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Abstract: Terrestrial laser scanners (TLSs) are a standard method for 3D point cloud acquisition due to
their high data rates and resolutions. In certain applications, such as deformation analysis, modelling
uncertainties in the 3D point cloud is crucial. This study models the systematic deviations in laser scan
distance measurements as a function of various influencing factors using machine-learning methods. A
reference point cloud is recorded using a laser tracker (Leica AT 960) and a handheld scanner (Leica
LAS-XL) to investigate the uncertainties of the Z+F Imager 5016 in laboratory conditions. From 49 TLS
scans, a wide range of data are obtained, covering various influencing factors. The processes of data
preparation, feature engineering, validation, regression, prediction, and result analysis are presented.
The results of traditional machine-learning methods (multiple linear and nonlinear regression) are
compared with eXtreme gradient boosted trees (XGBoost). Thereby, it is demonstrated that it is possible
to model the systemic deviations of the distance measurement with a coefficient of determination of
0.73, making it possible to calibrate the distance measurement to improve the laser scan measurement.
An independent TLS scan is used to demonstrate the calibration results.

Keywords: uncertainty modelling; laser scanning; machine learning; distance calibration

1. Introduction

Terrestrial laser scanners (TLSs) are valuable tools for 3D point acquisition due to
their high data rates and resolutions. TLSs are increasingly used in applications with
high accuracy requirements, such as in engineering geodesy, so it is important to ensure
that these requirements can be met. To achieve this, it is important to take uncertainty
factors into account in the choice of viewpoint (distances and incidence angle), and to
model the uncertainties of the TLS measurement as accurately as possible. The outcomes
of uncertainty modelling can be useful for weighting points in a registration, in testing
whether deformations are significant in the deformation analysis, or for viewpoint planning.

The precision and accuracy of a TLS measurement are influenced by various factors
that have been studied in the literature. Expressions of uncertainties can be carried out
according to the guidelines provided in the Guide to the Expression of Uncertainty in
Measurement (GUM) [1]. This framework has already been applied to TLSs using Monte
Carlo methods [2,3]. Imperfections in the mechanical components can cause axis deviations,
which can be modelled according to studies such as [4–8]. The error model in [9] lists 18 dif-
ferent influencing factors that serve as the basis for current calibration methods [8]. The TLS
distance measurement is also impacted by atmospheric conditions, such as temperature
and air pressure, particularly for larger distances or extreme conditions [10]. Furthermore,
the scan geometry (distance and incidence angle) affects the distance measurement, as the
spot size is directly influenced by these factors. As the incidence angle decreases, the spot
size increases, leading to a corresponding impact on the distance measurement [11–14]. In
addition, the reflection properties of the target can impact how much energy is reflected.
In [15], the author demonstrates how the precision of the distance measurement can be
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derived from the raw intensity values. Lastly, spatial and temporal correlations influence
the TLS measurements, which have been addressed in studies such as [16–19].

To investigate the uncertainties in TLS distance measurements, there are two ap-
proaches: forward and backward modelling. Forward modelling often involves deter-
mining TLS uncertainties by using the intensity values [15,20] or via Monte Carlo simu-
lations [2]. In contrast, backward modelling examines TLS uncertainties by comparing
them to a reference point cloud or geometry [21]. This allows for a better analysis of the
possible causes of the resulting uncertainties. To predict the uncertainties in TLS point
clouds with backward modelling, many supervised machine-learning (ML) approaches
are available [22]. However, to our knowledge, there are not many publications that deal
with uncertainty modelling with ML in the context of TLSs. Nevertheless, the work in [15],
which models the precision of TLS distance measurement with a nonlinear functional
relation, is worth highlighting. Additionally, in [23], it is demonstrated that systematic de-
viations in distance measurements can be classified using ML. Moreover, ML approaches in
other domains have shown promising results for modelling uncertainties. For example, the
work in [24] shows that the random errors of a laser triangulation sensor can be predicted
using different ML algorithms.

1.1. Contribution

Existing approaches for modelling the uncertainties in TLS measurements tend to
focus on modelling the uncertainties as a function of a few factors or on addressing only the
precision of the TLS. However, there is a lack of research on utilizing ML or deep-learning
methods for regression and prediction of systematic deviations in TLS measurements.
These methods should be utilized for TLS measurements as they have the potential to
provide more comprehensive and accurate models for uncertainty quantification. This
study demonstrates the ability to model systematic deviations in TLS distance measure-
ments as a function of five influences, including intensity, angle of impact, distance, spot
size, and curvature, using different supervised ML methods for regression. A reference
point cloud acquired with Leica ATR960 and Leica LAS-XL, which serves as the ground
truth, is used to investigate and model systematic distance deviations in the Z+F Imager
5016 using backward modelling. The developed algorithm for the TLS–reference point
cloud comparison ensures that the residuals are reflected along the distance measurement.
Moreover, this contribution demonstrates the potential of calibrating and improving the
distance observation of TLSs by using machine-learning models trained from backward
modelling. Such distance calibrations can be applied in addition to instrument calibrations
(e.g., [8]), thus improving the TLS point cloud quality.

1.2. Outline

The process of modelling systematic deviations in distance measurements is com-
posed of three steps. First, in Section 2, data preparation is conducted. This includes the
description of the data acquisition process through the use of reference and TLS sensors,
as well as the presentation of the data preparation procedure, which involves point cloud
cleaning and feature engineering. The implemented method for comparing the TLS and ref-
erence point cloud ensures that the residuals are reflected along the distance measurement.
Secondly, in Section 3, uncertainty modelling is performed as a function of five influences.
Thereafter, in Section 4, three different ML approaches are tested and compared to predict
systematic deviations in the distance measurement depending on the five influences. Fi-
nally, we demonstrate in Section 4.3 that the trained models can be utilized to calibrate
the distance measurement of a real measurement, leading to the improved accuracy of the
TLS point cloud. This paper concludes in Section 6, which presents the outlook and future
works for the TLS-modelling process.
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2. Data Preparation

In this section, we describe the process of preparing the data for the ML modelling of
systematic deviations in distance measurements. This involves obtaining a reference point
cloud using high-accuracy sensors and capturing multiple scans from the laser scanner
under investigation. We will demonstrate the entire process, including the registration of
the point clouds, calculation of residuals, and feature engineering.

