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ABSTRACT:  
 

For autonomous systems, an accurate and precise map of the environment is of importance. Mapping from LiDAR point clouds is one 

of the promising ways to generate 3D environment models. However, there are many problems caused by inaccurate data, missing 

areas, low density of points and sensor noise. Also, it is often not possible or accurate enough to generate a map from only one 

measurement campaign. In this paper, we propose a method to incrementally refine the map by several measurements from different 

campaigns and represent the map in a hierarchical way with a measure indicating uncertainty and the level of detail for objects. The 

idea is thus to store all captured information with a tentative semantics and uncertainty – even when it is not yet complete. Hence, 

occulated areas are presented as well, which can be possibly improved by the supplemental observation from the next measurement 

campaign. The proposed 3D environment model framework and the incremental update method are evaluated using LiDAR scans 

obtained from Riegl Mobile Mapping System. 

 

 

 

1. INTRODUCTION 

A precise 3D map is of great importance to many applications, 

such like autonomous systems. In outdoor environment, stereo 

images and light detection and ranging (LiDAR) are the popular 

technology to obtain data. Mobile LiDAR is a powerful way to 

measure dense point clouds along roads. However, due to the 

constraints of scanning distance, field of view, object self-

occlusion and occlusion by others, it is difficult to obtain a 

complete and sufficient sampling of all the building surface in 

one measurement campaign (Wang et al., 2018). Many 

researchers come up with methods to reconstruct the urban scene, 

during which many problems exist such as inaccurate data, 

missing areas, low density of points and sensor noise. For 

stationary scanning method, multiple scans at different locations 

are applied to get complete datasets. Likewise, for mobile 

mapping system, point clouds from several measurement 

campaigns can be used to improve the map. In this paper, we 

propose a method to refine the map by several measurements 

from different campaigns incrementally:  the map is represented 

in a hierarchical way with a measure indicating uncertainty and 

the level of detail for objects. This way, high-level objects like 

the façade structures are automatically modelled in an 

incremental and hierarchical way, as more data become available. 

 

There are a variety of 3D urban model researches, among which 

building modelling is particularly addressed. The grammar-based 

reconstruction (Alegre et al. 2004, Ripperda and Brenner 2009) 

was developed to extract building structures, where statistical 

approaches, e.g. MCMC, rjMCMC, are utilized to generate the 

models. In some other researches, more semantical context of 

building structures are used as prior knowledge. (Xiong et al., 

2013) use contextual relationships to label patches and (Malihi et 

al., 2016) pre-cluster the building point clouds and model the 

planes, edges and vertices later with the geometrical constraints 

from plane intersection.  

  

The incomplete point cloud and the occlusion in the measurement 

is a challenge for urban scene modelling. It is difficult to measure 

the back and the roof of the building from the Mobile Mapping 

System mounted on a vehicle (Wang et al., 2018). Some existing 

methods deal with the problem with prior knowledge such as the 

repetitive and symmetric geometry of building structures 

(Ripperda and Brenner 2009, Malihi et al. 2016). Some methods 

like (Xiong et al., 2013) utilize learning-based algorithms to 

model the structures and fill the holes (Stutz and Geiger, 2020). 

(Tutzauer and Haala, 2015) fuse geometric features with color 

information to better model windows. In (Li and Wu, 2020), 

topological relations are applied as constraints to reconstruct 

complex buildings from incomplete point clouds. All the 

approaches try to identify complete semantic objects (building 

components). However, they do not model partial or even 

completely unknown information. This is where our approach 

comes in: it also tries to capture the partial knowledge. For 

example, when a laser beam only hits a few points on the façade, 

it is not possible to reconstruct the façade; however, it provides 

some information about its tentative position and orientation. 

 

This paper proposes a method to automatically generate and 

update the map incrementally from more than one measurement 

campaign and potentially with different sensors. In the beginning, 

the initial urban scene might be mapped incompletely and 

partially inaccurate, where the modelling does not require the 

complete datasets for every side of the building. The map is 

refined by more measurements obtained later. Moreover, the 

existing methods often just fill the unknown occluded region with 

their models, but none of them stores this information to indicate 

the uncertainty there. This information is provided as a part of the 

integrity measure in our map and serves for the next refinement. 

