
ScienceDirect

Available online at www.sciencedirect.com

www.elsevier.com/locate/procedia
Procedia CIRP 99 (2021) 656–661

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering,
15-17 July 2020.
10.1016/j.procir.2021.03.089

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 14th CIRP Conference on Intelligent Computation in Manufacturing Engineering,
15-17 July 2020.
Keywords: Adaptive extended Kalman filter; Neural Network; Robustness and stability metric; Denoising

1. Introduction

Extended Kalman Filters are widely used for sensor fusion
and denoising sensor data in areas of signal processing and
prediction. This technique is often used before a noisy time line
series can be used for information extraction. Although great
progress has been achieved with classical Kalman filters and
neuronal network techniques for time series approximation and
regression were developed. Both techniques need suitable
background information like physical assumptions or huge
training datasets.

In practice these assumptions or training datasets are often
not available. The target is to denoise field sensors in industrial
machinery without information of the theoretical optimal time
series. A real case is e.g. further processing for features or
mechanical fading.

In this paper we introduce a system that takes directly raw
input data from sensors and calculates signal characteristics for
denoising the inputs without knowing the system behavior. We
generally assume that this is in practice a nonlinear system. The
input time series is separated in origin and noise component.

Internal parameters like the probability density function of
noise and power are calculated. The estimated robustness and
accuracy of the neuronal network which is used for filtering,
and the related observation are published to the user.

This paper is divided into 6 sections. In section 2 we recall
the Extended Kalman Filter (EKF) first followed by a short
introduction into back propagation of feed forward neuronal
networks (FNN). Section 3 contains the derivation of our
approach based on EKF and FNN techniques. The role of
system observability is also discussed in this context. In section
4 the characteristics of the implementation with respect to
computational power and numerical stability is shown. In
section 5, we compare our approach to an EKF simulation
scenario. The conclusions are drawn in section 6.

2. Related Work

In this subsection we derive a filtered discreet signal (𝑦𝑦𝑘𝑘)
which contains superimposed noise at time 𝑘𝑘.

𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘 + 𝑣𝑣𝑘𝑘 (1)

14th CIRP Conference on Intelligent Computation in Manufacturing Engineering, CIRP ICME ‘20

Estimation of unknown system states based on an adaptive neural network
and Kalman filter

Christoph Kellermanna,*, Jörn Ostermannb

aGerresheimer Bünde GmbH, Erich Martens Str. 26-32, 32257 Bünde, Germany
bInstitut für Informationsverarbeitung - Leibniz Universit at Hannover, Appelstr. 9A, 30167 Hannover, Germany

* Corresponding author. Tel.: +49 5223 164 233; fax: +49 5223 164 211. E-mail address: christoph.kellermann@gerresheimer.com

Abstract

In the field of industry 4.0 the number of sensors increases steadily. The sensor data is often used for system observation and estimation of the
system parameters. Typically, Kalman filtering is used for determination of the internal system parameters. Their accuracy and robustness depends
on the system knowledge, which is described by differential equations. We propose a self-configurable filter (FNN-EKF) which estimates the
internal system behavior without knowledge of the differential equations and the noise power. Our filter is based on Kalman filtering with a
constantly adapting neural network for state estimation. Applications are denoising sensor data or time series. Several bouncing ball simulations
are realized to compare the estimation performance of the Extended Kalman Filter to the presented FNN-EKF.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

Christoph Kellermann et al. / Procedia CIRP 99 (2021) 656–661 657

The signal is divided into the true value (𝑥𝑥𝑘𝑘) and two noise
components, the process noise (𝑤𝑤𝑘𝑘) and measurement noise
(𝑣𝑣𝑘𝑘).

2.1. Discrete Extended Kalman Filter

There are many examples for successful Kalman filtering in
control system applications with noisy input data since the
original paper by Kalman [1]. Later on, the Kalman filter
problem was transferred to a nonlinear model called “Extended
Kalman Filter” (EKF). Most EKFs employ a first order
linearization using the Taylor series expansion. Errors in the
estimated parameters may lead to divergences sometimes [2].
In addition a second-order version of EKF exists but the
calculation complexity makes it unfeasible in practical usage,
especially for real-time and high dimensional systems [3].
This subsection focuses on the derivation of the discrete-time
EKF.

