the level of oil
prices, but in macroeconomic models usually variables appear in log-levels or growth rates.
While Herbst and Schorfheide (2014) use importance sampling as an alternative method to
common MCMC methods to obtain draws from a (potentially) high dimensional posterior
distribution of DSGE models, we apply tempered importance sampling as a method to
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gradually change the measure of a model based forecasting density to take the off-model
information about some of the model variables into account. Another recent application
that uses tempered importance sampling to sequentially adapt change the measure of a
set of model draws is Ho (2022) in the context of prior robustness. Furthermore, adaptive
importance sampling techniques have been used in the field of credit risk modelling as
outlined in Brereton et al. (2013). The next section introduces our algorithm.

4.2.4 Our Proposed Algorithm

Our algorithm proceeds in two steps: First elements of the vector ye
i are adapted to the

target density p(yi|µη,Ση) that satisfies the imposed restrictions. Second, the corresponding
values of the vector y−e

i with length L−e = L − Le that holds the remaining elements of
yi are recovered conditional on the final values of ye

i . To overcome the problems of weight
degeneracy, initial draws are proposed based on the density q(yi|µθ,Σθ) and subsequently
adapted to p(yi|µη,Ση) in a sequence of tempering iterations. Since we consider a Bayesian
estimation setup, we also need to take the parameter uncertainty of the model into account
by sampling with replacement from the set of posterior draws for {µ(i)

θ }M
i=1 and {Σ(i)

θ }M
i=1

for each particle. Furthermore, let the sequence {ϕi}
NϕN
i=1 define a tempering schedule as in

(4.3). The sequence can either be determined endogenously as in Herbst and Schorfheide
(2019) or predetermined as in Neal (2001). Eventually, this gives the following algorithm:

Conditional Density Forecasting Algorithm: For i = 1, ..., N :

1. Draw yi,1 ∼ q
(
yi|µ(i)

θ ,Σ
(i)
θ

)
2. Select the subset ye

i,1 ∈ yi,1 for which there exists external information on the transfor-
mation h(ye

i,1).

(a) Obtain initial importance weights Wi,1 ∝ p1(h(ye
i,1)|µη ,Ση/ϕ1)

q

(
yi|µ

(i)
θ

,Σ(i)
θ

)
(b) Resample ye

i,1 ∼ MN ({ye
i,1}N

i=1|{Wi,1}N
i=1)

3. For n = 2 : NϕN

(a) Correction: Obtain weights Wi,n ∝ pn(h(ye
i,n−1)|µη ,Ση/ϕn)

pn−1(h(ye
i,n−1)|µη ,Ση/ϕn−1)

(b) Selection: Resample ye
i,n ∼ MN

(
{yi,n−1e}N

i=1|{Wi,n}N
i=1

)
(c) Mutation: For j = 1 : H
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i. Draw ŷe
i,n ∼ q

(
ye

i |ye
i,n, µ

(i)
θ , cnΣ(i)

θ

)
ii. Compute

α =
pn(h(ŷe

i,n)|µη,Ση/ϕn)
pn(h(ye

i,n)|µη,Ση/ϕn) ×
∣∣∣∣∣det(Jh−1(ye

i,n))
det(Jh−1(ŷe

i,n))

∣∣∣∣∣ (4.4)

where Jh−1(y) denotes the Jacobian of the inverse transformation of h(y).
iii. Draw u ∼ U(0, 1).

Iff u < α :
Set ye

i,n = ŷe
i,n

iv. Draw the other variables y−e
i from conditional density

y−e
i ∼ q

(
y−e

i |ye
i,Nϕ

, µ
(i)
θ,−e|e,Σ

(i)
θ,−e|e

)
Compared to previous applications of sequential importance sampling applied in the existing
literature, our algorithm has two important extensions. First, since the draws are proposed
based on q(ỹi|µθ,Σθ) but evaluated given the transformation h(y), we need to adjust the
acceptance ratio of the Metropolis Hastings sampler to target the correct posterior density.
Using a change of variables argument yields that the proposal density for the acceptance
ratio α needs to be corrected by the determinant of the the Jacobian det(Jh−1(y)| of h−1(y)
which gives

q(y|µθ,Σθ) × | det(Jh−1(y)|. (4.5)

An example of why we need this transformation, which we will use later in our application,
is related to oil prices. Economists have access to option-based oil price forecasting densities.
However, in many applications, the price of oil does not enter in our models as a level
variable. Researchers usually take transformations such as a natural logarithm, a growth
rate or other transformations to stationarize the level of the oil price.
Plugging in the latter expression for the proposal density leads to the acceptance ratio given
in Equation 4.4. Consequently, this implies that our algorithm requires the transformation
h(y) to be bijective and differentiable. However, this holds for many transformations of
interest such as the ones mentioned before. Second, since we only seek to include external
information for a subset ye

i of the elements of yi the other variables in the model y−e
i need

to be recovered from the mutated particles. We achieve this by using the conditional
distribution q(y−e

i |µθ,−e|e,Σθ,−e|e, y
e
i,Nϕ

) to mutate the other elements of yi conditional on
the final particles ye

i,Nϕ
. Note that this is akin to the principle of a Gibbs sampling step.

Hence, for our methodology it is necessary that one can draw from the conditional density
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of q(ỹi|µθ, cnΣθ).
Finally, the algorithm can be used with a predetermined tempering schedule such that the
sequence {ϕi}

Nϕ

i=0 is deterministic as in Neal (2001) or Herbst and Schorfheide (2014) but
also with adaptive implementations as for example in Herbst and Schorfheide (2019). The
same holds for the scaling factor cn of the covariance matrix Σθ of the proposal density
q that can be adapted to target a specific acceptance rate of the MH-step in every new
iteration.28

4.2.5 Relationship to Entropic Tilting

Given the aim of our new methodology as alternative to entropic tilting, this section
compares our tempered importance sampling approach to the entropic tilting methodology
of Robertson et al. (2005). As outlined before, the idea of entropic tilting is to reweight
draws from a model-based distribution F (y) to adapt them to a target distribution F ′(y).
F ′(y) is obtained by solving the following optimization problem

D(F |F ′) =
∫

ln
(
f ′(y)
f(y)

)
dF ′(y) s.t.

∫
g(y)dF ′(y) = ḡ and

∫
f ′(y)dy = 1 (4.6)

Hence, the distribution F ′(y) is the closest density that satisfies a number of constraints
ḡ imposed by the researcher. As shown in the Appendix 4.A the solution to this problem
is the Radon Nikodym derivative Λ that adjusts the probabilities under F and yields the
exponentially tilted density f ′(y) given by

f ′(y) ∝ Λf(y) with Λ ∝ exp (γ′g(y)) (4.7)

where γ is the vector of Lagrange multipliers associated with the constraints ḡ imposed
under F ′. Hence, the original probabilities are reweighted by Λ such that the constraints ḡ

28For example, following Herbst and Schorfheide (2019), cn can be updated recursively with respect to
the tempering steps using the the following formula

cn = cn−1f(Ân−1) with f(x) = α + β
eγ(x−Ā)

1 + eγ(x−Ā)

where Ân−1 is an estimate of the acceptance rate of the MH step in the previous iteration and 0 < Ā < 1
is the targeted acceptance ratio set be the researcher. The constants α, β and γ control the speed of the
adjustment and satisfy α + 0.5β = 1 and γ > 0.
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under F ′ are satisfied. The value of γ is given by

