
Citation: Hake, F.; Göttert, L.;

Neumann, I.; Alkhatib, H. Using

Machine-Learning for the Damage

Detection of Harbour Structures.

Remote Sens. 2022, 14, 2518. https://

doi.org/10.3390/rs14112518

Academic Editor: Fernando

Vicente-Guijalba

Received: 31 March 2022

Accepted: 21 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Using Machine-Learning for the Damage Detection of
Harbour Structures
Frederic Hake * , Leonard Göttert, Ingo Neumann and Hamza Alkhatib

Geodetic Institute, Leibniz Universität Hannover, Nienburger Str. 1, 30167 Hannover, Germany;
leonard.goettert@stud.uni-hannover.de (L.G.); neumann@gih.uni-hannover.de (I.N.);
alkhatib@gih.uni-hannover.de (H.A.)
* Correspondence: hake@gih.uni-hannover.de; Tel.: +49-511-762-4469

Abstract: The ageing infrastructure in ports requires regular inspection. This inspection is currently
carried out manually by divers who sense the entire below-water infrastructure by hand. This process
is cost-intensive as it involves a lot of time and human resources. To overcome these difficulties, we
propose scanning the above and below-water port structure with a multi-sensor system, and by a
fully automated process to classify the point cloud obtained into damaged and undamaged zones.
We make use of simulated training data to test our approach because not enough training data with
corresponding class labels are available yet. Accordingly, we build a rasterised height field of a point
cloud of a sheet pile wall by subtracting a computer-aided design model. The latter is propagated
through a convolutional neural network, which detects anomalies. We make use of two methods: the
VGG19 deep neural network and local outlier factors. We showed that our approach can achieve a
fully automated, reproducible, quality-controlled damage detection, which can analyse the whole
structure instead of the sample-wise manual method with divers. We were able to achieve valuable
results for our application. The accuracy of the proposed method is 98.8% following a desired recall
of 95%. The proposed strategy is also applicable to other infrastructure objects, such as bridges and
high-rise buildings.

Keywords: damage detection; machine-learning; infrastructure; laserscanning; multibeam
echo-sounder

1. Introduction and Motivation

The ageing infrastructure of sea and inland ports requires new technologies and meth-
ods in the preparation and implementation of life cycle management processes. The tra-
ditional processes are usually time- and labour-intensive, and should be replaced by new
automated, smart and innovative measurement and analysis processes to ensure trans-
parency, resource efficiency and reliability for a more dependable lifetime prediction.

Port infrastructure, such as quay walls for loading and unloading ships, bridges, locks
and flood gates, are mostly made of concrete, bricks, steel and, in the case of very old
structures, wood. They are subject to severe degradation due to especial environmental
conditions and human activities throughout their lifetime. The material of seaports is
especially profoundly affected by saltwater, which damages the concrete structures, sheet
pile walls or wooden structures. It is crucial to detect any damage and categorize its
importance to ensure the safety and stability of the infrastructure. Identifying structural
damage in time allows early maintenance and avoids expensive repairs and the collapse of
the infrastructure.

Nowadays, the monitoring of port infrastructural buildings is divided into the parts
above and below water. The structural testing of port infrastructure above water is carried
out by manual and visual inspections. The recording and documentation of the condition of
damage below water involve considerably more effort; the infrastructure is tested sample-
wise every 50 to 100 m; the divers slide down the structure and try to sense the wall with

Remote Sens. 2022, 14, 2518. https://doi.org/10.3390/rs14112518 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14112518
https://doi.org/10.3390/rs14112518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7424-2270
https://orcid.org/0000-0001-9110-7345
https://orcid.org/0000-0002-4480-1067
https://doi.org/10.3390/rs14112518
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14112518?type=check_update&version=2


Remote Sens. 2022, 14, 2518 2 of 19

their hands. The results depend directly on human sensory tests. Therefore, damage
inspections below water with divers are highly variable in quality and quantity. Damage
classification and development are not reproducible due to the subjective perception.
In addition, there is usually no comprehensive inspection below water, thus, only a small
percent of the structure can be inspected by divers. One way to deal with this problem is
by utilising sensors that detect the shape of the object. Such sensors provide point clouds
and include laser scanners for surfaces above water and echo-sonars for those below water.
The focus in this paper is on the general process of damage detection in point clouds. We
use two datasets to validate the overall procedure. The first is a simulated dataset of a
sheet pile wall below water. The second is a real dataset of a concrete quay wall from the
northern German city harbour of Lübeck, measured with a laser scanner above water. It is
not possible to detect small damages, such as cracks, especially in the area below water,
due to the point spacing, which is 20 mm. Therefore, the main focus is on the detection of
spalling damages larger then 20 mm.