2.1. Environment

The measurements were carried out in the HiTec laboratory of the Geodetic Institute
of Hanover, as shown in Figure 1a. The laboratory offers stable conditions in terms of
temperature (20 °C) and air pressure throughout the entire measurement process, which
effectively eliminates atmospheric influences on the distance measurement. The dimensions
of the laboratory are 7.6 m (length) × 7.4 m (width) × 6.6 m (height), as shown in Figure 1b.
Consequently, our investigation into uncertainty is limited to short distances.

(a) (b)

Figure 1. (a) Panoramic image from a single laser scan in the HiTec laboratory. Investigation of two
heating systems (highlighted with the red rectangle). (b) Dimensions of the HiTec laboratory.

2.2. Sensors
2.2.1. Reference: Leica AT960 and Leica LAS XL

The reference sensors used in the data acquisition process, consisting of a combination
of the Leica AT 960 laser tracker and the Leica LAS-XL handheld scanner, can be considered
as the ground truth due to their high accuracy, as indicated by the uncertainties presented
in Table 1. Thereby, the uncertainties of the Leica LAS XL tracker (0.225 mm) are dominant
compared to those of the laser tracker, which are ±15 µm + 6 µm/m. However, because the
distances between the laser tracker and handheld scanner are kept short, with a maximum
of 5 m), the uncertainties of the laser tracker measurement remain low, with a maximum of
0.045 mm. The Leica LAS XL is a high-precision instrument capable of capturing precise
and accurate point cloud data. This, combined with the stability of the HiTec laboratory,
ensures that the reference point cloud generated from the handheld laser scanner can be
relied upon as a reliable and trustworthy source of information.

2.2.2. Z+F Imager 5016

In this study, we focus on investigating the Z+F Imager 5016. This state-of-the-art
time-of-flight laser scanner is suitable for fast (1 mio. pts/sec) and high-resolution 3D
point acquisition. Information regarding the uncertainties of the Z+F Imager 5016 can be
taken from Table 1, which were obtained from a manufacturer’s calibration that took place
2 months prior to the measurement. For the vertical and horizontal angles, the angular
uncertainties are 0.04 mm/m and 0.05 mm/m, respectively. In the laboratory environment,
where the distances are relatively short, the maximum angular uncertainties for a distance
of up to 8.2 m (refer to Table 2) are 0.33 mm and 0.41 mm, correspondingly. However, for
the majority of the measurements, the angular uncertainties are relatively small because
the distances are shorter (see Table 2: mean = 2.09 m). In addition, the uncertainties of the
distance measurement are in the order of magnitude of the uncertainty of the Leica LAS XL.
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Moreover, the manufacturer’s calibration specifies the linearity error as 0.62 mm, which
affects the distance measurement. Accordingly, the linearity error reflects the largest source
of uncertainty in the TLS measurement.

Table 1. Sensor characteristics [25–27]. Uncertainties of the Z+F Imager 5016 result from manufac-
turer’s calibration.

Sensor Specifications

Leica AT960 LR
Angle accuracy: ±15 µm + 6 µm/m (Maximum permissible error)
Range accuracy: ±0.5 µm/m (Maximum permissible error)
Measurement range (6 DoF): 40 m

Leica LAS XL
Measurement uncertainty plane surface: ±0.225 mm (one standard deviation)
Measurement range: 30 cm
Data acquisition rate: 143,000 pts/s

Z+F Imager 5016

Vertical accuracy: 0.0021◦ = 0.04 mm/m (one standard deviation)
Horizontal accuracy: 0.0031◦ = 0.05 mm/m (one standard deviation)
Range noise: 0.16–0.2 mm (one standard deviation)
Measurement range: 0.3–365 m
Data acquisition rate: 1 mio. pts/s
Vertical resolution: 0.00026◦

Horiontal resolution: 0.00018◦

Table 2. Calculated features for all TLS points.

Variable Feature Unit Min Max Mean std

x0 Intensity - 0.0131 1.019 0.2933 0.1044

x1
Angle of
impact rad 0.174 1.570 0.952 0.323

x2 Distance m 0.5516 8.2893 2.0918 1.6516

x3 Spot size m 0.0035 0.0102 0.0038 0.0003

x4 Curvature - 0.00000 0.00086 0.00033 0.00018

y Distance
residuals m −0.0198 0.0195 0.00056 0.00073

2.3. Data Acquisition and Registration

In order to compare the TLS and reference point clouds, the former must be trans-
formed into the coordinate system of the laser tracker. This is achieved using target mounts
that can accommodate both TLS targets and corner cube reflectors for laser tracker measure-
ments, as shown in Figure 2a. In previous investigations in [21], the TLS target centres were
calibrated and found to deviate from the target centres of the corner cube by a mean value
of 0.054 mm, which is negligible. A total of 28 target mounts were used for registration,
distributed throughout the laboratory. Figure 2b illustrates a portion of the laboratory
environment with mounted TLS targets (colored in red).

(a) (b)

Figure 2. (a) Targets used for registration: (1) Back of the TLS target. (2) Front of the TLS target.
(3) Target mount for TLS and laser tracker targets. (4) Corner cube reflector for laser tracker measure-
ment. (b) Section of the distribution of targets within the laboratory environment. The targets that
are placed in the room are indicated by red rectangles.
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The data acquisition process consisted of two consecutive stages:

1. The reference point cloud, as shown in Figure 3, was acquired using a combination of
the Leica AT 960 laser tracker and the handheld Leica LAS-XL scanner. The handheld
scanner was moved both horizontally and vertically to achieve high point density.
Additionally, 28 targets were measured with the laser tracker, in combination with
corner cube reflectors placed on target mounts, to assist with the registration of the
TLS point cloud.

