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Abstract 

Various research domains are facing new challenges brought about by growing 

volumes of data. To make optimal use of them, and to increase the reproducibility of 

research findings, method versatility is required. Method versatility is the ability to 

flexibly apply widely varying data analytic methods depending on the study goal and 

the dataset characteristics.  

Method versatility is an essential characteristic of data science, but in other areas of 

research, such as educational science or psychology, its importance is yet to be fully 

accepted. Versatile methods can enrich the repertoire of specialists who validate 

psychometric instruments, conduct data analysis of large-scale educational surveys, and 

communicate their findings to the academic community, which corresponds to three 

stages of the research cycle: measurement, research per se, and communication. In this 

thesis, studies related to these stages have a common theme of human attitudes towards 

technology, as this topic becomes vitally important in our age of ever-increasing 

digitization.  

The thesis is based on four studies, in which method versatility is introduced in four 

different ways: the consecutive use of methods, the toolbox choice, the simultaneous 

use, and the range extension. In the first study, different methods of psychometric 

analysis are used consecutively to reassess psychometric properties of a recently 

developed scale measuring affinity for technology interaction. In the second, the 

random forest algorithm and hierarchical linear modeling, as tools from machine 

learning and statistical toolboxes, are applied to data analysis of a large-scale 

educational survey related to students’ attitudes to information and communication 

technology. In the third, the challenge of selecting the number of clusters in model-

based clustering is addressed by the simultaneous use of model fit, cluster separation, 

and the stability of partition criteria, so that generalizable separable clusters can be 

selected in the data related to teachers’ attitudes towards technology. The fourth reports 

the development and evaluation of a scholarly knowledge graph-powered dashboard 

aimed at extending the range of scholarly communication means.  

The findings of the thesis can be helpful for increasing method versatility in various 

research areas. They can also facilitate methodological advancement of academic 

training in data analysis and aid further development of scholarly communication in 

accordance with open science principles. 

Keywords: method versatility, data science, attitudes towards technology.           
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Zusammenfassung  

Verschiedene Forschungsbereiche müssen sich durch steigende Datenmengen neuen 

Herausforderungen stellen. Der Umgang damit erfordert – auch in Hinblick auf die 

Reproduzierbarkeit von Forschungsergebnissen – Methodenvielfalt. Methodenvielfalt 

ist die Fähigkeit umfangreiche Analysemethoden unter Berücksichtigung von 

angestrebten Studienzielen und gegebenen Eigenschaften der Datensätze flexible 

anzuwenden.  

Methodenvielfalt ist ein essentieller Bestandteil der Datenwissenschaft, der aber in 

seinem Umfang in verschiedenen Forschungsbereichen wie z. B. den 

Bildungswissenschaften oder der Psychologie noch nicht erfasst wird. Methodenvielfalt 

erweitert die Fachkenntnisse von Wissenschaftlern, die psychometrische Instrumente 

validieren, Datenanalysen von groß angelegten Umfragen im Bildungsbereich 

durchführen und ihre Ergebnisse im akademischen Kontext präsentieren. Das entspricht 

den drei Phasen eines Forschungszyklus: Messung, Forschung per se und 

Kommunikation. In dieser Doktorarbeit werden Studien, die sich auf diese Phasen 

konzentrieren, durch das gemeinsame Thema der Einstellung zu Technologien 

verbunden. Dieses Thema ist im Zeitalter zunehmender Digitalisierung von 

entscheidender Bedeutung.  

Die Doktorarbeit basiert auf vier Studien, die Methodenvielfalt auf vier 

verschiedenen Arten vorstellt: die konsekutive Anwendung von Methoden, die 

Toolbox-Auswahl, die simultane Anwendung von Methoden sowie die Erweiterung der 

Bandbreite. In der ersten Studie werden verschiedene psychometrische 

Analysemethoden konsekutiv angewandt, um die psychometrischen Eigenschaften 

einer entwickelten Skala zur Messung der Affinität von Interaktion mit Technologien 

zu überprüfen. In der zweiten Studie werden der Random-Forest-Algorithmus und die 

hierarchische lineare Modellierung als Methoden des Machine Learnings und der 

Statistik zur Datenanalyse einer groß angelegten Umfrage über die Einstellung von 

Schülern zur Informations- und Kommunikationstechnologie herangezogen. In der 

dritten Studie wird die Auswahl der Anzahl von Clustern im modellbasierten Clustering 

bei gleichzeitiger Verwendung von Kriterien für die Modellanpassung, der 

Clustertrennung und der Stabilität beleuchtet, so dass generalisierbare trennbare Cluster 

in den Daten zu den Einstellungen von Lehrern zu Technologien ausgewählt werden 

können. Die vierte Studie berichtet über die Entwicklung und Evaluierung eines 

wissenschaftlichen wissensgraphbasierten Dashboards, das die Bandbreite 

wissenschaftlicher Kommunikationsmittel erweitert. 

Die Ergebnisse der Doktorarbeit tragen dazu bei, die Anwendung von vielfältigen 

Methoden in verschiedenen Forschungsbereichen zu erhöhen. Außerdem fördern sie 

die methodische Ausbildung in der Datenanalyse und unterstützen die 

Weiterentwicklung der wissenschaftlichen Kommunikation im Rahmen von Open 

Science.          

