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Feature detection and description for image matching: from hand-crafted 
design to deep learning
Lin Chen , Franz Rottensteiner and Christian Heipke

Institute of Photogrammetry and GeoInformation (IPI), Leibniz Universität Hannover, Hannover, Germany

ABSTRACT
In feature based image matching, distinctive features in images are detected and represented 
by feature descriptors. Matching is then carried out by assessing the similarity of the descrip-
tors of potentially conjugate points. In this paper, we first shortly discuss the general frame-
work. Then, we review feature detection as well as the determination of affine shape and 
orientation of local features, before analyzing feature description in more detail. In the feature 
description review, the general framework of local feature description is presented first. Then, 
the review discusses the evolution from hand-crafted feature descriptors, e.g. SIFT (Scale 
Invariant Feature Transform), to machine learning and deep learning based descriptors. The 
machine learning models, the training loss and the respective training data of learning-based 
algorithms are looked at in more detail; subsequently the various advantages and challenges of 
the different approaches are discussed. Finally, we present and assess some current research 
directions before concluding the paper.
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Foreword

This contribution is dedicated to Prof. Gottfried 
Konecny at the occasion of celebrating his 90th birth-
day with this special issue of Geospatial Information 
Science, a journal initiated by Wuhan University, 
China, more than 20 years ago. The paper contains 
a review of automatic feature matching for bundle 
adjustment and 3D reconstruction in photogramme-
try and computer vision. It has been written by mem-
bers of IPI, the Institute of Photogrammetry and 
GeoInformation, led by Gottfried Konecny between 
1971 and 1998, including a coauthor from China, who 
currently pursues his PhD studies at Leibniz 
University Hannover. The paper thus connects two 
aspects also important in the scientific work of 
Gottfried Konecny: the development of aerial triangu-
lation and the relationship of the international scien-
tific community with China.

Indeed, aerial triangulation was the topic of 
Gottfried Konecny’s PhD thesis (Konecny 1962), pub-
lished shortly after the landmark contributions of 
Brown (1958) and Schmid 1958/1959 had appeared. 
The thesis dealt with the use of convergent imagery to 
improve both, economic use due to enlarged blocks as 
well as coordinate accuracy due to a larger base-to- 
height ratio. In the following decades aerial triangula-
tion was predominantly employed using nadir images, 
and software systems, developed at universities, paved 
the way to success in practical applications. An early 
example was a system based on independent models 
(Ackermann, Ebner, and Klein 1970); well known 

bundle adjustment systems such as BLUH (Jacobsen 
1980) and Bingo (Kruck 1983) were developed at IPI. 
Similar developments took place in Vienna (Kager 
1980); this system was later extended toward the 
acquisition of object geometries by the second author 
of the current paper (Rottensteiner 2000). The focus of 
aerial triangulation research and development then 
shifted to the automatic determination of image coor-
dinates of tie points, to which IPI contributed a very 
successful solution (Wang 1994). The topic was taken 
up by one of the authors of this paper, too (Tang and 
Heipke 1993, 1996; Heipke 1997); both solutions 
found their way into practical use. Lately, oblique 
and convergent imagery have again been a focus of 
research and development, this time because of their 
superior possibilities for façade interpretation in city 
model applications. Consequently, feature matching 
for the automatic determination of image coordinates 
in convergent imagery has attracted attention (e.g., 
Chen, Rottensteiner, and Heipk 2020) – this is the 
topic of this contribution.

The second aspect relating this contribution to 
Gottfried Konecny’s work concerns his connection to 
China. As is evident from this special issue, Gottfried 
Konecny came to China in the late seventies of the last 
century already, paving the way to Chinas integration 
into ISPRS. Among many other persons he met the 
late Prof. Shiliu Gao, and the two of them became 
good friends. A few years later Prof. Gao hosted 
Christian Heipke, one of the authors of this paper, in 
Wuhan. Shiliu Gao was also instrumental in 
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establishing the connection between Christian Heipke 
and Liang Tang, resulting among other things in the 
work on automatic relative orientation mentioned 
already. Finally, in 2013 Shiliu Gao advised Lin 
Chen, the first author of this contribution, to join IPI 
for his PhD studies.

1. Introduction

Feature based image matching is a method to solve 
the correspondence problem between two or more 
images. Conjugate points are a requirement for the 
estimation of the image orientation parameters 
(also called pose parameters), which is a pre- 
requisite of all geometric appplications in photo-
grammetry, robotics and computer vision involving 
three dimensions. The 3D reconstruction from 
multiple images, Simultanesous Localization And 
Mappig (SLAM), Structure-from-Motion (SfM) 
and the generation of image mosaics all rely on 
image coordinates of matched conjugate features. 
Therefore, the quality of matching algorithms is 
vital for the stability and quality of the solution to 
those problems.

Not surprisingly, there are many publications in the 
domain of feature based image matching, both from 
the theoretical and the application perspective. This 
paper aims at a review of the description of local 
features and its related topics in feature detection, 
orientation and affine shape estimation. While we 
cover a period of 40 years, starting with the seminal 
paper of Barnard and Thompson (1980), the review 
has a focus on the period since the publicaion of the 
SIFT algorithm (Lowe 2004).

Feature based image matching consists of five steps: 
feature detection, affine shape estimation, orientation 
assignment, feature description and matching of the 
descriptors (Szeliski 2010). The basic pipeline of 
extracting local image features and descriptors is 
shown in Figure 1. Before giving a more detailed 
discussion of each step, we first provide an overview 
of feature based image matching.

Local features are corners or blobs appearing at 
some distinctive positions in the image. They are not 
necessarily salient image corners to the human eye, 
but are distinctive based on some mathematical 

model. As scale differences between overlapping 
images are common, in particular for close-range 
imagery, features are normally detected in scale space 
to reduce the influence of scale change. After those 
features are determined, their position and range 
(characteristic scale) are known. In the next step, an 
affine shape correction of the feature is estimated to 
decrease the influence of skewness and unequal scales 
of the two image coordinate axes. Note that the affine 
transformation is an approximation of central per-
spective for small image windows and is typically 
required for large-baseline image pairs with conver-
gent viewing directions. Subsequently, the principal 
orientation of the detected feature is estimated, taking 
into account different rotations of the two images 
around the viewing direction. Through those steps, 
the position, scale, affine shape and rotation of features 
are determined. According to these geometric ele-
ments, a so called feature support window around 
the detected feature is resampled from the original 
image to remove the geometric distortion. The size 
of the (most frequently square) feature support win-
dow is normally several times its characteristic scale. 
This window is the basis of feature description. During 
feature description, a high dimensional feature vector 
is derived from the feature support window; this vec-
tor is used to represent the detected feature. 
Descriptors are normally designed to be invariant 
against a limited level of geometric and illumination 
changes.