Nomenclature

𝔼𝔼 expectation operator
J symbolizes Jacobian Matrix
𝑥𝑥𝑘𝑘 unknown states
𝑦𝑦𝑘𝑘 observations/measurements, input matrix
𝑾𝑾𝒌𝒌 process noise
𝑽𝑽𝒌𝒌 measurement noise
𝑱𝑱𝒇𝒇(∙) process nonlinear function matrix
𝑱𝑱𝒉𝒉 (∙) observation nonlinear function matrix
𝑸𝑸𝒌𝒌 process noise covariance matrix
𝑹𝑹𝒌𝒌 measurement noise covariance matrix
𝑷𝑷𝒌𝒌 approximate error covariance matrix
𝑲𝑲𝒌𝒌 Kalman gain matrix

Variables with a hat stand for estimated values.
Vectors and matrices are printed in bold letters.

A set of EKF equations is available to perform the
estimation of state. The equations are given as follows [4], [5].
Model and observation states:
𝒙𝒙𝒌𝒌 = 𝑱𝑱𝒇𝒇 (𝒙𝒙𝒌𝒌−𝟏𝟏) + 𝑾𝑾𝒌𝒌−𝟏𝟏 (2)
𝒚𝒚𝒌𝒌 = 𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌) + 𝑽𝑽𝒌𝒌 (3)
Initialization:
𝒙𝒙𝟎𝟎 = 𝔼𝔼[𝒙𝒙𝟎𝟎] (4)
�̂�𝑷𝟎𝟎 = 𝔼𝔼[(𝒙𝒙𝟎𝟎 − 𝒙𝒙𝟎𝟎)(𝒙𝒙𝟎𝟎 − 𝒙𝒙𝟎𝟎)𝑇𝑇] (5)
Time update/Forecast:
𝒙𝒙𝒌𝒌 = 𝑭𝑭(𝒙𝒙𝒌𝒌−𝟏𝟏) (6)
�̂�𝑷𝒌𝒌 = 𝑱𝑱𝒇𝒇(𝒙𝒙𝒌𝒌−𝟏𝟏)𝑷𝑷𝒌𝒌−𝟏𝟏𝑱𝑱𝒇𝒇

𝑻𝑻(𝒙𝒙𝒌𝒌−𝟏𝟏) + 𝑸𝑸𝒌𝒌−𝟏𝟏 (7)
Measurement update/corrector:
𝒙𝒙𝒌𝒌 = 𝒙𝒙𝒌𝒌−𝟏𝟏 + 𝑲𝑲𝒌𝒌 (𝒚𝒚𝒌𝒌 − 𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌)) (8)
𝑲𝑲𝒌𝒌 = �̂�𝑷𝒌𝒌𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌)𝑬𝑬𝒌𝒌 (9)

with 𝑬𝑬𝒌𝒌 = [𝑱𝑱𝒉𝒉
𝑻𝑻(�̂�𝑥𝑘𝑘)�̂�𝑷𝒌𝒌𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌) + 𝑹𝑹𝒌𝒌]−1

(10)

𝑷𝑷𝒌𝒌+𝟏𝟏 = �̂�𝑷𝒌𝒌 − 𝑲𝑲𝒌𝒌𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌)�̂�𝑷𝒌𝒌 (11)

The coefficients of 𝑷𝑷𝒌𝒌+𝟏𝟏 are estimated at time 𝑘𝑘 based on the
new observations and the state estimations are propagated to
time 𝑘𝑘 + 1. The maximum likelihood function is estimated by
the coefficients of the Kalman gain matrix 𝑲𝑲𝒌𝒌. The Kalman
gain matrix 𝑲𝑲𝒌𝒌 is based on the assumption reflected in the
noise covariance matrices 𝑹𝑹𝒌𝒌 and 𝑸𝑸𝒌𝒌. These three matrices are
important for the stability of the EKF [5], [6]. We will
concretize this in chapter 3.4.
Equation (8) denotes the state matrix prediction. The part
𝒚𝒚𝒌𝒌 − 𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌) of equation (8) is called state error vector. Special
attention will be paid to the error vector in chapter 3.

Constraints to the EKF model are denoted in the following.
Process noise 𝑾𝑾𝒌𝒌 and measurement noise 𝑽𝑽𝒌𝒌 must be
temporally uncorrelated zero-mean Gaussian random
sequences. Matrices 𝑸𝑸𝒌𝒌 and 𝑹𝑹𝒌𝒌contain the known covariances
of the process and the measurement noise, respectively.