It is essential when monitoring harbour structures to assure a transparent, efficient
and quality-controlled process. This can be achieved by a comprehensive visual inspection
at short time intervals during the whole life cycle of the structure. However, a quality-
controlled visual inspection is nearly impossible in regions such as the Ems, Weser and
Elbe due to the high level of sedimentation. In this research, a fully automated, quality-
controlled and reproducible three-dimensional (3D) sensing and damage detection of port
infrastructures, above and below water, is proposed. Based on the results obtained, the port
operator has more reliable information to efficiently plan maintenance and construction
work. This approach will reduce the expenses significantly by lowering the downtimes of
the port facilities and well-planned construction. Damage detection is usually performed
in modern data processing based on pattern recognition methods (see [1] for more in-
formation). This is a reliable approach to detect any damages and make a well-founded
assessment of the current state of the structure. Not only exact but also high-resolution 3D
data for the above and below water parts of the building are required for the acquisition of
the building geometry and condition.

Various publications deal with comprehensive sensing methods for the structural
health monitoring of concrete or other materials above water or in clear offshore regions.
A static underwater multibeam scanner for 3D reconstruction of subaquatic environments
was introduced by [2]. Robert et al. [3] used a multibeam echo-sounder and underwa-
ter stereo cameras to create a 3D point cloud of vertical marine structures. Hadavand-
siri et al. [4] introduced a new approach for the automatic, preliminary detection of damage
in concrete structures with terrestrial ground scanners and a systematic threshold. An auto-
matic classification for underwater geomorphological bed forms was presented by Ref. [5],
which achieved an overall accuracy of 94%. A long-term monitoring approach for zigzag-
shaped retaining structures is propose by Ref. [6]. Aldosari et al. [7] used a ultra-high
accuracy wheel-based mobile LiDAR mapping system for monitoring mechanically sta-
bilized earth walls. O’Byrne et al. [8] detected disturbances by the texture segmentation
of colour images. Gatys et al. [9] showed that neural networks trained on natural images
learn to represent textures in such a way that they can synthesize realistic textures and even
entire scenes. Neural networks, as feature extraction, are, thus, preferred over hand-crafted
features [10–12]. A novel sensor data-driven fault diagnosis method is proposed based on
convolutional neural networks (CNNs) by [13]. However, the limitation of such a transfer
of features remains an open research question, especially when the input domain has the
same topological structure but different statistical behaviour. The detection of non-normal
instances within datasets is often called anomaly detection.

The definition of outliers first mentioned by [14] for outlier detection varies widely
nowadays. Anomalies are no longer just understood as incorrect readings, but are often as-
sociated with particularly interesting events or suspicious datasets. The original definition
was, therefore, extended by [15]:
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1. Anomalies are different from the norm regarding their features;
2. Anomalies are rare compared to normal instances in a dataset.

Two widely used methods in anomaly detection are transfer learning and local outlier
factors (LOF). Transfer learning adopts pretrained neural networks based on a different
domain [16]. This results in advantages such as faster creation, better model quality, and
less use of resources (training data). Breunig et al. [17] describe a method called LOF, which
judges a sub-element on how isolated it is regarding the local neighbourhood.

Nowadays, anomaly detection algorithms are often used in many application do-
mains. García-Teodoro et al. [18] describe a method using anomaly detection algorithms to
identify network-based intrusion. In this context, anomaly detection is also often called
behavioural analysis, and these systems typically use simple but fast algorithms. Other
possible scenarios are fraud detection [19], medical applications (such as patient monitoring
during electrocardiography [20]), data leakage prevention [21] and other more specialised
applications, such as movement detection in surveillance cameras [22] or document au-
thentification in forensic applications [23].

In this work, we aim to detect structural damages in infrastructures based on point
clouds. We use anomaly detection algorithms due to the large imbalance between damaged
and undamaged areas and the small amount of training data for the damaged areas. The
novel detection approach we use can classify defective from non-defective features in a
simulated data environment. The procedure of transferring features from natural images
to point clouds and then performing a novel detection is totally new in the context of
structural health monitoring systems. It is now for the first time possible to detect damages
in an automated manner. This opens the door for further research into the use of pretrained
neural networks for range sensor data. Therefore, the approach developed is applicable in
all areas of damage detection for infrastructure objects.