2. To capture variations in distance and angle of impact, 49 scans were recorded with the
Z+F Imager 5016 at a constant quality level (Quality+). The viewpoints for the scans
were distributed throughout the entire room, as illustrated in Figure 4a. Furthermore,
TLS targets were attached to the target mounts.

Figure 3. Acquired point clouds of the reference sensor from different views. Each object was
separately captured.

Subsequently, the TLS point clouds were transformed into the coordinate system of
the laser tracker. The transformation is performed using the software Scantra [28], which
requires using the centre points of both the TLS targets and corner cube reflectors as inputs
to accurately align the point clouds. Figure 4b shows the 3D uncertainty of the translation
parameters given using Scantra, which is an average of 0.3 mm. Because all 49 scans are
assessed together in the later analysis, the impact of the uncertainties of the transformation
parameters on the whole data set can be considered as random. The uncertainties of
the transformation parameters can have a positive effect in terms of data augmentation,
counteracting overfitting.

(a) (b)

Figure 4. (a) TLS viewpoints inside the HiTec laboratory. (b) Three-Dimensional translation uncer-
tainty for each TLS scan.

2.4. Comparison of TLS and Reference Point Clouds

Because we are interested in backward modelling the uncertainties of the TLS point
clouds, a comparison between the TLS point cloud and reference point cloud must be
performed to calculate the residuals, which will later be our dependent variable y. The
procedure to calculate the residuals is illustrated in Figure 5 and outlined as follows:
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Meshing of the point cloud.
A mesh is created from the reference point cloud using Poisson surface reconstruction [29].
This approach is preferred over other methods, such as ball pivoting, alpha shapes, and
marching cubes, because it produces better results for closed geometries and ensures
the topological correctness. Additionally, Poisson surface reconstruction is more robust
to sensor noise compared to other methods [30]. As a result, the noise is effectively
filtered out and a smooth surface is generated, which accurately represents the geometry.
Furthermore, the high point density of the reference point cloud, obtained through multiple
measurements, further improves the accuracy of the reconstructed geometry.
Raycasting. Raycasting is used to determine the intersection point with the reference mesh
for each TLS point, which is achieved by employing the Open3D library in Python [31]
(Figure 5b).

1. If an intersection exists, calculate the distance between the intersection point
and TLS sensor dintersect, as well as the distance between the TLS sensor and TLS
point dTLS.

2. Calculate the distance residuals as =: dTLS − dintersect.
3. Save the following information: (1) the object ID, indicating to which object the

TLS point belongs, and (2) the distance residuals.

(a) (b)

Figure 5. (a) Process chain: distance residual determination. (b) Principle of raycasting for distance
residual calculation.

For each TLS point that intersects with the reference mesh, we obtain a difference in
the distance, which can be interpreted as a deviation in the distance measurement, along
with an object ID that allows us to assign the point to a unique object. Positive distance
residuals indicate that the distance measurement was too long, whereas negative distance
residuals indicate that the distance measurement was too short.

2.5. Feature Engineering

There are numerous factors that influence the uncertainty of a static TLS. Therefore, we
calculated different features for each point to assess their contributions to the uncertainties
in the distance measurement. These features will be used as the independent variable xi in
the uncertainty modelling using various ML regressions approaches. In accordance with
the uncertainty budget of TLSs in Figure 6, we focus on features that describe the scan
geometry as well as the object because we operated in a controlled environment (stable
atmospheric conditions). The following five features are calculated for the TLS points:

• Intensity: The intensity of the reflected laser beam provides information about the
reflectivity of the object and the scan geometry (distance and angle of impact). The raw
intensity values can range from 0 to 5 mio. increments for the Z+F Imager 5016. For
the regression, the raw intensity values are scaled between 0 and 1 using the formula:

I =
Iraw

5, 000, 000[Inc]
(1)
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• Distance: As the distance increases, the spot size increases, affecting the distance mea-
surement. Distance calculations are performed between TLS points and TLS viewpoint.

d =
√
(xtls − xview)2 + (ytls − yview)2 + (ztls − zview)2 (2)

• Angle of impact (α): The angle between the direction vector from the sensor to the
point DP and the point’s surface affects the spot size and distance measurement [12].
The angle of impact αi is calculated in Equation (3) using the point’s normal vector N
and is determined through principle component analysis:

αi = arcsin
(

DPi · Ni
||DPi||2 · ||Ni||2

)
(3)

• Spot size (major axis): Depending on the angle of impact, the emitted round laser
spot deforms into an ellipse. The spot size’s major axis of the ellipse ma depends on
the divergence angle γ, the spot size at the beginning d0, and the distance d [32]. It
can be calculated using the following formula:

ma = d0 +
2 · d · sin(2γ)

cos(2α) + cos(2γ)
(4)

• Curvature: The curvature provides information about the object’s shape and is cal-
culated from the eigenvalues resulting from the principal component analysis of the
k-nearest neighbourhood of a point [33]. With λ0 ≤ λ1 ≤ λ2 and k = 50, the curvature
can be calculated as follows:

curv =
λ0

λ0 + λ1 + λ2
(5)

Figure 6. Uncertainty factors of TLSs (in accordance with [23]).