After descriptors are derived independently for 
each image, the correspondence problem can be cast 
as a neighborhood search in the high dimensional 
feature space for the feature descriptors of the different 
images. Two related topics are essential: the definition 
of a measure of similarity between potentially conju-
gate vectors and the computational complexity of 
finding these conjugate features. Based on the similar-
ity measure, e.g. the Euclidean distance of the vectors, 
strategies such as the tree-based search for the nearest 
neighbor, thresholding the ratio between the distance 
to the nearest and the second nearest neighbor (Lowe 
2004) are employed to find matches. Efficiently finding 
nearest neighbors in descriptor space is normally 
solved by spatial indexing of high dimensional data, 
e.g. Beis and Lowe (1997). As this contribution 

Figure 1. Feature detection and description pipeline.
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concentrates on feature detection and description, the 
actual matching step is not further discussed in the 
remainder of this paper.

Recently, Ma et al. (2020) and Csurka, Dance, and 
Humenberger (2018) also reviewed feature based 
image matching algorithms. However, surveying fea-
ture based matching for images and point clouds, Ma 
et al. (2020) has a different scope than this paper. 
Csurka, Dance, and Humenberger (2018) investigated 
feature detection and description developed in the 
computer vision community. Compared to those two 
papers, this paper covers feature based image match-
ing methods used in oblique aerial image orientation, 
which is a standard photogrammetric application. 
Also, neither Ma et al. (2020) nor Csurka, Dance, 
and Humenberger (2018) include a detailed review 
for feature orientation and affine shape estimation, 
whereas our paper reviews those two issues in detail. 
Moreover, this paper analyses the limitations in the 
current feature based image matching algorithms and, 
accordingly, suggests potential future research direc-
tions in this field.

In the following, details of local feature detection, 
feature affine shape and orientation estimation and 
feature description are presented in sections 2, 3 and 
4, respectively. A brief overview of the applications of 
feature based image matching in the orientation of 
oblique aerial images is provided in section 5. 
Finally, advantages, limitations and future research 
directions are discussed in section 6, before conclud-
ing the paper in section 7.

2. Local feature detection

2.1. Translation and rotation invariant features

The development of so called interest operators to 
detect the position of features can be traced back to 
the work of Moravec (1979) and Dreschler and Nagel 
(1981). Moravec (1979) assesses average quadratic 
gradients in the four main directions (horizontal, ver-
tical and both diagonals) of a local window. If the 
minimum of these four values is larger than 
a threshold, the window center is chosen as an inter-
esting point. This reflects the simple idea that a local 
feature should differ from its surroundings. Dreschler 
and Nagel (1981), on the other side, determine pairs of 
maximum and minimum curvature of the gray value 
function in the vicinity of corners. The interest point is 
then defined as the zero crossing of the curvature 
between the two points.

The Moravec detector is not rotation invariant 
because gradients are estimated in four pre-defined 
directions. A better idea is to analyze the Hessian 
matrix of the auto-correlation function of the gray 
values M (also known as structural tensor) (Lucas 
et al. 1981). Its two eigenvalues contain information 

of the curvature of that function. If both eigenvalues 
are small, the local region from which M was deter-
mined does not show much gray value variation; if one 
eigenvalue is large and the other one small, a strong 
change in one direction and thus an edge is present; if 
both eigenvalues are large, then the local correlation 
function peaks sharpely and represents either a corner 
or a certain circular signal (Föstner 1991).Förstner 
calculates the eigenvalues based on the inverse of the 
auto-correlation matrix and suggests two indicators 
related to the size and similarity of the two eigenvalues 
(Förstner and Gülch 1987). Harris and Stephens 
(1988) proposes a cornerness value, which is com-
puted as DetðMÞ � αTraceðMÞ2, where α is a variable 
balancing determinant and trace; interst points are 
found by comparing the computed cornerness with 
a threshold. According to Rodehorst and Koschan 
(2006), the Förstner operator behaves slightly better 
than the Harris operator in terms of localization accu-
racy, detection and repeatability rate. Instead of the 
auto-correlation matrix, the Hessian matrix of the 
gray values in a local window can also be used to detect 
features (Lindeberg 1998). Based on the determinant 
and trace of the Hessian matrix, feature selection cri-
teria similar to those applied to the auto-correlation 
matrix are derived.

The detectors discussed so far are all based on local 
shift-invariant windows and are therefore invariant to 
translation of the images. Because of the use of eigen-
values instead of gray value changes in the direction of 
the image coordinate axes x and y, the Förstner and 
Harris operators are also invariant against rotations. 
In addition, detectors based on the auto-correlation 
and the Hessian matrix are robust against small scale 
change. However, with increasing scale change the 
performance drops considerably (Rodehorst and 
Koschan 2006; Aanaes, Dahl, and Steenstrup 
Pedersen 2012). As is widely known, however, scale 
differences are common, especially in close-range 
photogrammetric applications or photo community 
collections, e.g. downloaded from the internet 
(Agarwal et al. 2011).

2.2. Scale invariant features

Multi-scale interest operators detect features in multi-
ple scales and then match them across scales, see e.g. 
(Brown, Szeliski, and Winder 2005). However, this 
approach only works if the scale difference is not too 
large or the scale ratio is approximately known 
a priori. A more advanced method is to analyze the 
features using scale-space theory (Lindeberg 1998), 
which describes the scale space at some scale t as 
a convolution of the original image with the two 
dimensional Gaussian function with variance t. 
When changing t continuously rather than in discrete 
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steps, scale becomes a variable of a function that maps 
the original image to scale space. The sum of 
the second order derivatives of the Gaussian function 
in x and y directions, i.e., the Laplacian of Gaussian 
(LoG), normalized by the variance of the Gaussian, is 
used to compute the local extrema in scale-space and 
those extrema are selected as features, which are now 
scale-invariant.

In the scale invariant feature transform (SIFT) 
(Lowe 2004), the normalized LoG is approximated 
by the Difference of Gaussian (DoG), and sub-pixel 
localization is obtained by fitting a local 3D quadratic 
to the surroundings of the extrema in scale space. 
Today, SIFT is one of the best-known operators for 
feature detection (and description, see below) and 
performs well in matching images with scale change; 
SIFT can also tolerate a certain amount of affine 
distortion.