Schlagwörter: Methodenvielfalt, Datenwissenschaft, Einstellung zu Technologien. 
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Chapter 1 

1 Introduction 

Versatility as a wide diversity of capabilities was discussed in relation to scientific 

thinking as early as in 1880s [241]. Since then, philosophers of science have returned to 

this topic by emphasizing the importance of a pluralistic approach to scientific 

methodology [51], and statisticians by discussing multiple competing perspectives on 

statistical inference and decision making [84]. In this thesis, I explore the 

epistemological problem of versatility in relation to data analytic methods. The term 

“method” is used broadly to describe general strategies of data analysis, as well as 

specific models, algorithms, tests, and metrics. Thus, method versatility is understood 

as the ability to flexibly apply widely varying data analytic methods depending on the 

study goal and the dataset characteristics.  

Method versatility can be viewed as one of the pivotal concepts in scientific 

research. In their milestone paper on methodological problems in statistical analysis, 

Gelman and Hennig [85] suggested a framework of scientific principles. In Figure 1.1, 

I grouped them to depict their relevance to the aims of this thesis.  

 

Figure 1.1: Method Versatility in the Framework of Scientific Principles.  
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The basic principles include a consensus about definitions and assumptions; 

impartiality of researchers; and correspondence of theories to observable reality that 

can confirm theoretical premises or refute them. Without these most fundamental 

principles, scientific research is not possible, and this work does not focus on them. 

Stability of scientific findings contributes to the reproducibility of research results, and 

transparent reporting is vital for methodological rigour [259]. Therefore, I adhere to 

maximal transparency in reporting my methods and results. Finally, awareness of 

multiple perspectives and context dependence are principles directly related to method 

versatility. These principles mean recognizing that various perspectives on analysis are 

a reality to be reckoned with, and the choice of a suitable method depends on the aims 

of the study and on the selected datasets. Thus, method versatility, without being a 

panacea against all possible flaws in data analysis, is a key ingredient of 

methodologically rigorous and scientifically valid research.  

The topic of method versatility becomes increasingly important in our age of big 

data. Most inferential statistical tests and machine learning (ML) models have a 

requirement of a minimal sample size [71], and the choice of methods for studies with 

small sample sizes is inevitably limited. The situation has changed with the growing 

amount of data that can be analysed with various methods to obtain new insights. As 

early as in 2001, Leo Breiman said: “To solve a wider range of data problems, a larger 

set of tools is needed” [29]. Since then, the evolving field of data science has brought 

forth advanced instruments for different tasks. From the early days of data science, 

method versatility has been its essential characteristic [35], and it is a common 

understanding that a suitable method should be selected for each specific task [1]. In 

other areas of research, however, such as social sciences, psychology, and educational 

science, the importance of method versatility is yet to be fully accepted. In these 

domains, researchers frequently resort to a rather restricted range of instruments, or 

even a single “default method” [84], which they are most acquainted with due to their 

training and practice. The insufficiently flexible approach to data analysis in these areas 

was discussed as a problem to be resolved in order to deal with the replication crisis 

[47], and a context-based “toolbox approach” was called for [86]. Social and 

educational sciences have begun to utilize data science perspectives, and new subfields 

have emerged that practice versatile methods of data analysis [211]. This endeavour 

can be reciprocal, as it was shown that threats to generalizability of findings are quite 

similar in diverse areas of research [121], and to deal with these challenges, 

interdisciplinary effort might be required. 

1.1 Motivation, Problem Statement, and Challenges 

Data science has evolved as an interdisciplinary field that synthesizes statistics, 

informatics, computer science, and communication, with the aim to study data and 

obtain insights that can be transferred to the related areas. In its further development, it 

requires dynamic exchange with other areas in accordance with the principles of open 

science [59]. Therefore, it is vital for data science and for other scientific domains to 

promote cross-domain activities and develop a synergy of research disciplines. This 
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approach creates opportunities for theoretical and technological advancements that can 

address scientific problems more effectively than can be achieved by singular 

disciplinary efforts [35].  

To provide domain-specific research with data science methods and strategies, it 

might be useful to differentiate stages of the research cycle, which can be 

conceptualized in various ways (see, e.g., [96], [131]). A simple tripartite cycle is 

presented in Figure 1.2.  

 

Figure 1.2: The Domain Research Cycle and Data Science Input. 

Measurement is necessary to gather data, and appropriate instruments are required 

for this stage. In the natural sciences, physical or chemical properties of research 

objects are measured with technical instruments of ever-increasing precision. In social 

sciences, psychology, educational science, and certain subfields of medicine, which 

deal with subjective human experience, psychometric instruments can be used. These 

are scales aimed at capturing a psychological construct, usually with a few items, 

although one-item scales also exist. The construct under scrutiny is understood as 

latent, that is, it cannot be assessed directly [261], and therefore, perspectives on 

measurement precision and ways to increase it might differ. Psychometric assessment 

of a scale is conducted to establish its usefulness as a measurement instrument, and this 

process requires data analysis with various methods.  

The next stage is conducting research per se, which is a general category for 

scientific work different from psychometric analysis and scholarly communication. 