3. Uncertainty Modelling

The objects analysed in this study differ in their form and material. In the following
section, we conduct uncertainty modelling for two heating systems (see Figure 1). A total
of 60 million data points are available from backward modelling (see Section 2). Table 2
presents the statistics for the dependent and independent variables. We note that the
intensity and the angle of impact cover the entire range of values and that the data set only
includes short distances (with a maximum distance of 8.29 m). There is little variation in
curvature, which can be attributed to the flatness of the objects.
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3.1. Data Analysis

Figure 7 depicts the correlations among the calculated features, revealing that the
independent variables are interrelated. Notably, the intensity x0 is highly positively cor-
related with the angle of impact x1, indicating that the intensity increases with greater
angles of impact. This is justified by the radar equation as the laser beam hits the object
perpendicularly and with a high angle of impact. Additionally, both the angle of impact
and the intensity are positively correlated with the distance x2, which is not physically
explained and may be attributed to the choice of viewpoint and the limited variation in
the distance. Spot size x3 is negatively correlated with the angle of impact and positively
correlated with the distance, in accordance with Equation (4). Moreover, curvature x4 is
positively correlated with the angle of impact and negatively correlated with the spot size,
suggesting that larger curvature occurs when the laser beam hits the object perpendicularly,
resulting in a small spot size.

Figure 7. Correlation matrix between independent and dependent variables.

The correlations of the independent with the dependent variables y (distance residuals)
are particularly interesting. Intensity has the highest correlation with the residuals, with a
negative correlation indicating that the residuals become larger with decreasing intensity,
which means that the distance tends to be measured too long. Moreover, the angle of impact
is negatively correlated with the residuals, whereby the residuals become larger as the angle
decreases. In this regard, the small positive correlation of the spot size with the residuals is
worth mentioning: as the spot size increases (with a smaller angle of impact), the residuals
increase. Lastly, a small positive correlation can be found between the curvature and the
residuals, meaning that larger residuals are to be expected as the curvature increases.

Box plots can help in better understanding the functional relationship between the
independent and dependent variables based on the findings of the correlation matrix.
Figure 8a shows the course of the distance residuals versus the intensities. It is noticeable
that, at low intensities, the distance was systematically measured too long, and at high
intensities it was systematically too short. For intensities lower than 1 mio. Inc., the distance
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was measured too long by more than 1 mm. From intensities of 3.6 mio. Inc., there is a
systematic shortening of the distance measurement by 1 mm. When considering only the
medians of the distance residuals dr versus the intensity I, their functional relationship
follows the same pattern as in the intensity-based model (Equation (6), [15]), with w0, w1,
and b0 as coefficients.

dr = w0 · Iw1 + b0 (6)

By fitting a function to the medians of the distance residuals, the green curve in
Figure 8a is obtained. To evaluate the quality of fitting, the coefficient of determination
from Equation (7) can be used [22]. Here, dri represents the measured distance residual and
d̂ri represents the predicted distance residuals.

R2 =
Σ(dri − d̂ri )

2

Σ(dri − d̄r)2 (7)

The coefficient of determination of 0.989 indicates an almost perfect fit and supports
the statement that the distance residuals are sufficiently well described using the functional
relationship from Equation (6).

Likewise, the distance residuals versus the angle of impact (Figure 8b) show a nonlin-
ear relationship. As the angle of impact α becomes shallower, the distance is measured too
long. With a shallow angle of impact of 10°, the distance is measured, on average, 2 mm
too long. This relationship can be expressed using the geometrical relationship between the
angle of impact and the distance residuals (Equation (8), [23]), with w0 and b0 as coefficients.
The coefficient of determination of R2 = 0.834 provides a satisfactory result.

dr =
w0

sin(α)
+ b0 (8)

The box plots of the residuals versus the distance in Figure 9a show no clear rela-
tionship; nevertheless, it can be observed that the residuals fluctuate around 0.0 mm. In
addition, dispersion is larger for short distances. In contrast, a trend can be observed in
the box plots of the residuals versus the spot size (Figure 9b). From 3.5 mm to 7.5 mm, the
residuals increase and are positive. Subsequently, the residuals decrease with an increasing
spot size and reach nearly 0.0 mm at a spot size of 9.5 mm. From the box plot of the residuals
versus curvature (Figure 9c), it can be concluded that these features alone do not have a
large influence on the distance measurement. However, a linear trend can be observed for
the curvature: as the curvature increases, the residuals linearly decrease, which contrasts
with the correlation given in Figure 7.

(a) (b)

Figure 8. Box plots of residuals over (a) intensity and (b) angle of impact. Blue boxes represent the
25 and 75 quantiles of the distribution. Red lines indicate the medians of the distribution. Green
line indicates the fitted relationship between dependent and independent variables. Red crosses
indicate outliers.
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(a) (b)

(c)

Figure 9. Box plots of residuals over (a) distance, (b) spot size, and (c) curvature. Blue boxes represent
the 25 and 75 quantiles of the distribution. Red line indicate the medians of the distribution. Red
crosses indicate outliers.

3.2. Regression

The box plots of the residuals plotted against the independent variables (Figures 8 and 9)
reveal a considerable degree of dispersion (blue boxes). In addition, the red crosses indicate
that outliers are present in the data set. To obtain reliable regression results, it is necessary
to remove these outliers. Figure 10a shows the histogram of the residuals. It can be noted
that the residuals are almost normally distributed, although there are some systematic
deviations. To remove possible outliers in the data set, we decided to remove all absolute
residuals above 3 mm according to the three sigma rule, as they represent 0.3% of the data.
The resulting adjusted data were then used for three different types of regression analysis.
We did not consider the correlations among the independent variables, as this is beyond
the scope of this paper.

(a) (b)

Figure 10. Histogram of residuals (a) and absolute residuals (b). Absolute residuals > 3 mm represent
0.28% of the data.
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3.3. Multiple Linear Regression

The linear relationship between the dependent variable y and the coefficients β can be
represented in matrix notation as follows [34]:

y1
...

yn


︸ ︷︷ ︸
fwww,b0

(x)

=

1 x1,0 . . . x1,4
...

...
...

...
1 xn,0 . . . xn,4


︸ ︷︷ ︸

XXX

·


b0
w1
...

w5


︸ ︷︷ ︸

βββ

+

ε1
...