2. Methodology

We first need to preprocess the data, because unstructured, large 3D point clouds are
unsuitable for most anomaly detection algorithms. Therefore, we transfer features learnt
from natural images to height maps from a range sensor. A height map or height field (also
called a digital elevation model (DEM) [24]) in computer graphics is a raster image that is
mainly used as a discrete global grid in secondary height modelling. Each pixel records
values, such as surface elevation data. In contrast to natural images, the characteristics
of height maps depend on the scan resolution and the object scanned itself, which makes
transferability difficult. A way to overcome this drawback is to train height map neural
networks from scratch [25].

In our system, three different sensor types are merged into one kinematic multi-sensor
system (k-MSS) for the mapping task: a high-resolution hydro-acoustic underwater multi-
beam echo-sounder, an above-water profile laser scanner and five high dynamic range
cameras. In addition to the IMU-GNSS-based georeferencing method known from various
applications, hybrid referencing with automatically tracking total stations is used for posi-
tioning (Figure 1). Although the individual sensors record in a grid pattern, the resulting
point cloud is not grid-shaped due to the movements of the carrier platform.

The choice of damage types depends on the application and the relevant task within
the life cycle management. In this study, we focus on geometrical damages and, for the
time being, we only use point cloud data and no images from the cameras. The point
clouds should have the smallest possible distance between the points, but still large enough
so that there is no correlation between the points due to overlapping laser footprints.
The head of the laser scanner rotates with 100 hz, the platform moves as slow as possible
and the position and orientation is obtained from the GNSS/IMU system. Furthermore,
the following state-of-the-art does not address mapping and data collection due to the
fact that the research contribution lies in the damage detection area. It focuses on damage
detection (see [1] for more details on mapping and data collection).



Remote Sens. 2022, 14, 2518 4 of 19

The method starts with a point cloud of typical structures (see Sections 3 and 5 for
details). Firstly, we transform the point cloud into a height field, which is described in
Section 2.1. Secondly, in Section 2.2, we extract features with a CNN. The third step is the
defect detection using two different approaches: transfer learning and LOF (Section 2.3).

Figure 1. 3D mapping of a port structure above and below water [1].

Both methods yield outlier scores, which can be thresholded to achieve a binary
classification. In contrast to other common outlier detection methods, these do not make
any assumptions about the distribution of the outliers. They are, thus, well-suited for port
infrastructural monitoring where each damage is expected to be unique.

2.1. Height Field Generation

Input variables for the machine learning approach are equally sized and rasterised
distances between the point cloud and the original damage-free structure. In an optimal
scenario, one can use a computer-aided design (CAD) or building information model
(BIM) and determine deviations between the model and the point cloud. Unfortunately, no
models are available for most existing infrastructural objects. There are two possibilities to
overcome this challenge: the manual or (semi-)automatic generation of a CAD model or
the use of an approximated local surface, for example, using a moving-window approach
(e.g., [26]).

In the case of the simulated dataset, we use a mathematical model of a sheet-pile wall
to create the simulated dataset and the corresponding CAD model. The distances from
each point to the corresponding plane in the model are determined according to [27] with
Equation (1) and are then rasterised into a two-dimensional (2D) height field with an equal
2 cm raster size,

dist =
nX · px + ny · py + nz · pz − d

|n| , (1)

where n is the normal vector of the plane with the entries nx, ny and nz. d is the distance to
the origin and px, py and pz are the co-ordinates of the point.

There is no existing CAD model of the quay wall for the real dataset, therefore, we
had to create the model ourselves. For this purpose, regular shapes are fitted into the
point cloud and the distance from the points to the geometry is determined. A simple
plane according to [27] is used as reference geometry in this work. Firstly, the point clouds
are rotated in a consistent direction using principal component analysis. Regular square
sections are then cut from the point cloud. These sections overlap by 50% each in the X
and Y directions. The cutting into smaller sections is useful to be able to estimate (well)
fitting geometries into the point cloud. After cutting, a plane is estimated in each of the
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sections. We only used the points of the quay wall and the damaged areas for the plane
estimation. The distance to the plane is set manually to small values for points that are
located on additional objects, such as ladders or fenders. This allows deviations due to
damage in the grey value differences to be more clearly visible.

The raster size depends on the resolution of the point cloud and must be adapted to
the respective dataset. Empty cells, which occur due to data gaps or inappropriate point
distribution, are interpolated according to [28] with natural neighbour interpolation to
avoid interference in the feature extraction step (cf. Equation (2))

G(x) =
n

∑
i=1

A(xi)

A(x)
f (xi) (2)

where G(x) is the estimate at x, f (xi) the known data at xi, A(x) is the volume of the new
cell centred in x, and A(xi) is the volume of the intersection between the new cell centred
in x and the old cell centred in xi.