𝔼𝔼[𝑊𝑊𝑖𝑖𝑉𝑉𝑗𝑗
𝑇𝑇] = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 (12)

𝔼𝔼[𝑊𝑊𝑘𝑘𝑊𝑊𝑘𝑘
𝑇𝑇] = {𝑸𝑸𝒌𝒌 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 𝑗𝑗

0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 ≠ 𝑗𝑗
(13)

𝔼𝔼[𝑉𝑉𝑘𝑘𝑉𝑉𝑘𝑘
𝑇𝑇] = {𝑹𝑹𝒌𝒌 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 𝑗𝑗

0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 ≠ 𝑗𝑗
(14)

The estimation performance of an EKF is directly related to
the correct 𝑸𝑸and 𝑹𝑹 noise covariance matrices [7].

2.2. Backpropagation for Forward Neural Network

Feed forward neural networks (FNN) with an input, one
hidden and an output layer can theoretically approximate every
function [8]. Fig. 1 shows a FNN with only one hidden layer.
A given input pattern 𝒙𝒙 = {𝑥𝑥1, ⋯ , 𝑥𝑥𝑚𝑚} leads after propagation
through the FNN to an output 𝒐𝒐 = {𝑓𝑓1,2, ⋯ , 𝑓𝑓𝑛𝑛,2} . The
nomenclature for FNN is first index of the node followed by
the index of the layer.
Inside the network consists of different neurons which have
weights and an additive bias. The result of weighted sum with
the bias is passed to an activation function 𝐹𝐹𝑗𝑗 before the output
𝑓𝑓𝑗𝑗 can be computed [9] (Fig. 2). The output of a neuron with
index 𝑗𝑗 is calculated by

𝑓𝑓𝑗𝑗 = ℱ𝑗𝑗 ((∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖,𝑗𝑗
𝑎𝑎
𝑖𝑖=1) + 𝑏𝑏𝑗𝑗) (15)

Fig. 1. Feed forward network with m inputs and one output. Connection
matrices are labelled with w. In the hidden layer the 𝒘𝒘𝑖𝑖,𝑗𝑗is a row vector with

length m.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

658 Christoph Kellermann et al. / Procedia CIRP 99 (2021) 656–661

Fig. 2. Structure of a neuron is shown. The first index stands for the node
followed by the index of the layer.

The goal is to estimate the correct weights and bias to
minimize the mean square error of the overall outputs and their
corresponding targets defined by the training set [9]. The
training dataset {(𝒙𝒙1, 𝒕𝒕1),⋯ , (𝒙𝒙𝑝𝑝, 𝒕𝒕𝑝𝑝)} consists of 𝑝𝑝 pairs
(input and target patterns) of m- and n-dimensional vectors.

The most popular learning algorithms for FFNs is the
gradient descent error backpropagation (GDB) described
hereinafter [10]. Every weight and bias is updated per iteration
with the set of equations (16) to (23) [10] [11]. The adjustments
of weights and bias are based on gradient descent. 𝜂𝜂 represents
the learning rate which defines the step size of each iteration.
In this example the output layer has no activation function (Eq.
23).
For the hidden layer:

Weight update: ∆𝑤𝑤𝑖𝑖,1 = −𝜂𝜂𝛿𝛿𝑖𝑖,1𝑜𝑜𝑖𝑖,0 (16)
Output init.: 𝑜𝑜𝑖𝑖,0 = 𝑥𝑥𝑖𝑖 (17)
Bias update: ∆𝑏𝑏𝑖𝑖,1 = −𝜂𝜂𝛿𝛿𝑖𝑖,1 (18)

𝛿𝛿𝑖𝑖,1 = ℱ1′(𝑜𝑜𝑖𝑖,1)𝑤𝑤𝑖𝑖,2𝛿𝛿𝑖𝑖,2 (19)
For the output layer:

Weight update: ∆𝑤𝑤𝑖𝑖,2 = −𝜂𝜂𝛿𝛿𝑖𝑖,2𝑜𝑜𝑖𝑖,1 (20)
Bias update: ∆𝑏𝑏𝑖𝑖,2 = −𝜂𝜂𝛿𝛿𝑖𝑖,2 (21)

𝛿𝛿𝑖𝑖,2 = ℱ2
′(𝑜𝑜𝑖𝑖,2) ∗ (𝑜𝑜𝑖𝑖,2 − 𝑡𝑡𝑖𝑖) (22)

ℱ2
′(𝑜𝑜𝑖𝑖,2) = 1 (23)

In case of multiple input/output patterns, each pattern is used
to compute the error function separately. Each pattern
calculates a new weight correction. This is called “batch
updates”.