εn


︸ ︷︷ ︸

εεε

(9)

Using the ordinary least-squares approach (minimizing the square root of the residuals),
the unknown regression coefficients can be estimated with the following:

β̂ββ = (XXXT ·XXX)−1 ·XXXT · yyy (10)

3.4. Multiple Nonlinear Regression

If we take into account the nonlinear relationships for the intensity and the angle of
impact from Section 3, we can establish the following multiple nonlinear relationship:

fwww,b0(x) = b0 + w1xw2
i,0 +

w3

sin(xi,1)
+ w4xi,2 + w5xi,3 + w6xi,4 + ε (11)

The unknown regression coefficients are iteratively determined using nonlinear least-
squares method by minimizing the square root of the residuals. For this linearization
of Equation (11), using Taylor series expansion is required. In this process, approximate
values for the coefficents β0 and wi are introduced.

∆β̂ββ = (AAAT · AAA)−1 · AAAT · δyyy (12)

with: (13)

AAA =


∂ fwww,b0(x)1

∂b0

∂ fwww,b0(x)1

∂w1
. . .

∂ fwww,b0(x)1

∂wn
...

...
...

...
∂ fwww,b0(x)n

∂b0

∂ fwww,b0(x)n

∂w1
. . .

∂ fwww,b0(x)n

∂wn

 (14)

3.5. XGBoost Regressor

XGBoost, developed by [35], stands for “eXtreme Gradient Boosting”, which is typi-
cally used for classification and regression tasks. The basis of the approach are classification
and regression trees (CARTs). The general process is outlined in Figure 11. The approach
is based on ensemble decision trees, wherein each tree learns from the residuals of the
previous tree. The final prediction ŷi is obtained from the sum of all trained CARTs:

ŷi = ΣK
k=1 fk(xi), fk ∈ F (15)

where K represents the number of trees, fk(xi) as the result from one tree, and F denotes
the set of all possible CARTs. The objective of the model consists of one loss function L(θ)
and one penalty term Ω(θ) to address the complexity of the model. It uses Σn

i=1l
(

yi, ŷ(t)i

)
to calculate the difference between the predicted value and the actual value of the loss
function. The term ω( f ) defines the complexity of the tree, with T as the number of leaves,
ω as scores on leaves, γ to describe the leaf penalty coefficient, and λ to ensure that the leaf
scores do not become too large.

L(θ) = Σn
i=1l

(
yi, ŷ(t)i

)
(16)



Remote Sens. 2023, 15, 2349 12 of 23

Ω(θ) = Σt
i=1ω( fi) (17)

ω( f ) = γT +
1
2

λ
T

∑
j=1

ω2
j (18)

Obj = L(θ) + Ω(θ) (19)

The processing of the model is additive, as the t-th prediction ŷ(t)i is the sum of the prediction

of the new tree ft(xi) and the prediction of the previous iteration ŷ(t−1)
i .

ŷ(t)i = ŷ(t−1)
i + ft(xi) (20)

The updated objective from Equations (19) and (20) is given as:

Obj = Σn
i=1l

(
yi, ŷ(t−1)

i + ft(xi)
)
+ Ω(θ) (21)

Using the second-order Taylor expansion of the loss function, the objective can be ap-
proximated as in Equation (22), where gi and hi represent the first- and second-order
derivatives, respectively.

Obj = Σn
i=1l

((
yi, ŷ(t−1)

i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

)
+ Ω(θ) (22)

gi = ∂ ŷt−1
i l

(
yi, ŷ(t−1)

i

)
(23)

hi = ∂2 ŷt−1
i l

(
yi, ŷ(t−1)

i

)
(24)

During the construction of the individual trees, a gain parameter Gain is calculated to
decide if a leaf should be divided into several leaves, as follows:

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

+
(GL + GR)

2

HL + HR + λ

]
− γ (25)

G = Σi∈I gi (26)

H = Σi∈Ihi (27)

Here, GL and HL represent the results for the left leaves, GR and HR represent the results
for the right leaves, and λ is a regularization parameter. Additionally, the parameter γ
prunes the tree, and as soon as the gain is smaller than γ, the leaf is not subdivided.

Figure 11. Flowchart: XGBoost regressor.
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Hyperparameter

In XGBoost, achieving high model performance requires an important process called
hyperparameter tuning. This involves modifying the parameter values of a model to
manage its complexity, regularization, and learning rate, ultimately enhancing its capability
to generalize and perform well with new data. In the following section, we will describe
and discuss approaches to tune the hyperparameter as well as the primary parameters
used in XGBoost and their impact on model performance [36].

The hyperparameters play a crucial role in determining the performance of the XG-
Boost model. Several methods are available to obtain the optimal hyperparameters (refer to
Figure 12). In the optimization process, the hyperparameters are selected to minimize the
defined loss function. Grid searches evaluate all possible combinations of hyperparameters
to determine their suitability, and the combination with the smallest loss is selected as the
optimal choice. Random searches select hyperparameters at random, and after certain
combinations have been tested, the combination with the smallest loss is selected. In con-
trast, the Bayesian optimizer chooses the most likely combination of hyperparameters that
minimizes the loss function. It leverages the results of previously evaluated combinations,
leading to faster hyperparameter tuning. Due to its efficiency, the Bayesian optimizer
was utilized for hyperparameter tuning in this work. Specifically, we used the hyper-
opt [37] Python library for this purpose. During hyperparemeter tuning, the models were
trained using the training data set, and the RMSE of the validation data set was minimized
(see Section 3.6).

Figure 12. Hyperparameter search space for the three conventional approaches to optimize
two hyperparameters.

XGBoost has a number of hyperparameters that influence training and can lead to
overfitting (model too complex, small regularization) or underfitting (model too simple,
large regularization). The following hyperparameters were tuned during the Bayesian
optimization using the specified search spaces.

