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In this paper we describe how a spectrum of entropic perturbations generated during a period of slow
contraction can source a nearly scale-invariant spectrum of curvature perturbations on length scales larger
than the Hubble radius during the transition from slow contraction to a classical nonsingular bounce (the
“graceful exit” phase). The sourcing occurs naturally through higher-order scalar field kinetic terms
common to classical (nonsingular) bounce mechanisms. We present a concrete example in which, by the
end of the graceful exit phase, the initial entropic fluctuations have become negligible and the curvature
fluctuations have a nearly scale-invariant spectrum with an amplitude consistent with observations.
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I. INTRODUCTION

Observational evidence [1–3] combined with theoretical
reasoning [4,5] strongly indicate that the gravitationally
bound structures (galaxies, galaxy clusters, etc.) that
comprise our universe originate from quantum fluctuations
of scalar fields generated on sub-Hubble wavelengths that
evolve to induce classical curvature perturbations with a
nearly scale-invariant and Gaussian spectrum on super-
Hubble wavelengths. According to the leading paradigms,
the relevant quantum fluctuations are generated during a
primordial smoothing phase at energy densities sufficiently
below the Planck density so that the cosmological back-
ground can be described to leading order by classical
equations of motion.
Two candidates for the smoothing phase are a period of

accelerated expansion ( _a; ä > 0) and a period of slow
contraction ( _a; ä < 0), where the spacetime geometry
during the smoothing phase is well-described by the
Friedmann-Robertson-Walker (FRW) metric with scale
factor aðtÞ and the dot denotes differentiation with respect
to the physical FRW time coordinate t. The key underlying
idea is that, in either case, the scale factor aðtÞ and the
Hubble radius jH−1j≡ ja= _aj evolve at different rates,

jH−1j ∝ aϵ; ð1Þ

as determined by the equation of state

ϵ≡ 3

2

�
1þ p

ϱ

�
ð2Þ

of the dominant stress-energy component with pressure p
and energy density ρ [6]. During an accelerated expansion
(ϵ < 1) phase, the Hubble radius stays nearly constant
while scalar field fluctuation wavelengths, which grow in
proportion to the scale factor a, stretch at an ultrarapid rate
to become super-Hubble. In contrast, the Hubble radius
during slow contraction (ϵ > 3) shrinks ultrarapidly while
the scale factor is nearly constant. For example, in a typical
slow contraction phase, the Hubble radius might shrink by
a factor of 250 during which the scale factor decreases by
only a factor of two [7]. As a result, fluctuation wave-
lengths that were sub-Hubble at the beginning of the phase
evolve to become super-Hubble by the end.
However, generating scalar field fluctuation modes with

super-Hubble wavelengths is necessary but not sufficient to
explain cosmological observations. To explain measure-
ments of the cosmic microwave background and the power
spectrum of gravitationally bound structures, the scalar
field fluctuations must somehow source a nearly scale-
invariant spectrum of comoving curvature fluctuations of
the metric with the amplitude of ∼10−5.
In general, scalar field fluctuations source two types of

metric fluctuations: adiabatic fluctuations on constant
mean curvature hypersurfaces; and entropic fluctuations
on hypersurfaces of constant energy density [8,9]. Notably,
scalar fields in backgrounds undergoing accelerated
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expansion can generate both types. If it can be arranged that
the metric fluctuations are purely adiabatic and of the
correct small amplitude, they can potentially account for
the observed temperature fluctuations of the cosmic micro-
wave background. However, under certain assumptions,
accelerated expansion stretches rare, large-amplitude scalar
field fluctuations that source large-amplitude adiabatic
fluctuations of the metric. These large metric fluctuations
trigger the well-known quantum runaway problem, an
effect that spoils the spectrum and destroys homogeneity
and isotropy altogether [10–12]. Slow contraction, on the
other hand, can only amplify entropic modes. Adiabatic
modes (as well as gravitational waves [13]) experience a
growing antifriction due to the rapidly decreasing Hubble
radius which leads to their decay. This eliminates the
quantum runaway problem, an important and distinctive
advantage of the slow contraction scenario. To date, we do
not know of any other smoothing mechanism that could do
the same.
It is well-known that, during smoothing slow contrac-

