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Abstract: It is crucial to be time and resource-efficient when enabling and optimizing novel appli-
cations and functionalities of optical fibers, as well as accurate computation of the vectorial field
components and the corresponding propagation constants of the guided modes in optical fibers. To
address these needs, a novel full-vectorial fiber mode solver based on a discrete Hankel transform is
introduced and validated here for the first time for rotationally symmetric fiber designs. It is shown
that the effective refractive indices of the guided modes are computed with an absolute error of less
than 10−4 with respect to analytical solutions of step-index and graded-index fiber designs. Compu-
tational speeds in the order of a few seconds allow to efficiently compute the relevant parameters,
e.g., propagation constants and corresponding dispersion profiles, and to optimize fiber designs.

Keywords: optical fibers; modes; discrete Hankel transform

1. Introduction

Optical glass fibers can support arbitrary numbers of guided modes depending on
the actual waveguide design. In combination with the linear and nonlinear material
dispersion, the propagation constants of these modes, i.e., the waveguide dispersion,
determines the overall dispersion (of whatever order) of the fiber, which is relevant for
various applications in pulsed or CW operation. For example and in combination with the
split-step approach [1] or the frequency-domain Runge–Kutta approach [2], the nonlinear
pulse propagation can be analyzed numerically. Such studies allow us to understand and
tailor effects such as the pulse broadening for supercontinuum generation either in the
fundamental mode [2] or even in higher-order modes (HOMs) [3]. Similarly, the possibility
to tailor and design the HOM dispersion is attractive for enhancing the performance of
telecommunication links, see for example [4]. Even novel types of fiber-based quantum
sources have been realized by exploiting the properties of HOMs [5]. In CW operation,
intra-modal dispersion of specialty fiber designs allows establishing phase-matching for
efficient nonlinear frequency generation via four-wave mixing, e.g., in the short-wavelength
UV regime [6]. Another crucial example are few-mode or multimode fibers for spatial
multiplexing in next-generation telecommunication networks [7] or lens-less endoscopy [8]
as the differential modal dispersion is relevant (besides other effects) for the propagation
robustness of the individual modes [9]. Recently, machine learning algorithms were used
for the first time to optimize a fiber design with respect to the propagation robustness of
the guided modes [10]. These examples demonstrate that there is a large need for time and
resource-efficient concepts to compute and optimize the guided modes (the propagation
constants) of arbitrary fiber designs. Indeed, a lot of fibers have a rotationally symmetric
waveguide profile, in particular as fabrication concepts of fiber preforms such as the
widely used modified chemical vapor deposition (MCVD) [11] can fabricate symmetric
profiles with great flexibility. Thus, the work presented here is focused on fibers with
rotationally symmetric waveguide designs. In addition, the focus here is on computing
the vector modes as scalar approximations of the corresponding wave equations are
only valid under certain boundary conditions such as weak guiding (small refractive
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index variations). In addition, modes with orbital angular momentum (OAM), which
became very prominent in recent years for modal multiplexing in telecommunication
network [12] or quantum cryptography through fiber links [13], are conveniently described
as a superposition (change of basis) of vector modes.

To numerically compute the guided fiber modes of a given refractive index profile, a
transversal discretization concept has to be chosen [14]. This can be a local strategy such
as a finite element [15] or a finite difference [16–18] approach for which a discretization
i.e., mesh (either uniform or non-uniform) is used to linearize the differential operators in
the corresponding wave equation(s). Afterward, a corresponding set of equations has to
be solved. As an opposite approach, global methods are based on expanding the mode
profiles as finite series of corresponding basis functions. Afterward, Galerkin or collocation
methods are used to obtain algebraic sets of equations whose unknowns are the series
expansion coefficients, see e.g., [19–21]. In combination with the powerful tool of the
fast Fourier transform (FFT), a 2D Fourier expansion has been used in [22] to compute
the vectorial modes of arbitrary 2D waveguide profiles with acceptable computational
resources. Although computational times were rather slow (around a few minutes), the
inherent flexibility of the series expansion approach yielded small errors around 10−3

regarding the computed propagation constants for various fiber designs.
In the tradition of the global series expansion concepts, it will be demonstrated

here for the first time, that a 1D Fourier–Bessel series expansion in combination with a
discrete Hankel transform (DHT) enables fast (<10 s) and accurate (errors as low as 10−4)
computation of the guided vector modes and their propagation constants in rotationally
symmetric fibers.