This stage consists of either acquiring new insights from the data or testing previously 

formulated hypotheses [229]. Such studies are conducted in all scientific disciplines, 

and the challenges that researchers face depend to some degree on their domain. In this 

work, I narrow the area of my attention and refer mostly to domain-specific research in 

educational science, specifically, to data analysis of large-scale educational surveys. 
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These surveys gather information on various teachers’ and students’ characteristics, 

including aptitude, skills, demographics, and psychological attributes [76], [181]. They 

provide researchers with the large amount of high quality data that can be analysed 

with various statistical and ML procedures and therefore are suitable for research on 

method versatility.  

Finally, researchers need to share their findings with the academic community. 

Recent advancement in open science practices, such as guidelines for transparent 

reporting, are aimed at improving scholarly communication. Works on novel methods 

of information retrieval, such as knowledge graphs (KGs), also belong to this field. 

Scholarly knowledge graphs (SKGs) increase accessibility and machine readability of 

research findings [13] and support scholarly communication in accordance with FAIR 

(findable, accessible, interoperable, reusable) principles [96]. For wider acceptance of 

this novel technology, user-friendly interfaces need to be developed, and in this work, I 

focus on SKG-based interfaces as an aid to scholarly communication. This stage of the 

research cycle can also benefit from method versatility that might be facilitated with the 

assistance of data science; here, in contrast to other stages, extending the range of 

available methods could be related to novel ways of presenting academic findings 

rather than data analysis.  

In addition to conceptualisation of the research cycle, a common thread integrating 

these three stages would be helpful for structuring the work, and for this purpose, I 

selected the topic of human attitudes towards technology. An attitude is a multifaceted 

structure comprised of affective, cognitive, and behavioural components [97]; human 

attitudes towards technology include a wide spectrum of responses, from aversion and 

anxiety to interest and enjoyment. This topic is studied by information science, 

computer science, educational science, and many other domains, as human attitudes 

towards technology are vital for learning, professional activities, and personal 

wellbeing in our digitalized world [77]. At the measurement stage, psychometric 

instruments related to a specific attitude towards technology (such as affinity or 

interest), or a set of positive and negative attitudes, can be developed and validated. 

The research stage gives a possibility to explore relationships between respondents’ 

attitudes towards technology and other characteristics (such as students’ academic 

achievements in large-scale educational surveys) and acquire new insights from the 

data containing these variables [11], [153], [191]. The role of human attitudes towards 

technology at the communication stage is twofold. It can be a topic of communication, 

but these attitudes should be also taken into account when novel means of scholarly 

communication are developed, as knowledge of technology acceptance principles helps 

making them appealing for users [115].    

 In this thesis, I explore possible ways of introducing a wider range of flexibly used 

methods in analysing human attitudes towards technology at the stages of 

measurement, research, and communication. My motivation in conducting this work is 

to find versatile ways of facilitating method versatility and bring data science 

perspectives into such domains as psychometric analysis, educational data analysis, and 
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scholarly communication. This individual input, however modest, might be an addition 

to cumulative effort of researchers working towards increasingly rigorous scientific 

methods. The research problem of this thesis can be thus formulated as follows: 

 

 

 

 

1.1.1 Research Challenges in Method Versatility  

For addressing this problem, it is necessary to overview the current situation in relevant 

domains. The following research gaps, or challenges faced by researchers in these 

areas, were identified to be considered in conducting this work:    

Challenge 1. Underuse of diverse methods in psychometric analysis related to 

human attitudes towards technology 

To measure human attitudes towards technology, valid and reliable psychometric 

instruments are required. Theoretically, a scale should undergo thorough evaluation, 

not only in the process of development, but repeatedly afterwards, with different 

populations, to assess its psychometric properties, such as validity, dimensionality, 

reliability, and item functioning. Unfortunately, a tendency persists to use instruments 

that lack this important information: many scales still have unclear validity [16], as the 

results of their evaluation were not reported transparently [113]. Such a situation 

contributes to difficulties with the replicability of research [72]. One of the causes of 

these problems is insufficient variety of methods and adherence to a rather limited 

range of standard procedures, most often to methods of Classical Test Theory (CTT). 

These default methods typically used in psychometric analysis often give biased results 

due to various reasons, such as neglected assumption checking [93]. Better practices in 

scale validation are required to overcome the current situation in the field, which was 

called the validation crisis [220]. Using diverse methods, including those developed in 

the frame of parametric and nonparametric Item Response Theory (IRT), is beneficial 

for this task [58].   

Challenge 2. Insufficient methodological flexibility in educational data analysis 

related to human attitudes towards technology 

Data analysis of large-scale educational surveys can be a challenging task for 

researchers in relevant domains [8]. For this purpose, supervised and unsupervised 

learning methods are used: the former deals with labelled data and includes 

classification and regression, and the latter with unlabelled data (for instance, cluster 

analysis). In educational data analysis, the use of an insufficiently wide range of 

methods has been discussed as a problem, which often leads to oversimplified or biased 

Research problem definition: 

How can method versatility in data analysis of human attitudes towards 

technology be facilitated at each stage of the research cycle? 

 

 



Chapter 1. Introduction 

 

6 

 

interpretations [271]. It is less frequently the case when a pipeline of analysis for a 

specific large-scale educational survey is formalized (see, e.g., [178]), but many 

analytical decisions are to be made by researchers themselves, and some commonly 

used default methods might be ineffective. In particular, the hierarchical structure of the 

data should be taken into account, as the indiscriminate use of non-multilevel default 

methods leads to an increase in the Type I error rate [44]. Dealing with missing data is 

also a typical problem for data analysis of large-scale educational surveys, which 

should be approached with rigour and flexibility [91].  