tion, a nonlinear sigma type kinetic interaction between
two scalar fields naturally leads to a nearly scale-invariant
and Gaussian spectrum of super-Hubble relative field
fluctuations—purely entropic modes—which are quantum
generated long before the modes leave the Hubble radius
[14–17]. In this paper, we demonstrate how these entropic
modes can source curvature perturbations on super-Hubble
scales during the graceful exit phase, i.e., the transition
from slow contraction to the bounce stage. We show that
the sourcing is due to a common feature of classical
(nonsingular) bounce models in which higher-order kinetic
terms associated with the scalar matter fields become
important during graceful exit [18,19]. For concreteness,
we present an example in which the only significant
fluctuations at the beginning of the graceful exit phase
are entropic but, by the end of the phase, the entropic
fluctuations have become negligible and the curvature
fluctuations have a nearly scale-invariant spectrum with
an amplitude consistent with observations.

II. COSMOLOGICAL MODEL

In the scenario that we shall consider the cosmological
evolution is sourced by two kinetically-coupled scalar
fields ϕ and χ both of which are minimally coupled to
Einstein gravity. The corresponding Lagrangian density is
defined as

L ¼ 1

2
R −

1

2
ð∂μϕÞ2 − Vðϕ; χÞ

−
1

2
Σ1ðϕÞð∂μχÞ2 þ

1

4
Σ2ðϕÞð∂μχÞ4; ð3Þ

where R is the Ricci scalar; Σ1ðϕÞ is the quadratic kinetic
coupling function; Σ2ðϕÞ is the quartic kinetic coupling
function and Vðϕ; χÞ is the scalar potential depending on

both ϕ and χ fields. The potential is steep and negative
along the ϕ direction while nearly constant along the χ
direction. Throughout, we use reduced Planck units.
Our interest here is analyzing what happens after a

period of slow contraction has already homogenized and
isotropized spacetime well-described by an FRW metric.
Varying the action given through Eq. (3) with respect to the
scalar fields and evaluating for the FRW background yields
the evolution equations for ϕ and χ:

ϕ̈þ 3H _ϕþ V;ϕ ¼
�
Σ1;ϕ þ

1

2
Σ2;ϕ _χ

2

�
1

2
_χ2; ð4aÞ

�
1þ 2Σ2 _χ

2

Σ1 þ Σ2 _χ
2

�
χ̈ þ

�
3H þ Σ1;ϕ þ Σ2;ϕ _χ

2

Σ1 þ Σ2 _χ
2

_ϕ

�
_χ

¼ −
V;χ

Σ1 þ Σ2 _χ
2
: ð4bÞ

Note that the symmetries of the FRW space-time geometry
lead to spatially homogeneous background field distribu-
tions, i.e., ϕ ¼ ϕðtÞ, χ ¼ χðtÞ.
Variation of Eq. (3) with respect to the metric yields the

stress-energy tensor Tμ
ν. On an FRW background, scalar

fields (collectively) act as perfect fluids and can be
associated with an energy density ρ and pressure p being
given by the temporal and spatial components of Tμ

ν:

ρ ¼ −T0
0 ¼

1

2
_ϕ2 þ 1

2

�
Σ1 þ

3

2
Σ2 _χ

2

�
_χ2 þ V; ð5aÞ

p ¼ 1

3
Ti

i ¼
1

2
_ϕ2 þ 1

2

�
Σ1 þ

1

2
Σ2 _χ

2

�
_χ2 − V: ð5bÞ

With Eq. (2), we can define the effective equation of state
associated with the “fluid” as follows:

ϵ ¼ 3 −
1

4

Σ2 _χ
4

H2
−

V
H2

: ð6Þ

Finally, the Friedmann constraint and evolution equation
take the form:

3H2 ¼ ρ ¼ 1

2
_ϕ2 þ 1

2

�
Σ1 þ

3

2
Σ2 _χ

2

�
_χ2 þ V; ð7aÞ

−2 _H ¼ ρþ p ¼ _ϕ2 þ ðΣ1 þ Σ2 _χ
2Þ _χ2: ð7bÞ

III. ENTROPY MODES FROM SLOW
CONTRACTION

As an example, we consider a scalar field potential that,
during the slow contraction phase, is negative and steeply
graded along the ϕ direction:
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Vðϕ; χÞ ≈ −V0eϕ=M: ð8Þ