This pure backpropagation has a problem with convergence
over time in some cases. In this senario the error during training
is constant over hunderts of interations before the error drops.
Sapkal et. al. [10] show that by adding gaussian noise to
weighted sum entity Eq. (15) the convergence rate can be
improved.

Furthermore, this kind of backpropagation gives
unsatisfactory final results when the training set is affected by
heavy noise (low SNR).

3. Methodology of denoising time series with EKF-FNN
backpropagation

Therefore a learning algorithm is presented that is based on
EKF and the backpropagation for FNNs. Thus, we denoise raw
signals affected by noise.

3.1. EKF for parameter estimation

We formally show how to combine the EKF equations
(chapter 2.1) and the backpropagation (chapter 2.2) for
parameter estimation. Technical details can be found in chapter
4.

We assume that the sampling rate of the measured items is
constant and has an insignificant time jitter. For this purpose
the 𝑱𝑱𝒇𝒇(𝒙𝒙𝒌𝒌−𝟏𝟏) in the time update of the EKF becomes
approximately an identity matrix.
Based on (7) and

𝑱𝑱𝒇𝒇(𝒙𝒙𝒌𝒌−𝟏𝟏) = 𝑰𝑰 (24)
we find

�̂�𝑷𝒌𝒌 = 𝑷𝑷𝒌𝒌−𝟏𝟏 + 𝑸𝑸𝒌𝒌−𝟏𝟏 (25)
This step affects the Kalman gain matrix (Eq. 9) and the update
of the error covariance matrix (Eq. 11). These effects simplify
implementation.

3.2. Adaptive EKF

In Almagbile et al. [7] 𝑸𝑸 and 𝑹𝑹 are estimated and their
values are checked for plausibility. This leads to dynamic
minimazation and measurement update errors with filter
convergence problems.

For initialization the diagonal of 𝑹𝑹𝒌𝒌 matrix is set to the
estimated standard deviations of the input signals. For the
estimation of the standard deviation the target is to select a
sliding window of a feasible length 𝑁𝑁, such that the standard
deviation of the window is representative for the complete
signal. The selected window size affects the estimation
performance of the calculated standard deviation. It should be
correctly determined to get high performance estimation
because the result is directly linked to the 𝑸𝑸 and 𝑹𝑹 noise
covariance matrices. In theory there is not a known way to
choose the right window size. The window size depends on the
dynamics of the system which is also depends on the concrete
application. In [7] and [11] it is shown that a large window size
enhances the ability to converge while a small window size
causes the filter to diverge. In further iterations of the EKF the
matrices are adjusted. In the implementation chapter 4.1 the
usage and link to the covariance matching is explained.

3.3. Junction between FNN and EKF

Kalman filter solves the process and measurement equations
for unknown states with an optimal approach. We want to use
EKF parameter estimation for gradient descent
backpropagation to find weights and bias for the FNN.
Therefore, the weights and bias values are denoted as states of
the EKF algorithms. The backpropagation of the FNN is
similar to the measurement update of the EKF. 𝑱𝑱𝒉𝒉 is updated
by the forward propagation of the FNN. For the shown FNN in

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

Christoph Kellermann et al. / Procedia CIRP 99 (2021) 656–661 659

Fig. 1 above the state vector 𝒙𝒙𝒌𝒌 of the EKF is defined as
𝒙𝒙𝒌𝒌(𝑤𝑤𝑘𝑘, 𝑏𝑏𝑘𝑘) =
(𝑤𝑤1,1 ⋯ 𝑤𝑤𝑛𝑛,1 𝑏𝑏1,1 ⋯ 𝑏𝑏𝑛𝑛,1 𝑤𝑤1,2 ⋯ 𝑤𝑤𝑛𝑛,2 𝑏𝑏1,2)𝑇𝑇

This choice of the state vector leads to several similarities of
the EKF and GDB.