• Max_depth : The max_depth parameter determines the depth limit of the trees within
a model. Increasing the max_depth value creates more intricate models. Search
space = [2–8].

• N_estimators: The number of trees within a model is controlled by the n_estimators
parameter. Raising this value generally enhances the performance of the model, but it
can also increase the risk of overfitting. Search space = [20–150].

• eta: The learning rate governs the size of the optimizer’s steps when updating weights
in the model. A smaller eta value results in more precise but slower updates, whereas
a larger eta value leads to quicker but less precise updates. Search space = [0–1].

• reg_lambda: The lambda parameter, also known as the L2 regularization term on
weights, regulates the weight values in the model by adding a penalty term to the loss
function. Search space = [0–20].

• alpha: The alpha parameter is responsible for the L1 regularization term on the weight
values of the model by adding a penalty term to the loss function. Search space = [0–20].

• subsample: The subsample parameter determines the proportion of observations
used for each tree in the model. Search space = [0–1].
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• colsample_by_tree: The colsample_by_tree parameter regulates the fraction of fea-
tures used for constructing each tree in the model. Setting a lower colsample_by_tree
value results in smaller and less intricate models that can assist in avoiding overfitting.
Search space = [0–1].

• min_child_weight: The min_child_weight parameter specifies the minimum sum
of instance weights needed in a node before the node will be split. Setting a larger
min_child_weight value results in a more conservative tree as it requires more samples
to consider splitting a node. Search space = [0–20].

3.6. Training of the Models Using Cross Validation

The three ML models utilized in this study were all trained and validated using the
same procedure, as depicted in Figure 13. The validation process is similar to the k-fold
cross validation. First, the input point cloud was divided into three distinct data sets:

• Input point cloud: This consisted of 49 TLS scans from two different objects (two
heating systems), resulting in 98 independent objects.

• Validation data (1): A validation data set was created by randomly selecting objects
from the 98 scanned objects until its size was greater than 20% of the entire input
point cloud. The validation data set was independent from the training data set as no
temporal correlation was present.

• Training data (2) and Test data (3): The remaining point cloud was randomly split
into training (80%) and test (20%) data. The test data set was not independent from
the training data set as correlations existed due to data from the same scans.

All three models were trained using the training data set, and their performance was
evaluated and compared using the coefficient of determination (Equation (7)) and the
RMSE (Equation (28)) for both the test and validation data sets. The calculated values were
stored for each iteration. The entire process was repeated 120 times (similar to sampling
with replacement).

RMSE =

√
1
n ∑(dri − d̂ri )

2 (28)

It is worth noting that the validation data played a crucial role in training the XGBoost
regressor (refer to Figure 13). During Bayesian hyperparameter tuning (hyperopt [37]), the
XGBoost models were trained with the training data set and aimed to minimize the loss
function (Equation (28)) for the validation data set.

Figure 13. Flowchart: Training and validation process for the models.
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4. Analysis of Regression Results

The analysis of the regression results is divided into two parts. First, we examine the
individual regression models to determine the effects of the independent variables and the
resulting coefficients. Secondly, we assess the quality measures, including the coefficient of
determination and RMSE, to evaluate the quality of the model prediction.

4.1. Feature Importance

To begin evaluating the quality of the regressions, it is important to understand how
each independent variable affects the three models. A useful approach for this purpose is to
investigate the partial dependencies of the independent variable with respect to the depen-
dent variable. The partial dependencies can be determined using the following equation:

f̄S(XS) =
1
N

ΣN
i=1 f (XS, xiC) (29)

where xiC represents the values occurring in the training data and XS represents the
independent variables for which we want to calculate the partial dependencies [22].

Figure 14 displays the partial dependencies of the independent variable on the depen-
dent variable for each regressor trained on the entire input point cloud. The multiple linear
regression model (blue) shows that the dependency of the distance residuals decreases
linearly with increasing intensity, angle of impact, and distance, whereas the dependency
increases linearly with curvature. Furthermore, it is observed that the dependency remains
constant with respect to the spot size, indicating that the influence of spot size can be
neglected. In contrast, nonlinear trends are observed for the multiple nonlinear regression
(red line). For intensity and angle of impact, the form of the curve aligns with those from
Section 3.1. Additionally, it can be noted that the dependency decreases with increasing
spot size. The partial dependencies of the XGBoost regressor (green line) are particularly
interesting because this model can be considered to be a “black box”. Notably, the partial
dependency follows a step-like behaviour, which results from the tree-based method. Re-
garding intensity, the same behaviour can be observed as in the other two models: intensity
has the largest partial dependency, and the dependency decreases with increasing intensity.
In this case, the decrease is almost linear. Moreover, it can be seen that the angle of impact,
spot size, and curvature do not vary much, and thus do not have as strong an influence
as intensity.

Figure 14. Partial dependencies plot for each model.

The distribution of the coefficients of the linear and nonlinear models, shown in
Figure 15a,b, reveals that some coefficients display larger fluctuations than others. Specifi-
cally, the linear model shows that the curvature (w5) has the highest variation, whereas the
distance (w3) has the lowest. The offset (b0) is positive, and the weights w1 and w2 assigned
to the intensity and angle of impact are negative. This implies that the residuals decrease
with increasing intensity and angle of impact. In the nonlinear model, the offset (b0) is
negative, and the variation is highest for the curvature (w6) and lowest for the distance (w4).
The XGBoost regressor, which is considered to be a “black box”, does not provide weights
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for the independent variables. However, its implemented algorithm offers the possibility
to calculate the feature importance, which sheds light on the model’s behaviour. Figure 15c
shows the feature importance calculation as box plots from 120 samplings, conforming the
conclusions from Figure 14. The intensity had the most significant influence with a median
of 60%, followed by the distance with 13%. The angle of impact still had a noticeable
influence with 9%, whereas the spot size and the curvature had medians of almost 5% and
6%, respectively. The hyperparameters of the XGBoost regressor presented in Figure 15d
were estimated with Bayesian hyperparameter tuning using the validation data set. The
figure reveals that all hyperparameters showed larger variations, except for the maximum
depth of the tree. The 25% and 75% quantiles of the distribution were two and five, respec-
tively, which corresponds with the number of independent variables (intensity, angle of
impact, distance, spot size, and curvature) used for training. In summary, a conclusion of
possible hyperparameters for later models can be drawn from this figure. The medians of
the respective hyperparameters are useful if the entire data set is to be trained with one
XGBoost model.