Here V0 > 0 is constant and M is the characteristic mass
scale associated with ϕ. At low energies, especially during
the smoothing slow contraction phase, higher-order kinetic
terms as well as the χ field’s potential energy density are
negligible, such that the Einstein-scalar system reduces to
the simple set of evolution and constraint equations:

ϕ̈þ 3H _ϕ −
V0

M
eϕ=M ≈ 0; ð9aÞ

χ̈ þ
�
3H þ Σ1;ϕ

Σ1

_ϕ

�
_χ ≈ 0; ð9bÞ

3H2 ≈
1

2
_ϕ2 þ 1

2
Σ1 _χ

2 − V0eϕ=M: ð9cÞ

For Σ1 ¼ eϕ=m, where m≲M, it is straightforward to
show (see Ref. [17]) that the unique attractor scaling
solution of the Einstein-scalar system of equations (9) is

a ≈ ð−tÞ1ϵ; ϕ ≈ −2M × ln ð−AtÞ; _χ ≈ 0; ð10aÞ

ϵ ≈
1

2

�
MPl

M

�
2

; ð10bÞ

where A ¼ M−1
Pl ϵ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=ðϵ − 3Þp

and ϵ is the equation of
state as defined in Eq. (2). The FRW time coordinate t runs
from large negative to small negative values and we
normalized a such that a ¼ 1 at the onset of slow con-
traction. Apparently, the solution in Eq. (10) corresponds to
the physical situation of smoothing slow contraction with
jH−1j ≈ aϵ shrinking exponentially faster than the scale
factor a. For example, for M=MPl ∼ 0.1, ϵ ∼ 50 such that
jH−1j shrinks by a factor of 250 while a decreases by a
factor of 2, the case described in the Introduction.
A key to the background dynamics during the smoothing

phase is the nonlinear σ-type kinetic interaction
Σ1ðϕÞð∂μχÞ2 between the ϕ and χ fields. As can be seen
from Eq. (9b), this contribution changes the Hubble
antifriction term (∝ 3H) into a friction term

3H þ
_ϕ

m
≈

2

ð−tÞ
�
−3

�
M
MPl

�
2

þM
m

�
≫ 0; ð11Þ

if MPl=M > 3ðm=MPlÞ. As a result, the two scalar fields
exhibit very different dynamics. The χ field is being
continuously damped by the friction in Eq. (9b) until it
eventually “freezes” at some constant value χ0. At the same
time, the ϕ field, which only experiences antifriction
according Eq. (9a), is being blue-shifted due to the pure
Hubble antifriction and hence keeps rolling down its
negative potential energy curve, rapidly becoming the

dominant stress-energy component, which robustly homog-
enizes and isotropizes the cosmological background [20].
While the χ-field does not contribute to the background

smoothing, it plays an important role at perturbative order:
quantum fluctuations in the ϕ field, which experience the
same Hubble anti-friction as the background, blue-shift.
The opposite is true for the χ field. Due to the modified
damping term as given in Eq. (11), quantum fluctuations in
the χ field “see” a de Sitter-like background and redshift.
Consequently, by means analogous to the case of inflation,
they can lead to a nearly scale-invariant spectrum of
χ-fluctuations with super-Hubble wavelengths.
This becomes particularly clear if we follow the evolu-

tion of the canonically normalized perturbation variable
vχ ¼ a

ffiffiffiffiffi
Σ1

p
δχ, where δχ is the linearized field variable

associated with χ. For each Fourier mode with wave
number k, the corresponding Mukhanov-Sasaki equation
takes the simple form:

v00χ þ
�
k2 −

z00

z

�
vχ ¼ 0; ð12Þ

where z≡ ffiffiffiffiffi
Σ1

p
a, and prime denotes differentiation with

respect to the conformal time coordinate τ defined through
dτ ¼ a−1dt. Evaluating for the scaling solution as given in
Eq. (10), we find the variable z as a function of τ:

z ∝ ð−τÞ− 1
ϵ−1ðMmϵ−1Þ; ð13Þ

and, hence, z00=z ∝ 1=τ2 turning Eq. (12) into a Bessel
equation. At the onset of slow contraction, the energy
density ∼H2 is small and space-time is leading-order
classical, such that it is natural to assume Bunch-Davies
boundary conditions (vχ ¼ e−ikτ=

ffiffiffiffiffi
2k

p
for τ → −∞). The

corresponding solution to the Bessel equation (12) then
takes the well-known form:

vχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

4
ð−τÞ

r
Hð1Þ

ν ð−kτÞ; ð14Þ

where Hð1Þ
ν is a Hankel function of the first kind, and

ν2 ¼ 1

4
þ τ2

z00

z
¼ 1

4

�
1þ 2

M
m ϵ − 1

ϵ − 1

�
2

: ð15Þ

On large scales (−kτ ≪ 1), the modes have the following
asymptotic:

vχ ∝ ð−τÞ−ν−1
2 · k−ν: ð16Þ

such that the spectral tilt of the χ perturbations is given by

ns − 1 ¼ 3 − 2ν ¼ 2

�
1 −

M
m ϵ − 1

ϵ − 1

�
: ð17Þ
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Note that strictly equal mass scales (M ¼ m) lead to an
exactly scale-invariant spectrum (ns − 1 ¼ 0). However, if
the mass M is slightly greater than the scale m associated
with the kinetic interaction (e.g., M ¼ 1.02m), the spec-
trum is slightly red in agreement with microwave back-
ground observations (ns − 1 ≃ −0.04).
It has been common to identify fluctuations in χ with

entropy perturbations because, in field space, the χ field
defines a direction perpendicular to the adiabatic background
trajectory; see, e.g., Ref. [21]. However, this geometric
interpretation has limited applicability: it is only valid in
cases where all scalar matter fields have canonical kinetic
energy density; see Ref. [22]. A more general and precise
statement is that δχ sources (macroscopic) entropy modes,

S ≡H

�
δp
_p
−
δρ

_ρ

�
≡H

δpnad

_p
; ð18Þ

provided it generates a nonzero pressure contribution on
hypersurfaces of constant density, i.e.,

δpnad ≡ δp −
_p
_ρ
δρ ≠ 0: ð19Þ

As we will show next, this occurs naturally during graceful
exit from slow contraction to the onset of the bounce stage.
Furthermore, we demonstrate that the same entropy modes
source super-Hubble curvature modes consistent with cos-
mic microwave background observations.

IV. SOURCING CURVATURE MODES DURING
GRACEFUL EXIT

The smoothing slow contraction phase comes to an end
when the scalar field kinetic energy increases relative to the
potential energy such that ϵ → 3. The phase that connects
to the bounce stage is called “graceful exit.” In scenarios
where the cosmological bounce occurs at high yet sub-
Planckian energies, this intermediate stage is dominated
by the kinetic energy of the fields. In particular, this is
precisely where one expects higher-order kinetic terms to
start playing a role; see, e.g., Refs. [18,19,23]. As we will
see, this naturally leads to the sourcing of super-Hubble
curvature modes by the fluctuations in χ generated during
the smoothing phase.
In Ref. [22], we have shown that, on large scales

(k ≪ ajHj), the conservation of stress-energy leads to a
simple relation describing the evolution of curvature
fluctuations R as a function of the entropy modes:

_R ≈ −3H
_p
_ρ
S ¼ H

δpnad

ρþ p
: ð20Þ

In spatially flat gauge, the co-moving curvature perturba-
tion can be expressed as a function of the perturbed scalars
as follows:

R≡H
_ϕδϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ1 þ Σ2 _χ

2
p

_χδχ
_ϕ2 þ ðΣ1 þ Σ2 _χ

2Þ _χ2 ; ð21Þ

and, for our model as described in Eq. (3), the nonadiabatic
pressure contribution is given by

δpnad ≈2c2S

�
−Σ2 _χ

3×
d
dt
ð _ϕF Þ

þ
�
ðΣ1þΣ2 _χ

2Þ
�
V;ϕþ

1

4
Σ2;ϕ _χ

4

�
_χ −V;χ

_ϕ

�
×F

�
:

ð22Þ

Here

F ≡
�

_ϕ _χ
_ϕ2 þ Σ1 _χ

2 þ Σ2 _χ
4

��
δχ

_χ
−
δϕ
_ϕ

�
ð23Þ

describes the relative field fluctuations; and the formal
quantity

c2S ≡
_ϕ2 þ Σ1 _χ

2 þ Σ2 _χ
4

_ϕ2 þ Σ1 _χ
2 þ 3Σ2 _χ

4
ð24Þ

denotes the propagation speed of the adiabatic mode.
Below, we present an example where the sound-speed is
≃1 for all modes with all kinetic couplings being positive
definite. This is sufficient for our purposes. (We note,
though, that in general the χ-field might have superluminal
modes, if the quartic coupling is negative. Such modes are
not necessarily problematic, for a detailed discussion see,
e.g., Refs. [24,25].) The detailed dynamics of R and S
can be determined by integrating the closed system of
Eqs. (A3)–(A4) under spatially flat gauge conditions, as
detailed in the Appendix.
During slow contraction, δpnad ≈ 0, as can be seen when

evaluating Eq. (22) for the scaling attractor solution for
which _χ ≈ 0. During graceful exit, on the other hand, _χ is
nonzero and Σ2 is non-negligible. In contrast to the
smoothing phase, the relative field fluctuations F lead to
a nonzero nonadiabatic pressure which, in turn, sources
super-Hubble comoving curvature modes.
Since the curvature perturbations R are sourced by S on

super-Hubble scales, as indicated in Eq. (20), R automati-
cally inherits the nearly scale-invariant form of the entropic
spectrum.
A particular example illustrating the sourcing of RðtÞ

by SðtÞ is presented in Fig. 1. In this example, the kinetic
coupling functions in the action, Eq. (3), have a simple
exponential form: Σ1 ¼ eϕ=m, Σ2 ¼ eϕ=m2 , with m ¼ 0.67
and m2 ¼ −0.5. We have also taken the dependence of
the potential on ϕ in this transition phase after slow
contraction to be negligible and on χ to be small:
Vðϕ; χÞ ¼ V0χ, with V0 ¼ 2 × 10−13 such that Vðϕ; χÞ
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is small compared to the total kinetic energy density
throughout the bounce phase (from the end of slow
contraction at time t ¼ ti ¼ −3 × 104 to the bounce
itself at t ¼ tf ¼ −102, expressed in reduced Planck time
units), as expected when approaching a bounce. The
background initial conditions are the following:
ϕi ¼ −7.5, _ϕi ¼ 2.7 × 10−5, χi ¼ 0, _χi ¼ −2.3 × 10−6.
These background conditions were chosen such that
the energy density in ϕ dominates over the energy
density in χ at the end of the slow contraction
phase, as expected in bouncing scenarios: that is
Ωϕ=Ωχ jt¼ti ≫ 1. Conversely, the initial ratio of the
curvature perturbation is set to be negligible compared
to the entropic perturbation (ðR=SÞ2 ≈ 10−4 ≪ 1), as
expected when first ending the slow contraction phase
because the adiabatic fluctuations are not amplified
during slow contraction.
The evolution of RðtÞ and SðtÞ for a super-Hubble

radius mode with k=ajHj ≪ 1 is shown in Fig. 1 as
obtained from numerical integration of Eqs. (A3)–(A4)
in the spatially-flat gauge. As anticipated, beginning from
a negligible curvature perturbation, the sourcing of R by
the entropic perturbation causes R ≪ 10−5 to grow to an
amplitude consistent with observations (see Fig. 2),

R ≈ 10−5. The total curvature perturbation power spectrum
amplitude is then

hR2ðxÞi ¼
Z

d3k
ð2πÞ3

�
R
kν

�
2

¼
Z

dk
k

�
R2

2π2

�
k3−2ν

¼
Z

dk
k
Δ2

RðkÞ: ð25Þ

Taking the R obtained from the numerical integration to
correspond to k� ¼ 0.002 Mpc−1, we obtain

Δ2
RðkÞjt¼tf ¼ 2.5 × 10−9 with ns ≃ 0.96; ð26Þ

in accord with current observations [1]. Over the same
period of evolution, Fig. 2 shows that ðR=SÞ2 grows to
be greater than 106 such that the fractional contribution
of isocurvature perturbations to the total power spectrum
βiso becomes negligible, also in accord with current
observations.

