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Abstract— Recent trends in bioinspired robotic systems are
paving the way for robots to become part of our daily lives.
Soft robots, which are widely recognized as the next generation
of human-friendly robots, are such a trend. Soft robots are
generally more adaptable, more flexible, and safer than their
rigid-link counterparts. Research in soft robotics has produced
a broad variety of interesting solutions for all sorts of applica-
tions ranging from medical engineering and rehabilitation over
exploration to industrial handling. This diversity together with
a general lack of experience in designing with soft materials has
contributed to a design flow that is highly empirical in nature.
For soft robots to become mass-producible in the near future,
more general design and modeling methods are needed. In this
article, we present a method for the design optimization of soft
robot modules that effectively combines finite element modeling
and gradient-free optimization. To demonstrate the feasibility
of the approach, a soft pneumatic actuator is designed and
optimized. Performance analysis of the optimization scheme
shows the robustness of the solution in the given case.

I. INTRODUCTION

Present-day robots are still overwhelmingly caged in facto-
ry workplaces where interactions between humans and robots
seldom take place. They excel at high-precision tasks in
well-structured environments but perform poorly in high-
ly dynamic environments where unforeseeable events may
occur any time. Not only do they lack the adaptability to
deal with uncertain situations, they also entail the risk of
seriously harming those who come too close. Soft robotics
is an exciting new research field which may alter our image
of robotics altogether. Soft robots are mainly composed of
materials whose Young’s modulus is of the order of that
of soft biological tissues [1]. They can easily conform their
bodies to contoured surfaces and are sufficiently compliant
so as to not cause grave damage.

While the body of literature on soft robotics is rapidly
growing, there is no such thing as an archetypal soft robot
and chances are there never will be. Unlike their rigid-bodied
counterparts, these human-friendly robots may never popula-
te large territories in industry or elsewhere. Rather, it islikely
that they will occupy niches that have previously been devoid
of autonomous agents. Nonetheless, soft robots bear the
potential of revolutionizing our relationships with intelligent
machines. Not only are soft robots likely to overcome the
persisting barrier between humans and robots, they may also
become an constitutive part of our lives. Research in soft
robotics has recently produced a multitude of interesting
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solutions, which span applications from medical devices [2]–
[4] over rehabilitation [5]–[7] to industrial handling [8], [9].

This diversity of possible applications and designs is cer-
tainly desirable. Yet the same diversity makes the systematic
design of soft robots exceptionally cumbersome. A taxonomy
of soft robots is not readily available and general design
guidelines are not yet in place. Besides, engineers very often
base their decisions on intuition that they have acquired
from prior experience. When it comes to soft materials,
however, engineering experience tends to be scarce. This
lack of experience together with the absence of standardized
methods has contributed to a design flow which is highly
empirical in nature [10]. With a few exceptions [11]–[13],
the functionality of a particular soft robot design is almost
exclusively tested on a hardware prototype before a model
is derived.

In this article, we introduce a model based optimization
approach combining genetic algorithms and finite element
analysis (FEA). The approach in itself is generic and can
be applied to a variety of soft robot modules. Here, we
demonstrate the feasibility on a soft pneumatic actuator
(SPA). Owing to their versatility, SPAs have become the
“pioneering genre of soft robotics” [14] in recent years. A
broad spectrum of different SPA designs has been proposed
in literature offering an extensive design space that can be
explored by optimization techniques.

The article is structured as follows: In Sec. II, we provide
an overview of the soft robotics design and modeling fra-
mework, where we focus on the optimization of soft robot
modules with genetic algorithms. The proposed approach
has been applied to a soft pneumatic actuator. The results
are discussed in Sec. III. To demonstrate the utility of the
method, the performance of the algorithm and the influence
of different optimization settings are studied in Sec. IV.
Finally, we summarize the results and give an outlook on
future works.