The state error vector of the EKF 𝒚𝒚𝒌𝒌 − 𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌) corresponds
to the derivative of the GDB output layer 𝛿𝛿𝑖𝑖,2 = (𝑜𝑜𝑖𝑖,2 − 𝑡𝑡𝑖𝑖) (Eq.
22). The measurement update from EKF is quite equal to the
GDB 𝒙𝒙𝒌𝒌+𝟏𝟏 − 𝒙𝒙𝒌𝒌 = ∆𝒘𝒘 = 𝑲𝑲 ∙ (𝒚𝒚𝒌𝒌 − 𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌)) with

𝑱𝑱𝒉𝒉 = (∆𝑤𝑤1,1 … ∆𝑤𝑤𝑛𝑛,1 ∆𝑏𝑏1,1 … ∆𝑏𝑏𝑛𝑛,1 ∆𝑤𝑤1,2 … ∆𝑤𝑤𝑛𝑛,2 ∆𝑏𝑏1,2)𝑇𝑇

The Kalman gain matrix (Eq. 9) is used to calculate the step
size for the weight and bias correction. In the following the
algorithms is called FNN-EKF.

3.4. Observability – Robustness and sensibility metric

This section is focused on observability of the training
process. For finding suitable internal parameters and for the
overall rating of the performance metrics of FNN-EKF models
are essential. For this purpose, the following metrics for
robustness and measurement of sensitivity are introduced.

In general the robustness of the EKF is significantly
influenced by the covariance matrices Q and R [6] [7]. Thus,
the FNN-EKF algorithm converges without inconsistencies.
All covariant matrices must be positive definite.
Therefore, 𝑸𝑸𝒌𝒌, 𝑹𝑹𝒌𝒌 have to be symmetric positive definite
matrices.

While the FNN-EKF iterates the covariance matrix 𝑷𝑷𝒌𝒌 has
to be checked to be positive definite. By the numerical
inaccuracy over the iterations due to the use of finite-word
length arithmetic 𝑷𝑷𝒌𝒌 can become indefinite[12]. If 𝑷𝑷𝒌𝒌 becomes
indefinite the Kalman filter becomes unstable.

In terms of robustness and sensitivity of system performance
monitoring the RMSE is often used as general performance
metric. We need a metric to obtain a desired trade-off between
robustness and sensitivity in our algorithm. An observability
metrics that represents the robustness and sensitivity of the
Kalman filter is introduced in [6]. Saha et al. [6] shift the focus
from the estimated states to the innovation in getting suitable
performance metrics. Those metrics are related to the
innovation covariance. The state error vector 𝒚𝒚𝒌𝒌 − 𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌) of
Eq. (8) can also be called “innovation” because it adjusts the
new states in the current iteration. This innovation and its
covariance 𝑬𝑬𝒌𝒌

−1 from Eq. (10) provide a deterministic basis for
robustness and sensibility of the metrics. For that Saha et al.
define two terms 𝑨𝑨𝒌𝒌 and 𝑩𝑩𝒌𝒌 respectively derived from the
innovation covariance in [6].

𝑬𝑬𝒌𝒌
−1 = 𝑨𝑨𝒌𝒌 + 𝑩𝑩𝒌𝒌 + 𝑹𝑹𝒌𝒌 (26)

Metrics 𝐽𝐽1𝑘𝑘 and 𝐽𝐽2𝑘𝑘 are defined:
𝐽𝐽1𝑘𝑘 = 𝑡𝑡𝑡𝑡([𝑨𝑨𝒌𝒌 + 𝑩𝑩𝒌𝒌 + 𝑹𝑹𝒌𝒌]−1 ∙ 𝑹𝑹𝒌𝒌) (27)
𝐽𝐽2𝑘𝑘 = 𝑡𝑡𝑡𝑡([𝑨𝑨𝒌𝒌 + 𝑩𝑩𝒌𝒌]−1 ∙ 𝑩𝑩𝒌𝒌) (28)

𝐽𝐽1𝑘𝑘 shows the effect of the measurement noise because it is
attributed to 𝑹𝑹𝒌𝒌 . It assumes the sensitivity of the EKF. 𝐽𝐽1𝑘𝑘
indicates any mismatch between assumed measurement and
real noise.
𝐽𝐽2𝑘𝑘 is distinctive for robustness and is linked to the process
noise covariance 𝑸𝑸𝒌𝒌. Hence 𝐽𝐽2𝑘𝑘 indicates a mismatch between
the real noise and the modeling noise.