Challenge 3. Restricted range of means of scholarly communication related to 

human attitudes towards technology 

Shortcomings of contemporary scholarly communication, which lead to the replication 

crisis, include limited findability of research; unequal access to published papers; 

deterioration of peer review quality; compromised research integrity; insufficient 

machine readability of literature; and restricted availability of open research tools [96]. 

These problems can be to a substantial degree resolved by SKG, which is a novel 

modality of information retrieval. Wider use of SKGs in academia is beneficial for the 

digitalization of published works and further development of scholarly communication. 

However, researchers in many disciplines still do not engage to a sufficient degree in 

the use of this innovative method of communication [13], and making SKGs more 

appealing to a wider academic community is a goal that has yet to be attained [215].  

In specifying the challenges of this work, I narrowed down the areas in which 

method versatility can be facilitated. The results are presented in Figure 1.3.  

 

Figure 1.3: Four Areas for Facilitating Method Versatility.  
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My task thus becomes more specific: to explore the ways of facilitating method 

versatility in validation of psychometric instruments; in supervised and unsupervised 

learning related to data analysis of large-scale educational surveys; and in development 

of SKG-based interfaces, with studies in each of these areas focusing on human 

attitudes towards technology. 

1.1.2 Approach 

In order to facilitate method versatility, an approach should be found that can be 

reproduced by other researchers. My approach is to suggest strategies for widening the 

spectrum of commonly applied methods in order to make research findings more 

generalizable and reproducible.   

This approach is different from one typically used in social sciences and aligned 

domains, when a researcher develops a scale, uses it to conduct a study, and presents 

the findings to the public. Although I also deal with each of the stages of the research 

cycle, my focus is on methods rather than findings; the results such as a validated scale, 

or an established relationship between variables, which are most interesting for domain 

experts, are perceived as secondary in the methodological research that I undertake. My 

approach also differs from those typically used to compare the effectiveness of various 

methods, e.g., clustering algorithms, or to introduce a novel method and assess its 

performance against the baseline. Although I show the benefits of suggested strategies 

in comparison to commonly used default procedures, I resort to already existing 

methods that I select based on already existing findings of their effectiveness. The 

approach is similar to what was either called for, with conceptual explanations, or 

explored as a practical solution to a specific problem in previous studies, which are 

discussed in detail in section 2.1 and section 3.1 of this thesis. 

Thus, I suggest an integration of already existing methods into context-dependent 

adjustable analytical strategies. In that, I adhere to a set of principles depicted in Figure 

1.4. These can be summarized as follows:  

(1) Usefulness: a strategy ought to address a research gap, or a methodological 

problem, and be of use to domain specialists, data analysts, and, hopefully, a 

wider academic community; 

(2) Ease-of-use: a strategy needs to be easily reproducible by researchers with 

different levels of proficiency in data analysis; 

(3)  Variability: strategies in different contributions should introduce method 

versatility in different ways, so that the audience is exposed to various means 

towards the goal; 

(4) Modularity: a strategy ought to consist of blocks and levels, so that each of 

them can be used separately, or all together; 

(5)  Transparency: the strategies and their implementations need to be reported with 

maximal transparency for better reproducibility.      
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Figure 1.4: Principles of the Approach Applied in the Thesis. 

1.2 Research Questions 

The approach outlined above is applied to research questions addressed in this thesis. 

Based on the challenges faced by relevant fields, the following research questions were 

formulated: 

 

 

 

In order to proceed with RQ1, existing ways of dealing with the problems in the area 

should be explored. In previous studies on psychometric analysis, methods aimed at 

overcoming limitations of commonly used practices were developed (see, e.g., [36], 

[238], [261]). An analytical approach was suggested that combines CTT and IRT 

techniques in assessment of dimensionality, reliability, and item functioning of a scale 

[58]. In my dealing with the RQ1, I use this approach and make amendments to it. As it 

does not include tests of validity, finding a way to assess construct validity of a scale by 

means other than the commonly used default options [22] is required. For practical 

application of the strategies, I select a recently developed psychometric instrument 

measuring human attitudes towards technology, which was validated by its authors 

with commonly used methods [80].  

Thus, in relation to RQ1, I explore a possible way of facilitating method versatility 

in evaluation of validity, dimensionality, reliability, and item functioning of a scale 

measuring human attitudes towards technology.  

 

RQ1. How to facilitate method versatility in validation of psychometric 

instruments related to human attitudes towards technology? 
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In regard to RQ2, I attempt to find an opportunity to facilitate method versatility in 

educational data analysis; specifically, in data analysis of large-scale educational 

surveys, such as the Programme for International Student Assessment (PISA) and the 

International Computer and Information Literacy Study (ICILS). In these surveys, the 

topic of human attitudes towards technology is presented by frameworks assessing 

respondents’ attitudes towards information and communication technology (ICT), and 

sufficiently large sample sizes allow for variability in analytical decisions.  

I deal with supervised (classification and regression) and unsupervised (clustering) 

learning tasks for educational data analysis. In case of supervised learning, I use 

methods from ML and statistical toolboxes that are most suitable for specific purposes. 