2. Coupled Set of 1D Wave Equations

In dielectric materials such as fused silica (no free charges and currents), Maxwell’s
equations are

∇ ·
(

ε~E
)
= 0 ∇ ·

(
µ~H
)
= 0 (1)

∇× ~E = −∂~B
∂t

∇× ~H =
∂~D
∂t

(2)

with absolute permittivity ε = εrε0 (εr is the relative permittivity i.e., the dielectric constant)
and absolute permeability µ = µrµ0 (µr is the relative permeability). In dielectric materials,
it is known that µr ≈ 1 and εr = n2 with refractive index n. In the following, it is assumed
that the refractive index has a certain spatial profile, i.e., ε(~r) 6= const. Using the common
Ansatz ~E(~r, t) = ~E(~r)exp(−iωt) and multiplication of the third Maxwell equation with
∇× as well as using the fourth Maxwell equation yields

∇(∇ · ~E(~r))−∇2~E(~r) = ω2µε~E(~r). (3)

For a homogeneous medium with ε(~r) = const, Equation (3) would yield the well-
known Helmholtz equation. To find solutions for ε(~r) 6= const, the following strategy can
be used. Applying

∇(∇ · ~E(~r)) = ∇
(

1
ε
∇ ·

(
ε~E(~r)

)
−

~E(~r)
ε
· ∇ε

)
(4)

where the first term vanishes due to Maxwell’s equations, Equation (3) becomes

−∇
(
~E(~r)

ε
· ∇ε

)
−∇2~E(~r) = ω2µε~E(~r). (5)
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For ε(~r) with cylindrical symmetry (ε(~r) −→ ε(r)), it is advantageous to work in
cylindrical coordinates, i.e.,

~E(~r) −→
(
Eρ(ρ, φ, z), Eφ(ρ, φ, z), Ez(ρ, φ, z)

)
, (6)

which yields a set of coupled equations for the Eρ and Eφ components

− ∂

∂ρ

(
1
ε

Eρ
∂

∂ρ
ε

)
−
(
∇2Eρ −

Eρ

ρ2 −
2
ρ2

∂

∂φ
Eφ

)
= ω2εµEρ (7)

−1
ρ

∂

∂φ

(
1
ε

Eρ
∂

∂ρ
ε

)
−
(
∇2Eφ −

Eφ

ρ2 +
2
ρ2

∂

∂φ
Eρ

)
= ω2εµEφ (8)

with

∇2 =
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂2

∂φ2 +
∂2

∂z2 . (9)

At this point, it is crucial to understand that if solutions for Eρ and Eφ are known,
the Ez component as well as the components of the magnetic H field would follow from
Maxwell’s equations. To find the solutions for Eρ and Eφ, the common Ansatz

Eρ(ρ, φ, z) = Aρ(ρ)eimφe−iβz (10)

Eφ(ρ, φ, z) = Aφ(ρ)eimφe−iβz (11)

with integer m ≥ 0 yields

∂

∂ρ

(
Aρ

∂

∂ρ
ln(ε)

)
+

(
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− 1 + m2

ρ2 + ω2εµ

)
Aρ −

2im
ρ2 Aφ = β2 Aρ (12)(

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− 1 + m2

ρ2 + ω2εµ

)
Aφ + im

(
1
ρ

(
∂

∂ρ
ln(ε)

)
+

2
ρ2

)
Aρ = β2 Aφ (13)

For each m, Equations (12) and (13) constitute a coupled set of eigenvalue equations
for Aρ(ρ) and Aφ(ρ) with eigenvalue β2. In [22] the very same set of equations has been
used in Cartesian coordinates and solutions were obtained by the aforementioned global
expansion of the field amplitudes Ax(x, y) and Ay(x, y) as 2D finite Fourier series. Using
the fact that the differential operators transform well under a 2D FFT, i.e., they correspond
to products in the frequency space, solutions were obtained by finding the eigenvectors
and eigenvalues of the corresponding matrix via algebraic routines. Indeed, it appears to
be attractive to expand Aρ(ρ) and Aφ(ρ) as 1D finite Fourier series as well and to follow
the same strategy as in [22]. However, this is not possible for various technical reasons. In
particular, it would be required that the corresponding sampling includes data points at
ρ = 0, which is incompatible with the 1/ρ and 1/ρ2 operations in Equations (12) and (13).
As a solution to this issue and as mentioned, a finite Fourier–Bessel series expansion in
combination with a DHT will be used in the following. Before dealing with the details
of the actual numerical implementation and its validation in Section 5, the DHT and
the transformation rules for the individual differential operators are introduced in the
following sections.