II. SOFT ROBOTICSDESIGN AND MODELING

FRAMEWORK

To counter the perceived lack of comprehensive develop-
ment tools in soft robotics, we have previously proposed a
holistic design and modeling framework that can be applied
to a variety of soft robot modules. Following the approach
outlined in [15], we have implemented a software tool that
allows the user to parametrize a given soft robot module
and automatically generate a model representing its forward
kinematics [16]. The software tool effectively combines the
computational capabilities of both MATLAB (MathWorks)



Fig. 1. Soft robotics design framework

and ABAQUS (Simulia, Dassault Systemes, RI) via a pro-
gram interface.

The software framework, which is depicted in Fig. 1,
consists of four building blocks. First, a three-dimensional
model of a soft robot module is created in ABAQUS/CAE,
whose parameters are subsequently optimized by a genetic
algorithm using MATLAB. In each step of the optimizati-
on process, a finite element model of the soft module is
created and the nonlinear differential equations are solved
in ABAQUS/ANALYSIS. The results of the nonlinear finite
element simulation are imported in MATLAB, where the
configuration of the robot is evaluated using the piecewise
constant curvature kinematics approach. Step 3 has already
been discussed in [15] and [16] and is therefore only briefly
summarized in the following. A detailed discussion of the
kinematic modeling of a soft robot module in Step 4 is
beyond the scope of this article; the interested reader is
referred to [15] and [16].

A. Design of Soft Robot Modules

A large variety of soft robot designs have been proposed in
literature, each with its unique capabilities regarding motion
profiles and range of motion, stiffness, force output etc. Since
a discussion of general design guidelines for soft robots
would be beyond the scope of this article, we are focusing on
the topology optimization of existing designs. Assuming that
an initial design of a soft robot module is already in place, its
morphology is optimized such that the final design closely
matches the desired characteristics. This is achieved by fine-
tuning the morphological parameters, that is, its shape, the
geometrical arrangement of its elements, and its mechanical
properties [17].

The first step of the proposed design and modeling frame-
work starts with the design of an initial soft robot module,
where we assume that a prototypical design already exists.
First, a three-dimensional model of the module is created
in ABAQUS/CAE. If a prototypical model for a module is
already in place, its geometry can be easily parametrized
by the user in MATLAB. Geometric parameters that can
be adjusted in MATLAB include, for example, the length

and cross section of a soft robot module, as well as the
position of the actuators. Once these parameters have been
properly defined, a 3D model can be automatically created
in ABAQUS/CAE.

B. Optimization of Soft Robot Modules

In a second step, the initial design is optimized using a
genetic algorithm. This is achieved by iteratively computing
a series of finite element models and successively updating
the design parameters. Note that the order of the second and
third block in Fig. 1 may theoretically be reversed, since the
execution of the finite element model is nested inside the
optimization loop and initiated by the genetic algorithm.

In general, genetic algorithms are a popular choice for
problems in stochastic optimization, in particular in the con-
text of global optimization, where the best solution is to be
found among multiple local minima [19]. Genetic algorithms
simultaneously operate on apopulationof individuals, each
possessing a set of parameter values, so-calledchromosomes,
where each set represents one solution to the problem at
hand [18]. The effectiveness of a solution is measured by
the fitnessof the individual, a quantitative measure that is
determined by afitness function[18]. In every iteration of
the optimization process, the fitness of each individual is
computed and a newgenerationof individuals with different
chromosomes is created. Over time, the chromosomes of
all individuals are moved to a point where the fitness
function has an optimum [19]. Different from gradient-based
optimization algorithms, GAs randomly search the parameter
space without taking into account the slope of the objective
function. GAs employ a number of reproduction mechanisms
inspired by natural evolution in order to refine the individuals
from generation to generation [20].

