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Abstract. Born series formalism is a widely-used approach to solve a scattering problem
in quantum mechanics and optics, including a problem of electromagnetic scattering on the
ensembles of Mie-resonant nanoparticles. In the latter case, the Born series formalism can be
used when the electromagnetic coupling between nanoparticles is weak. This can be violated
near the multipole Mie-resonance of the nanoparticle. In this work, we analyze the applicability
of the Born series approach for modeling the resonant optical response of Mie-nanoparticle
ensembles and formulate quantitative criteria of Born series convergence and, subsequently, the
applicability of this approach.

1. Introduction
The Born series formalism is a method to simulate scattering by a group of many nanoparticles
in a perturbative manner [1, 2, 3, 4, 5, 6]. This method is based on constructing a convergent
Born series and replacing it with a finite sum that successively approximate the interaction
between particles where the accuracy depends on the number of terms included in the sum (i.e.,
on the Born approximation order). Born approximations of different orders have been used to
simulate tip-substrate interaction [1, 2], calculate polarizability of a non-spherical particle [3, 4],
and optimize metalens design [6]. All these problems require a simulation of the interaction
in non-periodic structures of a large number of particles which is non-effective to perform,
using full-wave simulation techniques; therefore, the Born series method, along with the coupled
multipole model, [7, 8] was chosen. The applicability of the Born series method, as well as its
convergence, are determined by the strength of electromagnetic coupling in the system. To the
best of our knowledge, there is no exhaustive physical analysis of Born series applicability to
simulate Mie-resonant nanostructures [9, 10] with quantitative criteria of the series convergence.
In this work, we try to give such analysis and criteria and consider a nanosphere dimer having
a simple analytical solution in the framework of the coupled dipole model.

2. Results and Discussion
We investigate the resonant scattering of a monochromatic electromagnetic plane wave E0e

ikr−iωt

on a dimer of identical nanospheres supporting dipole Mie-resonances at the optical range (as
shown in Fig. 1(a)) [9, 10]. We use the electric dipole approximation of nanoparticle’s optical
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response admissible at the electric dipole resonance of nanoparticle. The self-consisted dipole
moments of nanoparticles can be calculated using the coupled dipole model (CDM) [7]:

p1 = α(ω)E0 + α(ω)k2ε−10 Ĝ12p2,

p2 = α(ω)E0 + α(ω)k2ε−10 Ĝ21p1.
(1)

where α(ω) is the dipole polarizability, ε0 is the vacuum permittivity, k = 2π/λ is the free-

space wavenumber, Ĝij ≡ Ĝ(ri, rj) is the dyadic dipole Green’s function [7]. Here and further,
we omit the time-dependence of fields and dipole moments. In accordance to Fig. 1(a), the
incident wave propagates along the z-axis with a polarization along the x-axis E0 = [E0, 0, 0]T

(T-polarization) or y-axis E0 = [0, E0, 0]T (L-polarization). The nanoparticles are placed at the
positions r1 = [0,+D/2, 0] and r2 = [0,−D/2, 0], therefore dot product k · ri = 0 (i = 1, 2) in
Eq. (1).

In Eq. (1), the dipole moment of the nanoparticle determines by the external field (the first
term) and the dipole field generated by another particle (the second term). Due to the structure
symmetry, both dipole moments have only one non-zero component along the incident field:

pil =
α(ω)E0

1− α(ω)k2ε−10 G12
ll

, i = 1, 2. (2)

where l = x for T-polarization, and l = y for L-polarization. The corresponding elements of
Green’s function:

G12
xx =

eikD

4πD

[
1 +

i

kD
− 1

k2D2

]
, G12

yy =
eikD

4πD

[
− 2i

kD
− 4

k2D2

]
. (3)

Dipole moments calculating by Eq. (2) rigorously takes into account the electromagnetic
coupling between two dipoles. We can also approximate the coupling expanding moments (2)
in the Born series. In this case, the Born series is an expansion of the denominator of (2) in
geometric series:

pil = α(ω)E0

∞∑
n=0

(
α(ω)k2ε−10 G12

ll

)n
, i = 1, 2. (4)

The solution of Eq. (1) in the Born approximation of m-th order is given by transition from an

infinite series to a finite sum in Eq. (4), i.e.,
∞∑
n=0
→

m∑
n=0

.