3. The Discrete Hankel Transform

In [23], it has been discussed that any space-limited function f (ρ) with f (ρ > R) = 0
can be expanded as a finite Fourier–Bessel series

f (ρ) =
N

∑
i=1

fi Jn

(
jniρ

R

)
(14)

where Jn(ρ) is the n-th order Bessel function and jni its i-th root. The Fourier–Bessel
coefficients fi are given by
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fi =
2

R2 J2
n+1(jni)

F
(

jni
R

)
(15)

where F(ν) is the n-th order continuous Hankel transform of f (ρ), which is defined as

Hn( f (ρ)) = F(ν) =
∫ ∞

0
dρρ f (ρ)Jn(νρ). (16)

Although F(ν) cannot be band-limited if f (ρ) is space-limited, F(ν) can still be ex-
panded analogously as a finite Fourier–Bessel series if it is effectively zero for ν > V:

F(ν) =
N

∑
i=1

Fi Jn

(
jniν

V

)
(17)

with coefficients

Fi =
2

R2 J2
n+1(jni)

f
(

jni
V

)
(18)

where the n-th order continuous inverse Hankel transform

H−1
n (F(ν)) = f (ρ) =

∫ ∞

0
dννF(ν)Jn(ρν). (19)

has been used. Sampling f (ρ) at discrete points ρnk = jnkR/jnN and sampling F(ν) at
discrete points νnm = jnmV/jnN yields

f (ρnk) =
N−1

∑
i=1

Jn(jni jnk/jnN)

R2 J2
n+1(jni)

F
(

jni
R

)
(20)

F(νnm) =
N−1

∑
i=1

Jn(jni jnm/jnN)

R2 J2
n+1(jni)

f
(

jni
V

)
. (21)

Now, if for a given R (or V), V (or R) is chosen such that V = jnN/R (or R = jnN/R),
Equations (20) and (21) define a DHT that links the discrete data sets F(νnm) and f (ρnk).
Through the remainder of this report, the following slightly different DHT between scaled
data sets F(νnm)/Jn+1(jnm) and f (ρnk)/Jn+1(jnk) will be used, which has been introduced
in [23,24]:

F(νnm)

Jn+1(jnm)
=

R2

jnN

N−1

∑
k=1

TnN
m,k

f (ρnk)

Jn+1(jnk)
. (22)

The corresponding inverse transform is

f (ρnk)

Jn+1(jnk)
=

jnN

R2

N−1

∑
m=1

TnN
k,m

F(νnm)

Jn+1(jnm)
. (23)

The transformation kernel

TnN
m,k =

2Jn(jnm jnk/jnN)

Jn+1(jnm)Jn+1(jnk)jnN
(24)

obeys TnN
m,k = TnN

k,m . An important advantage of this Kernel (which is not unique, see [23]) is,
that it satisfies Parseval’s theorem, i.e., energy is conserved during the actual transformation.
Note that the DHT can readily deal with complex data sets because the real and the
imaginary part transform independently, i.e.,

F(νnm)

Jn+1(jnm)
=

R2

jnN

N−1

∑
k=1

TnN
m,k

Re( f (ρnk))

Jn+1(jnk)
+

iR2

jnN

N−1

∑
k=1

TnN
m,k

Im( f (ρnk))

Jn+1(jnk)
. (25)
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4. Transformation of the Differential Operators

Now that the basics of the DHT are established, it remains to be investigated how the
differential operators in Equations (12) and (13) transform under the DHT. There are two
types of operators that are relevant:

1. The Bessel operator Bn = ∂2/∂ρ2 + ρ−1∂/∂ρ − n/ρ2 of order n, which occurs in
Equations (12) and (13).

2. The common derivative operator ∂/∂ρ, which occurs as ∂/∂ρ ln(ε) in Equations (12)
and (13) and additionally in Equation (12) as a term ∂/∂ρ

(
Aρ∂/∂ρ ln(ε)

)
.

In the following, it will be demonstrated that the Bessel operator Bn transforms well for
any DHT order n, i.e., it corresponds to a simple product in the frequency space. It will also
be shown that a proper transformation rule of the operator ∂/∂ρ can be established for a
0-th order DHT. Thus, for actually solving the coupled equation set given by Equations (12)
and (13), a 0-th order DHT will be used (see Section 5). However, this restriction to a 0-th
order DHT establishes a crucial advantage: because the sampling of the DHT is performed
at the zeros of the corresponding Bessel functions and as J0(ρ) does not have a zero at
ρ = 0, there are no issues with the remaining 1/ρ and 1/ρ2 operations in Equations (12)
and (13).