FIG. 1. A plot of the magnitude of the curvature perturbation on
comoving hypersurfaces, jRðtÞj (top), and the entropy perturba-
tion, jSðtÞj (bottom), as a function of time t (expressed in reduced
Planck units) for the example discussed in the text.

FIG. 2. A plot of ½RðtÞ=SðtÞ�2 (top) for the example discussed
in the text. At the end of the slow contraction phase and entering
the bounce phase, jRj ≪ S is negligible; but, by the time the
bounce would occur (t ≈ −100 in this example), the sourcing of
the curvature perturbation by the entropic perturbation leads to
jRj ≫ S. Consequently, the fractional contribution of the entropy
modes to the total power spectrum, jβisoðtÞj≡ S2=ðR2 þ S2Þ, is
nearly one entering the bounce phase but negligibly small by the
time the bounce occurs, consistent with current observations.
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V. CONCLUSION

Scalar field perturbations of quantum origin can source
adiabatic or entropic fluctuations on super-Hubble scales.
Entropic fluctuations on super-Hubble scales can source
curvature modes on super-Hubble scales as a consequence
of stress-energy conservation. If our universe has under-
gone a phase of slow contraction that connects to the
current expanding phase through a cosmological bounce,
adiabatic and gravitational wave fluctuations from the
smoothing phase decay and therefore cannot contribute
to the observed fluctuation spectra of the cosmic micro-
wave background. Rather, we would expect that the
temperature anisotropies stem from super-Hubble entropy
modes generated during slow contraction that sourced
curvature modes before the onset of decelerated expansion.
In this paper, we described a scenario for how this

mechanismmight naturally occur during graceful exit when
slow contraction ended but the bounce has not yet occurred.
Furthermore, we presented an explicit example that gen-
erates a spectrum of primordial perturbations that agrees
with current cosmological observations.
The key ingredients of this new mechanism are
(i) a nonlinear σ-type kinetic interaction between two

scalar fields that acts as a friction term (typical of de
Sitter-like expansion) on one of the fields which it
“freezes,” leading to a nearly scale-invariant spec-
trum of this field’s quantum fluctuations;

(ii) a higher-order quartic kinetic term that typically
comes to dominate at the end of slow contraction
and at the onset of the classical (nonsingular) bounce
stage. This term naturally leads to a nonadiabatic
pressure contribution, sourcing super-Hubble curva-
ture modes before the bounce occurs.

This novel kinetic sourcing mechanism opens up several
new avenues for future research. For example, it will be

interesting to see if different graceful exit and bounce
mechanisms leave different detectable imprints on the
spectrum when the curvature modes are being sourced
by entropy modes during graceful exit.
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APPENDIX: EVOLVING THE LINEARIZED
SCALARS δϕ;δχ

In this Appendix, we derive the evolution equations for
the perturbed scalars δϕ and δχ that we used to numerically
compute the example presented in Figs. 1 and 2 above.
Scalar variables of the linearly perturbed line element for

a spatially flat Friedmann-Robertson-Walker (FRW) space-
time are given by

ds2 ¼ −ð1þ 2αÞdt2 þ 2aðtÞ∂iβdtdxi

þ a2ðtÞ½ð1 − 2ψÞδij þ 2∂i∂jE�dxidxj; ðA1Þ

where α and β are the linearized lapse and (scalar) shift
perturbations, respectively, and −ψδij þ ∂i∂jE is the scalar
part of the linearized spatial metric.
With ϕ ¼ ϕðtÞ þ δϕðt;xÞ, χ ¼ χðtÞ þ δχðt;xÞ denoting

small inhomogeneities in the scalar fields around the
homogeneous background, the linearized action (3) takes
the form:

L ¼ a3
�
−3 _ψ2 þ k2

a2
ψ2 − 2

k2

a2
σshð _ψ þHαÞ − 2

�
3H _ψ þ k2

a2
ψ

�
αþ ð _ϕδϕþ ðΣ1 þ Σ2 _χ

2Þ _χδχÞ
�
3 _ψ þ k2

a2
σsh

�

−
�
3H2 −

1

2
_ϕ2 −

1

2
ðΣ1 þ 3Σ2 _χ

2Þ _χ2
�
α2 −

�
_ϕδ _ϕþ

�
1

2
Σ1;ϕ _χ

2 þ 3

4
Σ2;ϕ _χ

4 þ V;ϕ

�
δϕ

�
α

− ððΣ1 þ 3Σ2 _χ
2Þ _χδ _χ þ V;χδχÞαþ 1

2
δ _ϕ2 −

1

2

k2

a2
δϕ2 þ 1

2

�
1

2
Σ1;ϕϕ _χ

2 þ 1

4
Σ2;ϕϕ _χ

4 − V;ϕϕ

�
δϕ2

þ 1

2
ðΣ1 þ 3Σ2 _χ

2Þδ _χ2 − 1

2
ðΣ1 þ Σ2 _χ

2Þ k
2

a2
δχ2 þ ðΣ1;ϕ _χ þ Σ2;ϕ _χ

3Þδϕδ _χ − V;ϕχδϕδχ −
1

2
V;χχδχ

2

�
; ðA2Þ

where σsh ≡ aða _E − βÞ is the scalar part of the linearized shear.
Variation of Eq. (A2) with respect to α and β leads to the linearized Hamiltonian and momentum constraints:

�
3H2 −

1

2
_ϕ2 −

1

2
Σ1 _χ

2 −
3

2
Σ2 _χ

4

�
αþ 3H _ψ þ k2

a2
ðψ þHσshÞ þ

1

2
_ϕδ _ϕþ 1

2
ðΣ1 þ 3Σ2 _χ

2Þ _χδ _χ

þ 1

2

�
1

2
Σ1;ϕ _χ

2 þ 3

4
Σ2;ϕ _χ

4 þ V;ϕ

�
δϕþ 1

2
V;χδχ ¼ 0; ðA3aÞ

ANNA IJJAS and ROMAN KOLEVATOV PHYS. REV. D 103, L101302 (2021)

L101302-6



Hαþ _ψ −
1

2
ð _ϕδϕþ ðΣ1 þ Σ2 _χ

2Þ _χδχÞ ¼ 0: ðA3bÞ

Varying Eq. (A2) with respect to δϕ and δχ yields the evolution equations for the perturbed scalar fields:

δϕ̈þ k2

a2
δϕþ 3Hδ _ϕ − _ϕ

�
_αþ 3 _ψ þ k2

a2
σsh

�
þ
�
V;ϕϕ −

1

2
Σ1;ϕϕ _χ

2 −
1

4
Σ2;ϕϕ _χ

4

�
δϕ

− ðΣ1;ϕ þ Σ2;ϕ _χ
2Þ _χδ _χ þ V;ϕχδχ −

�
ϕ̈þ 3H _ϕ −

1

2
Σ1;ϕ _χ

2 −
3

4
Σ2;ϕ _χ

4 − V;ϕ

�
α ¼ 0; ðA4aÞ

ðΣ1 þ 3Σ2 _χ
2Þðδχ̈ þ 3Hδ _χ − _χ _αÞ þ ðΣ1 þ Σ2 _χ

2Þ
�
k2

a2
δχ − _χ

�
3 _ψ þ k2

a2
σsh

��

þ ðΣ1 þ 3Σ2 _χ
2Þ:δ _χ þ V;χχδχ þ V;χα − ðΣ1 þ 3Σ2 _χ

2Þðχ̈ þ 3H _χÞα − ðΣ1 þ 3Σ2 _χ
2Þ: _χα

þ ðΣ1;ϕ þ Σ2;ϕ _χ
2Þ _χδ _ϕþ ðΣ1;ϕ þ Σ2;ϕ _χ

2Þ: _χδϕþ ðΣ1;ϕ þ Σ2;ϕ _χ
2Þðχ̈ þ 3HÞδϕþ V;ϕχδϕ ¼ 0: ðA4bÞ

In spatially flat gauge (ψ ; E≡ 0), the evolution and constraint equations (A3)–(A4) together with the background
equations (4), (7) yield a closed system for the dynamical variables δϕ and δχ which we used above to numerically compute
the gauge-invariant quantities S and R defined in Eqs. (18) and (21), respectively.
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