(a) (b)

(c) (d)

Figure 15. Box plots of the trained parameter of the models. (a) Estimated weights for the linear
model. (b) Estimated weights for the nonlinear model. (c) Feature importance for the XGBoost model.
(d) Resulting hyperparameters from hyperparameter tuning. These parameters are used for training
the XGBoost model.

Quality of the Regression

To compare the regression results of the 120 runs for the three models, we considered
the coefficient of determination and RMSE as quality measures. Both measures are pre-
sented in Figure 16 in the form of box plots for the test and validation data sets. Regarding
the quality measures, it is evident that all three models deliver satisfactory results as the
RMSE is smaller than 0.5 mm. However, all methods achieved better results for the test
data set compared to the validation data set, indicating overfitting of the training data set
in some runs. The dispersion (blue boxes) of the quality measures was also larger for all
methods for the validation data set.
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Specifically, the multiple linear regression achieved the smallest coefficient of determi-
nation, with a median value of 0.52 for the test data set and a mean value of around 0.44 for
the validation data set. On the other hand, the multiple nonlinear regressions performed
slightly better than the linear regressions, achieving coefficients of determination of 0.56
and 0.47 for the test and validation data sets, respectively. Furthermore, the dispersion
(blue box) of the coefficient of determination for the validation data set decreased compared
to multiple linear regression. The XGBoost regressor achieved the best results for both
the test and the validation data sets, with coefficients of determination of 0.73 and 0.62,
respectively, which represents an improvement of 30% compared to the multiple nonlinear
regression. The same behaviour was observed with regard to the RMSE. The multiple
linear regression delivered satisfactory results for both the test and the validation data
sets, with a mean RMSE of 0.49 mm and 0.51 mm, respectively. The multiple nonlinear
regressions achieved slightly improved results compared to the linear regression, with an
RMSE of 0.46 mm for the test data set and 0.49 mm for the validation data set. The XGBoost
regressor achieved the best results for both data sets, with an RMSE of 0.36 mm for the
test data set and 0.42 mm for the validation data set, resulting in an improvement of 20%
and 10% compared to multiple nonlinear regression.

(a) (b)

Figure 16. Validation results for test and validation data sets of the 3 trained models. (a) Coefficient
of determination (higher is better). (b) RMSE (lower is better).

4.2. Distance Calibration Using XGBoost Regressor

As shown in the previous section, the deviations in the distance measurement can
be modelled as a function of five influences using three ML regressions. Among these,
the XGBoost regressor offers the best results in term of the coefficient of determination
and RMSE. Given that the distance deviations are systematic, it is possible to calibrate
the TLS distance measurement using the XGboost regression results. The calibration
procedure involves calculating features such as intensity, angle of impact, distance, spot
size, and curvature, followed by predicting distance residuals using 120 XGBoost regressors.
The average of the 120 predictions is then calculated as the final distance residual. The
TLS distance measurement dmeas is then calibrated by subtracting the predicted distance
residuals d̂r from dmeas, as shown in Equation (30).

dcal = dmeas − d̂r (30)

To reduce variance, all 120 XGBoost models were used to predict the systematic
deviations in the distance measurement. Averaging the 120 XGBoost models (bagging)
leads to a more accurate prediction. Figure 17 illustrates the results of calbrating the
distance measurement for the entire heating data set using the average prediction of the
120 XGBoost regressors. The distribution of the residuals of the raw and calibrated point
clouds indicates that the calibration results in a normal distribution. During the calibration,
the mean of the distribution of the distance residuals decreased from 0.5 mm to −0.02 mm,
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corresponding to a 96% reduction. Additionally, the standard deviation decreased from
0.69 mm to 0.36 mm, a reduction of 48%. Figure 17b shows that the prediction aligns well
with the actual residuals, following a linear trend. However, some larger deviations cannot
be predicted with sufficient accuracy, which can be caused by the precision of the TLS.

(a) (b)

Figure 17. Histogram of the residuals. (a) Effect of the prediction results on the residuals: after the
calibration, the residuals are normally distributed. (b) Heat map of predicted residuals vs. actual
residuals: the linear trend reveals a good fit.

4.3. Real Case Application

For further validation, a scan was taken in the HiTec lab that was not included in
the training and validation data sets and was, therefore, completely independent of the
XGBoost model training. All necessary features were calculated for the point cloud, and
these can be found in Figure 18. Based on the distance and the angle of impact, it is apparent
that the viewpoint is directly in front of the two heating systems.

Figure 18. Calculated features for TLS point cloud. Intensity not scaled.

On the ond hand, Figure 19 shows the real residuals of the reference mesh and the
predicted residuals of the XGBoost regressors. On the other hand, the residuals resulting
from the calibration of the distance measurement are displayed. It is well visible that the
distance was measured too short (blue) at the point where the laser beam hits perpendicular,
and high intensities were reflected back, whereas in other areas with shallower angles of
impact and lower intensities, the distance was measured too long (red).
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Regarding the averaged prediction from 120 models, it can be observed that the effects
mentioned earlier were modelled. The prediction reveals that at high intensities and a
with perpendicular angle of impact, the distance measured was predicted to be too short,
whereas for the remaining area of the point cloud, the distance measured was predicted
to be too long. The circular behaviour of the distance residuals around the area where
the laser beam hits perpendicularly was also modelled. Looking at the residuals with the
calibrated distance measurement, it is evident that the distance is generally measured too
short instead of too long. The histograms in Figure 20 show that the calibration caused the
mean value of the residuals to shift from 0.97 mm (raw data) to −0.10 mm (calibration).
Additionally, the standard deviation of the residuals decreased from 0.41 mm to 0.36 mm.