4.1. Transformation of the Bessel Operator

For the continuous Hankel transform of a function f (ρ) as defined in Equation (16) it
is known that g(ρ) = Bn f (ρ) transforms as

G(ν) = Hn(g(ρ)) = −ν2Hn( f (ρ)). (26)

In the following, it will be shown that a corresponding transformation rule exists
for the DHT as well. Using the finite Fourier–Bessel series defined in Equation (14),
it follows that

g(ρ) = Bn f (ρ) =
N−1

∑
i=1

fi

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
− n

ρ2

)
Jn

(
jniρ

R

)
. (27)

Substitution of the well-known identities

∂

∂ρ
Jn(ρ) =

n
ρ

Jn(ρ)− Jn+1(ρ) (28)

∂2

∂ρ2 Jn(ρ) = −Jn(ρ)−
n
ρ2 Jn(ρ) +

n2

ρ2 Jn(ρ) +
1
ρ

Jn+1(ρ) (29)

yields

g(ρ) = −
N−1

∑
i=1

(
jni
R

)2
fi Jn

(
jniρ

R

)
. (30)

Discrete sampling of g(ρ) at ρnk = jnkR/jnN and applying the DHT yields

G(νnm)

Jn+1(jnm)
= − R2

jnN

N−1

∑
k=1

TnN
m,k

N−1

∑
i=1

(
jni
R

)2
fi

Jn(jnk jni/jnN)

Jn+1(jnk)
. (31)

Sorting the sums and substitution of the DHT kernel (Equation (24)) leads to

G(νnm)

Jn+1(jnm)
= − R2

jnN

N−1

∑
i=1

(
jni
R

)2 fi Jn+1(jnm)jnN
2

N−1

∑
k=1

4Jn(jnm jnk/jnN)Jn(jni jnk/jnN)

J2
n+1(jnm)J2

n+1(jnk)j2nN
. (32)
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By using the orthogonality relation

N−1

∑
k=1

4Jn(jnm jnk/jnN)Jn(jni jnk/jnN)

J2
n+1(jnm)J2

n+1(jnk)j2nN
≈ δmi, (33)

which is not a closed analytical result (see the discussions in [25]) but is numerically precise
for sufficiently large N (for N > 30 the error is less than 10−7 [25]), it follows that

G(νnm)

Jn+1(jnm)
= −

(
jnm

R

)2 R2 fm Jn+1(jnm)

2
. (34)

Now, using the definition of the Fourier–Bessel coefficients (see Equation (15)) and
recalling that νnm = jnm/R, it finally follows that

G(νnm)

Jn+1(jnm)
= −ν2

nm
F(νnm)

Jn+1(jnm)
, (35)

which is the sought after discrete transformation rule of the Bessel operator Bn.

4.2. Transformation of the Derivative Operator

For the continuous Hankel transform, it is known that

Hn

(
∂

∂ρ
f (ρ)

)
= −ν

(
n + 1

2n
Hn−1( f (ρ))− n− 1

2n
Hn+1( f (ρ))

)
. (36)

Such modification (±1) of the order of the Hankel transform seems to be incompatible
with the discussed discrete implementation as the sampling in the spatial space (or the
frequency space) is determined by the zeros of the n-th order Bessel function. However,
in the following a solution for the case n = 0 (0-th order DHT) will be presented, which
relies on the workaround to not analyze the transformation behavior of the operator ∂/∂ρ
but of the operator ρ−1∂/∂ρ. Indeed, this operator can easily be introduced in differential
equations by substituting any ∂/∂ρ operation with ρρ−1∂/∂ρ. Similar to the last section,
using the finite Fourier–Bessel series as defined in Equation (14), it follows for any DHT
order n that

g(ρ) =
1
ρ

∂

∂ρ
f (ρ) =

N−1

∑
i=1

jni fi
2Rρ

(
Jn−1

(
jniρ

R

)
− Jn+1

(
jniρ

R

))
(37)

where the identity
∂

∂x
Jn(x) =

1
2
(Jn−1(x)− Jn+1(x)) (38)

has been used. Discrete sampling at ρnk = jnkR/jnN and applying the DHT yields

G(νnm)

Jn+1(jnm)
=

R2

jnN

N−1

∑
k=1

TnN
m,k

N−1

∑
i=1

jni jnN fi
2R2 jnk

(Jn−1(jnk jni/jnN)− Jn+1(jnk jni/jnN))

Jn+1(jnk)
. (39)