In Mikolajczyk and Schmid (2004) a scale selection 
mechanism is added to the Harris corner detector; the 
LoG over scale is evaluated at each detected Harris 
point, and points for which the LoG is an extremum 
are preserved. This is followed by an optional iterative 
refinement for both scale and position. The Hessian 
Laplace detector mikolajczyk2004scale, (Mikolajczyk 
and Schmid 2004; Mikolajczyk 2002) is similar in 
spirit to that work, but starts from points detected 
using the Hessian matrix.

2.3. Detectors based on a comparison of gray 
values or saliency

In this category, the gray value of a pixel is compared 
with that of the pixels in its neighborhood. If the 
difference is lower than some threshold, the pixels 
are considered to be similar. In SUSAN (Smallest 
Univalue Segment Assimilating Nucleus) (Smith and 
Brady 1997), a pixel is selected as a feature if the 
proportion of similar pixels in a local neighborhood 
is a local minimum and lower than some threshold. 
A further approach, FAST (Features from Accelerated 
Segment Test) (Rosten, Porter, and Drummond 2010), 
uses machine learning to accelerate the comparison 
process. As comparisons are only run on discrete 
pixels, the localization accuracy cannot be refined to 
sub-pixel level. This category of operators is primarily 
employed in applications, in which speed is essential, 
but high localization accuracy is not required.

2.4. Detectors based on machine learning

Due to different illumination conditions, the 3D shape 
of the object surface and potentially complex reflec-
tion functions, analyzing gray value differences 
between images using explicit mathematical transfor-
mations or designing features in an intuitive manner 
may become infeasible. An alternative is to consider 

feature detection as a machine learning task. The main 
principle of such methods is to map an input image to 
a score map in which the value (score) for each pixel 
can be interpreted as the probability of being 
a distinctive feature. The parameters of the mapping 
functions used in this process are determined from 
training data by machine learning techniques, widely 
used in photogrammetry and remote sensing today 
(Heipke and Rottensteiner 2020).

An example for such an approach is Verdie et al. 
(2015). To take into account changes in illumination, 
a regressor is trained to predict a score map whose 
maxima are points with high repeatability under chal-
lenging illumination changes; afterward, the features 
expected to be most stable against illumination change 
are extracted by non maximum suppression. The LIFT 
(Learned Invariant Feature Transform) detector (Yi 
et al. 2016b) contains similar ideas and is designed to 
better discriminate between matched and non- 
matched feature pairs in a global fashion.

The core idea of the covariant detector is that fea-
tures detected in the original image patch that are 
transformed to another coordinate system using 
some geometric transformation should have the 
same positions in that coordinate system as features 
detected after applying the geometric transformation 
to the original image patch. This so called covariance 
constraint is used in Lenc and Vedaldi (2016), in 
which a regressor is employed as a detector to map 
an image patch to a feature response.

If an input image is converted to a response map 
using trainable models, the top/bottom quantiles of 
the distribution of the response values can be used to 
define thresholds for selecting the best features 
according to the criterion implied by the response 
map. According to Savinov et al. (2017), the order of 
those top/bottom quantiles should be kept constant 
before and after the input image is geometrically trans-
formed. In that paper, a quad-network, composed of 
two original and two transformed image patches, is 
used to learn an order-preserving feature detection 
network. As mentioned above, Rosten, Porter, and 
Drummond (2010) use machine learning to improve 
the speed and repeatability of feature detection based 
on a gray value comparison of pixels in the 
neighborhood.

3. Feature orientation and affine shape 
estimation

After feature location and scale in the image plane are 
detected, an image patch surrounding the detected 
feature is typically extracted with a size proportional 
to its scale. This patch reflects the appearance of the 
underlying feature and is used as input for descriptor 
computation. Due to potentially different rotations 
around the viewing direction and also different 
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viewing directions, patches of conjugate features can 
be distorted with respect to each other.

Simply requiring the descriptor to be invariant 
against these relative distortions of the feature support 
windows decreases the discriminative power of the 
descriptors. As mentioned above, these distortions 
can be modeled as rotation and affine distortion, the 
latter considering local skewness and scale differences 
between the two axes of the image coordinate system. 
The rotation difference can then be determined by 
finding a principal orientation for each image patch 
surrounding a detected feature, and computing the 
descriptor based on that principal direction. 
Similarly, the affine shape can be estimated and the 
patches are then re-sampled to compensate rotation 
and affine distortions between image patches.

3.1. Orientation assignment

After features are detected, the orientation of 
a feature can be estimated by calculating 
a principal direction using the gradients calcu-
lated in a local window surrounding the 
detected feature. In SIFT (Lowe 2004), 
a histogram of oriented gradients is calculated; 
the bin with the maximum count is then picked, 
and the corresponding direction is refined by 
fitting a parabola to the peak and the two adja-
cent bins. Other bins with high values, i.e. larger 
than 80% of that of the maximum bin, are 
retained as secondary principal orientations. 
Features with multiple peaks in the support win-
dow can be better matched in this way. In SURF 
(Speeded-Up Robust Feature) (Bay et al. 2008), 
Haar wavelet responses in horizontal and verti-
cal directions inside a circular window sur-
rounding the detected feature are computed 
and plotted as points in 2D. Responses within 
a rotating cone of size π=3 are summed and the 
principal direction is assigned to the cone direc-
tion with the highest result. Also, the mean 
gradient in a small window surrounding the 
detected feature has proven to be helpful in 
aligning features (Brown, Szeliski, and Winder 
2005).

In Yi et al. (2016a) and Yi et al. (2016b), the orien-
tation is estimated by deep learning. The principal 
direction for an input patch surrounding a detected 
feature is predicted by a Siamese Convolutional 
Neural Network (CNN), which maximizes the simi-
larity of descriptors calculated for pairs of conjugate 
input feature patches. A similar idea is used in 
Mishkin, Radenovic, and Matas (2018) and Chen, 
Rottensteiner, and Heipk (2020) to learn the orienta-
tion of local features. This strategy shows significantly 
better performance than the aforementioned methods 
based on hand crafted features.

3.2. Affine shape estimation

Detecting local features in scale space and assigning 
them an orientation is basically equivalent to normal-
izing rotation and scaling of local features before 
description. However, this transformation is not suffi-
cient to model the geometric transformations between 
local image patches in case of large changes in view-
point and viewing direction between images. 
Therefore, perspective changes, which for small win-
dows can be compensated by an affine transformation, 
should also be estimated and taken into account before 
feature description.