We can use the Born series approach if the Born series converges. The convergence criteria
of geometric series such as Eq. (4) is well-known:

|α(ω) · k2ε−10 G12
ll | < 1. (5)

Electric-dipole polarizability of a homogeneous nanosphere can be expressed through the Mie-
coefficient a1(nkR) [7, 11], depending on the particle refractive index n and radius R, and
incident wavelength:

α(ω) = i
6πε0
k3

a1, (6)

then the convergence criteria (5) can be formulated as follows:

6π · |a1| · |k−1G12
ll | < 1. (7)

Non-absorptive particles (ε′′ = 0). In this case, the resonance condition provides [12]:

a1 = 1, (8)
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Figure 1. Analysis of the applicability of the Born series approach. (a) Schematic view of
identical nanosphere dimer embedded in a vacuum with the marked wavevector of the external
incident wave. Dipole moments with the orientation along the y-axis or x-axis are excited
by y-polarized (L-polarized) or x-polarized (T-polarized) external wave, respectively. (b) The
absolute value of Mie-coefficient (blue line) and critical center-center distance between particles
(red lines) as functions of particle material ε′′ (where ε′ = 12.5). Red solid and red dashed lines
correspond to T- and L-polarization of dipole moments, respectively. The Born series converges
at the dipole Mie-resonance λ = λ0 (where λ0 = 555 nm) if the distance between particles D
is higher than the critical one. (c) The Born approximation order as a function of the second
particle position while the first particle is placed at the coordinates’ origin. The position of
the circle point indicates the second particle position, and its color corresponds to the order of
Born approximation that allows calculating the extinction cross section in this approximation
with an error (10) of less than 10%. The distance between particles is measured in resonant
wavelength λ0 = 1140 nm. The minimal inter-particle distance is D = 0.3λ0, radius of particles
R = 100 nm, permittivity of particle material ε′ = 64, ε′′ = 0. The normally incident plane
wave is x-polarized.

corresponding to the resonance wavelength λ0. By substitution of resonance condition (8) and
expressions (3) in inequality (7), we obtain at-resonance convergence criteria of the Born series:

6π · |k−10 G12
ll | < 1, (9)

explicitly independent on the particle refractive index and size (but the resonant wavelength
depends). From (9), we find the critical distances for L- and T-polarization: DL = 0.3λ0 and
DT = 0.21λ0, respectively. A word critical highlights that the Born series diverges when the
center-center distance between particles is less than critical.

Absorptive particles (ε′′ 6= 0). For the particles with absorption (Ohmic) losses, a condition
(8) is not valid. The criteria of Born series convergence (7) depends on the absolute value of the
Mie-coefficient |a1|. As shown in Fig. 1(b), at-resonance value |a1| decreases as imaginary part
of permittivity increases. Solving the inequality (7) for varying ε′′, we find the critical distances
and also show their in Fig. 1(b). It is seen that, for both T- and L-polarizations, the critical
distances decrease as the absorption losses increase.

Knowing the critical distances between particles, we investigate the accuracy of calculating
resonant optical response via the Born series approach. We put the first particle in the origin
of the Cartesian coordinate system and vary the position of the second particle. The distance



6th International Conference on Metamaterials and Nanophotonics METANANO 2021
Journal of Physics: Conference Series 2015 (2021) 012161

IOP Publishing
doi:10.1088/1742-6596/2015/1/012161

4

between two particles is higher than D = 0.3λ0. The error of the m-order Born approximation
is defined as the relative error of the extinction cross section (ECS):

∆ =
|σ(m) − σ(CDM)|

σ(CDM)
× 100%, (10)

where σ = k0ε
−1
0 |E0|−2Im

[
2∑

i=1
E∗0(ri) · pi

]
is the ECS of resonant dimer in the dipole

approximation [7], σ(CDM) and σ(m) is ECS calculated using the rigorous dipole moments (2)
and dipole moments in the m-th Born approximation (4), respectively. We set a limit of 10% on
the error value ∆ and find the Born approximation order when a condition ∆ ≤ 10% is satisfied.
The results are presented in Fig. 1(c) for the dimer of non-absorptive nanoparticles. We see in
Fig. 1(c) that particles separated higher than λ0 can be considered as non-interacting because
their collective response is accurately described in the zero-order Born approximation. This
because a strong near-field coupling between particles becomes weak for inter-particle distances
D & λ0.

3. Conclusion
We analyzed when and how the Born series approach can be used to accurately simulate a
resonant optical response of nanoparticle structures. Studying a dimer of the nanospheres under
the electric dipole approximation, we derive convergence criteria of the Born series, independent
of the particle size and refractive index for non-absorptive particles.
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