At this point the discussion is restricted to the case n = 0 because using the iden-
tity J−1(ρ) = −J1(ρ), substitution of the DHT kernel (Equation (24)), and sorting of the
sums yields

G(ν0m)

J1(j0m)
= −

N−1

∑
i=1

j0i fi
J1(j0m)

N−1

∑
k=1

2J1(j0k j0i/j0N)J0(j0m j0k/j0N)

j0k j0N J2
1 (j0k)

. (40)
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Now the identity

N−1

∑
k=1

2Jn+1(jni jnk/jnN)Jn(jnm jnk/jnN)

jnk jnN J2
n+1(jnk)

≈
∫ 1

0
dη Jn+1(jniη)Jn(jnmη) (41)

can be used, which has been introduced in [25] for any order n. Similar to the aforemen-
tioned orthogonality relation of Equation (33), the identity of Equation (41) cannot be
deduced analytically but is numerically precise for sufficiently large N. We found that the
absolute error of Equation (41) is less than 10−5 (10−4) for N > 100 (N > 20) for n = 0.
Using the identity of Equation (41) yields

G(ν0m)

J1(j0m)
= −

N−1

∑
i=1

j0i fi
J1(j0m)

∫ 1

0
dη J1(j0iη)J0(j0mη) (42)

and using the definition of the Fourier–Bessel coefficients (see Equation (15)) yields

G(ν0m)

J1(j0m)
= −

N−1

∑
i=1

2ν0i
∫ 1

0 drJ1(j0ir)J0(j0mr)
R2 J1(j0m)J1(j0i)

F(ν0i)

J1(j0i)
. (43)

This result can also be written in a compact form as

G(ν0m)

J1(j0m)
= −

N−1

∑
i=1

χm,i
F(ν0i)

R2 J1(j0i)
(44)

with the matrix

χm,i =
2j0i

∫ 1
0 dη J1(j0iη)J0(j0mη)

J1(j0m)J1(j0i)
. (45)

Thus, the operator ρ−1∂/∂ρ transforms such that it corresponds to a scaling with 1/R2

and a matrix multiplication in the frequency space, which can be implemented numerically
quite easily. Note that the definition of the matrix χm,i has been chosen such (without the
factor 1/R2) that it can be computed independently from the problem-specific choice of R
(or V). This is important because numerically computing the integral in Equation (45) is
feasible but requires quite some time for large N (see discussions and results presented in
Section 5.2). Thus, for repeated applications of the DHT it is certainly beneficial to compute
the matrix χm,i once in advance and to simply load it during run-time. For validation of
Equation (44), a simple Gaussian function f (ρ) = exp(−(aρ)2/2) on the spatial domain
[0, R = 30a] was considered, whose derivative can easily be computed analytically. In
Figure 1a, a comparison of the (sampled) analytical derivative and a 0-th order DHT (for
details of the actual implementation see next section), followed by the matrix multiplication
as given by Equation (44) and followed by the corresponding inverse DHT is presented for
N = 100. In addition, Figure 1b presents the mean absolute deviation of the DHT-based
result with respect to the analytical result for an increasing number of spatial mesh points
i.e., Fourier–Bessel coefficients. As the identity of Equation (41) becomes more and more
precise for increasing N, the same trend is observed in Figure 1b and for N > 100 the mean
absolute deviation is already less than 10−5 for the considered Gaussian function. Note
that the convergence follows a 1/N2 trend, see the dashed line in Figure 1b. These results
confirm the validity and appropriateness of Equation (44), i.e., the identified transformation
rule of the operator ρ−1∂/∂ρ under a 0-th order DHT.
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Figure 1. Validation of Equation (44) regarding the 0th-order DHT of the differential operator
ρ−1∂/∂ρ. (a): Sampled Gaussian and its analytical derivative as well as its derivative computed
via the 0-th order DHT and the discussed transformation rule of the ρ−1∂/∂ρ operator. (b): Mean
relative deviation of the derivative computed via the 0-th order DHT with respect to its analytical
counterpart. The dashed 1/N2 trend line is not fitted but only a guide to the eye.