In this way, a model stores not only the information it knows, but 

also the information it does not know. In addition, general 

knowledge about the object (here building and its parts) and the 

sensors will be used for the integration of subsequent 

measurements in a hierarchical fashion. E.g. if initially a façade 

is instantiated with high accuracy, however containing missing 
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parts due to occlusion, later the missing parts may only be filled 

with sub-objects of a façade, and taking the geometric constraints 

of the original façade into account. Thus, each new measurement 

will contribute to the completion of the model and/or to an 

improvement of its accuracy and integrity.   

 

2. METHOD 

2.1 Overview 

The proposed 3D model has a hierarchical structure. An object 

has its own sub-elements and corresponding integrity measure. 

For example, a building consists of facades while a façade 

consists of planes, windows and doors, with an integrity measure 

showing the point density or quality of the plane parameters, as 

well as occluded regions. The workflow goes from the building 

to each façade, to planar patches, and to more detailed elements.  

 

Figure 1 shows the framework of our method. To begin with, the 

point cloud labelled as “building” is segmented into individual 

building instances. In this step, ground plans from cadastral maps 

are applied as constraints to separate them. 

    

For an individual building, the RANSAC shape detection 

(Schnabel et al., 2007) is used to extract the planes and pre-

cluster the points to different façades of the building. Then more 

detailed components are estimated for each façade. The points 

are projected to 2.5D, where windows, doorways and occlusions 

are detected and estimated. For vertical planes, the depths of 

different planes are estimated by a Gaussian Mixture Model. 

With the assumptions that the façade elements are repetitive and 

symmetric, and the boundary of the façade intersects with ground 

planes, some missing area can be preliminarily completed. One 

option is to fill the missing information by learning-based method 

(it is not discussed in detail in this paper). In all these cases, the 

original occluded areas remain in the object and its uncertainty is 

indicated.  
 

 
 

Figure 1. Overview of the workflow 

 

The last – iterative – step is the refinement from the next 

measurement dataset. The occluded region is likely to be 

measured and corrected with the new measurements. The 

problematic facade side with only few measured points and 

difficulty to detect the elements can get enriched information. 

Some objects can be merged and completed. The parameters of 

the planar patches are improved as well.  

 

The inference process is iteratively and hierarchically 

instantiating façades and the elements on a façade, which is 

controlled by the hierarchical building model given in Figure 2. 

On a coarse level, the representation is a bounding box of the 

façade, together with the accuracy of the depth. When more 

information is available, this façade can be split into several 

façade parts, which, in turn, can be specified into different 

(semantic) parts, such as windows, doors and structural elements 

on the façade, including balconies, small extrusions and 

decorative elements, as illustrated in Figure 2. Methods are 

devised, allowing for the extraction and delineation of these 

objects, which are described as polygons. In the following, the 

methods for extracting facades, simple windows, as well as 

occluded areas are described. 
 

 
 

Figure 2.  Hierarchical model  

 

2.2 Pre-processing and assumptions 

To obtain the “building” point clouds, raw point clouds are pre-

classified by deep learning-based method (Peters and Brenner, 

2019). In this approach, labelled scan strips are generated by 

projecting 2D prediction to 3D point clouds using fully calibrated 

mobile mapping data. Since this leads to various types of label 

noise due to occlusions, the point cloud must then be corrected, 

which was done in this case using a supervised neural network.  

 

The ground plans cannot accurately separate these points 

directly, as they are not the true footprints of buildings. The 

protrusions of different buildings have various distances to the 

main walls, which are mostly generalized in the cadastral map. In 

addition, there are other objects in urban scenes, e.g. vegetation 

and cars, close to buildings. It would be improper to extract all 

building points by a buffer of ground plan polygons. This is why 

the learning-based classification is performed first. 