Fig. 2 depicts a schematic of the optimization process
and the evolutionary mechanisms used by the algorithm.
The genetic algorithms starts by generating an initial po-
pulation composed of randomly chosen individuals with
different chromosomes (i.e. designs with different geometric
parameters). It is after this step that the process enters
a loop, where the following steps are performed in each
iteration. First, a finite element model is created for each
individual in ABAQUS/CAE and the nonlinear differential
equations represented by the model are subsequently solved
in ABAQUS/ANALYSIS. Once all the simulations are com-
plete, the results are automatically imported in MATLAB
and evaluated by the GA. Based on the prescribed fitness
function, a fitness value is assigned to each individual. In
the following, the next generation of individuals is created
through a series of reproduction mechanisms:

1) Selection: Selection is a process in which a number
of individuals are singled out from the current population
one-by-one and inserted into anintermediate population
[20]. When the maximum number of individuals in the pool
has been reached, the process is stopped and variation is
performed: i.e., reproduction, crossover, and mutation. The
probability of an individual being selected for reproduction
depends on it fitness value. Basically, the fitness value intro-



Fig. 2. Schematic of the optimization process

duces a bias that helps to differentiate between individuals
in that individuals with higher fitness will achieve a higher
probability of being selected for mating [21]. A variety of
selection techniques have been proposed in literature, where
the roulette wheelmechanism and theuniversal sampling
mechanism are among the most common ones [21].

Reproduction is done by simply copying an individual
from the intermediate population into the next one [20].
Variation of the chromosomes is then achieved through a
two-stage process: crossover and mutation.

2) Crossover: Crossover exchanges some genes of two
individuals to produce offspring whose chromosome is a
combination of their parents’ genes. Again, different cros-
sover mechanisms have been proposed, the most common
of which is the so-calledone-point crossover[20]. This
type of crossover is also the simplest one [21]. In one-
point cross-over, the GA randomly picks a crossover point
beyond which the gene strings are exchanged. Thereby, two
new chromosomes are created [22].Multi-point crossover
is similar in that multiple string sections are exchange at a
number of crossover points [21]. The idea behind multi-point
crossover is that those parts of the chromosome that have the
largest impact on the performance of an individual need not
necessarily be adjacent [23].

3) Mutation: Mutation randomly chooses a subset of ge-
nes and alters their values [24]. This is realized either through
perturbation of a gene’s values or random selection of new
values within the allowed parameter space [21]. As such,
mutation serves as an innovation operator by introducing
new genetic material into the population [20]. Mutation is
the final reproduction mechanism in the cycle depicted in
Fig. 2. Subsequently, the previous generation of individuals
is replaced and the entire process starts anew.

The above process repeats until one of the termination
criteria is met. This is usually the case when either the
fitness value plateaus, the maximum number of generations
is reached, or the allocated time has elapsed [18].

C. Finite Element Analysis of Soft Robot Segments

In a third step, finite element analysis is employed to
determine the deformation of a soft robot design in response
to the prescribed inputs. Given the highly nonlinear nature
of the elastic materials used in soft robots, the mechanical
relationships are usually difficult to derive analytically. As
noted above, a finite element model is automatically created
in ABAQUS/CAE when the model parameters have been
properly defined in MATLAB (e.g. geometric parameters,
material properties, loads, and boundary conditions). After
the geometry of the soft robot module has been created
and the loads and boundary conditions have been properly
defined, the model is meshed into finite elements. In the
following, the resulting nonlinear differential equations are
solved using ABAQUS/ANALYSIS. Numerical integration
of the nonlinear differential equations yields the nodal dis-
placements of all the elements. Subsequently, the nodal
displacements are automatically imported in MATLAB and
evaluated such that the global deformation of the module is
represented by a single curve coinciding with the approxi-
mate geometric centerline.