Flexible and context-based use of these two sets of methods was discussed in literature 

[29], [229] but yet to be attained in data analysis of large-scale educational surveys. In 

the area of cluster analysis, I explore the topic of selecting the number of clusters in 

model-based clustering. It is a challenging task that can be handled by integration of 

different perspectives [7], [111]. Researchers often rely excessively on fit indices, as 

model fit is the main selection criterion in model-based clustering; it was shown, 

however, that a wider spectrum of criteria needs to be taken into account. Thus, to 

address RQ2, I explore the ways of introducing method versatility for supervised and 

unsupervised learning tasks in data analysis of large-scale educational surveys in 

relation to human attitudes towards technology.   

 

 

 

For the wider application of SKGs, it is necessary to make it more appealing to 

research communities in various academic areas [13], [215]. Therefore, I explore a 

possibility of developing an easy-to-use interface based on the theoretical premises of 

technology acceptance. Previous research stressed the importance of visual interfaces 

which employ principles of computer science, graphic design, and human-technology 

interaction [38]. Thus, to deal with RQ3, I attempt to facilitate method versatility in 

communication of research results related to human attitudes towards technology.   

1.3 Thesis Overview 

This section summarizes four contributions of the thesis. I aimed at facilitating method 

versatility at three stages of the research cycle: measurement, research per se, and 

communication of results. Human attitudes towards technology were the topic of 

RQ2. How to facilitate method versatility in educational research on human 

attitudes towards technology? 

RQ3. How to facilitate method versatility in communication of research results 

related to human attitudes towards technology? 
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measurement, research, or communication in each of the four contributions. In the 

fourth contribution, which is related to RQ3 (the communication stage), these attitudes 

were also taken into account in the process of the interface development.          

In conducting this work, I adhered to principles that were outlined as formative for 

my approach (section 1.2). I intended the suggested strategies for as wide audience as 

possible, and in particular, made my code publicly available on GitHub and wrote it in 

R, which is used by social and educational scientists more commonly than other 

programming languages. The only exception is the contribution to RQ3, in which I 

implemented a web service in Python using the Flask framework and JavaScript (JS); 

the code, however, is simple and reproducible. The links to repositories can be found in 

the respective chapters (sections 4.1, 5.1, 6.1, 7.1).           

1.3.1 Contributions 

This section presents four contributions to the thesis. The contributions and their 

relation to RQs are shown in Figure 1.5.  

 

Figure 1.5: Research Questions and Thesis Contributions.   

For each RQ, a study was conducted and published in an international peer reviewed 

journal; for the RQ2, two studies were carried out that cover supervised and 

unsupervised learning methods.  
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To address RQ1, I explored a possibility to reassess the results of a scale validation 

with different methods. To illustrate the strategy that I suggested, I selected a recently 

developed psychometric instrument measuring human attitudes towards technology, the 

Affinity for Technology Interaction (ATI) scale. The authors of the scale, who kindly 

shared their data for reassessment, validated it by means of CTT, with construct 

validity indicated by results of correlation analysis [80]. In my approach, methods of 

parametric and nonparametric IRT were applied for dimensionality, reliability, and 

items functioning as shown in [58] with amendments related to assumption checking. 

For validity analysis, I applied hierarchical clustering of variables as an alternative 

method presenting the results with various levels of granularity [45], selected an 

implementation of the clustering approach that is based on Principal Component 

Analysis (PCA) [43], and explored the stability of cluster partitions. Due to the 

suggested strategy, the findings on validity, dimensionality, reliability, and item 

functioning of the scale were reconfirmed; more detailed information about item-level 

characteristics was obtained and communicated to the authors of the scale; and versatile 

methods of psychometric analysis were suggested to researchers in the area.   

 

 

In relation to RQ2, I conducted two studies dealing with (i) supervised learning 

(classification and regression tasks) and (ii) unsupervised learning (cluster analysis). 

Both studies focused on method versatility in educational data analysis, and in both, 

human attitudes towards technology were the topic of research.  

In the first study, I applied ML and statistical methods to explore German students’ 

attitudes towards ICT in relation to their academic achievements measured by PISA in 

2015 and 2018. I used the random forest (RF) algorithm for missing data imputation 

and for predicting students’ proficiency levels in mathematics and science (the 

classification task). Hierarchical linear modelling (HLM) was applied to explore 

associations between students’ scores and their attitudes towards ICT (the regression 

task). The study provides researchers with detailed explanation of the strategy 

involving the flexible use of instruments from ML and statistical toolboxes that were 

most suitable for the specific tasks.    

The second study focused on selecting the number of clusters in model-based 

clustering. I suggested an extended analytical strategy for selecting the number of 

clusters in Latent Class Cluster Analysis (LCCA) by integrating model-based and 

distance-based criteria with the bootstrap stability assessment. The suggested strategy 

of simultaneous use of these criteria was illustrated on the simulated data and on the 

real-world dataset from the ICILS 2018. I used the data of German teachers’ attitudes 

Contributions to RQ2 

Contributions to RQ1 
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to ICT and showed that the extended strategy, in comparison to fit indices-based 

strategy, facilitates the selection of more stable and well-separated clusters in the data. 