 

In cadastral maps, the footprints of buildings are represented as 

polygons, in WGS 1984 UTM coordinates. The point clouds are 

measured in the same coordinate system. With the assumption 

that most of the classified points are buildings, these points are 

connected to the nearest building instance in the cadastral map, 

involving a spatial join. This way, the points are segmented to 

individual building instances, as shown in Figure 3. To deal with 

little remaining label noise in the deep learning classification, 

points with a distance of more than two meters are ignored. 

 

 
 

Figure 3. Segmentation of the buildings. 
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2.3 Points segmentation on a façade  

For an individual building, each façade is processed separately, 

by projecting the 3D points to 2.5D planes in regular grids. The 

normal vector of the façade and the preliminary centre are 

estimated by RANSAC shape detection (Schnabel et al., 2007). 

Points on the same façade are segmented to the planes with 

different depths by Gaussian Mixture Model (GMM), as shown 

in Figure 4. The Gaussian component with the highest weight is 

considered as the main plane, which is the third one for the façade 

in Figure 4 b). In our assumption, the main plane of a façade is a 

vertical plane, representing the orientation or normal of the 

façade. Therefore, the points belonging to this plane are extracted 

to calculate a more accurate normal vector for the façade. In a 

Gaussian distribution 𝑋~𝒩(𝜇, 𝜎), about 99.6% of values are 

supposed to distribute within three standard deviation (𝜎) away 

from the mean (𝜇). Thus, points distributed within this interval 

are extracted. Then Principle Component Analysis (PCA) is 

performed for these points and the resulting third dimension is  

the normal direction of the façade. Points are transformed to a 

new 2.5D space, with the new normal and a new Gaussian 

Mixture Model is estimated again to segment them to planes.  

 

 
a) Profile of the façade        b) Gaussian Mixture Model 

Figure 4. Segmentation of points based on depth 

 

The accuracy of a plane is estimated with the standard deviation 

𝜎. On the same plane layer, different objects are then segmented 

by iterative region growing. The shape of an object is a polygon 

calculated using alpha-shape algorithm. The uncertainty is 

relevant to the confidence whether the object belongs to a plane, 

as computed in equation (1): 

 

𝛼 = 1 − (𝑐𝑑𝑓(𝜇 + | 𝜇 − 𝑑 ̅|) −  𝑐𝑑𝑓(𝜇 − | 𝜇 − 𝑑 ̅|)),       (1) 

 

where 𝛼  is the confidence level, 𝜇  is the mean of the 

corresponding Gaussian component, 𝑑̅ is the average distance to 

𝜇, 𝑐𝑑𝑓  is the cumulative density function of the distribution. 

 

Figure 5 shows an example for the extracted window casings. To 

make the uncertainty measure grows when errors increase, in 

practice, the uncertainty measure is obtained as equation (2). In 

Figure 5, the object with quite large uncertainty 0.998 indicates 

that it is probably not on this plane, but since there is no sufficient 

information available for it yet, it is stored in this way. 

 

   𝜖 = 1 − 𝛼      (2) 

 

 
Figure 5. Shape and uncertainty of the window casing 

 

2.4 Windows and occlusions 

Windows and occlusions are both holes in the point cloud. To 

distinguish them, a ray-tracing algorithm is applied. The points 

measured in front of the main façade plane in the neighbour 

region are all considered for computation. The area that has been 

either self-occluded or occluded by foreground objects like 

vehicles, vegetation or a road sign, are marked as occlusion mask.  

 

The remaining holes are considered as the candidates for 

windows and doorways. In the projected plane, if the ratio of 

pixels in a hole to pixels in the total bounding box of the hole is 

larger than the threshold value 𝑇𝑎 , the hole is selected as a 

candidate for windows. After edge detection of the hole, vertical 

and horizontal lines are extracted by Hough Transform, and then 

compose candidate rectangles. The rectangle with the best 

estimation of a hole is stored as the shape of the window. The 

criteria is to minimize the uncertainty, which is the number of 

different pixels between rectangular polygon and original hole 

area, as shown in Figure 6 and equation (3), where “1” denotes 

the hole, “0” is the occluded area, “-1” indicates the area with 

non-window objects detected, and the orange polygon is a 

candidate window rectangle. The presented whole grid is the 

bounding box of the hole. If a candidate rectangle contains pixels 

with value not equal to one, or there are “1” pixels not in the 

orange polygon, the error will increase, as denoted as red “T” in 

Figure 4 b). 