III. C ASE STUDY: OPTIMIZATION OF A SOFT PNEUMATIC

ACTUATOR

In [16], we investigated the influence of different design
parameters on the kinematics of a pneumatic actuator by
systematically varying the length of the actuator and the
chamber position. The results demonstrated that the position
of the chamber has considerable influence on the curvature.
Small changes in chamber position can lead to large de-
viations in the curvature. Since the design parameters also
influence one another, they should be varied simultaneously.
However, due to the large number of possible design para-
meters, systematic variation of the parameters is not always
practical. In cases like these, optimization algorithms can
be used to produce a set of optimized design parameters. In
the following, the proposed model-based design optimization
approach is demonstrated on a soft pneumatic actuator. Tab.
I shows the design parameters and their limits. Fig. 3 depicts
the exterior (left) and sectional view (right) of the actuator.
The first prototype using the parameters identified in [16] is
presented in Fig. III.

Fig. 3. Exterior and sectional view of the soft pneumatic actuator



Fig. 4. Soft pneumatic actuator

TABLE I

LOWER AND UPPER BOUNDS OF THE DESIGN PARAMETERS

Parameter Lower bounds in mm Upper bounds in mm

Inner radius 10 18
Outer radius 20 50

Chamber position 15 40
Chamber thickness 2 8

The goal of the optimization was to minimize the radius of
curvature, while keeping the ballooning as small as possible.
Here, ballooning refers to the bulging of the inner chamber
wall when the chamber is under pressure. Depending on
the type of application, other target variables may be used
as well. The main purpose of the present study was to
demonstrate the efficacy of the design optimization rather
than producing a specific design. The target values for the
optimization, namelyradius of curvatureand ballooning,
were combined into a single fitness for each individual. The
corresponding fitness function is given by Eq. 1. Variable
Bi denotes the ballooning of a design andRi the radius of
curvature when the actuator is under pressure. The factorsa
andb represent weighting factors, by which the influence of
a variable on the optimization process can be adjusted. Here,
the targetradius of curvaturewith b = 0.8 was assigned a
higher weight than the targetballooningwith a= 0.2.

Fi =
a· Bi

sum(B) +b· Ri
sum(R)

sum(a· Bi
sum(B) +b· Ri

sum(R) )
(1)

Additionally, constraints were defined to rule out geometri-
cally impossible actuator designs. The thickness of the ring-
shaped actuator wall was constrained to be greater/equal to
10 mm, while the outer and inner chamber wall thickness
was constrained to 2 mm and 4 mm minimum, respectively.
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The settings for the genetic algorithm were as follows: For
all experiments a population size of 100 was used, with a
randomly created initial population and a maximum number
of generations of 20. Unless stated otherwise,stochastic
uniform selectionwas employed together with an additional
elitism. The adaptive-feasible mutationproperty further
allowed for optimization with linear constraints. Here,
starting from the individual to be mutated, the algorithms
randomly selects a direction and permissible range that
does not violate the limits and shifts the parameters of
the individual accordingly. For crossover,intermediate
crossoverwas used, as this function can also handle bounds
and constraints. With intermediate crossover, individuals are
generated by averaging the genes of two parent individuals.
For the sake of simplicity, the design parameters were
defined as floating point numbers.

Fig. 5 shows the evolution of the four design parameters
over the first ten generations. The values for the outer radius
and the position of the chamber plateau after eight gene-
rations. The chamber thickness does not seem to influence
the quality of the design significantly, since the rate of
convergence is much lower.

Fig. 6 shows the convergence of the genetic algorithm
with respect to the fitness value. For this purpose, the mean
of the fitness values is plotted over the generations. Since the
fitness function in Eq. 1 yields a value that accounts for an
individual’s fitness relative to the population within one ge-
neration only, we defined a globally comparable fitness value
that accounts for the absolute fitness across all generations.
The absolute fitness of an individual is calculated according
to:

Fi,abs=
√

(Bi +Ri)2 (3)

The mean of the fitness values of all the individuals in one
generation is given by:

Fabs=
n

∑
i=1

Fi,abs

n
, (4)

wheren is the number of individuals in a generation.
In Fig. 6, the standard deviation shows the divergence

of the fitness values within one generation. The genetic
algorithm converges very rapidly during the first ten
generations, with the standard deviation decreasing from
800 to less than 20. Thereafter, the rate of convergence drops.

