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Abstract
We present a method for retrieving of single-active electron potential in an atom or molecule
from a given momentum distribution of photoelectrons ionized by a strong laser field. In this
method the potential varying within certain limits is found as the result of the optimization
procedure aimed at reproducing the given momentum distribution. The optimization using
numerical solution of the time-dependent Schrödinger equation for ionization of a model
one-dimensional atom shows the good accuracy of the potential reconstruction method. This
applies to different ways used for representing of the potential under reconstruction, including
a parametrization and determination of the potential by specifying its values on a spatial grid.

Keywords: strong-field ionization, derivative-free optimization, photoelectron momentum
distributions, single-active electron potential

(Some figures may appear in colour only in the online journal)

1. Introduction

The advances in laser technologies during the last decades
have allowed to study the variety of phenomena arising from
the interaction of strong laser radiation with matter, see, e.g.
[1, 2] for recent reviews. These phenomena include above-
threshold ionization (ATI), formation of the high-energy
plateau in the ATI spectrum (high-order ATI), generation of
high-order harmonics (HHG), nonsequential double ionization
(NSDI), etc (see [3–6] for reviews). It was shown in the studies
of the ATI process that the vast majority of the photoelec-
trons do not recollide with their parent ions. These electrons
are referred to as direct electrons. They are detected with the
energies below 2Up, where Up = F2

0/ω
2 is the ponderomotive
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energy. Here F0 is the field strength and ω is the angular fre-
quency (atomic units are used throughout the paper). There are
also rescattered electrons that due to oscillations of the laser
field come back to their parent ions and rescatter on them by
large angles. The rescattered electrons form the high-energy
plateau in the ATI spectrum, i.e. they are responsible for the
high-order ATI.

The development of laser technologies has also given rise
to a number of techniques aimed at time-resolved molecular
imaging, including, laser-induced Coulomb explosion imag-
ing [7–10], laser-assisted electron diffraction [11, 12], high-
order harmonic orbital tomography [13, 14], laser-induced
electron diffraction [15–17], strong-field photoelectron holog-
raphy [18], see [19] for review. The correct interpretation of the
imaging experiments, as well as the understanding of the HHG,
NSDI, and other phenomena in intense laser fields, requires an
accurate description of strong-field ionization of various quan-
tum systems. Among the main theoretical approaches used to
describe ionization of atoms by strong laser pulses are the
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strong-field approximation [20–22], the semiclassical mod-
els [23–27], and the direct numerical solution of the time-
dependent Schrödinger equation (TDSE) (see, e.g. [28–31])
in single-active electron (SAE) approximation [32, 33]. Within
the SAE the strong-field ionization of many-electron atom or
molecule is described as an interaction of only one active elec-
tron with the laser radiation. This active electron moves in the
combined effective potential and the electric field of the laser
pulse. In many cases the solution of the TDSE within the SAE
gives good agreement with experimental data. In situations
where the multielectron effects are important, the SAE is still
valuable, since it provides a necessary benchmark for the anal-
ysis of the results of multielectron calculations. On the other
hand, if the multielectron simulations are not feasible, the SAE
remains the only possible approach. Therefore, it is important
to obtain suitable SAE potentials for various systems.

In this paper we focus on the atomic case only. The SAE
potential designed for a multielectron atom should account for
the presence of the atomic nucleus and approximately describe
the effect of other electrons. The calculation of such a poten-
tial is a non-trivial task. Indeed, the widely used potential by
Tong and Lin [34] was obtained using density-functional the-
ory. This potential has a singularity at r → 0. The same is true
for the other well-known potential [35] and the SAE potentials
obtained recently by fitting to the effective Kohn–Sham poten-
tials [36]. However, the presence of this singularity causes
problems, if the TDSE is solved with the split-operator method
[37] employing fast Fourier transform. To avoid this singular-
ity, the SAE potential can be converted into a pseudo poten-
tial using an approach developed by Troullier and Martins
[38]. Nevertheless, while the pseudopotential can be success-
fully applied to description of the direct electrons, it faces
challenges in describing the rescattering process (see [39]
for details). Therefore, development of approaches aimed at
calculation of the SAE potentials is of great interest.