Figure 19. (Left) Real residuals of the reference mesh. (Middle) Averaged predicted residuals from
120 XGBoost models. (Right) Residuals after calibration is applied to the distance measurement using
the averaged predictions.

Figure 20. Histogram of distance residuals before and after calibration.

Finally, predicting with 120 models has the advantage of determining the standard
deviation of the prediction for each point, providing a separate quality measure (Figure 21).
Analysing the standard deviation of the predicted residuals can reveal where the XGBoost
regressors are consistent and where there are higher deviations. The standard deviations
scattered slightly, with the majority falling in the range of [0.09–0.2 mm]. A circular pattern
was also evident in the standard deviations when the angle of impact was 90°. The highest
standard deviation, around 0.44 mm, was found at the top right of the top heating (refer
to Figure 19). This is the area where the prediction did not match the real residuals at all
(real = negative, prediction = positive).
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Figure 21. Standard deviation calculated using the 120 XGBoost prediction results.

5. Discussion

The results of this work demonstrate a novel method of calibrating TLS distance
measurements by using a highly accurate reference point cloud and gradient boosting trees.
This approach effectively reduces the systematic effects caused by object properties and scan
geometry, resulting in the increased accuracy of the TLS point cloud. The recorded data set
and a real case example were used to show that calibration with an ML model can minimize
the residuals of the reference point cloud, bringing the mean value of the residuals closer to
0.0 mm and slightly decreasing the standard deviations of the residuals. Compared to the
previous approach, which divides the distance deviations into four classes [23], this is a
considerable improvement.

Concerning the angle of impact, findings from other publications [13,14] have con-
firmed that the distance is measured too long when the angle becomes shallower. The
proposed ML model incorporates scan geometry information to predict systematic distance
deviations accurately. This approach shares similarities with the methodology used in [12],
wherein the authors modelled measurement noise as a function of both distance and inci-
dence angle. However, our approach differs in that we focused on effectively correcting
distance measurements rather than modelling the noise.

Furthermore, we applied the functional relationship between intensity and distance
residuals from the study in [15]. However, unlike their study wherein the precision was
modelled, we modelled the systematic deviation in our publication. Our analysis revealed
that at high intensities, the distance measurement was measured too short by up to 1 mm.
This behaviour could not be taken into account in [15] because only precision could be
modelled there. By modelling the systematic deviation, we were able to account for it
and improve the accuracy of the distance measurements, especially at high intensities. In
contrast to TLS calibration approaches, such as that described in [8], our approach modelled
the TLS distance measurement as a function of scanner external influences, including
object properties and scan geometry, rather than as a distance offset. Consequently, our
calibration method can be used as an additional step in TLS calibration. Moreover, our
prediction of distance deviation can have broader applications, such as in viewpoint
planning and weighting of points for registration using the iterative closest-point method
or deformation analysis.
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6. Conclusions

This paper tackled the critical issue of systematic deviations in TLS distance measure-
ments. To achieve this, a comprehensive data set for the Z+F Imager 5016 was recorded
using a reference sensor with superior accuracy. This enabled the investigation of the
impact of various factors on distance measurements through backward modelling. The
analysis revealed that both the intensity and the angle of impact exert the most significant
influences, modelled as nonlinear relationships. Accounting for these effects resulted in
more precise prediction outcomes compared to multiple linear regression.

Furthermore, this paper introduced an XGBoost approach to predict the distance
residuals. The XGBoost regressor proved superior to conventional ML approaches, showing
excellent performance in modelling nonlinear relationships, as evidenced by its lower
RMSE and higher coefficient of determination. Additionally, a routine was developed
that split the data set into validation, test, and training sets, and Bayesian hyperparameter
tuning minimized the overfitting effect. Using 120 trained XGBoost regressors, this paper
demonstrated a TLS distance deviation prediction, using an independent scan that was not
part of the training process. The results showed that the prediction reflects the true residuals
accurately, and calibration of the distance measurement leads to enhanced outcomes.

The results of this study demonstrate the potential of ML approaches, particularly
the XGBoost regressor, to improve the accuracy of distance measurement in TLSs. While
this study focused on a single object produced from one material, future work will explore
the applicability of ML approaches to a broader range of objects and materials. This will
require careful evaluations of additional features and potential adjustments to the models.
In particular, we will investigate the suitability of neural network approaches for predicting
systematic deviations in distances. In addition, the correlations between the independent
variables will be considered in further investigations. We also plan to extend the data set
through additional measurements, with a particular focus on objects that exhibit a wider
range of distances.

It is important to investigate whether the distance measurement calibration we pro-
posed is only applicable to the specific sensor used in this study or if it can be transferred to
other sensors of the same type or from different manufacturers. Additionally, identifying a
suitable calibration routine that can efficiently and accurately perform distance calibrations
is crucial. Such an investigation can provide valuable insights into the generalizability of
our approach and its potential to improve distance measurement accuracy across different
TLS sensors. By expanding the scope of our study in these ways, we aim to build on
the promising results presented here and contribute to the ongoing development of more
accurate and efficient TLS technologies.
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Abbreviations
The following abbreviations are used in this manuscript:

TLS terrestrial laser scanner
ML machine learning
GUM Guide to the Expression of Uncertainty in Measurement
RMSE root-mean-square error
CART classification and regression trees
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14. Linzer, F.; Papčová, M.; Neuner, H. Quantification of Systematic Distance Deviations for Scanning Total Stations Using Robotic
Applications. In Contributions to International Conferences on Engineering Surveying; Kopáčik, A., Kyrinovič, P., Erdélyi, J., Paar, R.,
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