 

                                      
   a)  Shape estimation of the hole          b) Different pixels   

Figure 6. Window shape estimation 

 

𝜖𝑤 =
𝑁𝑑𝑖𝑓𝑓 + 𝑁𝑜𝑏𝑗

𝑁ℎ𝑜𝑙𝑒
,         (3) 

 

where 𝜖𝑤  is the uncertainty of the window, 𝑁ℎ𝑜𝑙𝑒  is the total 

number of hole pixels, 𝑁𝑑𝑖𝑓𝑓  is the number of different pixels 

with respect to the window shape, 𝑁𝑜𝑏𝑗  is the number of non-

window object pixels included in the shape. 

 

After window detection and modelling, the irregular holes not 

selected for windows are labelled as unknown, together with the 

occlusion mask marked in the beginning in Figure 7 a). The 

uncertainty of these holes are marked as infinite, and they are 

represented by polygon shape as well. Occlusions and self-

occlusions are both presented as the polygons with white 

boundaries in Figure 7 b).   
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       a) Occlusion mask         b) Shape of the unknown area 

Figure 7. Shape of occlusions 

 

2.5 Refinement   

The refinement of the existing model with new coming data is 

based on object-level. The detailed façade elements are refined 

with new estimated objects from new measurements. The 

individual building is segmented from the new measurement by 

the same step as above. For a building, points are classified to the 

existing façades according to their distances to the main plane. If 

the distance is larger than two meters, it is marked as unclassified 

and if possible, these points will be computed to find a new 

façade of the building using RANSAC algorithm.  

            

The points of the same façade are applied to new normal vector 

calculation and refinement with PCA, which is then combined to 

the normal vector from the existing model with the weight  𝑤 

computed by the point size of the new cloud. Gaussian Mixture 

Model estimation and points segmentation are performed for the 

new measurement data. As the new data and existing data share 

the same original depth values, two statistical models can be 

combined with Bayes principle. The new distribution multiplies 

the existing GMM, as an analogue of Kalman Filter. The 

following equations demonstrate the multiplication of each 

Gaussian component. 

 

𝒩(𝜇0, 𝜎0) ∙ 𝒩(𝜇1, 𝜎1) = 𝒩(𝜇′, 𝜎′)     (4) 

 

 𝑘 =  
𝜎0

2

𝜎0
2+𝜎1

2    (5) 

 

𝜇′ = 𝜇0 + 𝑘(𝜇1 − 𝜇0)   (6) 

 

𝜎′2
=  𝜎0

2 − 𝑘 ∙ 𝜎0
2   (7) 

 

where (𝜇0, 𝜎0)  are the mean and standard deviation of  Gaussian 

component for the existing model, (𝜇1, 𝜎1) are the parameters of 

the new Gaussian component, 𝒩(𝜇′, 𝜎′) is the refined model.  

 

The façade elements and occlusions are modelled as same as the 

approach in 2.3 and 2.4. The modelled objects are compared with 

the existing objects. If they belong to the same plane class and 

the shape polygons overlap with a significant area (e.g. IoU), two 

objects can be likely merged. For example, in Figure 8 a), there 

are two windows from the existing model (red) and new model 

(orange), respectively. The original hole area is recorded in the 

model, with the pixel value as the number indicating how many 

times a pixel is detected as “window” in every single 

measurement campaign, which will be treated as weights for the 

best window shape estimation. The region detected as other 

objects instead of the occlusion would count as error with a 

negative weight; i.e. if these pixels are contained in the rectangle, 

the error will increase. Vertical and horizontal lines from the 

existing window shape and new shape compose a new set of 

candidate rectangles. The best shape is found by minimizing 

different weighted pixel numbers between original hole area and 

shape polygon. The ratio of weighted number of difference to the 

total weighted number indicates the uncertainty of the object. In 

Figure 8, two windows before merging have the uncertainty 

measures as 0.1353 and 0.0867, while the uncertainty of the 

merged window shape is 0.0762. 