The SAE potentials are often constructed as analytic func-
tions that depend on one or a few parameters. While one
parameter of the potential allows to reproduce only one bound-
state energy, the presence of several parameters makes it
possible to recover the predefined energies of few different
bound states. Usually, the parameters of a model potential
are adjusted using an optimization technique. This suggests to
obtain the SAE potential as a result of some optimization pro-
cedure. Indeed, in reference [40] the atomic potentials were
retrieved from differential electron scattering cross section
using genetic algorithm. The differential cross sections can in
turn be extracted from momentum distributions of the rescat-
tered electrons. Nevertheless, since the potential experienced
by the ionized electron is encoded in the measured photoelec-
tron momentum distribution (PMD), it should be possible to
optimize the unknown SAE potential in order to directly repro-
duce a given PMD generated by strong-field ionization of an
atom.

In this paper we develop such an approach to retrieval of
the SAE potentials. We assume that the given momentum dis-
tribution is measured in an experiment and refer to it as the
target PMD (TPMD). The TPMD is considered as a goal that
is to be achieved by an optimization algorithm considering the

unknown values of the potential (or expansion coefficients of
the potential in a given basis) as parameters that are optimized.
It should be stressed that there is a substantial difference
between the approach proposed here and the quantum optimal
control theory (QOCT), see [41, 42] for reviews. The latter
provides a powerful theoretical approach to the optimization
and control of various quantum phenomena, including those
in strong laser fields (see, e.g. [43–46]). Indeed, the QOCT
treats the electric field of the laser pulse as a control function,
whereas the effective potential experienced by an electron is
to be predefined and does not change in optimization.

Any optimization requires a specification of a measure that
allows to identify whether the optimization target is achieved.
Since a PMD is a picture, it is natural to specify such a measure
using tools employed in image analysis and pattern recogni-
tion. Therefore, the measures applied to compare different dig-
ital images or videos (see, e.g. [47, 48]) can be used to estimate
the similarity of the two PMD’s: the result of current iteration
of an optimization algorithm and the target distribution. How-
ever, a valid choice of the specific measure and its application
to comparison of the PMD’s require thorough studies. For this
reason, we leave the application of image recognition tools for
future investigations. In this paper we retrieve the SAE poten-
tial from momentum distribution produced in ionization of a
one-dimensional (1D) model atom. The 1D momentum dis-
tribution is a function of only one variable (momentum com-
ponent along one spatial axis). Therefore, the widely-known
measures used in variation calculus and functional analysis
(see, e.g. [49]) can be applied for comparison of different
PMD’s. In our optimization-based approach only momentum
distributions of the direct electrons are used. The optimization
technique relying on the distributions of rescattered electrons
will be the subject of further studies.

The paper is organized as follows. In section 2 we briefly
discuss our approach to solve the 1D TDSE, measures used to
compare electron momentum distributions, and derivative-free
optimization algorithms. In section 3 we apply our method to
retrieve the soft-core Coulomb potential from the PMD’s pro-
duced by ionization of a 1D model atom. We test our approach
for two different ways of representing the unknown potential
and discuss various optimization strategies. The conclusions
and outlook are given in section 4.

2. Comparison of electron momentum
distributions and optimization

2.1. Numerical solution of the TDSE

We define a few-cycle laser pulse linearly polarized along the
x-axis by specifying its vector-potential:

A (t) = (−1)np+1 F0

ω
sin2

(
ωt
2np

)
sin (ωt + ϕ) ex , (1)

where np is number of optical cycles within the pulse, ϕ is the
carrier envelope phase, ex is a unit vector, and the laser pulse is
present between t = 0 and T =

(
2π/ω

)
np. The electric field

can be calculated from vector-potential (1) by F = −dA/dt.
In the velocity gauge, the 1D TDSE for an electron interacting
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with the lase pulse is given by

i
∂

∂t
Ψ (x, t) =

[
1
2

(
−i

∂

∂x
+ Ax (t)

)2

+ V (x)

]
Ψ (x, t) , (2)

where Ψ (x, t) is the time-dependent wave function in coor-
dinate representation and V (x) is the SAE potential. In the
absence of the electric field, the time-independent Schrödinger
equation reads as[

−1
2

d2

dx2
+ V (x)

]
Ψ (x) = EΨ (x) , (3)

where Ψ (x) and E are the eigenfunction and the correspond-
ing energy eigenvalue, respectively. The eigenvalue problem
(3) is solved on a grid using the three-step formula to approxi-
mate the second derivative. Hence, the diagonalization routine
developed for sparse matrices [50] can be used. Alternatively,
the ground state and the first few excited states can be found
by imaginary time propagation (see, e.g. [51, 52]). The com-
putational box is centered at x = 0 and extends to ±xmax, i.e.
x ∈ [−xmax, xmax]. Typically, we set xmax = 250.0 a.u. and use
a grid consisting of N = 4096 points, what corresponds to the
grid spacing dx = 0.1225 a.u.