Invariance against affine transformations has also 
been investigated. The method of Edge-Based Regions 
(EBR) (Tuytelaars et al. 1999) uses edges starting from 
detected Harris points to construct affine invariants. 
This method can only be applied to features sur-
rounded by edges, consequently the application 
range is limited. The approach called Intensity Based 
Region (IBR) (Tuytelaars and Van Gool 2000, 2004) 
starts from one detected feature point and constructs 
lines of different directions; in each direction the line 
ends at the local maximum of gray value change in 
a pre-defined neighborhood. Then, an ellipse is fitted 
through all end points, and the ellipse is used to 
represent the underlying feature. In Matas et al. 
(2004), the watershed algorithm is used to find local 
extrema employed for ellipse fitting. As reported in 
Mikolajczyk et al. (2005) the features extracted in this 
way are sensitive to scale change.

Affine shape estimation theory using the second 
moment matrix is studied in Lindeberg and Garding 
(1997); Baumberg (2000); Mikolajczyk (2002); 
Mikolajczyk and Schmid (2004). Affine Gaussian 
scale-space is generated by convolution of the image 
patch with a non-uniform Gaussian kernel, which is 
represented by a 2 � 2 covariance matrix �. As 
indicated in Lindeberg and Garding (1997), in affine 
Gaussian scale-space the response of two image pat-
terns related by a particular affine transformation B is 
equal, if for the underlying Gaussian kernels �1 and 
�2 the following relation holds: �2 ¼ BT�1B. 
The second moment matrix M measures the level of 
isotropy of a feature and is thus used to describe the 
covariance matrices, thus M2 ¼ BTM1B. Based on 
that, an iterative procedure is proposed to derive fea-
tures for which the shape is approximately circular. In 
Baumberg (2000) the patch surrounding the features is 
normalized by geometrically transforming the patch 
using M� 1=2 as the transformation matrix.

After that, the second moment matrix for the nor-
malized patch is iteratively calculated and and the 
patch is yet again transformed using M� 1=2, until the 
two eigenvalues of M for the normalized patch are 
close enough to each other. As a result, the affine 
transformation between two image patches is removed 
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and only a rotation remains. In Mikolajczyk and 
Schmid (2004), this approach is extended to 
Gaussian scale-space and Harris-Affine and Hessian- 
Affine detectors are employed to select the features.

However, a considerable amount of features is 
removed after the iterative affine adaptation algo-
rithm. According to Mikolajczyk and Schmid (2004), 
only 20–30% of the initially detected features are pre-
served for further feature matching. To tackle this 
problem, affine shape estimation based on a deep 
neural network is proposed in Mishkin, Radenovic, 
and Matas (2018), where the shape parameters are 
estimated by minimizing the distance between the 
descriptors of matching point pairs. A model to pre-
dict affine shape is also learned in Chen, Rottensteiner, 
and Heipk (2020). In addition, it is used to match 
images taken from oblique aerial cameras, resulting 
in a notable performance improvement compared to 
using hand-crafted algorithms for removing affine dis-
tortion. ASIFT (Affine SIFT) (Morel and Yu 2009), on 
the other hand, first simulates different versions of the 
input image by applying different sets of affine trans-
formation parameters. In a second step, the DoG 
features and SIFT descriptors detected in each trans-
formed image are combined for descriptor matching, 
a process that makes ASIFT computationally expen-
sive. ASIFT thus does not take algorithmic measures 
to estimate local affine shape for each feature, but 
makes matching more invariant toward affine distor-
tions by applying a standard algorithms to different 
simulated views.

An affine invariant measure combining points and 
lines in a local neighborhood is proposed in Chen and 
Shao (2013). The method starts by extracting points 
using the DoG detector (Lowe 2004) and finding 
potential candidates in the other image based on the 
DAISY descriptor (Tola, Lepetit, and Fua 2009). After 

that, point pairs X1 and X2 that are spatially close to 
each other in the first image and their correspondences 
Y1 and Y2 are considered. For a line L1 located in the 
neighborhood of X1;X2 in the first image, the ratio 
between the distances of X1;X2 from L1 is considered 
to be an affine invariant feature. If there is a line L2 
located in the neighborhood of Y1 and Y2 that is a good 
match for L1, the ratio of the distances of Y1, Y2 from 
L2 must be close to the distance ratio calculated in the 
first image. By applying this affine invariant feature as 
similarity measure, Chen and Shao (2013) successfully 
match high resolution remote sensing images of scenes 
that are planar or dominated by planar objects.

A graph summarizing the development of feature 
detection, orientation and affine shape estimation is 
shown in Figure 2.

4. Local feature description

In essence, the description of features is a problem of 
representation. It transforms the detected features into 
a new space called feature descriptor space, where dif-
ferent features can be more easily discriminated and 
matched. A local context window surrounding the fea-
ture is typically used to build the descriptor. Designing 
descriptors is difficult, because there are many factors 
influencing the gray values in the feature support win-
dow. A descriptor should be invariant with respect to 
different limited changes, e.g., illumination change, 
rotation or affine distortions. The central problem of 
descriptor design is to achieve invariance against these 
transformations. The simplest descriptor is the combi-
nation of pixel gray values in this feature support win-
dow. However, this description is sensitive to 
photometric and geometric changes. Thus, many alter-
native descriptors have been proposed.

Figure 2. A timeline highlighting some landmark papers for feature detection, orientation assignment and affine shape adaption.
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There are two groups of descriptors: floating point 
descriptors and binary descriptors, depending on 
numerical type used to represent the elements of the 
descriptors. Floating point descriptors are designed 
for better discriminability, but are normally computa-
tionally more expensive. Binary descriptors are 
designed for applications where computational 
resources are sparse, e.g. in real time SLAM or 
tracking.

According to Brown, Hua, and Winder (2011), the 
determination of descriptors consists of several steps: 
transformation, aggregation, normalization, and 
dimension reduction. Transformation is often some 
basic filter operation, e.g. calculating gradients or the 
Haar feature responses. Filters are often designed to 
preserve and magnify some special local patterns; they 
are applied either to the whole feature support window 
or only to special positions. Aggregation comprises an 
integration procedure, e.g. maximum or mean value 
computation or histogram generation. It is based on 
small regions in the feature support window, the 
arrangement of which needs to be determined 
a priori. Aggregation increases the robustness against 
noise and results in some invariance against a limited 
level of transformations between images. 
Normalization transforms a particular value to 
a fixed range and alleviates the influence of the abso-
lute response; this improves the robustness against 
illumination change. As some descriptors are high- 
dimensional and different dimensions can have strong 
correlations, e.g., because of spatial correlation in the 
original feature support window, dimension reduc-
tion, e.g. based on principal component analysis 
(PCA), is applied in a number of algorithms to obtain 
a more compressed and less redundant representation.