The median value of the distances is used in overpopulated cells, which occur due
to inappropriate point distribution. The whole process is implemented in MATLAB and
Python and summarised in a flowchart form in Figure 2.

Figure 2. Flow chart of the automatic damage detection process.

The height field of the infrastructure object obtained is interpreted as a scalar function
defined on a 2D grid, denoted by H(x, y). Afterwards, patches are extracted from the grid
and rearranged into data vectors. The latter x are organised as matrix X with shape N × p,
where N is the number of patches and p the number of pixels. Figure 3 shows an example
of such a height field in grey scale, where a lighter grey value represents a greater deviation
from the nominal CAD model.

Figure 3. Visualising an exemplary height field on a 2D grid in grey scale.
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2.2. Feature Extraction

A deep learning network requires a large amount of high-quality annotated data.
However, as damage to port structures is relatively rare, it takes a very long time and a lot
of measurements until a sufficient amount of annotated data is available. To overcome this
problem, we chose a truncated version of the VGG19 network as the basic backbone for
feature extraction and transferred its pretrained parameters on ImageNet to our dataset
of port structures. The VGG19 neural network is a standard CNN, pretrained on natural
images [29,30]. The network consists of 19 layers and is trained in a classification scenario.
It is well-known for achieving superhuman performance on the extensive scale image
database ImageNet [31]. The latter consists of more than a million labelled natural images
of life scenes (such as cats, people, bicycles), which is very different from the dataset
used in this paper. Therefore, we do not use the original network, but a variant that we
modified. We only keep the first convolutional layers of the network, including layer
pool_4, to prevent overfitting. The reason for this is that deeper layers in the network tend
to learn higher order features, such as objects and faces, than lower layers that learn lower
order features, such as edges and structures. A comprehensive visualisation can be found
in [32]. We focused in this work on the detection of geometric damage such as spalling,
which can be described well with lower order features, therefore, we obtained the best
results with the network truncated after layer pool_4.

In contrast to the scalar function of the height field, the VGG19 network requires
three-channel input (RGB-colour). Therefore, the signal is broadcast over three channels.
We may encounter large height fields depending on the length of the wall scanned. We
split the height fields into smaller tiles to compensate for hardware limitations. Dividing a
large scan into smaller tiles not only increases the computational efficiency but also creates
the possibility of achieving more than one label for the whole area. As a result, defects can
be more efficiently located based on the smaller size of the tiles. If a defect is located at the
border of a tile, affecting more than one tile, a criterion of 50% overlap in both directions
is defined for a more reliable defect detection. Every vector xI is propagated through the
network, and the intermediate activation of the jth layer is stored.

Afterwards, the Gramian matrix of each activation is computed (see [9] for details).
We only keep the diagonal of the Gramian matrix, which relates to the energy per feature,
for computational efficiency and because we are not interested in synthesising new data.
This leads to the feature vector z ∈ IRk, where k is the number of feature maps in the
jth layer of the network. Note that this procedure always leads to a dimensionality k
independent of the input size p. Again, we organise all feature vectors as rows in a matrix,
resulting in a feature matrix Z with shape N × k.

2.3. Defect Detection

The last step of the damage detection process transforms the features that were ex-
tracted from the height fields into a single prediction label. Two different but interchange-
able methods were used: transfer learning and LOF. Their performance is evaluated and
compared in Section 4.

2.3.1. Transfer Learning

We use a three-layer feed-forward neural network to transform the extracted features
into a single output label.

Firstly, it consists of two fully connected layers of the same size as the extracted features.
These layers use the widely used ReLu (rectified linear unit) activation function [33] to
allow for non-linear modelling. Furthermore, a dropout rate of 20% was chosen to help
prevent overfitting during the training of the neural network. Secondly, there is a layer
with a single neuron that is fully connected to the previous layer. This network is appended
to the feature extraction network from Section 2.2. The value of the single output neuron is
then used for threshold-based classification.
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2.3.2. Local Outlier Factor

This second type of discriminator uses a standard approach called a LOF [17]. It is
capable of detecting outliers in data (outliers are data points that do not fit in with the rest
of the data). In order to achieve outlier detection, the LOF method constructs a reachability
graph in feature space to estimate the density of the neighbourhood. It then computes an
outlier score for each data point from this density. There are two different ways of using
this discriminator:

1. The first way is to feed an untrained LOF discriminator with new data and let it
compute outlier scores for each data point. Using these scores, outliers can be found
in new data without any prior training;

2. The second way uses training on clean data (only showing the normal state without any
defects) to create the reachability graph. Afterwards, outlier scores can be computed
for new data by comparing it with the reachability graph of the trained normal case.