The combination of 𝐽𝐽1𝑘𝑘 and 𝐽𝐽2𝑘𝑘 leads to the number of
measurements.

𝑚𝑚 = 𝐽𝐽1𝑘𝑘 + 𝐽𝐽2𝑘𝑘 + 𝑡𝑡𝑡𝑡(𝑵𝑵𝒌𝒌) (29)
With 𝑵𝑵𝒌𝒌 = [𝑨𝑨𝒌𝒌 + 𝑩𝑩𝒌𝒌]−1 ∙ [𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌) ∙ (𝑱𝑱𝒇𝒇(𝒙𝒙𝒌𝒌−𝟏𝟏) ∙ 𝑷𝑷𝒌𝒌−𝟏𝟏 ∙
𝑱𝑱𝒇𝒇

𝑻𝑻(𝒙𝒙𝒌𝒌−𝟏𝟏) − 𝑷𝑷𝒌𝒌) ∙ 𝑱𝑱𝒉𝒉
𝑻𝑻(𝒙𝒙𝒌𝒌)] (30)

𝑨𝑨𝒌𝒌 + 𝑩𝑩𝒌𝒌 = 𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌)�̂�𝑷𝒌𝒌𝑱𝑱𝒉𝒉
𝑻𝑻(𝒙𝒙𝒌𝒌) (31)

𝑩𝑩𝒌𝒌 = 𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌)𝑸𝑸𝒌𝒌−𝟏𝟏𝑱𝑱𝒉𝒉
𝑻𝑻(𝒙𝒙𝒌𝒌) (32)

With Eq. (24):
𝑵𝑵𝒌𝒌 = [𝑨𝑨𝒌𝒌 + 𝑩𝑩𝒌𝒌]−1 ∙ [𝑱𝑱𝒉𝒉 (𝒙𝒙𝒌𝒌) ∙ (𝑷𝑷𝒌𝒌−𝟏𝟏 − 𝑷𝑷𝒌𝒌) ∙ 𝑱𝑱𝒉𝒉

𝑻𝑻(𝒙𝒙𝒌𝒌)](33)

4. Implementation

In this chapter the implementation of the FNN-EKF
algorithms is introduced. In addition to the use of the algorithm,
the internal monitoring of stability (as described in chap. 3.4)
and the computational power of the execution are considered.

The block-diagram representation of the FNN-EKF
algorithm with its observation metrics and auto-parameter
adjustments is given in Fig. 3. This setup can be used especially
for time series filtering. Input parameter 𝒚𝒚(𝒌𝒌) is a vector or
matrix of noisy data with 𝑚𝑚 features and 𝑛𝑛 samples per feature.
𝒌𝒌 is an input vector which contains the corresponding time
stamp of the measurements.

4.1. Initialization and data preparation

First step is initialization of the FNN and the parameter
settings for the FNN-EKF algorithms. The weights and the bias
of the FNN are initialized with gaussian noise.

The first step of the parameter settings is scaling the feature
input 𝒚𝒚(𝒌𝒌), so that every feature has a same mean and variance.
Hence the relevance of all feature is equal. In order to calculate
the initial 𝑸𝑸 , 𝑹𝑹 and 𝑷𝑷 for backpropagation computation the
standard deviation of each feature is calculated within a sliding
window over the signal. The selection of the right window size
already is described in Chap. 3.2. We assume that the noise is
according to the specifications Eq. (12)-(14) at the end of Chap.
2.1. While the distribution is measured within a sliding
window, the variation of the distribution is providing the step
size for the backpropagation. The range of values of the step
size is [0, 1]. A small variation of input parameters tends to a
low volatile value of deviation in every window. This leads to
step size 1. This means a high variation leads to a small step
size.

Fig. 3. Block-diagram of the FNN-EKF with auto-parameter adjustment and
observation metrics

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

660 Christoph Kellermann et al. / Procedia CIRP 99 (2021) 656–661

In order to select a good starting point the target is to select
the sliding window of length 𝑁𝑁 in a right way to receive a
representative standard deviation. The length 𝑁𝑁 of the sliding
window is initialized with 𝑁𝑁 = 𝑛𝑛/10 and in later iteration it is
adjusted by the metric 𝐽𝐽1𝑘𝑘 from Chap. 3.4.