Fig. 7 depicts the best design of the first and last
generation, respectively. The associated design parameters
and target values are shown in Tab. II. Individual 2 is
considered a much better solution given the higher weight



Fig. 5. Parameter development

Fig. 6. Mean fitness for one trial

Fig. 7. Comparison of the best individual from the first and last generation

TABLE II

COMPARISON OF THE TWO ACTUATORS

Individual 1 Individual 2

Inner radius [mm] 11.15 10.42
Outer radius [mm] 27.14 23.62
Chamber position [mm] 21.71 15.71
Chamber thickness [mm] 3.43 5.04

Optimum Ballooning [mm] 10.50 15.51
Optimum Radius [mm] 77.65 32.15

of the target valueradius. Furthermore, individual 1 appears
to have a rather unstable design, since the chamber opposite
the pressurized chamber buckles (marked in red). In future
works, it should be tested whether these results can be
confirmed by real world prototypes.

Fig. 8 shows a comparison of the kinematic relations of the
two actuators from Tab. II. The curvature of the actuation is
plotted over the pressure. Individual 1 achieves a larger cur-
vature with less pressure, since the chamber is located further
outward and can therefore expand more easily. Individual 2
bends only at higher pressure but the maximum curvature is
much larger. Compared to individual 3, i.e. the design that
was studied in [16], the achievable bending angle of the final
actuator is significantly higher.

IV. EVALUATION OF THE GENETIC ALGORITHM

A. Robustness

In order to investigate the influence of randomization on
the results of the genetic algorithms, the same experiment
was carried out 30 times. The algorithms were terminated
after 11 generations. Each generation comprised 100 indi-
viduals. Fig. 9 shows the grand mean of the fitness values
for each generation. The grand mean of the fitness values is
given by:

Fabs=
k

∑
j=1

F j

k
, (5)

where F j is the group mean of thej-th trial and k the
total number of trials.

The standard deviation in Fig. 9 denotes the deviation of
the group mean with respect to the grand mean over all 30
trials. Fig. 9 indicates that the final results are very closeto
one another after only eleven generations, although the initial



Fig. 8. Bending as a function of pressure Best soft pneumatic actuator

Fig. 9. Grand mean of the fitness values for 30 trials

populations tend to deviate from each other. Fig. 9 nicely
illustrates the robustness of the algorithm, as the solution
evolves in the same direction for all trials.

Tab. III summarizes the time and resources allocated for
each experiment with a population size of 100 and a total
of 11 generations. The target values of the best and worst
trial as well as the average over all trials are also provided.
As with any stochastic optimization, there are differences
in the quality of the solution if the optimization is repeated.
However, the small deviation of the final results shows that
the algorithm is a reliable and relatively fast method for the
design optimization of soft pneumatic actuators.

TABLE IV

COMPARISON OF DIFFERENT POPULATION SIZES

Trial 1 Trial 2

Population size 100 16
Number of generations 11 70
Total number of individuals 1100 1120
Computation time 38 h 200 h
RAM 16 Gb 16 Gb
Cores 16 16

Optimum Ballooning [mm] 17.036 9.219
Optimum Radius [mm] 33.351 90.645

TABLE III

RESULTS OF THE30 TRIALS

Best trial /0 Worst trial

Population size 100 100 100
Generations 11 11 11
Computing time 38 h 38 h 38 h
RAM 16 Gb 16 Gb 16 Gb
Cores 16 16 16

Optimum Ballooning [mm] 13.148 15.964 17.990
Optimum Radius [mm] 29.135 33.405 42.210

B. Population Size

In general, the coverage of the search space is an important
criterion for the quality of an optimization process. If little or
no information about the nature of the search and solution
space is given, the entire search space should be covered
evenly in case that the global optimum is located in a
difficult-to-find area.
In Fig. 10 a two-dimensional subspace of the parameter
space is shown. The parameters for the inner and outer
radius, which were tested by the genetic algorithm, are
depicted. The red lines represent the boundaries of the search
space. In addition, the parameters of the inner and outer
radius from the initial population and optimum are marked
by red triangles and a yellow circle, respectively. The plot
shows that not all regions within the search space are evenly
covered.