This review starts with giving an overview over 
hand-crafted descriptors in section 4.1 before discuss-
ing approaches based on machine learning in sec-
tion 4.2.

4.1. Hand crafted descriptors

4.1.1. Classical feature descriptors
This group contains the well-known descriptors SIFT 
(scale invariant feature transform [Lowe 2004]) and 
SURF (speeded-up robust feature [Bay, Tuytelaars, 
and Van Gool 2006]). These descriptors integrate 
a large scope of knowledge researchers had accumu-
lated in feature description earlier. SIFT first calculates 
the gradients in the features support window, followed 
by Gaussian filtering to assign the central pixel a larger 
weight, and then aggregates the gradients in square 
grids aligned with the main feature orientation. SURF 
uses the Haar wavelet response as basic transforma-
tion, aggregation also takes place in grids. Variants of 
these descriptors are DAISY (Tola, Lepetit, and Fua 
2009), which uses steerable filters and performs 

accumulation in circular patterns, and PCA-SIFT 
(Ke, Sukthankar, and Society 2004), which decreases 
the correlation between SIFT descriptor dimensions 
by employing PCA, where the projection basis is 
trained using on a large number of collected SIFT 
descriptors.

4.1.2. Binary descriptors based on gray value 
comparison
The comparison of pairs of pixel gray values inside the 
feature support window, followed by storing the result 
of the comparison as a binary number, is the basis of 
binary descriptors. BRIEF (Binary Robust 
Independent Elementary Features) (Calonder et al. 
2010, 2012) employs different pixel positions in the 
smoothed feature support window under different 
distributions. ORB (Oriented BRIEF) (Rublee et al. 
2011) adds orientation estimation and computes the 
descriptor in a greedy search selecting 256 pairs of 
pixel positions that can best discriminate homologous 
features in a training set.

BRISK (Binary Robust Invariant Scalable 
Keypoints) (Leutenegger, Chli, and Siegwart 2011) 
identifies the orientation of keypoints detected in 
scale-space and conducts the gray value comparison 
in concentric circles, a pattern similar to DAISY. The 
radius of the circles increases with the distance of the 
sampling point from the center of the patch. The 
comparison is performed between pairs of circles, the 
distance of which is smaller than some threshold 
(short-distance pairing). Finally, FREAK (Fast Retina 
Keypoint) (Alahi, Ortiz, and Vandergheynst 2012) 
selects the pairs for comparison based on the knowl-
edge of the human retina. FREAK also samples in 
a circular pattern, but comparisons concentrate in 
the region near the center of the feature support 
window.

4.2. Descriptors based on machine learning

The design of a descriptor can be defined as a machine 
learning problem, where the descriptor is computed 
by a function with trainable parameters and the learn-
ing objective is to increase the similarity of conjugate 
pairs of features, while decreasing the similarity of 
non-conjugate pairs. The way to map the feature sup-
port window to descriptor space can vary widely. In 
this section, some commonly used types of functions 
are reviewed.

4.2.1. Transformation-embedding-pooling form
Descriptors trained for feature-based matching were 
first proposed in Winder and Brown (2007), where 
different combinations of transformation, embedding 
and pooling are learned jointly to achieve 
a discriminative descriptor. The experiments reported 
in these papers indicate promising performance 
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improvements compared to hand-crafted features. 
However, for each of the four aforementioned compo-
nents, a separate loss to be optimized in training is 
designed, which leads to difficulties in the training 
procedure. Consequently, rather complex optimiza-
tion strategies are required to find a good solution. 
A convex objective function was proposed in 
Simonyan, Vedaldi, and Zisserman (2014) to tackle 
that problem; as a result a notable performance 
improvement was achieved.

Another important contribution of Brown, Hua, 
and Winder (2011); Winder and Brown (2007) is 
a training dataset, called the Brown dataset, which is 
widely employed in later works. In some publications 
the term Photo Tourism dataset (Snavely, Seitz, and 
Szeliski 2008) is used as a synonym for the Brown 
dataset, although the former contains many more 
images than the latter. The Brown dataset relies on 
3D reconstruction from multiple view images. For 
each image in the dataset, dense stereo matching and 
image orientation results are utilized to retrieve 
ground-truth matches.1 Therefore, realistic uncertain-
ties for the conjugate features are contained in the 
training data.

4.2.2. Comparison based feature descriptors
In Lepetit and Fua (2006) multiple random trees are 
trained to recognize matched features, where gray 
value comparisons at different positions of the feature 
support window are used as node tests. The so-called 
random fern (Ozuysal et al. 2010) uses a naive 
Bayesian combination of classifiers to achieve even 
better performance. Another category of descriptors 
is based on boosting. In Trzcinski, Christoudias, and 
Lepetit (2015), (2013)), boosting is used to select care-
fully designed weak features which rely on gray value 
gradients over rectangular image regions. Then, each 
of those features is compared to a trainable threshold 
and converted to a binary value that forms one dimen-
sion of an output descriptor. Chen, Rottensteiner, and 
Heipke (2014) learn Haar-like features which best 
classify the matching and non-matching pairs using 
adaptive boosting (Viola and Jones 2004). The 
descriptors proposed in these papers can also be clas-
sified as binary learned descriptors, because they deli-
ver descriptors in a binary form.

4.2.3. Descriptors based on deep neural networks
For learning descriptors based on matching and non- 
matching pairs, Siamese CNN have proven to be very 
suitable. The term ”Siamese” refers to the fact that two 
branches of a CNN, each serving as a feature extractor 
for one of the input image patches, share the same 
parameters. Siamese CNNs were already proposed for 
the extraction of descriptors for the verification of 
human signatures in Bromley et al. (1994). 
A Siamese CNN is also used in Hadsell, Chopra, and 

LeCun (2006) to extract a compact descriptor for the 
recognition of hand-written digits. In descriptor space, 
identical digits form clusters, removing the effect of 
appearance change caused by different writing styles 
and thus achieving invariance for representing those 
digits.