γ = argmin
[∫

exp (γ′g(y))(g(y) − ḡ)dF (y)
]

(4.8)

Since the Radon-Nikodym Derivative only exists if F ′ is absolutely continuous with respect
to F , the optimization that is based on a finite number of draws often fails once the
Kullback-Leibler divergence between F and F ′ is too large as there is not enough support
for a distribution F ′ that satisfies the imposed constraints. If a solution exists, Equations
(4.8) and (4.7) imply that the draws {yi}N

i=1 from F , are resampled using the normalized
importance weights

W (yi) = f ′(yi) exp (γ′g(yi))∑N
i=1 f

′(yi) exp (γ′g(yi))
(4.9)

While entropic tilting imposes constraints directly on the moments of the target density
via the solution Λ, our methodology imposes the restrictions via the choice of a specific
parametric density that satisfies the constraints. The resulting Radon Nikodym derivative
is then given by the importance weights wi.
As outlined before, while our methodology requires the additional assumption of a target
density that is chosen by the researcher, it allows to move the particles in the mutation step
of the tempered importance sampling procedure. This yields a more robust and versatile
method to include external information into the forecast densities or perform scenario
analysis based on counterfactuals.

4.3 Application: The Transmission of Oil-Price Risks
to Inflation

To showcase how our algorithm functions, we use our methodology to condition the density
forecast of a small euro area BVAR model and a large DSGE model on option-implied densi-
ties of oil price futures. The idea is to condition the different models on oil price forecasting
densities based on market data, which might not be symmetric, and to explore how this
conditional information tilts the forecasting distribution of variables such as inflation and
real GDP.
Furthermore, our application contributes to the macro-at-risk literature that started with
the seminal paper of Adrian et al. (2019) and has spawned an active field of research to model
and evaluate asymmetric risks to macroeconomic variables such as GDP or inflation. Recent
contributions from Wolf (2022) or delle Monache et al. (2021) propose different univariate
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modelling approaches to model time-varying asymmetries of the forecasting densities of
macroeconomic variables using a skewed distribution of the shocks whose moments are time-
varying based on auto-regressive components and exogenous variables. Furthermore, the
work of Montes-Galdon and Ortega (2022) extends this approach to Bayesian VAR models
exploiting a specific representation of the skewed normal distribution by Azzalini (2013) for
the structural shocks of the model. While the aforementioned papers seek to capture the
evolution of risks based on some latent state variables, the application in this paper aims
to directly introduce off-model information about the full29 marginal distribution of some
variables in the models and analyse the effect on other marginals based on correlations
captured by the model. That is, we explore how possibly asymmetric risks in one variable
translate to risks in other variables.

Based on the results of Breeden and Litzenberger (1978), it is possible to infer probabilities
about the value of an underlying asset at the date of expiry from derivative prices observed in
the market. The resulting probabilities can be used to construct the full probability density
of the underlying variable at the expiration date (see for example de Vincent-Humphreys and
Puigvert Gutiérrez (2010)). Option-implied probability densities are derived for different
objects such as exchange rates, interest rates or oil prices, and are regularly published by
the European Central Bank, the Bank of England or the Federal Reserve.

Figure 4.3.1 shows the first three moments of the option implied probability density
functions of oil prices using quarterly data from 2008 to 2022 for different forecast horizons
obtained from the ECB’s Statistical Data Warehouse. Most notably, the probability density
of the future oil price exhibits large fluctuations in the evolution of skewness for all horizons
over the full sample. Remarkably, in 2022, with the beginning of the Russian invasion of
Ukraine, market-based data shows that agents expected significant asymmetric upside risks
to the price of oil. We first need to find a distribution that can explain those fluctuations
and which will be the target distribution Pη(ye

i ) in our methodology as defined in the
previous section. Following the recent literature on skewed densities spawned by Adrian
et al. (2019) we model the marginal forecasting densities of the price of oil at any time
period and at different horizons as a multivariate skew-T distribution as introduced by
Azzalini and Capitanio (2003). We outline further details of the density function of the
multivariate skew-T distribution and our fitting procedure in the next section.

29In the sense of using information beyond the second moment

89



4.3. Application: The Transmission of Oil-Price Risks to Inflation

Figure 4.3.1: Option-Implied Moments of Future Oil-Price Densities
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Notes: Mean, variance and skewness of the option implied probability density functions of oil prices using
quarterly data from 2008 to 2022 for different forecast horizons. All series are obtained from the ECB’s

Statistical Data Warehouse. The implied densities exhibit strong time-varying asymmetries at all horizons
and over the full sample.

4.3.1 Properties of the Multivariate Skew-T Distribution

A random vector y ∈ Rp, follows a a multivariate skew-T

y ∼ MST (y|ξ,Ω, λ, ν)
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where ξ ∈ Rp determines the location, Ω is a p× p covariance matrix, λ ∈ Rp is the shape
parameter and ν ∈ N gives the degrees of freedom. Based on the construction of skewed
densities established in Azzalini (2013), the corresponding density function is given by

τ(y|ξ,Ω, λ, ν) = 2tp(y|ξ,Ω, ν)T1

λ′z ×
(

ν + p

ν +Q(z)

)1/2∣∣∣∣ν + p

 (4.10)

with z = ω(y − ξ), Q(z) = z′Ω̄−1z, correlation matrix Ω̄ = ω−1Ωω−1 and

tp(y|ξ,Ω, ν) = Γ((ν + p)/2)
|Ω|1/2(νπ)p/2Γ(ν/2)

(
1 + Q(z)

ν

)−(ν+p)/2

(4.11)

As shown in Proposition 3 in Arellano-Valle and Genton (2010) the multivariate skew-T
distribution is closed under marginalization. For a partition y = (y1, y2), with dimensions p1

and p2 and parameters (ξ,Ω, λ), the marginal distributions of yi with i = 1, 2 are given by

yi ∼ MST i(ξi,Ωii, λi(j), ν) (4.12)

with
λi(j) = λi + Ω̄−1

ii Ω̄ijλj√
1 + λ′

jΩ̃ii|jλj

and Ω̃ii|j = Ω̄jj − Ω̄jiΩ̄−1
ii Ω̄ij (4.13)

Expression (4.13) shows that the shape parameter of the marginal distribution is a weighted
sum of all elements of the vector of individual shape parameters λ, with weights depending on
the correlation between yi and yj. Thus, λi = 0 does generally not imply that the marginal
distribution of yi is symmetric.30 Figure 4.3.2 illustrates this in a simple two-dimensional
example with ξi = 0 and ωi = 1 for i = {1, 2} and a correlation coefficient of ρ = 0.8. The
shape parameters are set to λ1 = −2 and λ2 = 0. Based on Equation (4.13), the values for
the shape parameters of the marginal distributions are then given by

λi(j) = λi + ρλj√
1 + λ2

j(1 − ρ2)
(4.14)

which yields λ1(2) = −2 and λ2(1) = −1.024. Thus, the positive correlation between y1 and
y2 introduces negative skewness in both marginal distributions. From expression (4.14) it is
also clear that a negative correlation of y1 and y2 has an offsetting effect on the marginal

30As shown in Arellano-Valle and Genton (2010) a necessary and sufficient condition for λi(j) = 0 is that
λi = −Ω̄−1

ii Ω̄jiλj .
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shape parameter such that the marginal distributions are skewed in opposite directions. We

Figure 4.3.2: Bivariate Skew-T Density with Marginal Densities
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Notes: Left panel: Contour plot of the joint skew-T distribution with ξi = 0 and ωi = 1 for i = {1, 2} and a
correlation coefficient of ρ = 0.8. The shape parameters are λ1 = −2 and λ2 = 0.