 

 

To deal with RQ3, I explored the ways of increasing versatility in communication of 

research results via SKG as novel modality of information retrieval. To increase the 

acceptance of SKGs and extend the range of SKG-based interfaces, I developed a 

dashboard, which visualizes research contributions on attitudes towards ICT in PISA 

2015 and 2018 in the frame of the Open Research Knowledge Graph (ORKG) research 

service infrastructure initiative. According to preliminary results of the user evaluation 

survey, the dashboard was perceived as more appealing than the baseline ORKG-

powered interface. These findings can be used for the development of SKG-powered 

dashboards in different domains, thus facilitating acceptance of these novel instruments 

by research communities and increasing versatility in scholarly communication. 

1.3.2 Publications 

The thesis is based on the following publications in peer reviewed international 

journals:  

Lezhnina, O., & Kismihók, G. (2020). A multi-method psychometric assessment of the 

Affinity for Technology Interaction (ATI) Scale. Computers in Human Behavior 

Reports, 1, Article 100004. https://doi.org/10.1016/j.chbr.2020.100004 

Lezhnina, O., & Kismihók, G. (2022a). Combining statistical and machine learning 

methods to explore German students’ attitudes towards ICT in PISA. International 

Journal of Research & Method in Education, 45(2), 180–199. 

https://doi.org/10.1080/1743727X.2021.1963226 

Lezhnina, O., & Kismihók, G. (2022b). Latent class cluster analysis: Selecting the 

number of clusters. MethodsX, 9, Article 101747. 

https://doi.org/10.1016/j.mex.2022.101747  

Lezhnina, O., Kismihók, G., Prinz, M., Stocker, M., & Auer, S. (2022). A scholarly 

knowledge graph-powered dashboard: Implementation and user evaluation. Frontiers 

in Research Metrics and Analytics, 7, Article 934930. 

https://doi.org/10.3389/frma.2022.934930  

Throughout this thesis, the pronoun “I” is used, which by no means implies 

underestimating the investments of my co-authors that are recognized in author 

contribution statements in each of the publications. The singular first-person pronoun is 

used to emphasize that as the author of conceptual approach, methodological 

implementation, and the code, I take responsibility for the findings and shortcomings of 

Contributions to RQ3 

https://doi.org/10.1016/j.chbr.2020.100004
https://doi.org/10.1016/j.mex.2022.101747
https://doi.org/10.3389/frma.2022.934930
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this work. Appreciation for invaluable help of other parties is expressed in the 

Acknowledgements section of the thesis.       

1.4 Thesis Structure 

The thesis includes eight chapters. The first three chapters discuss the basic theoretical 

concepts and existing literature on the topic; in the following four chapters, I report the 

findings of studies I conducted in the frame of the thesis, and the last chapter 

summarises the results of this work.   

In Chapter 1, I introduce the topic of the thesis, define the main concepts, such as 

method versatility, and explain the motivation for facilitating it at all stages of the 

research cycle: measurement, research, and communication. I formulate the research 

problem, the research questions, and the approach used in this work. After that, I 

briefly sketch four contributions to the thesis. Chapter 2 contains the theoretical and 

methodological background for the thesis. It starts with discussing method versatility 

and possible ways of applying it to data analysis. Theoretical premises of psychometric 

research, data analysis of large-scale educational surveys (supervised and unsupervised 

learning), and scholarly communication via SKGs are outlined. In the last section of the 

chapter, I define the topic of the four contributions, human attitudes towards 

technology, and discuss related frameworks used in this thesis, such as affinity for 

technology, ICT engagement in PISA, and views on ICT in ICILS. Chapter 3 describes 

previous work on which the thesis is based. In terms of method versatility, these are 

theoretical calls for multi-method data analysis in related areas and practical 

approaches that can be incorporated into the strategies which I suggest. In psychometric 

analysis, these are previous works on combining CTT and IRT and on hierarchical 

clustering for validity analysis. In educational data analysis, these are statistical and 

ML methods applied to large-scale educational surveys and cluster selection procedures 

in LCCA. In the area of SKG interfaces, these are previously developed graph-based 

dynamic visualisations. 

In Chapter 4, I give the details of the first contribution, a psychometric study 

conducted to address RQ1. I report the consecutive use of CTT and IRT methods to 

assess dimensionality, reliability, and item functioning of the ATI scale, and 

hierarchical clustering of variables for validity analysis. In Chapter 5 and Chapter 6, I 

deal with RQ2 and discuss data analysis of large-scale educational surveys. In Chapter 

5, I suggest using the toolbox choice of statistical and ML methods to analyse German 

students’ attitudes to ICT in PISA 2015 and 2018. Implementations of the RF algorithm 

were applied to missing data imputation and the classification task, while for the 

regression task, a statistical method, HML, was used. In Chapter 6, I suggest an 

extended strategy for selecting the number of clusters in LCCA, which implies the 

simultaneous use of model fit, cluster separation, and stability of the partitions criteria. 