Jahrer, Grabner, and Bischof (2008) treated 
a Siamese CNN as a recognition network which deli-
vers a class label for the support window of each 
detected feature in one image; thus, the number of 
classes is determined by the amount of detected fea-
tures in the image. Geometric transformations are 
simulated for both branches of the Siamese CNN to 
encourage the CNN to become invariant against geo-
metric distortions. However, when matching images 
from a new scene, the class labels change and therefore 
the Siamese CNN must be retrained.

Similar to images of digits written by different peo-
ple, which may be affected by person-specific varia-
tions, feature support windows of conjugate features 
from different views can also contain complex geo-
metric and/or radiometric differences against which 
the descriptor should be invariant. Therefore, Siamese 
CNNs fit naturally to the task of feature matching. To 
the best of our knowledge, Osendorfer et al. (2013) is 
the first work to use a Siamese CNN to train descrip-
tors for feature matching, although the authors con-
centrates on comparing four different types of loss 
functions. Carlevaris-Bianco and Eustice (2014) 
employ a Siamese CNN to achieve illumination invar-
iance. Images with severe illumination changes are fed 
into the network branches; the obtained invariance 
exceeds the one of hand-crafted descriptors. Siamese 
CNNs are further used to learn descriptors in 
Zagoruyko and Komodakis (2015); Han et al. (2015); 
Simo-Serra et al. (2015); Chen, Rottensteiner, and 
Heipke (2016).

Instead of measuring the similarity of descriptors 
using their Euclidean distance, an additional metric 
network can be employed to directly predict the prob-
ability of a correct match for an input patch pair 
(Zagoruyko and Komodakis 2015; Han et al. 2015). 
Not surprisingly, the work based on metric learning 
performs better in discriminating feature pairs, as its 
similarity measure is not a simple distance measure, 
but a more advanced trained similarity score. 
However, for an actual matching task the metric net-
work needs to be run for every possible combination 
of feature pairs computed from the different images. 
As a consequence, the computation is expensive and 
its usage is restricted. This is the reason why most of 
the current work in this field concentrates only on 
learning the descriptors, i.e., on finding a good embed-
ding that can discriminate features by simple distance 
measures. As stated in Simo-Serra et al. (2015), most 
of the negative pairs cannot contribute to the loss after 
the training process has run for a while. The solution 
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given in Simo-Serra et al. (2015) is hard mining, which 
means that only a fraction of the samples that con-
tribute a higher amount of loss are selected for para-
meter updating in each iteration step during training.

The triplet architecture, proposed by Chechik 
et al. (2010), has been used for training descriptors 
in Kumar et al. (2016) for the first time. Triplet net-
works are composed of three branches, namely an 
anchor (a), a positive (p) and a negative (n) branch. 
Anchor and positive branch correspond to 
a matching pair, anchor and negative branch to 
a non-matching pair. The distances dða; pÞ and 
dða; nÞ are used to build the loss function. 
Compared to a Siamese CNN that optimizes matched 
and unmatched parts independently, the triplet 
architecture pushes unmatched features away from 
similar features in the descriptor space and thus 
equally considers similar and dissimilar features. 
The triplet loss used in Hoffer and Ailon (2015) 
motivates dða; nÞ to be larger than dða; pÞ, followed 
by adding a margin (Balntas et al. 2016b) between 
dða; nÞ and dða; pÞ; this strategy was already sug-
gested in Chechik et al. (2010). Balntas et al. 
(2016a) propose to use either dða; nÞ or dðp; nÞ as 
negative loss, depending on which of the two is 
smaller.

Instead of checking each triplet separately, Kumar 
et al. (2016) build a global loss function to separate the 
distribution of distances for matched and unmatched 
pairs. In a global loss function, the variance of the 
distances for matched and unmatched pairs is mini-
mized; the mean of the distances for matched pairs is 
also minimized, while the mean for unmatched pairs is 
maximized. The authors test the proposed loss for 
different architectural details and achieve noticeable 
improvements compared to normal loss functions.

One of the major concerns in Siamese and triplet 
CNNs for descriptor learning is that very few 
unmatched pairs are seen in training. This is in con-
trast to the typical application scenario for a trained 
descriptor, e.g. feature matching or image retrieval, 
where much larger numbers of unmatched pairs 
need to be checked in comparison to matched pairs. 
To improve the situation, progressive sampling in L2- 
Net (Tian, Fan, and Wu 2017) uses the hardest 
unmatched pair for calculating the loss. The main 
loss is the ratio between dða; pÞ and dða; nhardestÞ, for 
which a small distance is desired for a matched pair 
and a large one for an unmatched pair. Another con-
straint is to minimize the correlation between different 
dimensions of descriptors. Also, the similarity of fea-
ture maps in the descriptor network is encouraged to 
be high for matched features, but low for unmatched 
pairs. L2-Net achieves a remarkable performance 
improvement. Similar ideas of finding the hardest 
unmatched pair are explored in Mishchuk et al. 
(2017), where the closet non-matching patch to a 

and p in the triplet is found and a margin between 
the distance for a matched pair and the closet 
unmatched pair is included in the loss. In Mishchuk 
et al. (2017), a slightly better result than the one 
achieved for L2-Net is reported, though the additional 
constraint used by L2-Net (Tian, Fan, and Wu 2017) is 
ignored.

Although the distance of a matched pair and the 
hardest unmatched pair in a triplet is restricted by 
either setting a relative ratio or a margin between 
them, training based on such a strategy might result 
in a large cluster radius for matched features in 
descriptor space. To avoid such a large cluster radius 
for matched features, Keller et al. (2018) propose to 
balance the distance for both matched and hardest 
unmatched pairs and the “soft” margin or ratio 
between the distance for matched and hardest 
unmatched pairs in triplets. The result of their method 
shows a consistent improvement compared to Tian, 
Fan, and Wu (2017); Mishchuk et al. (2017).

Luo et al. (2018) concentrates on generating more 
realistic yet challenging matched pairs for L2-Net. The 
angle between two intersecting rays pointing at the 
same 3D point from different views (corresponding 
to matching features) and the incidence angle (angle 
between local normal and the ray) difference between 
each pair of rays are used to model the difficulty of 
matching homologous features. The authors discard 
easier pairs and only use more difficult matching pairs 
for sampling. Better performance in matching and 
retrieval benchmarks is achieved by that method.

A graph showing the timeline of the main develop-
ments in feature description is shown in Figure 3.