The well-known split-operator method [37] is used to solve
the TDSE (2). The time step is Δt = 0.055 a.u.. We prevent
unphysical reflections from the boundary of the grid by using
absorbing boundaries, i.e. at every step of the time propagation
we multiply the wave function in the region |x| > xb by the
mask:

M (x) = cos1/6

[
π
(
|x| − xb

)
2 (xmax − xb)

]
(4)

with xb = 3xmax/4. Hence, x = ±xb correspond to the inter-
nal boundaries of the absorbing regions. As the result, at every
time step the part of the wave function in the mask region is
absorbed without any effect on the |x| < xb domain. We cal-
culate the electron momentum distributions using the mask
method [53].

2.2. Comparison of electron momentum distributions and
optimization algorithms

The optimization procedure developed here is based on com-
parison of the 1D electron momentum distributions, which are
functions of one variable. The following metrics are widely
used to calculate the distance between continuous functions
f (x) and g (x) defined for x ∈ [a, b]:

ρ1 [ f (x) , g (x)] = max
x∈[a,b]

| f (x) − g (x)| (5)

and

ρ2 [ f (x) , g (x)] =

{∫ b

a
dx[ f (x) − g (x)]2

}1/2

, (6)

see, e.g. [49] for a textbook treatment. We use metric (6)
as a measure of difference between two PMD’s. We note
that before calculating the distance (6) we normalize electron
momentum distributions to the total ionization yield (i.e. the

area under the graph of the PMD). Therefore, our optimization
procedure relies only on the shape of momentum distributions,
but not on the ionization probabilities. We believe that similar
approach when applied to the 3D case will help to facilitate the
retrieval of the unknown potential from experimental electron
momentum distributions.

Since the derivatives of the similarity measure with respect
to unknown potential values (or any other parameters used to
represent the potential) can be calculated only numerically, it
is not practical to use any gradient-based optimization method.
Instead, it is appropriate to use a derivative-free optimization
technique, see [54, 55] for recent reviews. We apply parti-
cle swarm optimization method [56, 57], surrogate optimiza-
tion technique [58], and pattern search method [59–61]. The
MATLAB system [62] is used for simulations.

3. Results and discussion

3.1. Reconstruction of SAE potential on a grid

In this work we reconstruct the soft-core Coulomb potential:

V (x) =
Z√

x2 + a
(7)

with Z = 1.0 and a = 1.0, see [63]. At first, we do not use
any parametrization to represent the potential (7). Instead, we
determine the potential that is to be retrieved by specifying
its values in certain points of the x-axis. The potential values
in any other points are found by interpolation. Here we use
cubic spline interpolation [64]. As many other SAE potentials
the potential V (x) changes more rapidly for small values of x.
Therefore, it is natural to use a non-uniform grid to represent
the potential (7).

Here we apply the following grid used for development of
generalized pseudospectral methods:

x = γ
1 + x0

1 − x0 + xm
0

, (8)

where xm
0 = 2γ/xmax and γ is the mapping parameter

[65–67]. Equation (8) transforms a uniform grid within the
domain x0 ∈ [−1.0, 1.0] to a nonuniform grid in the domain
x ∈ [0, xmax]. The points of this grid are to be reflected with
respect to x = 0 and thus a nonuniform grid in the whole
range x ∈ [−xmax, xmax] is obtained. Then the question arises:
how many points of the grid (8) are required to represent the
potential with sufficient accuracy? To answer this question,
we choose different numbers of points for the uniform grid
in the range [−1.0, 1.0], find the corresponding point of the
nonuniform grid (8), and calculate the potential values at these
points. For each number of points of the nonuniform grid we
interpolate the potential V (x) at every point of the dense uni-
form grid with N points. For this interpolated potential we
find energy eigenvalues and the corresponding eigenfunctions,
solve the TDSE for a given laser pulse, and calculate electron
momentum distributions. We next compare these PMD’s with
the reference momentum distribution obtained in the case that
the potential (7) is directly calculated on the dense uniform
grid consisting of N points, see figure 1. It is seen that about
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Figure 1. The electron momentum distributions for ionization of a 1D atom by a laser pulse with a duration of np = 4 cycles, wavelength of
800 nm, phase ϕ = 0, and intensity of 2.0 × 1014 W cm−2. The distributions are obtained from the solution of the TDSE (2) with the
potential (7) calculated on a uniform grid consisting of N = 4096 points (thick light-blue curve), as well as with the same potential
determined by its values on the non-uniform grid (8) with γ = 20.5 consisting of 10 (dashed green curve), 15 (dotted black curve), and 20
(thin magenta curve) points.