The strategy is illustrated on the simulated data and on the German subset of teachers’ 

views on ICT from ICILS 2018. Chapter 7 addresses the problem of method versatility 

in scholarly communication related to RQ3 by extending the range of SKG-based 
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visualisations. I report developing and evaluating an ORKG-based dashboard that 

visualises research results on attitudes to ICT in PISA. Finally, Chapter 8 reiterates the 

research questions with information about impact of the conducted work on 

methodological development in related areas. In this final chapter, I address limitations 

of the thesis and indicate directions for further research. 
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Chapter 2 

2 Background 

In this chapter, I give an overview of the main theoretical notions underlying methods 

used in this thesis. I start by discussing method versatility and different ways of 

introducing it into data analysis. Then, I outline basic concepts used in the thesis. They 

are related to the areas of psychometric analysis, supervised and unsupervised learning 

methods applied to large-scale educational surveys, and scholarly communication via 

SKGs. Finally, I explain how human attitudes towards technology are defined, 

measured, and studied in contexts related to this work.           

2.1 Method Versatility in Data Analysis 

In data science, versatility is deeply ingrained into methodological approaches and 

pervades routine practices [35]. It is inherent to the data science perspective to flexibly 

choose methods for a specific task; as we know from “No Free Lunch” theorems for 

search, optimization, and supervised learning, no algorithm can outperform others on 

all types of problems [1]. It is not the case in many other disciplines, though. The 

problem might be to some degree related to a possible misconception by which flexible 

context-dependent use of methods thoroughly selected from a wider spectrum of 

options is confused with “undisclosed flexibility of analytical choices” [121], [230]. In 

social sciences, adherence to a restricted range of default methods has been recognized 

as a methodological shortcoming, and “the pluralist’s dilemma” was formulated, which 

means that a researcher needs to embrace different analytical perspectives while being 

able to express the reasons why her own approach is preferable to alternatives [84]. The 

discussion often focuses on Bayesian versus frequentist perspectives in statistics. It was 

stressed that the Bayesian approach might be used as an alternative to the frequentist 

one, so that researchers have “the right tool for the right job” [47]; instead of being 

claimed the only possible solution, each of these approaches can enrich the toolbox of 

suitable methods selected for a specific task [86].   

Different ways of introducing method versatility can be distinguished based on 

literature, as shown in Figure 2.1. I labelled them the consecutive use, the toolbox 

choice, the simultaneous use, and the range extension. The list is not exhaustive, and a 

different categorisation can be as valid as the one presented here. 
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Figure 2.1: Introducing Method Versatility.  
T stands for task, M for method, R for result.  

Firstly, after using a default method, the researcher can reconfirm the results with a 

new method applied consecutively to the same dataset. I refer to this way of 

introducing method versatility as “the consecutive use” of different methods. In 

literature, it was also called the iterative process [220] implying that the same task can 

be consecutively readdressed from different perspectives. Thus, another (for instance, a 

novel, or a more advanced) method helps to reassess information obtained by a 

commonly used method [58].   

Secondly, methods from different approaches can be flexibly chosen for different 

tasks. For instance, the toolbox approach [86] was suggested for Bayesian and 

frequentist statistics, so that neither is applied indiscriminately for any task. 

Approaches adopted by rapidly developing areas of educational data mining and 

learning analytics [211] also imply choosing a suitable instrument from statistical and 

ML toolboxes. Conceptually, when Gelman [84] maintains that the way out of the 

pluralist’s dilemma is to recognize that different methods are appropriate for different 

problems, it refers to the toolbox approach.      

Thirdly, different methods can be applied simultaneously and integrally to obtain 

new insights that would have not been possible with each of them used separately. For 

instance, such recently developed approaches as statistical learning [105], statistically 

reinforced ML [213], and bi-dimensional approach [229] suggested simultaneous use of 

statistical and ML methods, e.g., augmenting machine learning models by investigating 

significance and effect sizes typical for statistical models.   

Fourthly, introduction of a new method can be useful in that it extends the range of 

possible approaches to a task. This can be a motivation for developing a new clustering 

algorithm, as the task of finding meaningful groups in the data can be handled in 
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various ways, considering the inevitable subjectivity of choices made in this process 

[64]. Novel methods of scholarly communication most frequently belong to this group, 

as the same task – to present the research findings to the academic community – is 

approached from a different perspective. For instance, it is the case for SKGs that 

improve machine readability and accessibility of the research results [13].  

These ways of introducing method versatility can be used independently, or 

combined in different forms. For instance, a statistician might apply a “default method” 

(e.g., logistic regression for a classification task) and then reassess its results – thus 

exercising “the consecutive use” - with a technique of statistically reinforced ML, 

which itself can be viewed as “the simultaneous use” of different methods. This 

categorisation is therefore somewhat artificial, and only useful for the purpose of 

imposing a certain structure on a wide variability of methodological choices.   

2.2 Methods of Psychometric Analysis 

In this section, I discuss methods applied for assessing the main characteristics of a 

psychometric instrument, such as validity, dimensionality, and reliability. Item-level 

functioning, or item functioning, is explored to obtain a more detailed picture. Most of 

these methods belong to either CTT or IRT, which are well-established theoretical 

frameworks.  

CTT is a long existing framework that is widely accepted in psychometric research. 

The measurement precision in CTT is assumed to be equal for all individuals. 

According to CTT, a “true score” of a participant is the expected score over an infinite 

number of independent administrations of the scale. Thus, an observed score consists of 

a true score and a component caused by a random measurement error:   

𝑋 = 𝑇 + 𝐸 

Here, X is an observed score, T is a true score, and E is a measurement error [36].  