Either way, the outlier score is then used for threshold-based classification.

3. Simulation and Application
3.1. Creating the Dataset

Using a machine learning approach requires a large set of labelled training data.
Four steps are necessary for the generation of a simulated point cloud of a sheet pile wall
with damages:

1. Generation of a large number of datasets with randomly located and sized damages
with a mathematical model for a sheet pile wall;

2. Computation of Cartesian co-ordinates of each point on the planes of the sheet pile
wall by projecting rays from the k-MSS in vertical increments. The third dimension
results from the movement of the sensor along a given trajectory. We used a straight
line with equidistant sensor positions in this study for the sake of simplicity;

3. Addition of a random number of damages onto the planes of the sheet pile wall. Each
damage has an ellipsoidal shape with random values for the principal axis;

4. The result is a noise-free point cloud. The ranges of each beam are then contaminated
with random instrumental measurement uncertainty. The distance measurement un-
certainty is assumed to be a normally distributed standard deviation and set according
to the manufacturer’s specifications to 20 mm. The uncertainties of the angles are
neglected, because they lead to a small shift in the plane direction and a resulting small
distant error, which is already included in the 2 cm noise. The resulting resolution of
the point cloud is around 2 cm. Figure 4 illustrates the simulation procedure.

Figure 4. Simulation principal used in this study: at each sensor position, all rays in vertical
increments according to the manufacturer’s specifications are intersected with the planes of the sheet
pile wall.
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A second dataset was generated: it indicates for every position whether it is damaged
or not, and is this the ground truth. Since the height field is a 2D raster image for the
anomaly detection, we also use a 2D binary label image where a value of one stands for
damage and zero for undamaged zones (right-hand side of Figure 5).

Figure 5. Left is the simulated point cloud and right is the corresponding label image where a value
of one stands for damage and zero for undamaged zones.

The raster is generated in the XZ-plane of the point cloud. The image is filtered with
the morphological operators erosion and dilation to avoid coarse shapes or misclassified
raster cells [34]. Erosion is used to separate two near clusters, and dilation fills small holes.
Using erosion after dilation is also called ‘opening’ in mathematical morphology. Figure 5
shows the simulated point cloud with the corresponding label image.

3.2. Training

The defect detection algorithms were implemented in Python 3.7. The TensorFlow
library [35] was used for the pretrained VGG19 network and transfer learning approach.
The implementation provided by the library sklearn [36] was used for the LOF approach.
The datasets are split into 70% training and 30% test data for both approaches.

3.2.1. Transfer Learning

The training of this network requires height field samples without damages. The net-
work needs to be trained on examples of normal and abnormal data to learn how to
discriminate between the two. A different approach had to be used because there are
no large datasets with an even amount of normal and abnormal data available. A new
dataset was created where half of the examples are undamaged and the other half had the
pixels of the height map inside a rectangular region of random size rearranged randomly.
Additionally, some additive white Gaussian noise was added in that region. The network
is expected to learn the statistical properties of a normal height field.

The network was trained on this new dataset. The unaltered, normal examples get a
label of zero, and a damaged one gets a label of one. The network was trained to learn these
labels using transfer learning. This means that the pretrained neurons of the truncated
VGG19 network are kept fixed, while only the new neurons are trained. A dropout rate of
20% was used to decrease the risk of overfitting.

3.2.2. Local Outlier Factor

The LOF approach can be used in two different ways (see Section 2.3.2):

1. With training: A dataset without defects is required for training the LOF discriminator.
The large height field strips are tiled and propagated through the feature extraction
stage, as described in Section 2.2. The LOF learns the distribution of the features of the
normal case. Even if the training data was not completely free of defects, the training
of the LOF discriminator can compensate for a small amount of contamination in the
training data. This feature was not used since we have full control of our training data
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because it is created artificially through simulation. The trained LOF discriminator
can then be saved for inference on new data;

2. Without training: The LOF discriminator can also be used without training. In this
case, the LOF discriminator is trained on-the-fly at inference time. In this manner,
the LOF discriminator can detect anomalies in the new data without prior training of
the normal case.

3.3. Output Merging

Both methods take a large height map image as input, which is split into smaller
overlapping tiles. A pretrained truncated VGG19 network extracts features from those
tiles. Subsequently, either a neural network or a LOF discriminator is used to convert these
features into a scalar value that indicates whether the respective tile shows a defect or not
(see Section 2).