5. An application: orientation of oblique 
aerial images

In this section, the application of feature based image 
matching is reviewed with a focus on the orientation 
of imagery taken from oblique aerial camera systems. 
For nadir or near nadir images, classical feature based 
image matching algorithms, e.g. SIFT and SURF, work 
well. The focus on image orientation for oblique ima-
gery comes from the fact that this is a more challen-
ging task because of large changes in viewing direction 
and viewpoint between the different images, exceeding 
the invariance of classical feature based image match-
ing algorithm, as reported in Verykokou and 
Ioannidis (2018, 2016); Jacobsen and Gerke (2016).

In Smith et al. (2008), conjugate points between the 
oblique and vertical images are still collected interac-
tively. The reason given by the authors is that the 
illumination and viewing direction differences led to 
the failure of automatic tie point generation. An early 
attempt to match oblique and nadir images automati-
cally was based on SURF (Verykokou and Ioannidis 
2016); the results showed that most of the resulting 
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conjugate points were situated in a planar surface 
within a limited degree of viewpoint change only. 
The method is bound to fail if the scene contains larger 
elevation differences. The idea of running multiple 
homographies is used in Onyango et al. (2017) to 
obtain tie points between UAV and oblique camera 
images. In this strategy, a first homography is com-
puted, outliers of this result are then iteratively used to 
compute further homographies.

Kim, Nam, and Lee (2019) propose a deep neural 
network to estimate the rotation and affine transfor-
mation between a pair of images. A qualitative perfor-
mance between nadir and oblique images from the 
ISPRS multi-platform photogrammetry dataset (Nex 
et al. 2015) shows that the method can roughly align 
images from different view points. However, the esti-
mated transformation angles are discretized into large 
intervals, e.g. 45�, which restricts its practical usage. 
Moreover, from a theoretical point of view, the 
method can yield correct results only for scenes con-
taining a low amount of height change.

Matching of nadir and oblique images can also rely on 
view sphere simulation of images using ASIFT (Affine 
Scale Invariant Feature Transform), e.g. Wang et al. 
(2018). Similarly, Shao et al. (2020) use ASIFT to match 
a digital orthophoto and image frames from videos taken 
from oblique viewing directions. The idea of view sphere 
simulation is to simulate a lot of images with different 
levels of affine transformation between two images which 
need to be matched. Feature detection, orientation and 
description are then performed based on all transformed 
images. Not surprisingly, for some pairs, the geometric 
distortions are decreased to a level which can be handled 
by classical matching algorithms. Once these pairs are 

successfully matched, their conjugate points are trans-
formed back to the original images, thus obtaining 
matches in the original image frames.

Finally, a recently published approach successfully 
matches images acquired using an oblique penta cam-
era system by optimizing the affine shape estimation, 
orientation assignment and feature description 
directly in a deep neural network (Chen, 
Rottensteiner, and Heipk 2020). A comparison to 
other feature-based matching frameworks shows that 
the new method delivers more matches between image 
pairs having very different viewing direction and, thus, 
a more stable block geometry.

Unfortunately, only limited information is reported 
for the matching algorithms used in commercial soft-
ware, e.g. Pix4D or Photoscan. Open source software 
for 3D image reconstruction from multiple images, e.g. 
Bundler2 (Snavely, Seitz, and Szeliski 2006), 
VisualSFM3 (Wu et al. 2011; Wu 2013), MicMac4 and 
COLMAP5 (Schönberger and Frahm 2016), mainly 
relies on SIFT for feature based image matching.

6. Discussion

In this section, an analysis of the different modules of 
feature based image matching is provided. Along with 
the discussion, some research directions for advancing 
image matching based on deep learning are suggested.

6.1. Detector learning

Detector learning algorithms are built on the core idea 
of enhancing the repeatability of detecting features 

Figure 3. The literature timeline for feature description. For better viewing of the whole graph, some closely linked papers are 
combined into one block with an +1 year difference, e.g. all the binary descriptors including ORB, BRISK, BRIEF and FREAK are 
combined into one block.
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against geometric or illumination changes. In photo-
grammetry and remote sensing, the invariance of fea-
ture detection against radiometric changes is in urgent 
demand not only for classical image matching. Related 
topics that rely on stable feature detectors comprise 
matching of remote sensing images from different 
sensors (e.g. SAR and optical images) and of multi- 
modal sensor data (e.g. LiDAR and RGB or multi-
spectral images). To solve these problems, multi- 
sensor and multi-modal datasets which contain 
ground truth geometric registration are needed. 
These datasets can then be employed to learn the 
required detectors in ways similar to what was dis-
cussed in this paper.

6.2. Orientation assignment and affine shape 
estimation

When assigning an orientation to a feature sup-
port window for image matching, only the rela-
tive orientation between the two images is 
relevant, as they can be matched in any absolute 
orientation. The same is true for the two para-
meters of affine distortion (different scale in the 
two axes of the image coordinate system and 
skewness). Therefore, orientation assignment 
and affine shape estimation for a single patch 
does not have a unique solution. In Yi et al. 
(2016a) and Yi et al. (2016b), it is claimed that 
orientation and affine parameters optimized only 
by using descriptor distance loss motivates the 
method to find the best possible solution for 
image matching. However, an underlying 
assumption to ensure that this idea works is 
that there is a distinctive descriptor distance 
minimum when two feature support windows 
are aligned, i.e., a unique solution exists for 
the problem. Of course, as far as the computa-
tion of image coordinates of tie points for image 
orientation is concerned, any of the solutions 
provided by the network is as good as any 
other. However, the numeric stability and con-
vergence properties of the computations should 
be investigated.

In current work for the orientation and affine shape 
estimation, descriptors are needed to build 
a descriptor distance based loss. However, in classical 
feature based image matching, e.g. SIFT (Lowe 1999, 
2004), orientation assignment and affine shape estima-
tion (Baumberg 2000; Mikolajczyk and Schmid 2004) 
depend only on geometric measures calculated on 
individual patches surrounding features. Thus, 
patches are transformed into some canonical form in 
which matching can be performed unambiguously 
and independently of descriptor distance. An open 
question is whether this idea can be transferred to 
deep learning based approaches as well.

Although joint learning of orientation and affine 
shape estimation is theoretically possible, it has not 
been conducted in published work. Mishkin, 
Radenovic, and Matas (2018) as well as Chen, 
Rottensteiner, and Heipk (2020) report on unsuccess-
ful attempts to do so. It is currently unclear what the 
specific difficulty for training the orientation and 
affine shape module jointly is. Through the analysis 
of how descriptor distance changes for pairs of patches 
simulated with different amounts of rotation and 
affine distortions, it is possible to further investigate 
this issue.