20 points of the nonuniform grid (8) is sufficient to reproduce
the reference PMD accurately enough. Indeed, the difference
between these distributions calculated in accord with the mea-
sure (6) is about 0.01. Taking into account that the potential
V (x) is an even function, the number of the points can be
reduced by a factor of two, i.e. only 10 points are needed.

Using the nonuniform grid we first attempt to reconstruct
the unknown potential using the ground state and the first
excited state energies only. Such an attempt may raise ques-
tions. Indeed, it is well-known that even in the 1D case the
potential cannot be unambiguously determined from one or
a few energy eigenvalues. Only a symmetric reflectionless
potential can be restored based on its complete set of the bound
state energies [68]. However, it is evident that the optimization
of a ‘black-box’ function that depends on 10–20 parameters is
a difficult numerical problem. An optimization algorithm used
to solve this problem requires an initial approximation to the
maximum (minimum). The success of the optimization and the
convergencespeed critically depend on the quality of the initial
approximation. It turns out that satisfactory initial approxima-
tions can often be obtained as a result of optimization of only
a few bound state energies.

The optimization methods also require the specification of
the boundaries, within which the optimization parameters (in
this case, the values of the potential in the grid points) can
vary. We specify these ranges by sandwiching the unknown
potential between the two known potential functions. As these
functions we use

V1,2 (x) =
Z1,2√

x2 + a1,2
. (9)

At first, we chose Z1,2 = 1.0 and a1 and a2 equal to 0.4 and
1.5, respectively. Therefore, V1 (x) is the lower boundary for
the potential V (x) that is to be retrieved, whereas V2 (x) is the
upper boundary. The SAE potential reconstructed by optimiza-
tion the ground state energy is shown in figure 2(a) together
with the boundaries V1 (x) and V2 (x). For the optimization we
use the particle swarm method. It is seen that the obtained

potential is in a good quantitative agreement with the one
that we wanted to reconstruct. However, the situation changes
dramatically, if the boundaries for the potential values under
reconstruction are not as tight as in the example shown in
figure 2(a). In figure 2(b) we display one of the potentials that
can be obtained by optimization of the bound state energy in
the case where the lower boundary for the potential values is
again given by V1 (x), but the upper boundary is chosen to be
zero: V2 (x) = 0. It should be stressed that the optimization
result is not unique for the chosen boundaries. The succes-
sive runs of the optimization algorithms lead to a whole family
of the potentials with very close ground state energies. This
agrees with the conclusions of [68]. It is seen that there is
even no qualitative agreement between the potential shown in
figure 2(b) and the soft-core Coulomb potential (7) that is to
be reconstructed.

We now turn to the retrieval of the potential from the
electron momentum distributions. At first, we use the same
boundaries for the unknown potential values as in the example
shown in figure 2(a). We minimize the difference as defined
by the measure (6) between the PMD calculated for a potential
defined by its values in the grid points and the PMD obtained
for the potential (7) with the same laser pulse. The minimum
value of the metric ρ2 [PMD, TPMD] obtained in optimization
is 0.019. The potential retrieved in the optimization procedure
is shown in figure 3(a). It is seen that the obtained potential
almost coincides with the soft-core Coulomb potential (7) we
wanted to reconstruct. The same is true for the distributions
calculated for the retrieved potential and the potential (7), see
figure 3(b).

The question arises how sensitive is the optimization result
to a change in the boundaries V1 (x) and V2 (x). To answer
this question, we perform another optimization with the
broader boundaries for the allowed potential values. Specif-
ically, we sandwich the potential that is to be retrieved by
V1 (x) and V2 (x) with a1,2 = 1.0 and Z1 and Z2 equal to 2.0
and 0.5, respectively. The optimization result for these broader
boundaries quantitatively agrees with the potential (7), see
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Figure 2. The values of the SAE potential on the non-uniform grid (8) (magenta circles) reconstructed by optimization of the bound state
and first excited states energies only, boundaries for the potential values (dashed blue curves), the potential obtained by spline interpolation
based on the reconstructed values (thin magenta curve), and the soft-core Coulomb potential (thick black curve). Panel (a) shows the
optimization result for the case where the optimized potential values are bounded by the potentials (9) with Z1,2 = 1.0 and a1 and a2 equal to
0.4 and 1.5, respectively. Panel (b) displays the potential obtained for the optimization parameters restricted by V1 (x) calculated from
equation (9) with Z1 = 1.0 and a1 = 0.4 and V2 (x) = 0. The parameters are the same as in figure 1.