The tiles overlap by 50%, thus, each source pixel from the original height map is
evaluated four times. The scores for the tiles are merged onto a regular non-overlapping
grid of values to allow for a better interpretation, analysis and evaluation of the classification
results. The grid cells have the same size as the individual overlapping regions.

Two functions were tested for merging the tiles’ values into the grid: min and mean.
These functions operate on the values of all tiles, which share the overlapping region at the
position of the grid cell and directly determine its value.

The advantage of this method is that the results can be interpreted as a grey-scale
image and, thus, can be visualised easily. Figure 6 shows an example of a simulated height
map with defects applied (top) and the corresponding outlier activation scores that result
from merging the scores of the tiles using the mean function (bottom). The threshold-based
classification is also performed on this raster as opposed to directly on the tile’s score. This
may improve the classification results as it reduces noise. Oversampling is eliminated,
therefore, each defect is only considered once, making the evaluation more accurate.

Figure 6. (Top) example of a simulated height map with defects applied. (Bottom) corresponding
outlier activation scores that result from merging the scores of the tiles using the mean function.

4. Evaluation

We have evaluated our algorithms on our own synthetic datasets, which we created as
explained in Section 3.1. The damages in this dataset are ellipsoidal in shape and the three
axes of the ellipsoid are randomly sized between 5 and 50 cm.

4.1. Tile Score Merging Method

As discussed in Section 3.3, the outlier score computed for each individual tile needs
to be merged into a non-overlapping grid. Two different functions were used. Their
performance was compared on a dataset with known labels.

Figure 7 shows how the false positive and false negative rate relate to each other for
varying chosen threshold values using the LOF approach. It can be seen that for any false
negative rate, the false positive rate of the mean function is lower than for the min function.
Lower false positive rates are of interest for this application, as a higher value may mean
more manual work to check a larger number of candidates for damage that are, in fact, in a
good state. Thus, the mean function is found to be superior.
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Figure 7. Comparison of tile score merge mode performance.

4.2. Evaluation Method

The size of a defect in our training data is typically larger than the size of one grid
tile. In other words, a defect usually spreads over several grid tiles. It is important for
our application that we can find all the defects, but we do not need to know the exact
extent of each defect. Because of this, it is sufficient if only one (or more) of the tiles that a
defect covers is classified as defective. Thus, for evaluating the usefulness of our algorithms
regarding their intended application, we consider a defect as detected even if not all the
tiles that it covers were classified as defective. Additionally, we ignore the border region of
a labelled defect.

4.3. Threshold Selection

After merging the tile values, a grid of outlier values remains. The threshold required
to detect these values into the Boolean labels normal and abnormal is not known a priori.
It can be chosen arbitrarily to achieve a required maximum false negative rate. Figure 8
shows how the commonly used classification evaluation metrics are dependent on the
threshold for the LOF approach. Outliers are assigned smaller numbers. Thus, with a larger
threshold, more tiles will be classified abnormal. The curve for the recall shows that more
actual defects can be detected. On the other hand, raising the threshold will decrease the
precision, which means that many of the tiles that are classified defective are, in fact, in a
good state. The graph for the accuracy is also worth noting. The dataset contains far more
normal than abnormal examples, therefore, the accuracy can be close to 100% even when
the recall is not that good. This metric is, thus, not suited to evaluating the performance
of anomaly detection. Figure 9 shows the same metrics for the transfer learning approach.
The graphs are generally lower, which shows that our transfer learning discriminator is
inferior to our LOF discriminator.

Abnormal tiles have lower (more negative) scores than normal tiles. Thus, a larger
threshold leads to a decrease in the recall (more defective examples found). However, at the
same time, more false positive results are generated, which decreases the precision.

The primary goal with our application is to find most defects, i.e., a large recall.
However, at the same time, the precision must be low enough to reduce the work that is
required afterwards. Labelling everything as defective is useless. The threshold has to be
selected to fulfil both conditions.
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Figure 8. Dependence of evaluation metrics on threshold, LOF.

Figure 9. Dependence of evaluation metrics on threshold, Transfer Learning.

We were able to achieve much better results using the LOF approach, as can be seen
when comparing the graphs of Figures 8 and 9. Thus, we will focus only on that from now
on. If we chose a desired recall of 95%, we would achieve the following average results
from our data as shown in the confusion matrix in Table 1 and evaluation metrics in Table 2:

Table 1. Confusion matrix for recall = 95% (threshold = −1.298).

Actual Label

abnormal normal

Predicted label abnormal 2781 1017
normal 146 95,820
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Table 2. Evaluation metrics for recall = 95% (threshold = −1.298).