4.2. Training

After initialization and pre-processing the forward
propagation is executed to obtain the outputs of every layer
𝒚𝒚′(𝒌𝒌). The outputs are needed for the backpropagation with the
FNN-EKF algorithm (Chap. 2.2 and 3.3). The time stamp
vector 𝒌𝒌 is fed to the input side of the FNN and the noisy data
𝒚𝒚(𝒌𝒌) is connected to the output of the FNN. By every iteration
of the backpropagation the error covariance matrix 𝑷𝑷𝒌𝒌 is
updated and the FNN approximates to the raw signal affected
with noise.

In terms of computational performance the calculation time
for the 𝑷𝑷𝒌𝒌 matrix is cost-intensive (Eq. 11) because the matrix
𝑱𝑱𝒉𝒉 gets rapidly bigger with every input feature and increasing
network size (Chap. 3.3). With respect to the computation time
the training phase is split up into two modes – fast training and
normal training. The first fast training focuses on fast
approximation with less accuracy. This is due to the fact that at
the beginning, when the FNN is initialized, the 𝑷𝑷𝒌𝒌 matrix only
needs to be a rough approximation of the final target matrix for
fast convergence. Thus, the 𝑃𝑃𝑘𝑘 matrix is updated in an interval
𝑖𝑖𝑃𝑃 per iteration. The calculation index per epoch is shifted by
the interval of 𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ. This means, for example, if the training
vector of length 𝑛𝑛 = 10, 𝑖𝑖𝑃𝑃 = 1 and 𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸ℎ = 1 are selected,
the 𝑷𝑷𝒌𝒌 matrix has been updated after 10 epochs for each value.

In normal training mode the goal is to get a high accuracy.
Here the algorithms are used as it has already been described
in Chap. 2.1. 𝑷𝑷𝒌𝒌 matrix is updated every iteration. While the
training phase is running the numerical stability of 𝑷𝑷𝒌𝒌 in every
iteration is traced with 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(𝑷𝑷𝒌𝒌) = 𝑚𝑚 with 𝑚𝑚 = 3 for 3
inputs to ensure the stability of the EKF shown in paragraph
3.4. Additionally, the RMSE is traced per measurement in
every iteration and compared to an expected RMSE per
measurement dimension because the target RMSE depends on
the application. If a fault is detected the process is stopped and
the user is notified.

4.3. Using the filter

After the training sequence the FNN model approximates
the raw signal affected with noise. The filtering of the noisy
input data is done by forward propagation. Finally 𝒚𝒚′(𝒌𝒌) is
scaled to the means and variance of the input feature.

5. Simulation Results and Observations

In this section, a ball throw simulation should show the
effectiveness of the proposed FNN-EKF algorithms. The
benchmark is a standard EKF implementation for estimating
the trajectory of the ball. This scenario is well known from
various aviation publications [15]. By fusing the measurement
data form the acceleration sensor and camera based position

system the EKF calculation gets the velocity (�̇�𝑥, �̇�𝑦, �̇�𝑧) as well
as the position (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) . For better visualization 𝑦𝑦 = 0 is
chosen.

In all simulations the setup from the FNN-EKF is the same.
The feed forward network has 50 neurons in the hidden layer
with “thanh”-activation function. The network is updated in
100 epochs.

5.1. Estimation performance

In the first simulation trial standard deviation is set to 0.2
(𝑆𝑆𝑁𝑁𝑆𝑆 = 22.25 𝑑𝑑𝑑𝑑) and is kept constant during this simulation
experiment.
Fig. 4 shows the trajectories of the ball hitting the ground at
𝑧𝑧 = 0. The orange solid line shows the true path of the ball.
The gray dots are the measured position.

Fig. 6 shows the comparison between the real EKF and the
FNN-EKF. The RMSEs can be found in Tab. 1. Especially for
low SNR, FNN-EKF shows an advantage.

In another simulation trial, the standard deviation of the
noise was changed and it produces the results of Table 1.