Figure 3. (a) and (c) The values of the SAE potential (magenta circles) reconstructed by optimization of the electron momentum
distribution, boundaries for the potential values (dashed blue curves), the potential obtained by spline interpolation using the reconstructed
values (thin magenta curve), and the soft-core Coulomb potential (thick black curve). (b) and (d) The PMD calculated using the optimized
potential (thin magenta curve) and the TPMD (thick light-blue curve). Panels (a) and (b) show the optimization results for the case where the
allowed potential values are bounded by the potentials V1,2 (x) (equation (9)) with Z1,2 = 1.0 and a1 and a2 equal to 0.4 and 1.5, respectively.
Panels (c) and (d) correspond to the boundaries V1,2 (x) for the potential values given by (9) with a1,2 = 1.0 and Z1 and Z2 equal to 0.5 and
2.0, respectively. The potential under reconstruction is determined by its values on the grid (8) with 20 points. The laser parameters are the
same as in figures 1 and 2.

figure 3(c). The same is also true for the electron momentum
distributions, see figure 3(d). The minimum value of the metric
(6) obtained in optimization with these broader boundaries is
0.03, which is only slightly higher than in the previous case.

We are now able to address the more important questions
to the optimization-based approach, namely, how vulnerable

is it to intensity fluctuations that are inevitable in an exper-
iment? Can the actual laser intensity be restored by apply-
ing the optimization technique? In order to answer the first
question, we try to retrieve the potential at the intensity of
1.0 × 1014 W cm−2 using the TPMD calculated for the higher
intensity of 2.0 × 1014 W cm−2. The potential obtained in such
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Figure 4. (a) and (c) The values of the SAE potential on the non-uniform grid (8) with 20 points (magenta circles) reconstructed by
optimization of the PMD, boundaries for the potential values (dashed blue curves), the potential obtained by spline interpolation based on
the reconstructed values (thin magenta curve), and the soft-core Coulomb potential (thick black curve). (b) and (d) The PMD calculated
using the optimized potential (thin magenta curve) and the TPMD (thick light-blue curve). Panels (a) and (b) correspond to the case where
the TPMD is calculated for the intensity of 2.0 × 1014 W cm−2 and the optimization of the momentum distributions is performed at the
intensity of 1.0 × 1014 W cm−2. Panels (c) and (d) show the results obtained treating the field strength F0 as an additional parameter that is
to be optimized. The boundaries for the optimized potential values are given by equation (9) with Z1,2 = 1.0 and a1 and a2 equal to 0.4 and
1.5, respectively. The parameters are the same as in figures 1–3.

an optimization is shown in figure 4(a). It is seen that this
potential substantially differs from the potential (7) we expec-
ted to reconstruct. Indeed, the minimum obtained value of the
metric (6) is 0.61, and the PMD calculated for the retrieved
potential does not agree with the target one, see figure 4(b).
To generalize our approach to the case where the TPMD is
obtained at different laser intensity, we add the field strength
to the parameter set that is to be optimized. This allows us to
reconstruct the actual value of the laser intensity, at which the
TPMD that we want to reproduce in optimization is obtained.
In this case, the surrogate optimization turns out to be slightly
more efficient than the particle swarm method. The results of
this modified approach are shown in figures 4(c) and (d). It is
seen from figure 4(c) that the retrieved potential is in a quan-
titative agreement with the soft-core Coulomb potential (7)
used to calculate the TPMD. The same is true for the resulting
electron momentum distribution, see figure 4(d). The differ-
ence between the momentum distributions ρ2 [PMD, TPMD]
comes to only 0.032. The optimized value of the field strength
is 0.0763 a.u., whereas the exact value of F0 equals to
0.0755 a.u.. Although these results are encouraging, it is clear
that further studies are needed to completely tackle the ques-
tion regarding the intensity fluctuations. To mimic a real exper-
imental situation, it is necessary to average the PMD over the
intensity distribution within the focal volume at every iteration
of the optimization process. We leave this modification of the
proposed method for further studies implying the generaliza-
tion to the 3D case.