Right panel: Corresponding marginal distributions of y1 and y2. The positive correlation between y1 and
y2 introduces negative skewness in both marginal distributions.

use exactly this property of the multivariate skew-T distribution to analyse the effects of
tail-risks in the marginal forecast densities of oil-prices on other macroeconomic variables.
We use our algorithm to introduce information about the shape of the distribution of the oil
price and analyze how this will affect risks to other macroeconomics variables such as GDP
or measures of inflation. Depending on the correlations between the variables, conditioning
on the the distribution of the oil prices based on the option-implied moments will result in
asymmetric density forecasts for other variables than the oil price.

4.3.2 Fitting a Skew-T Distribution to Oil Price Forecasts

To fit the multivariate skew-T distribution to the option implied moments, we obtain
external information on the mean µoil

i , standard deviation σoil
i and skewness γoil

i of the
marginal forecast densities from derivatives on the price of Brent Crude Oil for forecast
horizons from i = 1 up to i = 6 quarters.31 From Proposition 3 in Arellano-Valle and Genton
(2010), it follows that the marginal forecast densities of the oil price for each quarter are
univariate skew-T distributions. Thus, we can use the results from Azzalini and Capitanio
(2003) to obtain the parameters of the marginal skew T-densities. We match the option
implied moments to the theoretical moments of the skew-T distribution by solving the

31Since options are only traded for horizons 1,...,4 and 6 quarters ahead, we interpolate the values for the
5th quarter using a cubic spline.
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following equations

γoil
i = κi(j)

ν
(
3 − δ2

i(j)

)
ν − 3 − 3ν

ν − 2 + 2κ2
i(j)

 [ ν

ν − 2 − κ2
i(j)

]
(4.15)

κi(j) =
√
vΓ
(

1
2(ν − 1)

)
√
πΓ

(
1
2ν
) δi(j) (4.16)

λi(j) = δi(j)√
1 − δ2

i(j)
(4.17)

σoil
i = ωi

√[
ν

ν − 2 − κ2
i(j)

]
(4.18)

µoil
i = ξi + ωiκi(j) (4.19)

with respect to the parameters ξi, ωi, λi(j) for i = 1, ..., 6. To provide a maximum amount
of flexibility for the PDF we set ν = 5.32 After obtaining the shape parameters of each
marginal density λi(j) we obtain the shape parameters of the joint distribution in a second
step using expression (4.13). We obtain an estimate of the correlation matrix based on the
draws from the VAR model we further describe in the next section. Subsequently, we jointly
solve for each λi which is given as

λi = λi(−i)

√
1 + λ′

−iΩ̃ii|−iλ−i − Ω̄−1
ii Ω̄′

−iiλ−i (4.20)

Hence, while we allow for changes in the mean, standard deviation and skewness of the target
distribution we assume that the model-based correlation between the different forecasting
horizons does not change with regards to the target distributions. Once we have obtained
the fitted parameter vectors ξ̂, Ω̂ = ω̂−1Ω̄ω̂−1 and λ̂ as solutions to Equations (4.15) - (4.20),
we can specify the target density of our algorithm as

pη(yoil
i ) = τ(yoil|ξ̂, Ω̂, λ̂, ν) (4.21)

4.3.3 Introducing Market-Based Densities Information in a BVAR
Model

After constructing the target density for the price of oil using the results of the multivariate
skew T distribution from the previous section we need condition our model-based forecasts

32Based on the results in Azzalini and Capitanio (2003), this is the smallest value of ν for which the first
4 moments of the multivariate Skew-T are defined.
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on these densities to infer how the forecast densities of other macroeconomic variables in
our model are altered. In our application, we obtain qθ(y) from the forecasting density of a
reduced form BVAR model

yt = ζ + A1yt−1 + ...+ Asyt−s + ut with ut ∼ N (0,Σu) (4.22)

As the endogenous variables of the model, we include the log of the price of oil, the
log of real GDP, the log of prices including and excluding energy as well as the log of the
US/Dollar exchange rate, log of employment and the long and short term interest rates.

We estimate the BVAR model using Bayesian methods, under a Minnesota prior. To
find the optimal hyperparameters of the prior, we use the hierarchical approach of Giannone
et al. (2015) that is based on maximizing the marginal data density of the BVAR model with
respect to those hyperparameters. Since we estimate the model using Bayesian methods
we obtain sets with I posterior draws for both the intercept ζi and the slope coefficients
Aj,i, j = 1, .., 5 as well as the elements of Σu,i. Additionally, we use the novel methodology
of Lenza and Primiceri (2020) to deal with the Covid period in the first quarters of 2020.
We sample with replacement from the posterior draws to generate the model consistent
forecasts up to h periods, yi = [y′

i,T +1, ..., y
′
i,T +h]′. Thus, we also incorporate parameter

uncertainty from the posterior densities into our risk analysis. The density of the proposal
distribution for the ith draw yi is then given by the multivariate forecasting distribution of
the model and takes the form

qθ(yi) = φ(y|µ(i),Σ(i)) (4.23)

where φ(...) denotes the density function of the multivariate normal distribution with mean
µ(i) and variance covariance matrix Σ(i) that depend on the parameters of the intercept,
slope coefficients and variance covariance matrix of the reduced form errors. We provide
more details on the derivation of µ(i) and Σ(i) for the forecasting density in Appendix 4.B.

4.3.4 Adjusting the Forecast Densities

With the proposal and target density at hand, we use the algorithm described in Section
4.2.4 to adjust the marginal forecast densities of oil prices from the BVAR to the the option
implied forecast densities. Based on I = 25, 000 draws for µ(i) and Σ(i) from the BVAR we
generate N = 50, 000 model consistent forecasts yi that are adapted to the target density.
For our algorithm, we use the the adaptive tempering schedule of Herbst and Schorfheide
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(2019) to obtain the optimal values for Nϕ and ϕn. In each iteration, we optimize ϕn such
that the inefficiency ratio is equal to a target ratio r∗ > 1

ϕn = argmin 1
M

M∑
i=1

[
wi,n(ϕ)

1
M

∑M
i=1 wi,n(ϕ)

]2

− r∗ (4.24)

with Wi,n given as in Step 3 (a) of the algorithm. Setting r∗ closer to one results in a
better approximation of pη(yoil) but also increases the number of tempering steps. To
obtain a precise approximation of the target density we set r∗ = 1.01. For the mutation
of the particles in Step 3 (c) we set H = 10. Given this set-up, we first use our method
to investigate the effect of the strong increase in oil prices on inflation due to the begin
of the war in Ukraine in the first quarter of 2022. Subsequently, we evaluate the gains
of introducing external information from options into forecasting densities in a real-time
forecasting exercise.