5. Implementation and Validation of the DHT-Based Mode Solver

Based on the discussions and results presented so far, the coupled set of eigenwert
Equations (12) and (13) was solved numerically by expanding Aρ(ρ) and Aφ(ρ) as finite
Fourier–Bessel series (with N − 1 coefficients) and by finding the eigensolutions, i.e.,
eigenvalues (squared propagation constants) and eigenvectors (Fourier–Bessel expansion
coefficients of Aρ(ρ) and Aφ(ρ)). The actual implementation of the DHT-based solver was
written in Python 3 (64 bit) and all results presented in the following were computed on
a standard computer (AMD Ryzen 52600, 6 cores at 3.4 GHz). For the computation of
the eigensolutions, a dedicated solver for large (sparse) algebraic eigenvalue problems
based on the implicitly restarted Lanczos method (IRLM) was used [26]. As the number of
points (N − 1) is equally large in the spatial and in the frequency space, the solving could
be performed in either space. The transformation between these spaces is given by the
0th-order DHT in combination with the transformation rules of the differential operators.
In the used implementation, the solving was performed in the spatial domain but tests with
solving in the frequency space did not reveal any significant differences with respect to the
required computational time. Note that a zero-padding could be implemented in the future
to enhance the resolution in the spatial space while keeping the number of Fourier–Bessel
coefficients in the frequency space reasonably low, also see discussions in Section 7. Under
such conditions, the solving should be performed in the lower dimensional frequency
space and might enable significant reductions of the required computational times.

5.1. Step-Index Fiber Design

As a first validation case for the DHT-based mode solver, a standard step-index fiber
design was evaluated. Note that for such a design, the terms that scale with ∂/∂ρ ln(ε)
in Equations (12) and (13) are effectively zero and only the transformation rule of the
Bessel operator has to be considered. The core radius was 3µm, the refractive index of the
cladding was 1.42, the light wavelength was 1064 nm, and the core was given a 9× 10−3

higher refractive index than the cladding. The V-parameter of this configuration is around
2.84 (NA of 0.16) and one would expect this fiber to guide the HE11, the TE01, the TM01,
and the HE21 mode. Indeed, for m = 0 two guided modes (TE01 and TM01) where found
by the DHT-based mode solver, for m = 1 a single-mode (HE11) was found, and for m = 2
another mode (HE21) was found. The computational window was set to be 20× the core
radius to allow all (guided) solutions i.e., modes to be effectively space-limited. Note that
no investigations regarding the optimal computational window have been carried out
but it is obvious that it scales with the wavelength because evanescent fields are more
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pronounced at longer wavelengths. As expected, the TE01, TM01, and HE21 modes were
nearly degenerated with propagation constants that only differed at the fifth decimal place.

In Figure 2a the computed effective refractive indices, i.e., the propagation constants
divided by k0, of the HE11 and the TE01 mode are shown for an increasing number N
of spatial mesh points, i.e., Fourier–Bessel coefficients. In addition, Figure 2b shows the
deviations of the computed effective refractive indices from their analytical solutions,
which can easily be computed for step-index profiles [1]. As can be seen, already for
N ≥ 50 the deviation from the analytical solutions is less than 10−3 and becomes less
than 10−4 for N ≥ 750. The fact that the deviation is larger for the TE01 than for the HE11
mode is certainly explained by the more pronounced evanescent field of the TE01 mode
in combination with the Gibbs phenomenon, which causes ringing artifacts due to the
idealized perfect refractive index step at the core-to-cladding boundary. This might also
explain the rather slow convergence in comparison to a 1/N2 convergence as indicated by
the dashed line in Figure 2b.

Figure 2. Results of the DHT-based mode solver regarding the HE11 and TE01 modes of a step-index
fiber design. (a): Computed effective refractive indices for a varying number of spatial mesh points
i.e., Fourier–Bessel coefficients. (b): Deviation of the computed effective refractive indices with
respect to their analytically computed counterparts. (c): Typical required time to compute the HE11

mode and its propagation constant, either with a noisy guess for each call of the solver or a recycled
and correspondingly interpolated guess from the previous call. The dashed 1/N2 trend line is not
fitted but only a guide to the eye.

A typical computational time required by the DHT-based mode solver to compute the
HE11 mode is presented in Figure 2c. This is the time that is required by the corresponding
Python code to construct the DHT Kernel (see Equation (24)) and to compute the largest
eigenvalue for m = 1 with the IRLM solver. Two different modes of operation are compared
in Figure 2c: (i) For each N the IRLM solver uses random noise as a guess or (ii) the
solver uses the previous solution as a guess. Note that the latter method could only be
implemented properly as the selected DHT Kernel obeys Parseval’s theorem (otherwise,
normalization could not be performed properly) and the speed advantage corresponds
roughly to a factor of two. In general, 10% of the total computational time is required to
construct the DHT Kernel, which could be avoided in the future by computing the Kernel
for the various N in advance and later only load it during run-time.