The results shown in figures 2–4 were obtained for the
non-uniform grid (8) in the range [−xmax, xmax]. However, the

typical molecular potential we intend to reconstruct has a long-
range Coulomb asymptotic at large distance: V (r) → 1/r at
r →∞. Therefore, there is no need to find the values of the
potential at large x, and an optimization of the potential val-
ues at x →∞ leads to a waste of computational resources. At
the same time, it is highly desirable to have a denser grid for
small x, where the potential can vary significantly. To address
both these issues, from this point on we use a smaller com-
putational box [−xC, xC] setting V (x) = 1/ |x| for |x| > xC.
Typically, we chose xC = 10.0 a.u. and use uniform grid within
the range [−xC, xC]. The optimization results are shown in
figures 5(a) and (b). It is seen from figure 5(a) that retrieved
potential agrees well with the soft-core Coulomb potential (7).
The optimization results in a measure (6) equal to 0.04 what
corresponds to a good agreement between the obtained and
target electron momentum distributions, see figure 5(b). A dif-
ferent optimization method was used here. At first, we per-
formed an optimization of the bound state and first excited
state energies. As mentioned above, such optimization results
in a family of different potentials, unless the boundaries for the
potential values are close to each other. Some of these poten-
tials resemble the desired potential (7), whereas the others are
very different from it and do not match the Coulomb asymp-
tote at x = ±xC. Then we use all the obtained potentials as
an initial approximation for the second optimization procedure
that minimize the difference between the corresponding PMD
and the target one. For the second optimization we use the
pattern search algorithm (Hook–Jeeves method [59]), see, e.g.
[60, 61] for reviews. This combined two-step approach to opti-
mization of the PMD turns out to be computationally more
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efficient than particle swarm optimization we used before
and many other gradient-free optimization methods, includ-
ing simulated annealing, genetic algorithms, and surrogate
optimization, if these methods start from a random initial
approximation.

The optimization results presented in figures 5(a) and (b)
were obtained for 20 grid points in the range [−xC, xC] (i.e.
for 10 grid points for x ∈ [0, xC]). This corresponds to the grid
spacing dx = 1.0 a.u.. Suppose that we need better resolution
along the x axis, e.g. dx = 0.5 a.u., what corresponds to 20
grid points between 0 and xC. The most efficient way to per-
form the optimization of the PMD on a denser grid is to use
the results obtained for a sparser grid as an initial approxima-
tion. In doing so the potential values in the points of a denser
grid can be restored by interpolation. The results of the appli-
cation of this approach are shown in figures 5(c) and (d). Note
that for dx = 0.5 a.u. we achieve a perfect agreement between
the retrieved potential and the desired soft-core Coulomb
potential (7). The corresponding PMD’s are also almost indis-
tinguishable from each other, see figure 5(d). The optimiza-
tion algorithm terminates when the distance ρ2 [PMD, TPMD]
reduces to 0.0042.

3.2. Reconstruction of parametrized potential

Up to this point we have not used any parametrization to rep-
resent the unknown SAE potential. It is clear, however, that
this parametrization-free approach being extended to the two-
dimensional and especially the 3D case will become a very
difficult computational task. Indeed, such an extension will
lead to a necessity of optimization of a function that depends
on hundred of variables. We note that this task is feasible with
modern computational facilities and optimization algorithms.
Such problems arise, for example, in research on magneti-
cally confined plasmas for fusion energy, see, e.g. [69, 70].
It is nevertheless of interest to test the optimization-based
algorithm in the case where the unknown potential is in some
way parametrized. It is natural to express the SAE potential as

V (x) = V0 (x)
[
1 + V1p (x)

]
, (10)

where V0 (x) is a known potential with correct asymptotic
behavior and the potential V1 (x) is to be parametrized and

determined. Here we choose V0 (x) = Z0/
(
x4 + a0

) 1
4 with

Z0 = 1.0 and a0 = 1000.0 what corresponds to a very shal-
low and wide potential well, which is substantially different
from the potential (7) that should be restored. The question
thus arises how to parametrize the potential V1 (x) in the best
possible way.