In order to investigate the influence of the population size
on the coverage of the search space, a genetic algorithm
with a population size of 16 and the same settings as in the
example above was run. Fig. 11 shows the corresponding
parameters. To guarantee that the conditions are comparable
to those in the above experiment, the number of generations
was chosen such that number of individuals nearly matched
those of the previous experiment. Tab. IV shows the settings
and resources used in this experiment. The results show that
the radius in Trial 2 is much worse than the one in Trial
1, although both experiments comprised nearly the same
number of individuals. The radius in Trial 1, the one with
the larger population size, is roughly three times as small as
the radius in Trial 1. Even though the ballooning is nearly
twice as large, the overall solution in the trial with the larger
population size is better.

The above experiment indicates that the search space tends



Fig. 10. Two-dimensional subspace for 100 individuals per generation

Fig. 11. Two-dimensional subspace for 16 individuals per generation

to be less evenly covered when the smaller population size
is smaller. Since new individuals can only be generated
by recombination, the initial population mainly determines
the parameter range that can be explored by the genetic
algorithm. Regions outside the range covered by the indi-
viduals of the initial population can only be reached through
mutation. However, it seems that faraway regions are only
seldom reached by mutation. The experiments indicate that a
large initial population ensures a much better coverage of the
search space for the problem at hand. Therefore, it is better
to choose a smaller number of generations with a larger

Fig. 12. Tournament selection

Fig. 13. Stochastic uniform selection

population size rather than a larger number of generations
with a small population size.

C. Selection Mechanisms

One of the many possibilities for the parametrization of
genetic algorithms is the choice of selection mechanism. In
order to investigate the influence of the selection mechanism
on the outcome of the optimization, two experiments with
identical settings but different selection mechanisms were
run. In the first experiment, the defaultstochastic universal
selectionwas used, whereastournament selectionwas em-
ployed in the second. Withstochastic universal selection,
individuals are selected with a probability correspondingto
their fitness. By contrast,tournament selectionpicks a pre-
defined number of individuals and selects those with the
highest fitness value for the next generation. New tourna-
ment participants are selected and transferred to the next
generation until it is complete.

Figs. 12 and 13 show a comparison of the results obtained



with the two selection mechanisms. Each algorithm worked
with a population size of 100. The faster convergence of
the algorithm with tournament selection is clearly visiblein
Fig. 12.

V. CONCLUSIONS

In this article, we presented a method for the design
optimization of soft pneumatic actuators using genetic algo-
rithms. This work extends our previous and ongoing research
[25] on the automated design and modeling of modular
soft robots. In particular, we proposed a framework for a
software tool that allows for the automatic optimization of
soft pneumatic actuators and other soft robot modules. The
validity and utility of the approach was demonstrated through
optimization of a soft bending actuator. Compared to the
initial design, the achievable bending angle of the actuator
was significantly increased, while the ballooning was kept
as low as possible. To further demonstrate the performance
of the stochastic optimization approach, we analyzed the
convergence of a series of trials thereby confirming the
robustness of the method. Moreover, we analyzed the in-
fluence of the population size and the selection mechanism
on the outcome of the optimization. The results indicate
that a larger population size leads to a more even coverage
of the parameter space and ultimately to better solutions,
while the tournament selection mechanism produced faster
convergence than stochastic uniform selection.

In future works, we will further explore the performance
of the method and extend the capabilities of the tool
to support other soft robot modules. Also, we aim at
integrating the optimization and model generation parts
of the framework into a comprehensive design, modeling,
and simulation tool for modular soft robots. Whereas
other approaches have mostly focused on either design
optimization or kinematic modeling, the proposed tool is
expected to yield models for optimized soft robot designs
amenable to online-computation and control.
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