6.3. Descriptor learning

To learn descriptors from data, pairs or triplets of 
matching or non-matching image patches are fed 
into the learning framework. The loss function is 
designed to make the similarity, often measured by 
the inverse Euclidean distance between descriptors, 
a maximum for matching pairs and a minimum for 
negative pairs, i.e. pairs not corresponding to 
a correct match. An identical number of positive 
and negative pairs are typically used in the training 
procedure to update the parameters of the network 
for predicting the descriptors. However, in real appli-
cations, for instance in image matching or image 
retrieval, far more negative pairs must be compared 
than positive pairs, because finding correspondences 
requires a ”one against many others” processing 
strategy. Taking this imbalance into consideration, 
the negative pairs are mined by comparing and 
selecting difficult ones from a pool containing large 
amounts of such pairs. Therefore, the network sees 
a significantly larger number of negative samples 
(pairs not corresponding to a correct match) than 
positive ones (matching pairs) during training. 
Methods trying to include more negative pairs are 
presented in Mishchuk et al. (2017) and Simo-Serra 
et al. (2015); the results reported in these papers 
indicate that the discriminability of the learned 
descriptors can be improved notably in this way.

On the other hand, the appearance of matching 
patches has not been explored in-depth in descriptor 
learning. Compared to “seeing” unmatched pairs, the 
descriptor has limited chance to explore the intra-class 
variability of matching pairs. In other words, for each 
patch, the descriptor has a much lower chance to see 
conjugate patches containing a limited level of distor-
tion. In training data currently in use, only few con-
jugate patches are contained for each feature and 
during training the matching pairs are sampled from 
these correspondences. These patches can only cover 
a small part of the space of possible viewing directions 
that would result in patches for which the descriptor 
should also be similar to the one for a given reference 
patch.
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6.4. An aerial photogrammetric benchmark

To evaluate the different variants of descriptors, 
results from 3D reconstruction from images are 
employed, e.g. Fan et al. (2019) and Jin et al. (2020). 
The test dataset used in Fan et al. (2019) consists of 
images containing consecutive changes of viewpoint 
and viewing directions. Although some overlapping 
images are indeed wide baseline pairs, for each image 
an overlapping partner can be found with only small 
changes in viewing direction and viewpoint position. 
In Jin et al. (2020), the Photo Tourism dataset is used 
as wide baseline dataset for the 3D image reconstruc-
tion task. A check revealed that this dataset contains 
a large number of consecutive views also.

In aerial photogrammetry, matching of oblique 
images has been one of the more attractive research 
areas in the last years, partly due to its practical 
importance. While the images taken by different 
cameras of an oblique camera system contain distinct 
and large viewpoint and viewing direction changes, 
consecutive images as in the datasets mentioned 
before typically do not exist. Unfortunately, the 
only publicly available dataset comprising oblique 
aerial imagery (Nex et al. 2015) does not contain 
a dense ground truth depth map in order to derive 
as many conjugate points as necessary for the evalua-
tion in a way similar to Brown, Hua, and Winder 
(2011). This requirement largely comes from the fact 
that correct matches can be removed during the 
computation of the image orientation parameters, 
e.g. when the triangulation angle of a match is 
small. While such matches do not contribute to the 
computation of the image orientation parameters, it 
is still interesting to investigate the matching quality 
of such conjugate points. In this way, besides the 
bundle adjustment output, which of course forms 
the primary result for image orientation, evaluation 
criteria for feature based image matching, e.g. recall, 
precision, matching points distribution, repeatability 
of detected features (Mikolajczyk et al. 2005) and 
matching score (Mikolajczyk and Schmid 2005) can 
be analyzed in detail as well, in order to assess the 
influence of the matching algorithm on the image 
orientation results.

6.5. Transferability of methods based on machine 
learning

The possibility to transfer training-based methods for 
descriptor computation, orientation assignment and 
affine shape estimation between different imaging 
domains has not been properly investigated yet. 
Thus, unlike for other machine learning tasks, e.g. 
semantic segmentation and person re-identification, 
it is unclear how well methods for image matching 
such as those based on deep learning can be 

transferred from the domain from which the training 
dataset was generated, e.g. a close range scene, to 
another domain, e.g., a set of aerial images.

On the one hand, machine learning tasks related to 
feature based image matching, especially affine shape 
estimation, orientation assignment and descriptor 
learning, are based on simple networks and a simple 
form of distance based loss functions, which should be 
beneficial for the generalization ability of the learned 
models. In addition, all the context windows involved 
in these tasks are ”local”, having a size several times 
that of the detected characteristic scale of the features. 
Thus, a limited range of context is involved, which also 
increases the possibility for a wide generalization. 
Nevertheless, in order to obtain a better understand-
ing of this question, the transferability of feature 
matching algorithms based on deep learning across 
imaging domains should be systematically analyzed 
based on a series of datasets containing significant 
differences, e.g. sets of street view and aerial images.

7. Conclusion

In this paper, the four steps of the feature detection and 
description workflow for feature based image matching, 
namely feature detection, affine shape estimation, 
orientation assignment and feature description, are 
reviewed. During the past decade these modules have 
gradually evolved from a hand-crafted design to predic-
tion by trained deep neural networks. After the techni-
cal review of the different algorithms available in the 
literature and the orientation of oblique aerial images as 
an application example, an analysis of the limitations 
and gaps between the current possibilities of feature 
based image matching and the requirements of photo-
grammetry and remote sensing is provided, and poten-
tial interesting research directions are suggested.

We believe that the potential of deep learning in 
solving matching problems in photogrammetry and 
remote sensing has been proven, but is still far away 
from being fully discovered. On the one hand, automa-
tion and in particular the use of deep learning decreases 
the dependence on experience and knowledge of speci-
fic application domains. On the other hand, there is 
a danger of using these methods as black boxes without 
proper checks of the results. In our point of view, 
a further important issue is thus how to integrate com-
mon and expert domain knowledge with deep neural 
networks to act as a guidance or regularization.

Notes

1. For a feature fL in image IL, a small grid surrounding 
fL in IL is extracted and transferred to image IR using 
the depth map estimated from the stereo image pair 
IL; IR. The transferred grid is then used to estimated 
the scale and pixel localization for the transferred 
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feature point in IR. If the difference of estimated scale 
and pixel localization for the transferred features 
point is close to the scale and localization of 
a feature point fR in IR, then fR and fL are considered 
to be a ground truth match.

2. http://www.cs.cornell.edu/snavely/bundler/
3. http://ccwu.me/vsfm/
4. https://micmac.ensg.eu/index.php/Accueil
5. https://demuc.de/colmap/
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