 

                           
 

a) Windows of two models           b) Merged window shape  

Figure 8. Window shape refinement 

 

Other objects, which have irregular shapes derived by the alpha-

shape algorithm, are merged with similar criteria but slightly 

more complicated. If the polygon to be merged has occupied the 

pixels detected as objects on other plane layer, their uncertainty 

will be compared, and the conflicting pixels will be allocated to 

the one with better accuracy. 

 

                       
  a) Before merging    b) New measurement    c) Merged objects 

Figure 9. Object shape refinement: small vertical extrusions 

 

For different measurement campaigns, the occluded area 

typically is not exactly the same, which helps to merge objects 

and complete the holes in the existing model. It can happen that 

one façade structure is separated by occlusions and modelled as 

several objects in the earlier model, as presented in Figure 9. In 

the refinement, they can be merged to one object and the 

occluded part can be completed. 

 

3. DATA AND EXPERIMENTS 

In the experiments, the 3D Lidar datasets were observed from the 

Riegl Mobile Mapping System VMX 250 in Hannover, 

Germany. The measurement quality of the scanner system is 

specified as 5-mm precision, 10-mm accuracy. As the GPS 

positioning inaccuracy is larger than the laser scanner noise, the 

measurements from different campaigns were aligned with the 

strip adjustment method proposed by (Brenner, 2016), with a 

standard deviation lower than 2-cm. The point clouds are 

classified with a deep learning approach proposed by (Peters and 

Brenner, 2019) and the ones labelled as “building” are 

investigated in the experiments.  

 

The individual building instances are segmented with the ground 

plan constraints. Different façades of the building are then 

extracted. The clustered points of a façade are projected to 2.5D 

as a depth image, as shown in the Figure 10. It can be partially 
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segmented to plane layers based on the depth value. Figure 10 a) 

shows a general picture of the different elements on a façade. 

Thus, the façade model after the analysis of the first measurement 

consists of main façade (green), structures on the facade (yellow), 

as well as the ground level façade (light green). All of these 

objects are represented as 2D-polygons, including their depth, 

semantics and uncertainty values. 
 

 
        a) Segmented plane layers        b) Extracted elements and occlusions 

 

  
        c) First refinement                               b) Second refinement 

Figure 10. Segmented depth image 

 

To eliminate the impact of the low sampling resolution of the 

sensor in some area, the point density is analyzed to better detect 

the holes. Afterwards, an iterative region growing is performed 

to extract windows and occlusions. The shapes and locations of 

windows are estimated and the presence of the unknown area are 

stored. The estimated façade elements in Figure 10 b) are 

presented with modelled shapes and the uncertainty measures for 

windows (red polygons), as well as the unknown occluded 

patches (white polygons). If the façade elements are predicted or 

completed in the unknown area afterwards, the initial infinite 

uncertainty can be improved.  

 

When the next point cloud measurements are obtained for this 

region, the model will be refined. Figure 10 c) and b) are the 

refinement results. The occluded region is significantly 

eliminated. The detection of windows is more complete. 

 

Figure 11 shows a façade that is not well measured with only one 

measurement campaign but the information is enriched 

incrementally, from a coarsely estimated irregular plane in Figure 

11 a) and b) to a plane with few windows (yellow polygons) in 

Figure 11 c). The accuracy of the façade plane improves with 

more data and refinement. The hierarchical model of this façade 

is illustrated in Figure 11 c) as well, where the purple polygons 

are the captured detailed elements. Most of the objects are 

window casings while O4 with large uncertainty measure is 

likely not on the same plane as others and could be better 

recognized with more new measurements. 
   