4.3.5 Results from the BVAR

As can be seen from Figure 4.3.1, option-implied moments of the forecasting distribution of
the oil price have sharply increased over the first two quarters in 2022, with option implied
skewness peaking in the last quarter. We estimate the BVAR model using data up to the
first quarter of 2022 and introduce the information of the option-implied densities at the
4th of March. The option-implied moments for all forecasting horizons h at that point are
displayed in Table 4.3.1. Since there are no options with an expiry date of 15 months traded
the values for the 5 period-ahead forecasting densities are interpolated using a cubic spline.

Table 4.3.1: Option-Implied Moments

h Mean SD Skewness
1 110.2 38.88 1.8
2 103.16 40.64 1.56
3 98.92 40.59 1.28
4 95.3 41.1 1.14
5 92.13 41.88 1.09
6 89.75 41.99 1.01

Notes: Option-implied moments for all forecasting horizons h at the 4th of March. 5 month-ahead
moments are interpolated using a cubic spline. While the mean of the distribution is monotonically

decreasing over the forecasting horizon, uncertainty and upside risks are increasing with h.

While the mean of the distribution is monotonically decreasing by approximately 20
euros per barrel over the forecasting horizon, uncertainty (standard deviation) is increasing
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from 38.88 to 41.99 at the same time. Additionally, the distribution is significantly skewed
to the right with values larger than one for all horizons indicating increased upside risks
to the price of oil. Yet, the skewness is also decreasing over time, which indicates that
risks become more symmetric at longer forecasting horizons. Based on the properties of the
skew-T distribution described in 4.3.1, we use our algorithm to introduce the information
about the forecasting densities of oil to our model to investigate if and how the forecasting
distributions of inflation are affected. By introducing information about the full density, we
can gauge the effects on the point forecasts as well as the effect that market-based oil upside
risks have on other model variables. The skewness implied by the densities of the oil price
will affect the distributions of other model variables depending on the correlations implied
by the BVAR. Given the debate about the pass-through of high energy prices to inflation,
we are particularly interested in the effect on both, inflation with and without energy prices.
Figure 4.3.3 shows the fitted marginal skew T-densities that we obtain from the values in

Figure 4.3.3: Option-Implied Probability Density Functions

Notes: Option-implied marginal skew-T density functions for all forecasting horizons h at the 4th of March
together with the histogram of the final particles {yOil

i,Nϕ
}N

i=1 with N = 50, 000. The increased upside risks
are clearly visible from the theoretical distributions as well as from the adapted draws
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Table 4.3.1 together with the histogram of the final particles {yOil
i,Nϕ

}N
i=1 with N = 50, 000.

Based on our targeted inefficiency ratio r∗ = 1.01, the algorithm required a number of
Nϕ = 40 tempering steps to move the original particles form the proposal distribution to
the target distribution. The draws are very well adapted to the target distribution that is
implied by the options and provide a precise approximation. The positive skewness and
increasing volatility is clearly visible from the theoretical distribution as well as from the
adapted draws.
Figure 4.3.4 shows the resulting densities for inflation and core inflation. The shaded
areas show the 16, 25, 75 and 84 percent quantiles of resulting forecasting distribution
of the annualized inflation rate together with the median given by the solid black line.
Additionally, the dotted red lines show the 16 and 84 percent quantiles of the original
distribution. Figure 4.D.1 in the Appendix also shows the histograms of the annualized
growth rates of the oil-price, inflation and core inflation for all forecasting horizons. In

Figure 4.3.4: Option-Implied Forecasting Densities

Notes: Conditional density forecasts for inflation and core inflation. The shaded areas show the 16, 25, 75
and 84 percent quantiles of resulting forecasting distribution of the annualized inflation rate together with
the median given by the solid black line. The positive skewness in the distribution of the oil prices results

in upside risks to inflation and higher mean values over the full forecasting horizon.

both cases, introducing the information of the options results in an upward shift of the full
distributions. In case of inflation, the new median nearly coincides with the original 84
percent quantile of the original distribution in the first two periods. The forecasting density
of core inflation is similar to the original model in the first period but subsequently deviates
from the original model with significantly higher values over the rest of the forecasting
horizon. Additionally, the positive skewness in the distribution of the oil prices results in
upside risks to inflation. This can be seen from the plotted quantiles and the histograms of
the marginal forecasting densities in Figure 4.D.1 of Appendix 4.D. Hence, while headline
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inflation (i.e. including energy prices) reacts contemporaneously and the effects on the
distribution are more evident over the first year of the forecast, the effects on core inflation
appear later in the medium-term, reflecting second round effects arising from the upside
risks in the distribution of the price of oil. Finally, the median forecast for core inflation
remains persistently elevated over the forecasting horizon compared to the original forecast
from the BVAR.

4.3.6 Forecasting GDP and Inflation

To evaluate the effect of conditioning on information about the market-based forecasting
distribution of our BVAR model, we look at the probabilistic forecasting performance in a
real time forecasting exercise to forecast GDP, inflation and core inflation. We estimate
the same BVAR as in Section 4.3.3 using data vintages starting in the last quarter of 2013
up until the third quarter of 2021. With the onset of the Covid pandemic we again use
the method of Lenza and Primiceri (2020). Subsequently, we use our algorithm to impose
the option-implied distribution at the end of the quarter to the forecasting density of the
oil-price. Since our methodology seeks to incorporate information about the full distribution,
we use the continuous ranked probability score (CRPS) as the metric to evaluate the density
forecasts. The CRPS generalizes the Mean Squared Error to take into account the full
forecasting distribution. It can be formalised as,

CRPS(F, x) =
∫ ∞

−∞
(F (y) − 1(y − x))2 dy (4.25)

where x is the realized value, F (y) is the cumulative distribution function implied by the
density forecast of the model and 1(...) denotes the heavyside function. Figure 4.3.5 shows
the ratios of the mean CRPS for the symmetric density forecasts under Qθ(y) and the
skew-T forecasts under Pη(y)

Rt =
1
P

∑P
i=1 CRPS(Qθ, x

k
t+i)

1
P

∑P
i=1 CRPS(Pη, xk

t+i)
(4.26)

for k = GDP, inflation, core inflation. The tables with values for each period and forecasting
horizon are included in Appendix 4.E. The results indicate that while including additional
information on the distribution from the options does not increase predictive accuracy in
moderate periods with stable economic conditions, it strongly increases the probabilistic
forecast accuracy in times of economic turmoil during the onset of the Covid pandemic
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Figure 4.3.5: Continuously Ranked Probability Scores
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Notes: Ratios of the mean CRPS for the symmetric density forecasts under Qθ and the skew-T forecasts
under Pη for GDP, inflation, core inflation. While including additional information on the distribution from
the options does not increase predictive accuracy in moderate periods, it strongly increases the probabilistic

forecast accuracy in times of economic turmoil during the onset of the Covid pandemic in the first and
second quarter of 2020.

in the first and second quarter of 2020. This is in line with other findings on skewed
density forecasts such as Adrian et al. (2019) who show that conditional forecast densities
of macroeconomic variables are symmetric in normal times but become skewed in times of
crisis.