Since we know the potential V (x) we want to reconstruct,
this question is easy to answer. Indeed, by trying different
options and applying standard curve fitting routines [62], we
find that the rational interpolation can be used to approximate
the function V1p (x) = V (x) /V0 (x) − 1 with a good accuracy.
Therefore, the potential V1p (x) can be represented as a quotient
of two polynomials Pm (x) and Qn (x):

V1p (x) =
Pm (x)
Qn (x)

. (11)

It is clear that since V1p (x) → 0 at x → 0, the inequality m < n
should be fulfilled. It is easy to see that the measure ρ2 of the
difference between the corresponding momentum distribution
and the target one dramatically changes for different choices
of the m and n. If, for example, m = 0 and n = 2, the min-
imum value of the ρ2 that can be achieved is equal to 0.29.
This corresponds to V1p (x) = p1/

(
x2 + q1

)
with p1 = 29.99

and q1 = 3.62. The linear function in the nominator (m = 1)
and the quadratic function in the denominator (n = 2), i.e.
V1p (x) = (p1x + p2) /

(
x2 + q1x + q2

)
, allow to reduce the

measure (6) to 0.047. This value is achieved for p1 = −1.15,
p2 = 36.90, q1 = 0.92, and q2 = 23.95. The minimum value
of the ρ2 we have obtained using the equation (11) is equal
to 0.01. It corresponds to the constant in the numerator and
the fourth-order polynomial in the denominator of the quotient
(11):

V1p (x) =
p1

x4 + q1x3 + q2x2 + q3x + q4
, (12)

where p1 = 1261.0, q1 = −9.747, q2 = 66.5, q3 = 10.4, and
q4 = 138.7. It should be noted that not all of the coefficients
in the denominator of this formula are positive. When using
the optimization-based method in practice, a series of opti-
mizations applying different ways to parametrize the unknown
potential should be performed. This will allow to compare
the optimization results and to choose the best way of the
parametrization similarly to what we do here with the fitting
of the known potential.

We now try to recover the parameter values in the
parametrization (12) by optimizing the PMD. At first glance
it would seem that optimization of function (12) depending
on only 5 parameters is a simple task compared to the one
performed in section 3.1. But this is not the case, since neg-
ative values of the parameters qi (i = 1, . . . , 4) may lead to
1 + V1p (x) < 0 and, therefore, V (x) > 0 for certain ranges of
x. To prevent this situation, we use constrained optimization.
Specifically, instead of minimizing the measure (6) alone, we
now look for a minimum of

ρ2 [PMD, TPMD] + w · V2
m

[
1 + sgn (Vm)

]
, (13)

where Vm is the maximum value of V (x) in the interval [0, x0],
and w is some weight factor. Typically, we use w in the range
between 5.0 and 20.0. We allow for the following ranges of
the optimization parameters: p1 ∈ [−2000.0, 2000.0] and qi ∈
[−100.0, 100.0] (i = 1, . . . , 4). To speed up the simulations,
we again perform the optimization in two steps, i.e. we use
the results obtained in optimization of the ground state, first,
and second excited states energies as initial approximations
for the optimization of the PMD. The retrieved potential and
the corresponding electron momentum distribution are shown
in figures 6(a) and (b), respectively. The following parameter
values were obtained: p1 = 403.44, q1 = 3.08, q2 = 17.03,
q3 = 35.57, and q4 = 80.45. The difference ρ2 between the
resulting PMD and the TPMD is 0.0164, what is higher than
the one corresponding to the parameters obtained by approx-
imation of the known function V1p (x). Therefore, some local
minimum, albeit quite close to the desired global one, is found
in optimization. It is seen that the retrieved potential agrees
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Figure 5. Panels (a) and (b) show the same as figures 3(a) and (b) for the optimization parameters varying in wider ranges and the potential
determined by the values on the uniform grid consisting of 10 points between 0 and 10.0 a.u.. Panels (c) and (d) display the optimization
results for the same grid consisting of 20 points. The optimization parameters are bounded by the potential V1 (x) calculated from
equation (9) with Z1 = 1.0 and a1 = 0.4 and V2 (x) = −0.09 a.u.. The parameters are the same as in figures 1–3.