Indeed, the proposed method requires sufficiently fine meshes, i.e., sufficiently large
numbers of Fourier–Bessel coefficients to adequately compute the HOMs of the large-mode-
area (LMA) step-index designs as they have complex radial profiles. As an example, an
LMA fiber with a core radius of 15µm (NA of 0.16) was considered, which supports nine
modes for m = 1. It has been found that 500 mesh points, i.e., Fourier–Bessel coefficients,
are sufficient to compute the effective refractive index of the lowest-order HE11 mode with
an absolute error of less than 6 × 10−5. However, with the same mesh, the highest-order
mode (HE15) is computed with an absolute error of 2 × 10−4.
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5.2. Graded-Index Fiber Design

As a validation case of the DHT-based mode solver for a design with non-vanishing
∂/∂ρ ln(ε) terms, for which the transformation rule of the derivative operator has to be
taken into account as well, a graded-index fiber design [8]

n(ρ) = n0

√
1− ρ2

b2 (46)

with refractive index n0 = 1.47 at ρ = 0 (the center of the fiber) was considered. The scaling
parameter b controls the steepness of the graded profile and was set to 11.6µm, which
corresponds to n(ρ = 3µm) = 1.45. In real graded-index fibers, n(ρ) is constant beyond
the core radius (in the cladding). For the comparative purpose of this study, it is sufficient
to deal with the non-truncated profile as it is well-known that only the highest-order modes,
which are not considered in the following discussion, are affected by the truncation [27].
Thus, the lower-order modes are well space-limited and no caution regarding a proper
selection of the computational window is required.

The propagation constants of the linearly polarized modes of a graded-index design,
which are solutions to a corresponding (approximated) scalar wave equation, can be
computed analytically [27]:

βl′k′ = k0n0

√
1− 2

k0n0b
(|l′|+ 2k′ + 1). (47)

where the index k′ = 0, 1, 2 . . . corresponds to the number of radial nodes. Furthermore,
the index l′ = · · · − 1, 0, 1 . . . corresponds to the orbital angular momentum. The linearly
polarized mode with l′ = k′ = 0 corresponds to the HE11 vector mode and the approxi-
mation actually used to obtain the aforementioned scalar wave equation (commonly for
the Ez field component) involves neglecting the terms that scale with ∂/∂ρ ln(ε) in the
wave equation. Thus, one expects that the DHT-based mode solver computes propagation
constants equal to the analytical solutions of Equation (47) if the ∂/∂ρ ln(ε) terms are set to
zero. This is confirmed in Figure 3a: without the ∂/∂ρ ln(ε) terms, the computed effective
refractive index of the HE11 mode deviates only less than 10−5 from the analytical result
for N > 100 and less than 10−6 for N > 300. Here, the convergence follows a 1/N2 trend,
see the dashed line in Figure 3a, which can be explained by the absence of the Gibbs
phenomenon. If the ∂/∂ρ ln(ε) terms are included in the DHT-based mode solver, the
deviation is larger but still small, i.e., less than 10−4 for N > 100. For the investigated
design, i.e., the choice of the scaling parameter b, these results indicate that the ∂/∂ρ ln(ε)
terms do not play a major role and can be neglected for sufficiently fine meshing (N > 100)
without significant reduction of accuracy.

Besides the comparison to the analytically computed propagation constant of the
linearly polarized mode, a second comparison is presented in Figure 3b. Here, an imple-
mentation of the full-vectorial 2D FFT-based mode solver presented in [22] was used to
independently compute the propagation constant of the HE11 mode. As can been from
Figure 3b, the effective refractive indices computed with the DHT-based and the FFT-based
solvers deviate only by less than 10−5 for N > 100 if the ∂/∂ρ ln(ε) terms are considered
in the DHT-based mode solver and, as before, the convergence follows a 1/N2 trend.
Without these terms, the deviation is larger but still less than 10−4 in all cases. This result is
consistent as the FFT-based mode solver accounts for the spatially varying refractive index
profile. Similar to Figure 3a, the results indicate that the ∂/∂ρ ln(ε) terms only play a minor
role for a sufficiently fine mesh. Note that the overall smaller deviation in comparison with
the discussed step-index design can be explained by the smoothness of the graded-index
profile, i.e., the absence of the Gibbs phenomenon.
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Figure 3. Results of the DHT-based mode solver regarding the HE11 mode in a graded-index
fiber design, either with or without the terms that scale with ∂/∂ρ ln(ε) in Equations (12) and (13).
(a): Absolute deviation from the analytically computed propagation constant of the linearly polarized
modes. (b): Absolute deviation from the propagation constants computed by a 2D FFT-based full-
vectorial mode solver. (c): Required computational times. As before, the dashed 1/N2 trend lines are
not fitted but only guides to the eye.