4.3.7 Tilting the Forecast Densities from a DSGE model

Finally, we show that our methodology can also be applied in large models, such as a DSGE
model. Note that the reduced form solution of a DSGE model can be written as,

xt = J +Qxt−1 +Gεt (4.27)
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where xt is a vector of endogenous and exogenous state variables in the model, and εt is a
vector of i.i.d. structural shocks. Yet, note that in general the number of structural shocks
in a DSGE model is smaller than the vector of state variables. Usually, for the estimation
of a DSGE, there is a subset of variables that are observed, yt, so that,

yt = Hxt (4.28)

where H is a selection matrix. With these two equations in hand, we show in Appendix 4.C
how to construct the proposal density qθ(y) as in the case for the BVAR.
We then repeat the analysis in Section 4.3.5 using the ECB’s New Area Wide Model II
(NAWM II) from Coenen et al. (2018). The NAWM II is an estimated dynamic, stochastic,
general equilibrium (DSGE) model of the euro area as a whole. The model incorporates a rich
financial sector that allows for (i) a genuine role of financial frictions in the propagation of
economic shocks as well as macroeconomic policies and for the presence of shocks originating
in the financial sector itself, (ii) capturing the prominent role of bank lending rates and the
gradual interest-rate pass-through in the transmission of monetary policy in the euro area,
and (iii) providing a structural framework usable for assessing the macroeconomic impact
of the ECB’s large-scale asset purchases conducted in recent years. For the exercise in this
section, we slightly modify the model to account for a faster pass-through of oil prices to
inflation. In the original version of the model, there is one foreign intermediate-good firm
that sells its goods in the domestic euro area market. The marginal costs of this firm is
a weighted average of oil prices and foreign prices. Then, the firm is subject to staggered
price contracts à la Calvo when setting the final domestic price, which introduces a sluggish
price adjustment. For this analysis, we separate the problem into two firms. One that sets
domestic prices for imported oil, and the second one that only takes care of foreign prices.
The firm that sets oil prices has a smaller Calvo parameter, reflecting a faster pass-through
of oil prices into final import prices, and thus, into the private consumption deflator and
HICP in the model.
Figure 4.3.6 shows the results of introducing market based data on oil prices in the forecasting
distribution of the NAWM II. The black lines show the model-based forecast, while the
blue shaded areas represent the tilted distributions so that the distribution of the price of
oil matches the market-based measures. In the model, the price of oil behaves as a supply
side shock. Thus, once we incorporate information from the markets that implies that the
distribution of the price of oil is skewed to the upside, the transmission channel in the model
indicates significant downside risks to the real economy, which in the figure is represented

100



4.4. Extensions

by annual GDP growth, and upside risks to inflation, represented by inflation in the private
consumption deflator. The figure also shows that the final distributions are skewed, and the
asymmetries are inherited from the skewness in the market-based options.

Figure 4.3.6: Option-Implied Forecasting Densities in the NAWM II

Notes: Introducing market based data on oil prices in the forecasting distribution of the ECB’s New Area
Wide Model II from Coenen et al. (2018). Black lines show the model-based forecast, while the blue shaded

areas represent the distributions conditional on the option implied densities. Assuming that the
distribution of the price of oil is skewed to the upside, the transmission channel in the model indicates

significant downside risks to the real economy and upside risks to inflation.

4.4 Extensions

This section proposes several extensions of our core algorithm that make our methodology
applicable in case some of the assumptions for the algorithm in section 4.2 are not satisfied.
As described in Section 4.2.4, our methodology requires knowledge of the conditional
distribution of the proposal distribution to recover the values of the variables y−e. Second,
we use a tempering method that requires a target density with a parameter to control the
scale of the distribution. In this section we propose two remedies in case the application at
hand does not meet these requirements.
First, if the conditional distribution is not available, but the researcher has access to draws
from any arbitrary distribution, it is possible to approximate the proposal density q(x) with
a Gaussian mixture density of the form

q(x) =
K∑

k=1
πkφ(x|µk,Σk). (4.29)
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with weights 0 < πk < 1 that satisfy ∑K
k=1 πk = 1. The Gaussian mixture density then has

the conditional density

q(x1|x2) =
K∑

k=1

[
πkφ(x2|µk,2,Σk,22)∑L
l=1 πlφ(x2|µl,2,Σl,22)

]
φ(x1|x2, µk,1|2,Σk,1|2) (4.30)

that can be used to sample from in step 3. Additionally, the recent publication of Ho (2022)
motivates further research on how to construct a mutation step based on the non-parametric
target density in the entropic tilting framework.
With regards to the second point, we propose another way to define the bridge distributions
as given in Neal (2001)

pn(yi) = pη(yi)ϕnqθ(yi)(1−ϕn) (4.31)

In this specification, the bridge distributions are given by the geometric average of the
model-implied density and the target density. Gradually increasing ϕn from 0 towards 1 will
sequentially adapt the particles proposed by the model to the final distribution.33 Expression
4.31 provides an attractive alternative if the scale of the distribution is not captured by a
specific parameter. It is also possible to implement an adaptive tempering schedule instead
of working with a predetermined sequence for {ϕn}Nϕ

n=1. With these remedies in hand, we
consider our methodology applicable to a wide variety of problems.

4.5 Conclusion

In this paper, we develop a methodology that can be used to condition probabilistic forecasts
of a model on off-model information about the marginal distributions of some of the model
variables. More technically, the algorithm uses the tempered importance sampling method
of Neal (2001) and Herbst and Schorfheide (2014) to adapt draws from a model-based
distribution to a target distribution that satisfies the external information one intends to
condition the forecast on. Our algorithm allows applications where the proposed draws
are far away from the target density in a Kullback-Leibler sense as well as conditioning on
information on transformations of the model variables. This makes our method superior
to the entropic tilting methodology of Robertson et al. (2005) whose method is similar in
spirit but less robust and less flexible.
We illustrate our algorithm by introducing off-model information about the distribution

33In our application, we experimented with both specifications and found that in both cases, our algorithm
is able to adapt draws to the target distributions even if the Kullback-Leibler Divergence is high.
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of future oil prices into the forecasting densities of a BVAR. The information is obtained
from option prices and indicates significant amounts of skewness at all available forecasting
horizons. Using the results of Azzalini and Capitanio (2003) we model the option-implied
marginal forecasting densities as skew T and apply our methodology to investigate the
transmission of upside risks to future oil prices on future inflation and core inflation in the
first quarter of 2022. Due to the war in Ukraine, option-implied forecasting distributions of
oil prices exhibit large positive skewness and increased volatility over the full forecasting
horizon. We find that adapting the forecasting distributions of the BVAR to the option-
implied densities results in upside risks to inflation and core inflation. Furthermore, median
forecasts of core inflation remain persistently higher over the forecasting horizon compared to
the symmetric forecast densities of the BVAR. We also investigate the forecasting accuracy
of the density forecasts in real time. We focus on the probabilistic forecasts of GDP, inflation
and core inflation over the period of 2013 Q4 up to 2021 Q4. Based on the CRPS, our
results indicate that introducing information about the marginal distribution of oil prices
improves forecasts for GDP and inflation measures during the Covid pandemic compared to
symmetric forecasting distributions. This is in line with results of Adrian et al. (2019) who
find skewness on conditional forecasting densities in times of economic turmoil.
Our methodology as well as our application is widely applicable and provides several
extensions for further research such as introducing information from traded derivatives with
other underlyings such as interest rates or exchange rates. Additionally, the model implied
forecasting densities are not limited to time-series models such as BVARs but can also be
applied to forecasting distributions of DSGE models or semi-structural models.
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Appendix

4.A Solution to Entropic Tilting

This section shows the solution of the entropic tilting problem in Equation 4.6. Let F and
F ′ be two distribution and let F ′ be absolutely continuous with respect to F . Using the
representation in Ho (2022), the problem can be rewritten using in terms of expectations
under the distribution F using the Radon Nikodym derivative. This yields the following
Lagrangian:

min
Λ

L = EF [Λ log (Λ)] − γ′EF [Λ(g(y) − ḡ)] − µEF [Λ − 1] (4.32)

where Λ is the Radon-Nikodym Derivative defined as

Λ ≡ f ′(y)
f(y) .