Figure 6. Optimization results for parametrized SAE potential. Panels (a) and (c) show the reconstructed potentials (thin magenta curve)
and the soft-core Coulomb potential (thick black curve). Panels (b) and (d) display the comparison of the PMD’s obtained from the TDSE
with the retrieved (thin magenta curve) and the exact (thick light-blue curve) SAE potentials. Panels ((a), (b)) and ((c), (d)) correspond to the
parametrization (12) and (14), respectively. The laser parameters are the same as in figures 1–3.

well with the exact result, see figure 6(a). The same is also
true for the electron momentum distributions (see figure 6(b)).
As a next step in testing the method, we represent our potential
as a sum of a few Gaussian functions:

V1p (x) =
kmax∑
k=1

ak exp

[
− (x − bk)2

c2
k

]
. (14)

The representation (14) is obviously more flexible, i.e. it
allows for finer variations of the potential function, as com-
pared to the one applying rational function. Here we choose
kmax = 5 what corresponds to 15 parameters to be optimized. It
should be stressed that in contrast to all other examples shown
in this paper, here we do not assume any symmetry of the
potential V (x). Indeed, the allowed values of the optimiza-
tion parameters are: ak ∈ [−4.0, 4.0], bk ∈ [−20.0, 20.0], and
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ck ∈ [0, 100.0] (k = 1, . . . , 5). As an initial approximation for
the optimization of the PMD’s we use the potential shown in
figure 6(a), i.e. the one obtained with parametrization (11).
The optimization results are presented in figures 6(c) and (d).
As expected, a better agreement between the retrieved poten-
tial and the exact one can be achieved with parametrization
(14). However, the measure (6) remains practically unchanged:
ρ2 [PMD, TPMD] = 0.0159.

The examples above demonstrate that in the 1D case the
parametrization of the potential does not offer any deci-
sive advantages compared to the direct representation on a
grid. Nevertheless, it is shown that the optimization-based
method also works in the case, where the potential is deter-
mined by a number of parameters. This is essential in view
of the possible extension of the approach onto the 3D case,
where parametrization of the unknown potential is expected to
become particularly important.

4. Conclusions and outlook

In conclusion, we have developed a method capable to retrieve
the SAE potential in an atom from a given momentum dis-
tribution of photoelectrons ionized by a strong laser pulse.
In this method the potential is found by minimization of the
difference between the given momentum distribution and the
one obtained from the solution of the TDSE with the SAE
potential that varies in the optimization process. The unknown
potential is either represented by a set of its values in points
of a spatial grid, or by a set of parameters. We have shown
that the optimization can be performed using a number of
different derivative-free techniques, including particle swarm
method, surrogate optimization, and pattern search. It is found
that the most efficient approach is based on the use of poten-
tials obtained in optimization of a few bound-state energies as
initial approximations for the optimization of the PMD.

We have tested our method by reconstructing of the soft-
core Coulomb potential from the corresponding PMD gener-
ated in ionization of a 1D atom by a strong few-cycle laser
field. It is shown that the retrieved SAE potential is in a quan-
titative agreement with the potential we aimed to reconstruct.
This is true for both ways used to represent the potential under
reconstruction. In the case where the potential is represented
by its values on a grid the spatial resolution can be effec-
tively improved by using the optimization results on a sparse
grid as an initial approximation for optimization on the dense
grid. This allows to avoid severe computational costs when
optimizing a function depending on a few dozens of variables.

It is clear that the measured electron momentum distribu-
tions are affected by focal averaging. We have shown that the
actual laser intensity can be restored together with the SAE
potential in the optimization approach. Nevertheless, further
work is needed to fully explore the question how sensitive
is the proposed method to the focal averaging. Furthermore,
extension of the method to the real 3D case require a reliable
measure used to compare different momentum distributions.
To this end, the tools of image analysis and pattern recogni-
tion can be applied. It remains to be studied which of these
tools are the most appropriate for the problem at hand.

Furthermore, we have restricted ourselves by the optimiza-
tion of only one part of the PMD created by the direct electrons.
However, our preliminary results show that the momentum dis-
tribution of the rescattered photoelectrons are more sensitive
optimization target that can be used for the retrieval of the
potential. This suggests to develop a method optimizing the
distributions of the rescattered electrons. It is obviously more
difficult to obtain suitable SAE potentials for molecules than
for atoms. To the best of our knowledge, the SAE potentials
are presently available only for some simple molecules (see,
e.g. [71–76]). Therefore, it would be of interest to extend the
proposed optimization technique to the molecular case. Future
studies are required to address the issues listed here. Devel-
opments in these directions have already begun. We believe
that the advent of the method for retrieval of the SAE potential
from the electron momentum distribution will be an important
step forward in the studies of strong-field ionization.
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