                                    
               a) First measurement              b) Two campaigns 

 

 
     c) Three campaigns 

Figure 11. Enriched façade information 

   

Figure 12 presents the results of the refinement of object shapes 

(mainly window casings). The polygons with green boundaries 

are supposed to be located on the same plane with similar depth. 

The object shapes are more complete from the first measurement 

to two campaigns. With three campaigns, the boundaries of the 

objects are smoother, however, the improvement is not that 

remarkable as before. The reason could be that the mobile 

mapping system has the same route for measurements in this 

case, and these two measurements have been  pretty close in time. 

The occlusions close to the ground are still there. 

 

    
a) First measurement   b) Two campaigns       c) Three campaigns 

Figure 12. Completed object shapes 

 

The façade in Figure 12 is not on the street where the mobile 

mapping system drives but perpendicular to it. The street is on 

the left side of the facade, and thus, the range is longer for the 

right part, which leads to a worse accuracy. This explains the 

presence of the large polygon on the right side, resulting from the 

inaccuracy of depth. It should be a part of the main façade plane 

but it is not corrected by new measurements here as the mobile 

mapping system measured similar data with the same route. 

 

4. CONCLUSION  

In this paper, a workflow for a hierarchical building modelling 

and the refinement of models with new coming measurements is 

F1, 
label: façade, 
uncertainty(𝜎): 

0.0130 m 

F1 F1 

F1, 
label: façade, 
uncertainty(𝜎): 

0.0107 m 

F1 
label: façade, 
uncertainty(𝜎): 

0.0103 m 

F1 

W1, window, 
uncertainty: 0.195 
W2, window, 
uncertainty: 0.273 

O1, window casing, 
uncertainty: 0.246 
O2, casing, 
uncertainty: 0.345 
… 
O4, unknown, 
uncertainty: 0.988 

W1 

O1 
O3 

O2 

W2 
O4 
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demonstrated. In particular, the representation of the façade 

models is described, taking different semantic objects, as well as 

unknown objects with their respective qualities into account. The 

resulting façade elements are represented with polygon shapes 

and uncertainty measures. The experimental results show that the 

fusion and refinement from more measurements improve the 

accuracy of the existing map.   

 

The model can be used for different applications, especially in 

the automotive context, where the benefits are obvious: whereas 

traditional 3D city models and HD maps rely on complete 

information, which is difficult, expensive and time consuming to 

acquire, this model delivers partial information as well. E.g. the 

façade element F1 in Figure 11: an autonomous vehicle whose 

laser beam hits this element can safely use this information for 

self-localization. 

 

The paper serves as a proof of the concept, which will be 

elaborated more in the future. In this work, the occluded parts are 

currently not particularly modelled. The hole completion 

methods for the occluded area before the actual data measured 

need to be further studied as well. The inference process has been 

demonstrated for the detection of facades and windows; this will 

be extended to other (semantic) objects.  

 

Although most of the geo-objects can be estimated better with 

more data, there are some areas that can never be measured due 

to the limitation of MLS location, e.g. the roof with quite flat 

angle. In the future, more sensors can be fused to compensate it, 

like aerial sensors. Thus, the refinement process should further 

consider the data from other sensors, with different 

characteristics, e.g. drone data. The workflow presented in this 

paper allows this in principle.  

 

In general, it is hard to tell how many campaigns are sufficient 

for a precise map, as it depends on how often the measurement 

runs, if some objects, e.g. parked cars, have moved, and if the 

route of the mobile mapping system has passed the backside of 

the building. More investigation experiments will be done to have 

a better insight into that. The assumption is the map will be 

continuously refined by more new measurements – which will be 

captured by potentially all future vehicles with more and more 

sensors incorporated. Thus, another aspect of future research will 

be to simulate automotive grade sensors and check the update 

quality of those sensors. In addition, as the environment change 

may occur, the prediction and detection of the temporal change 

could be studied to collaborate with it. 
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