This gives the First Order Condition:

∂L(Λ)
∂Λ = 1 + log(Λ) − γ′(g(y) − ḡ) − µ = 0 (4.33)

which implies
Λ ∝ exp (γ′g(y)). (4.34)

From the other FOCs it follows that γ is given as

EF [exp (γ′g(y))(g(y) − ḡ)] = 0 (4.35)

and
Λ = exp (γ′g(y))

EF [exp (γ′g(y))] (4.36)
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4.B Deriving the Proposal Density in a VAR model

Rewriting the VAR-Model as a VAR(1) gives

yt = ci + Φiyt−1 +Giεt (4.37)

where Φi is the companion matrix of the ith posterior draw for the slope coefficients and ci

the corresponding vector of intercepts. Gi is a lower-triangular matrix such that GiG
′
i = Σu,i

and εt ∼ N (ε|0, I). Iterating the equation forward in time gives for the h step ahead
forecast

yT +h =
h∑

j=1
Φj−1

i ci + Φh
i yT +

h∑
j=1

Φh−j
i GiεT +j (4.38)

Stacking the realizations over the full forecasting horizon in a vector yi yields

yT +1

yT +2
...

yT +h

 =


c̃i,T +1

c̃i,T +2
...

c̃i,T +h

+


Gi 0 0 0

ΦiGi Gi 0 0
... ... . . . 0

Φh−1
i Gi Φh−2

i Gi · · · Gi




εT +1

εT +2
...

εT +h


with c̃i,T +h = ∑h

j=1 Φj−1
i ci + Φh

i yT . Redefining the terms results in the simple expression

yi = µi + Giε (4.39)

where µ = [c̃i,T +1, ..., c̃i,T +h]′. The matrix Gi is a lower-triangular matrix that captures the
correlations of the reduced form errors ut = Gεt between the model variables as well as
between the different time periods. These correlations depend on the values of the posterior
draws for Φi and Σu,i. Given the distributional assumption about εt it follows that

yi ∼ N
(
y|µ(i),Σ(i)

)
(4.40)

with Σ(i) = GiG ′
i. This gives the proposal density in Equation (4.23).
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4.C Deriving the Proposal Density in a DSGE model

A similar reasoning as in the VAR model can be applied in the case of a DSGE model. The
reduced form representation of a linearised DSGE model takes the form,

xt = J +Qxt−1 +Gεt (4.41)

where xt is a N × 1 vector of endogenous and exogenous variables in the model, and εt is a
P × 1 vector of i.i.d. structural shocks. Yet, note that in general N > P . This implies that
Σ = GG′ is a reduced rank matrix and thus not invertible. This implies that we cannot
proceed exactly as in the case of the VAR model, and as the proposal density in equation
(4.40) cannot be evaluated. However, as in the case of the estimation of a DSGE model, we
can focus on a subset of variables in xt which are assumed to be observed. If H is a matrix
that selects some variables (or a combination of them), then we can write,

yt = Hxt = HJ +HQxt−1 +HGεt = J̃ + Q̃xt−1 + Q̃εt (4.42)

where we assume that the dimension of yt is P ×1. That is, the number of observed variables
is equal to the number of fundamental shocks in the model. Then, given an initial condition
for all the variables in the model, xT , which could be recovered running a Kalman filter for
example, we can proceed similarly as in the case of the VAR. Iterating forward, we can get,

yT +h =
h∑

j=1
Q̃j−1J̃ + Q̃hxT +

h∑
j=1

Q̃h−jG̃εT +j (4.43)

And with the latter expression in hand, it is straightforward to compute an expression for
the mean and the covariance matrix in Equation (4.40) using the same matrix representation
as in the VAR case.
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4.D Additional Plots

Figure 4.D.1: Marginal Forecasting Densities of Inflation

Notes: Histograms of the marginal forecasting distributions for each forecasting horizon. The draws in blue
show the symmetric forecasting densities of the BVAR without conditioning on the option implied

moments. The red draws show the forecasting distributions conditional on the option implied moments
that exhibit a significant amount of skewness to the right. Therefore, the positive skewness in the

distribution of the oil prices also results in upside risks to inflation and core inflation.
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4.E Continuously Ranked Probability Scores

Table 4.E.1: Ratios of CRPS for GDP

T h=1 h=2 h=3 h=4 h=5 h=6
14Q1 1.233 1.032 0.979 0.851 1.253 0.917
14Q2 1.258 1.065 0.993 1.601 1.045 1.017
14Q3 1.019 1.066 1.129 1.102 1.044 1.017
14Q4 1.023 1.089 0.985 1.252 1.265 1.219
15Q1 1.227 1.032 0.948 1.121 1.179 1.048
15Q2 1.005 1.039 0.991 1.258 1.013 1.144
15Q3 0.952 0.936 1.234 1.086 1.206 1.118
15Q4 1.053 1.066 1.015 1.124 1.148 1.101
16Q1 1.159 0.979 1.093 1.039 1.069 1.079
16Q2 1.308 1.159 1.089 1.287 1.274 1.185
16Q3 1.125 1.032 1.053 1.190 1.231 1.102
16Q4 0.794 0.874 0.954 1.291 1.173 1.046
17Q1 0.859 0.939 1.033 1.231 0.946 1.125
17Q2 1.064 1.124 1.125 0.962 1.184 0.982
17Q3 1.019 1.068 0.901 1.159 0.888 1.171
17Q4 0.880 1.004 1.108 0.676 1.358 1.210
18Q1 1.133 1.067 0.885 1.504 1.387 0.962
18Q2 1.134 0.982 1.207 1.573 0.863 0.942
18Q3 1.091 1.034 1.153 1.041 0.984 0.893
18Q4 0.851 0.970 1.034 1.033 0.838 0.968
19Q1 0.924 1.101 1.030 0.848 0.963 0.991
19Q2 1.135 1.042 0.922 0.946 0.987 1.004
19Q3 1.028 0.919 0.968 0.987 1.007 0.865
19Q4 1.041 0.985 0.994 1.005 0.904 0.927
20Q1 0.997 0.996 1.004 0.790 0.847 1.014
20Q2 1.001 0.974 0.637 0.861 0.846 0.878
20Q3 0.835 0.439 0.271 0.296 0.214 0.146
20Q4 0.729 0.927 0.748 1.122 0.967 1.057
21Q1 0.696 1.014 1.012 1.089 1.091 1.006
21Q2 0.742 1.086 1.181 1.112 1.177 1.084
21Q3 0.661 1.199 1.067 1.117 1.242 1.080
21Q4 0.566 1.099 1.156 1.085 1.298 1.218
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4.E. Continuously Ranked Probability Scores