In Figure 3c, typical computational times required by the DHT-based solver to compute
the HE11 mode of the graded-index design are shown. If the ∂/∂ρ ln(ε) terms are included,
the computational time is dominated by the computation of the matrix of Equation (45) that
is required to perform any ∂/∂ρ operations. If the matrix does not need to be computed, the
computational speed is roughly two orders of magnitude faster and does not exceed 10 s for
N < 400 (using at each step the previous solution as a guess). It must be emphasized that
the applied code implementation computes the matrix of Equation (45) during run-time,
which is not required as discussed. Thus, if the computation of the matrix of Equation (45)
and the kernel of Equation (24) is performed off-line, it is expected that a computational
time less than 10 s for N < 500 can be achieved.

6. Conclusions

For the first time, a full-vectorial fiber mode solver based on a DHT has been developed
and discussed. For rotationally symmetric refractive index profiles, the electrical field
amplitudes Aρ(ρ) and Aφ(ρ) can globally be expanded as finite Fourier–Bessel series.
Subsequently, the corresponding coupled wave equations yield an algebraic eigenwert
problem, which can be solved numerically to obtain the expansion coefficients and the
propagation constants, i.e., the effective refractive indices, of the guided modes. The DHT
allows to conveniently compute the action of the differential operators of the coupled
wave equations in the frequency space. The corresponding transformation rules for the
Bessel operator and the common derivative operator have been developed and validated
here for the first time. The actual implementation of the DHT-based solver was written in
Python 3 and was successfully proof-tested for a step-index and a graded-index design
as well. For both designs, it has been demonstrated that the effective refractive indices
of the guided modes are computed with an absolute error of less than 10−4 with respect
to analytical solutions at a reasonably low number of Fourier–Bessel coefficients. For the
graded-index design, a convergence following a 1/N2 trend has been found. In addition,
it has been shown that computational times of a few seconds are feasible, in particular, if
transformation kernels and further matrices, which are required to compute the action of
differential operators, are computed offline. In the future, the DHT-based solver will be
a time and resource-efficient tool to compute the vector modes of arbitrary (rotationally
symmetric) fiber designs. For example, it might be used for fast and accurate computation
of dispersion profiles. Furthermore, the introduced transformation rules of the differential
operators under the DHT might become valuable for other problems that require solving
differential equations as well.
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7. Outlook

As an outlook for future work, there are potential improvements but also obstacles
of the introduced method, which need to be analyzed critically. For example and be-
yond common fiber designs, the Gibbs phenomenon will become quite pronounced for
high-index contrast designs such as silicon on insulator (SOI) waveguides [28]. Indeed,
compensation via an increase in spatial mesh points, i.e., Fourier–Bessel coefficients, might
be a viable counter-strategy but will increase the computational time. Similar problems
will certainly arise for thin but pronounced refractive index wells and dips for example in
Bragg fibers [29] (or other Bragg-type waveguides [30]) or quantum well waveguides [31].
With respect to such designs, another disadvantage of the DHT-based solving approach is
the inflexible meshing because the sampling is determined by the zeros of the correspond-
ing Bessel function and cannot be chosen freely. However, a promising improvement to
address both issues (Gibbs phenomenon and inflexible meshing) might be a zero-padding
as it is common in discrete Fourier transforms. On one hand, such zero-padding could
maintain reasonable high mesh resolutions in the space domain. On the other hand, it
would keep the number of Fourier–Bessel coefficients reasonably low to maintain accept-
able computational times. Another major improvement of the demonstrated DHT-based
mode solving approach might be its combination with a common Fourier row expansion
(in combinations with discrete/fast Fourier transforms) in the angular coordinate for 2D
refractive index designs with higher-order rotational symmetries. Such an approach would
overcome the present limitation to rotationally symmetric designs, i.e., specialty fiber
designs and concepts such as photonic crystal fibers (PCFs) could also be studied. In that
context, a recently developed two-dimensional Fourier transform in polar coordinates [32],
which is built upon the introduced DHT, might be helpful. However, some waveguide
concepts will remain to be not addressable with the presented approach, in particular, if it
is a priori known that evanescent fields do not comply with the DHT-related requirement
regarding being (effectively) space-limited as for example for leaky modes in (Bragg-type,
anti-resonant, etc.) hollow-core waveguides [33,34].
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