Fig. 4. Trajectories of the first simulation of a hitting and a SNR of 22.25 dB

Fig. 5. Component wise plot of the FNN-EKF estimation per sample. Grey
line is the noisy input data, blue line is the estimation of Kalman filter and

orange line is the estimation of FNN-EKF

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

Christoph Kellermann et al. / Procedia CIRP 99 (2021) 656–661 661

Table 1. Different standard deviation for the input dataset

Algorithm Stand. devi.
[m]

SNR
[dB]

RMSE

EKF 0.1 28.49 2.356
FNN-EKF 4.193
EKF 0.2 22.25 6.825
FNN-EKF 4.036
EKF 0.3 18.46 5.203
FNN-EKF 5.744
EKF 0.4 15.59 16.77
FNN-EKF 11.05
EKF 0.5 14.30 13.31
FNN-EKF 10.89

In most cases the self-configurable FNN-EKF filter is quite
near or sometime even better than the real EKF which requires
the knowledge of the internal system behavior given by the
differential equations and the noise power.

5.2. Computational performance

The computational performance is compared over 100
epochs of normal training and the fast training explained in
chapter 4.2. The fast training is approximately two time faster
due to its reduced calculation complexity. A complete epoch
update takes 2.1s on one core of an Intel Xeon CPU with
2.30GHz. For further speedup special indexes could be updated
after the network is pretrained.

6. Conclusion

In this paper we derive a feed forward network with an
extended Kalman filter optimizer and described an algorithm
for a self-adaptable denoising filter. The FNN-EKF was
compared to a standard extended Kalman filter.

Fig. 6. Deviation from real trajectory comparison per sample

The weights and bias values of the FNN are used as states
of the Kalman filter. This enables the network to compute the
observations of the filter.

We show that the approximation accuracy of the FNN-EKF
is similar to the standard EKF. However, FNN-EKF needs no
knowledge of the system behavior. Throughout various
simulations, it is shown the efficiency of the FNN-EKF to
extract the complex dynamics of the system for denoising
nonlinear time series from noisy multi-dimensional input data.
First experiments for using the FNN-EKF to denoise real
sensor data from a torque motor are already started.

References

[1] Kalman RE. A new approach to linear filtering and prediction
problems. Transaction of the asme journal of basic; 1960.

[2] Julier SJ, Uhlmann JK, Durrant-Whyte HF. A new approach for
filtering nonlinear systems. In Proceedings of 1995 American Control
Conference-ACC'95; 1995.

[3] Dhall S, Lakshmivarahan S, Lewis JM. Dynamic Data Assimilation: A
least squares approach. Cambridge University Press; 2006.

[4] Terejanu G. Extended Kalman Filter Tutorial; 2009.
[5] Reif K, Gunther S, Yaz E, Unbehauen R. Stochastic stability of the

discrete-time extended Kalman filter. IEEE Transactions on Automatic
control, Vol. 44; 1999. p. 714-728.

[6] Saha M, Ghosh R, Goswami B. Robustness and Sensitivity Metrics for
Tuning the Extended Kalman Filter. IEEE Transactions on
Instrumentation and Measurement, Vol. 63; 2014. p. 964-971.

[7] Almagbile A, Wang J, Ding W. Evaluating the performances of
adaptive Kalman filter methods in GPS/INS integration. Journal of
Global Positioning Systems, Vol. 9; 2010. p. 33-40.

[8] Funahashi KI. On the approximate realization of continuous mappings
by neural networks. Neural networks, Vol. 2; 1989. p. 183-192.

[9] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press; 2016.
[10] Rojas R. The backpropagation algorithm. In Neural networks,

Springer; 1996. p. 149-182.
[11] Chen X, Ren H, Liu J. Intelligent structural rating system based on

backpropagation network. Journal of Aircraft, Vol. 50; 2013. p. 947-
951.

[12] Sapkal A, Kulkarni UV. Modified Backpropagation with Added White
Gaussian Noise in Weighted Sum for Convergence Improvement.
Procedia computer science, Vol. 143; 2018. p. 309-316.

[13] Mohamed AH, Schwarz KP. Adaptive Kalman filtering for INS/GPS.
Journal of geodesy, Vol. 73; 1999. p. 193-203.

[14] Maybeck PS. Stochastic models estimation and control. Vol. 141,
Elsevier; 1979. p. 368-409.

[15] Cross R. Ball Trajectories. In Physics of Baseball & Softball, New,
York: Springer New York; 2011. p. 37–57.

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.