Table 4.E.2: Ratios of CRPS for Inflation

T h=1 h=2 h=3 h=4 h=5 h=6
14Q1 1.652 1.269 1.048 1.071 0.888 1.322
14Q2 2.008 1.310 0.908 0.999 1.220 0.776
14Q3 2.923 1.201 0.974 0.966 0.874 0.8
14Q4 1.463 1.077 1.163 0.937 0.829 0.79
15Q1 0.935 1.298 0.866 0.893 0.761 1.395
15Q2 0.692 1.014 0.919 0.928 1.125 1.01
15Q3 0.982 0.913 0.871 0.970 0.899 1.152
15Q4 1.454 0.919 1.171 1.201 1.174 1.075
16Q1 0.794 1.282 1.211 1.250 1.178 0.936
16Q2 0.470 0.997 0.856 0.788 1.178 1.175
16Q3 1.551 0.813 0.939 1.035 1.163 1.151
16Q4 0.466 0.736 1.142 1.332 0.980 1.032
17Q1 0.589 1.150 1.063 1.169 1.151 1.166
17Q2 0.967 0.938 1.121 1.163 1.215 1.247
17Q3 1.354 1.186 1.123 1.105 1.217 1.065
17Q4 0.887 0.941 1.079 1.121 1.056 0.831
18Q1 0.946 0.862 1.148 1.083 0.850 1.309
18Q2 0.578 1.015 0.983 0.950 1.234 0.855
18Q3 1.550 1.191 0.922 1.163 0.926 0.875
18Q4 2.096 1.087 1.113 1.116 1.007 0.881
19Q1 1.238 0.960 1.168 1.260 1.017 0.875
19Q2 0.529 1.250 1.163 1.030 0.883 0.862
19Q3 1.168 1.132 0.851 0.877 0.838 0.783
19Q4 1.264 0.910 0.910 1.004 0.885 1.046
20Q1 1.313 0.978 0.912 0.960 1.016 1.253
20Q2 0.726 1.319 0.904 0.836 0.665 0.777
20Q3 0.188 0.237 0.518 0.321 0.395 0.433
20Q4 1.72 0.897 0.688 0.829 0.861 0.883
21Q1 0.666 0.667 0.899 0.887 0.915 0.844
21Q2 1.01 0.815 1 0.93 0.988 1.135
21Q3 0.635 0.872 0.917 0.827 0.941 1.168
21Q4 0.591 0.848 1.019 1.213 1.041 0.897
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4.E. Continuously Ranked Probability Scores

Table 4.E.3: Ratios of CRPS for Core Inflation

T h=1 h=2 h=3 h=4 h=5 h=6
14Q1 0.928 0.93 1.061 1.217 1.26 1.333
14Q2 0.996 1.003 1.063 1.215 1.345 1.314
14Q3 0.926 0.984 1.009 1.277 1.306 1.426
14Q4 1.033 0.941 0.994 0.987 1.301 1.16
15Q1 1.022 1.096 0.988 1.145 1.077 1.029
15Q2 1.017 1.067 1.034 0.938 0.871 1.041
15Q3 1.001 1.013 0.94 0.869 1.055 1.096
15Q4 1.025 1.044 0.947 0.941 1.104 1.065
16Q1 1.003 0.885 0.986 1.054 1.055 1.033
16Q2 1.068 1.207 1.052 0.969 1.146 1.162
16Q3 1.033 1.073 1.062 1.104 1.159 0.923
16Q4 0.925 1.004 0.96 1.125 0.933 1.175
17Q1 1.003 0.91 1.003 0.949 1.128 1.133
17Q2 0.952 0.951 0.914 1.105 1.107 1.081
17Q3 0.991 0.987 1.051 1.079 1.058 0.928
17Q4 1.028 1.062 1.052 1.105 0.817 0.898
18Q1 1 0.983 1.049 0.834 0.922 1.175
18Q2 1.079 1.072 0.964 0.862 1.205 1.258
18Q3 1.011 1.055 0.962 1.148 1.239 1.192
18Q4 1.063 1.148 0.972 1.167 1.165 0.845
19Q1 1.054 0.944 1.025 1.054 0.876 1.166
19Q2 0.937 0.997 0.991 0.873 1.037 0.847
19Q3 1.02 1.051 0.926 1.167 0.895 0.903
19Q4 0.984 1.011 1.077 0.96 0.925 1.021
20Q1 0.986 1.013 0.933 0.89 1.041 1.008
20Q2 0.992 0.924 0.71 0.868 0.705 0.897
20Q3 0.829 0.633 0.563 0.384 0.357 0.248
20Q4 0.632 0.983 0.797 0.989 0.92 0.965
21Q1 0.837 1.006 0.927 0.986 1.033 1.062
21Q2 1.249 0.922 1.057 1.013 1.123 1.055
21Q3 0.72 0.893 0.943 0.98 1.086 1.157
21Q4 0.593 0.871 1.094 0.966 1.203 1.253
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Zusammenfassung

In den Wirtschaftswissenschaften ist die Vorhersage der künftigen Wirtschaftslage eine Schüs-
selfrage für die Entscheidungsfindung von Wirtschaftsakteuren und politischen Entschei-
dungsträgern gleichermaßen. Daher spielen ökonometrische Methoden zur genauen Messung
des Zustands unserer Wirtschaft sowie zur Vorhersage und Quantifizierung der künftigen
Verteilungen wichtiger makroökonomischer Variablen eine wichtige Rolle im Instrumentarium
nationaler und internationaler Institutionen. Ziel dieser Dissertation ist es, Zeitreihenmeth-
oden anzuwenden und weiterzuentwickeln, um den aktuellen Zustand der Wirtschaft in
Echtzeit zu bestimmen und den zukünftigen Pfad der Wirtschaft zusammen mit den damit
verbundenen Risiken in Form von Dichteprognosen vorherzusagen.

Das erste Kapitel, eine Gemeinschaftsarbeit mit Yves Schüler und Frieder Mokinski, zeigt,
dass man den einseitigen Hodrick-Prescott-Filter (HP-1s) nicht als Echtzeitversion des
zweiseitigen Hodrick-Prescott-Filters (HP-2s) verwenden sollte: Erstens entfernt HP-1s
hinsichtlich der extrahierten zyklischen Komponente tieffrequente Schwankungen nicht im
gleichen Maße wie HP-2s. Zweitens dämpft HP-1s Fluktuationen bei allen Frequenzen - sogar
bei denen, die es extrahieren soll. Als Abhilfe schlagen wir zwei Anpassungen für HP-1s vor,
die seine Eigenschaften an die von HP-2s angleichen sollen: (1) ein niedrigerer Wert für den
Glättungsparameter und (2) eine multiplikative Neuskalierung der extrahierten zyklischen
Komponente. Für HP-2s mit λ = 1600 (Wert des Glättungsparameters) verwendet der
angepasste einseitige HP-Filter beispielsweise λ∗ = 650 und skaliert die extrahierte zyklische
Komponente um einen Faktor von 1, 1513. Anhand von simulierten und empirischen Daten
veranschaulichen wir die Relevanz dieser Anpassungen. Beispielsweise können Finanzzyklen
um 70% volatiler erscheinen als Konjunkturzyklen, obwohl sich die Volatilitäten in Wirk-
lichkeit nur geringfügig unterscheiden.