Accuracy 98.8%
Precision 73.2%

Recall 95.0%
F1-Score 82.7%

Figure 10 shows a few examples from our dataset with overlaid classification results.
Correct classification of damage is coloured in green, yellow are false positives (classified
damage where there is none) and red are false negatives (did not detect the damage).
The magenta colouring shows the border areas that were excluded from our analysis.

Figure 10. Examples of classification results on test data. Correct classification of damage is coloured
in green, yellow are false positives (classified damage where there is none) and red are false negatives
(did not detect the damage). The magenta colouring shows the border areas that were excluded from
our analysis.

As can be seen from the examples, most damage that was not detected is close to the
borders of the scan strips. They are covered by fewer tiles and, thus, have a lesser chance of
being detected.

The reason for the rather worse results in transfer learning is possibly that the trained
three-layer network is too small to detect all randomly sized damages.

5. Application to Real Data

Since the method appears fundamentally suitable for identifying potential damage
areas when using simulated data, the next step is to analyse its application to the real
dataset. The real data represents a quay wall above water. It is surveyed with a terrestrial
laser scanner of type Z + F Imager 5016 in Lübeck city port, Germany on 13 sensor positions.
We fused the 13 sensor positions on point clouds to achieve a small spacing between the
points. The point spacing within the point clouds varies due to different scanning positions
but is around 1 cm. The noise reaches 1–2 mm. Figure 11 shows a photo of the quay wall
and the corresponding point cloud. There is obviously spalling in the upper part of the
quay wall between the fenders. Two examples of damaged areas are shown in Figure 12.
Both are spalling in the concrete. They are up to 1.5 m wide and reach a height of 50 cm.
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Figure 11. Real dataset in Lübeck city port. The upper row shows a photo of the quay wall and the
lower row the corresponding point cloud. Spalling is in the upper part of the quay wall between the
fenders.

Figure 12. Two examples of damaged areas in the real dataset. Both pictures show the concrete
spalling damage. The upper image shows three smaller damages with a size of up to 50 cm × 50 cm.
The lower image show larger spalling damage, which is 1.5 m in width and 30 cm in height.

The point clouds were manually divided into three categories to generate ground truth:
quay wall (blue), concrete spalling (green), and additional objects (red). This classification
and corresponding depth and label image are shown in the top row of Figure 13.

Since the methodology performs much better with LOF, as can be seen in the compari-
son of Figures 8 and 9, we use only LOF for the real data. The average result can be seen in
Figure 14. When comparing the average results from the simulated dataset (Figure 8) with
the real dataset (Figure 14), it can be seen that the curves for accuracy, precision, recall, and
F1 score show similar behaviour with a lower overall accuracy.

Again, a threshold is chosen, where precision and recall are essentially equal, which is
a good compromise between true and false positives in an economic sense. The correspond-
ing confusion matrix for the threshold of −1.55 selected can be seen in Table 3. As can be
seen from the table, there is again a strong imbalance between the two classes. The number
of false positives and false negatives is essentially the same.

Table 3. Confusion matrix for recall = 72.6% (threshold = −1.55).

Actual Label

abnormal normal

Predicted label abnormal 9128 3437
normal 3506 57,225
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Figure 13. Real dataset with manually classified ground truth in the top row. No damage is in blue,
concrete spalling is in green and additional objects, such as ladders or fenders, are in red. The middle
row shows the corresponding height field in greyscale, with lighter areas indicating greater distances
between the point cloud and the model. The bottom row shows the binary label image, with white
indicating damage and black indicating no damage.

Figure 14. Dependence of evaluation metrics on the threshold, LOF for real data.

The evaluation metrics for the threshold of −1.55 selected are shown in Table 4.
Accuracy reaches 90.5%. Precision and recall are with 72.2% and 72.6% mainly at the same
level. This results in an average F1 score of 72.4%. This is still an indication of a good
classification, but somewhat worse than in the simulated data.
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Table 4. Evaluation metrics for recall = 72.6% (threshold = −1.55).

Accuracy 90.5%
Precision 72.2%

Recall 72.6%
F1-Score 72.4%

The classification result for two exemplary images is shown in Figure 15. Green, red
and yellow indicate true positives, false negatives and false positives, respectively. Here,
the original height field is shown with a higher contrast in the middle to make grey value
differences in the height field more visible to the human eye. It can be seen in the top row of
Figure 15 that all damages are detected and classified correctly. There are no false positives
or false negatives. Only the two small damages at the bottom edge are not recognised,
but this is because the edge areas are cut off during classification. The example in the
bottom row shows a weaker classification result. Two damaged areas are not detected and,
furthermore, two areas are falsely detected as damage.