Das zweite Kapitel ist eine gemeinsame Arbeit mit Till Strohsal. Wir zeigen, dass die Revisio-
nen der deutschen Volkswirtschaftlichen Gesamtrechnungen verzerrt, großund vorhersehbar



sind. Darüber hinaus kann durch den Einsatz von Filtertechniken, die für die Verar-
beitung von revisionsbehafteten Daten entwickelt wurden, die Echtzeit-Prognoseleistung
von Erstveröffentlichungen um bis zu 23% gesteigert werden. Für das reale BIP-Wachstum
insgesamt ist die Erstveröffentlichung jedoch eine optimale Prognose. In Anbetracht der
Ergebnisse für disaggregierte Variablen scheint die Mittelwertbildung von Verzerrungen und
Ineffizienzen auf der Ebene des Gesamt-BIP jedoch eher Glück als eine gute Prognose zu sein.

Im dritten Teil wird ein Modell der schiefen stochastischen Volatilität (SSV) vorgeschlagen,
um asymmetrische makroökonomische Tail-Risiken im Sinne der bahnbrechenden Arbeit
"Vulnerable Growth" von Adrian, Boryaschenko und Giannone (2019) zu schätzen. Im
Gegensatz zu ihrem semiparametrischen Ansatz erfasst das SSV-Modell die Entwicklung der
bedingten Dichte des künftigen US BIP-Wachstums in einem parametrischen, nicht-linearen,
nicht-gaußschen Zustandsraummodell. Dies ermöglicht es, die Auswirkungen exogener
Variablen auf die verschiedenen Momente der bedingten Verteilung statistisch zu testen und
liefert ein Bewegungsgesetz zur Vorhersage künftiger Werte von Volatilität und Schiefe. Das
Modell wird mit Hilfe eines Partikel-MCMC-Algorithmus geschätzt. Um die Genauigkeit
der Schätzung zu erhöhen, verwende ich einen temperierten Partikelfilter, der die zeitlich
variierende Volatilität und die Asymmetrie der Dichtfunktionen berücksichtigt. Ich stelle
fest, dass die finanziellen Bedingungen den Mittelwert, die Varianz und die Schiefe der bed-
ingten Verteilung des zukünftigen US BIP-Wachstums beeinflussen. Mit einem Bayes-Faktor
von 1612,18 wird das SSV-Modell von den Daten stark gegenüber einem symmetrischen
stochastischen Volatilitätsmodell bevorzugt.

Das vierte Kapitel ist eine gemeinsame Arbeit mit Carlos Montes-Galdón und Joan Paredes
und schlägt eine neue und robuste Methode vor, um bedingte Dichteprognosen zu erhalten,
die auf Informationen basieren, die nicht in einem ursprünglichen ökonometrischen Modell
enthalten sind. Die Methodik ermöglicht es, auf die erwarteten Marginalverteilungen einer
Auswahl von Variablen in einem Modell zu konditionieren, anstatt nur auf die zukünfti-
gen Pfade, wie es in der Literatur für bedingte Prognosen üblich ist. Der vorgeschlagene
Algorithmus, der auf dem temperierten Importance Sampling basiert, passt die modell-
basierten Dichteprognosen an die Zielverteilungen an, die dem Forscher zur Verfügung stehen.
Als Beispiel wird in diesem Papier gezeigt, wie der Algorithmus für die Konditionierung
der Vorhersagedichten eines BVAR- und eines DSGE-Modells auf Informationen über die
Marginalverteilungen zukünftiger Ölpreise implementiert werden kann. Die Ergebnisse
zeigen, dass erhöhte asymmetrische Aufwärtsrisiken für die Ölpreise zu Aufwärtsrisiken
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für die Inflation sowie zu einer höheren Kerninflation über den betrachteten Prognosehori-
zont führen. Schließlich zeigt eine Echtzeitprognose, dass die Einführung marktbasierter
Informationen über den Ölpreis die Inflations- und BIP-Prognosen in Krisenzeiten wie der
COVID-Pandemie verbessert.
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Summary

In economics, predicting the future state of the economy is a key issue for the decision
making of economic agents and policy makers alike. Therefore, econometric methods to
accurately measure the state of our economy as well as to predict and quantify the future
distributions of key macroeconomic variables play an important role in the toolkit of national
and international policy institutions and statistical agencies. This dissertation aims to apply
and develop new time series methods to determine the current state of the economy in real
time as well as to predict the future path of the economy together with the associated risks
in form of density forecasts.

The first chapter, which is joint work with Yves Schüler and Frieder Mokinski, shows that
one should not use the one-sided Hodrick-Prescott filter (HP-1s) as the real-time version
of the two-sided Hodrick-Prescott filter (HP-2s): First, in terms of the extracted cyclical
component, HP-1s fails to remove low-frequency fluctuations to the same extent as HP-2s.
Second, HP-1s dampens fluctuations at all frequencies – even those it is meant to extract.
As a remedy, we propose two small adjustments to HP-1s, aligning its properties closely
with those of HP-2s: (1) a lower value for the smoothing parameter and (2) a multiplicative
rescaling of the extracted cyclical component. For example, for HP-2s with λ = 1,600 (value
of smoothing parameter), the adjusted one-sided HP filter uses λ∗ = 650 and rescales the
extracted cyclical component by a factor of 1.1513. Using simulated and empirical data, we
illustrate the relevance of these adjustments. For instance, financial cycles may appear to
be 70% more volatile than business cycles, where in fact volatilities differ only marginally.

The second chapter is joint work with Till Strohsal. We show that revisions to German
national accounts are biased, large and predictable. Moreover, using filtering techniques
designed to process data subject to revisions, the real-time forecasting performance of
initial releases can be increased by up to 23%. For total real GDP growth, however, the
initial release is an optimal forecast. Yet, given the results for disaggregated variables, the



averaging-out of biases and inefficiencies at the aggregate GDP level appears to be good
luck rather than good forecasting.

The third proposes a Skewed Stochastic Volatility (SSV) model to estimate asymmetric
macroeconomic tail risks in the spirit of Adrian et. al’s seminal paper "Vulnerable Growth".
In contrary to their semi-parametric approach, the SSV model captures the evolution of the
conditional density of future US GDP growth in a parametric, non-linear, non-Gaussian
state space model. This allows to statistically test the effect of exogenous variables on the
different moments of the conditional distribution and provides a law of motion to predict
future values of volatility and skewness. The model is estimated using a particle MCMC
algorithm. To increase estimation accuracy, I use a tempered particle filter that takes the
time-varying volatility and asymmetry of the densities into account. I find that financial
conditions affect the mean, variance and skewness of the conditional distribution of future
US GDP growth. With a Bayes ratio of 1612.18, the SSV model is strongly favored by the
data over a symmetric Stochastic Volatility (SV) model.

The fourth paper is joint work with Carlos Montes-Galdón and proposes a new and robust
methodology to obtain conditional density forecasts, based on information not contained in
an initial econometric model. The methodology allows to condition on expected marginal
densities for a selection of variables in the model, rather than just on future paths as it
is usually done in the conditional forecasting literature. The proposed algorithm, which
is based on tempered importance sampling, adapts the model-based density forecasts to
target distributions the researcher has access to. As an example, this paper shows how to
implement the algorithm by conditioning the forecasting densities of a BVAR and a DSGE
model on information about the marginal densities of future oil prices. The results show that
increased asymmetric upside risks to oil prices result in upside risks to inflation as well as
higher core-inflation over the considered forecasting horizon. Finally, a real-time forecasting
exercise yields that introducing market-based information on the oil price improves inflation
and GDP forecasts during crises times such as the COVID pandemic.
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