Figure 15. Two examples of damage detection using the real dataset from Lübeck city port. The top
row in each case is the point cloud with overlaid damage detection. Green, red and yellow indicate
true positives, false negatives and false positives, respectively. The middle row in each case is the
height field and the bottom row is the label image with overlaid detected areas.
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Therefore, the result is worse than for the simulated data (cf. Table 2). Nevertheless,
the method seems to give good results when applied to real data.

6. Discussion

We assume several reasons for the different results. The first and probably the most
important point is that there are other disturbing objects in the data, such as ladders,
fenders, plants and ropes. The objects also lead to a higher distance in the height fields,
which are currently not separable from higher distances based on real damage. The impact,
particularly of plants, can be reduced by measurements in seasons with little vegetation,
such as winter. The second point is that we do not clean or filter the data at the beginning.
Only a rough manual cutting into the area of interest is carried out. The dataset still contains
outliers and sensor artefacts that lead to false measurements. These artefacts are particularly
strong where the structure comes into contact with the water. Therefore, the optimal time for
the measurement is when the water level is as low as possible. In addition, the noise in the
real data may not be normally distributed and still contain systematic components, unlike
the simulated data. The threshold value for the separation into damaged and undamaged
zones is chosen in the present study in such a way that a good trade-off between detected
damage and actually correct classifications is achieved. The threshold may differ from
another data set and has to be chosen again. In a very sensible and non-economic approach,
one would choose a different threshold value that would give a higher recall.

The method presented is currently limited to geometrical damages, such as spalling
and large cracking. The reason is that only 3D point clouds are used, and no colour infor-
mation, which would be necessary to also detect small cracks and sintering. The method
cannot detect damages smaller than the decimetre range because the point spacing and
noise level underwater from a multibeam echo-sounder is much higher than a laser-scanned
point cloud above water. Damages above water can be detected from the centimetre range
due to the higher accuracy of the laser scanner and the smaller point spacing. Nevertheless,
the results still contribute to automated damage detection and a digitally guided building
inspections process.

The presented method gives similar results to other studies. Point CNN gives a
mean interval above the unity score of 74.68% for bridge inspections with point cloud
classification [37]. A combination of images and point clouds based on Otsu’s algorithm
for automatic concrete crack-detection achieves an average F1 score of 86.7% [38].

7. Conclusions and Outlook

The point clouds are converted into depth images and processed in a pretrained CNN
with two extensions. Regarding the classification, firstly, an NN is attached to the CNN
and, secondly, the LOF is calculated. Building inspection can be digitalised and taken
to a completely new level with the method presented. We achieve a significantly higher
completeness of the infrastructure inspections with the k-MSS used compared to the manual
method with divers. We obtain a quality-controlled and reproducible mapping of the
infrastructure by using laser scanners and hydrographic measurements. Suspected damage
can be reliably detected and verified through the area-based measurement of the component
surfaces above and below water. A comparison of different measurement epochs—as they
have to be carried out every six years within the framework of the building inspection—is,
thus, also possible for structures below water, so that the damage development and the
service life of these economically important structures for our national economy can be
better observed and evaluated in the future.

The procedure of transferring the features from natural images to point clouds and then
performing a novel detection is totally new in the context of structural health monitoring
systems. It is now possible for the first time to detect damage automatically.

The methodology presented is intended to automatically create a suspicion plan with
suspected damage regions from point clouds. To be able to apply the methodology in reality,
all damaged regions must be found as far as possible. Furthermore, only the damaged
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regions should be recognised as such. This means that the accuracy and the recall value
together should be as high as possible. The methodology was first tested on simulated data
and then applied to real data.

The analysis of the simulated data resulted in a very good classification with an F1
score of 96.3%. Concerning the requirements mentioned above, the method is suitable
for creating suspicion plans of damage regions on quay walls. The result is slightly less
effective for the real data. The F1 score is 72.4%. When looking at examples of damage in
the data that has not been detected by our algorithm, it can be seen that most of them are at
the border of the scanned depth map.

The results could be further improved by handling the edges separately, as those
typically show a significantly different distribution compared to the rest of the scan. So
far, we have only been able to test our algorithm on simulated data and one real dataset of
a concrete quay wall. However, we are working towards acquiring more real world data
with different materials and building types. The proposed strategy is also applicable to
other infrastructure objects, such as bridges, high-rise buildings, and tunnels.
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