IRT is a collection of probabilistic models that describe the relationship between the 

observed score and the underlying latent trait. The models have different numbers of 

parameters (one, two, and three-parameter models) and can deal with dichotomous or 

polytomous items [14]. The measurement precision in IRT depends on the latent trait 

value. IRT is consistent with a cognitive theory of how people respond to questions 

[231]; it allows maintaining the width of the latent continuum and diagnosing whether 

the test is able to differentiate between the respondents’ ability on the latent dimension, 

which decreases the occurrence of Type II error [58]. Rash models belong to a widely 

used family of one, two- and three-parameter models that take principles of 

measurement from physics and emphasize invariance in measurement. Rating Scale 

Model (RSM) is a one-parameter Rash model for polytomous data that can be 

described by the following equation [261]:  
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𝑙𝑛
𝑃𝑛,𝑖(𝑥=𝑘)

𝑃𝑛,𝑖(𝑥=𝑘−1)
= 𝜃𝑛 − 𝛿𝑖 − 𝜏𝑘 

Here, P is the probability that a person n will endorse the category k in a polytomous 

item i, θ is ability of the person n on the latent dimension, δ is the difficulty of the item 

i, and τ is the threshold for the category k of this item. Thresholds are the points on the 

logit scale at which there is an equal probability to endorse the category of interest or 

the category just below it. They are estimated empirically for all items. Probabilities of 

endorsement for items and categories can be visualized with item trace lines, which are 

also called item characteristic curves (see Figure 2.2).    

 

Figure 2.2: Item Trace Lines for a Polytomous Item.  

Nonparametric IRT is a framework developed to relax some of the parametric IRT 

assumptions. It includes Mokken models, or Mokken Scaling Analysis (MSA). MSA 

evolved as a probabilistic version of Guttman scaling, which is deterministic and does 

not allow for randomness [258]. The advantage of MSA is that it relaxes strict 

assumptions on the shape of item characteristic curves typical for parametric IRT, and 

in particular, for Rash models [238]. Both parametric and non-parametric IRT are 

increasingly used in psychometric research. 

A psychometric procedure in the frame of either of these frameworks, as well as any 

statistical test in general, can be suitable for some datasets but not for others. In 

particular, sample size considerations should be always taken into account [71], as a 

test conducted on an insufficient sample will lack statistical power, and inferences 

cannot be made. Another important and often neglected issue is assessment of 

distributional assumptions. For instance, many of CTT methods require the multivariate 

normal distribution of the data, which is a multidimensional generalisation of the 

unidimensional normal distribution. Failure to check the assumption might lead to an 

inadequate model that seemingly fits the data but gives biased estimates [93]. 
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Therefore, checking assumptions plays an important role in analysing the psychometric 

properties of the scale, such as validity, reliability, dimensionality, and item 

functioning.      

Validity is the crucial characteristic of a scale, without which other characteristics 

become rather inconsequential. However, methods of analysis and transparent reporting 

of this psychometric property have yet to be improved [113]. Construct validity, which 

consists of convergent and discriminant validity, is the extent to which an instrument 

assesses a construct of concern. Convergent validity is the extent to which the scores of 

the scale are related to scores of scales measuring theoretically similar constructs. 

Discriminant validity is the extent to which the scores of the scale are different from 

scores of scales measuring theoretically unrelated constructs. These relationships 

between the construct under scrutiny and other constructs can be presented as a 

nomological network. Typically, convergent validity is assessed by correlations 

between the scores on the scale under study and scores on existing measures for similar 

constructs, and discriminant validity by correlations between the scores on the scale 

and the scores on existing measures for conceptually different constructs [22]. Precise 

mathematical definitions of discriminant validity vary, as well as recommended 

methods of assessing it. To obtain more unbiased results on construct validity, more 

than one method is advisable [210].    

Dimensionality is important, as the researcher needs to understand whether the scale 

is a unidimensional instrument, or if it consists of a few facets (subscales) measuring 

somewhat different aspects of the construct. The most common tool for studying 

dimensionality of psychometric instruments is factor analysis (FA), which can be 

exploratory (EFA) or confirmatory (CFA). FA reduces dimensions of the data to fewer 

latent variables while retaining as much information as possible, and thus it can be used 

to determine the number of factors that correspond to dimensions, or subscales, of the 

psychometric instrument.  

Statistical and methodological decisions required by EFA were summarized in 

[116], and recommendations on rigorous practices were given. Prior to EFA, the data 

should be inspected to decide whether this method is appropriate. Assumptions for EFA 

can be checked with Barlett’s test of sphericity and Kaiser-Meyer-Olkin (KMO) 

measure of sampling adequacy. Barlett’s test checks the hypothesis that the observed 

correlation matrix is not an identity matrix, which would imply lack of relationships 

between variables in the dataset. KMO is an indicator of latent factors in the data as 

shown by common variance. It gives more detailed results than Barlett’s test, which can 

be either significant or nonsignificant, and therefore, both procedures are recommended 

for detecting violations of the assumption. Then, a factor analytic method should be 

chosen. PCA is frequently applied for this purpose, but it is based on a different 

mathematical model than EFA techniques, and it does not account for the structure of 

correlations. Therefore, choosing Principal Axis Factoring (PAF) or maximum 

likelihood rather than PCA as a factor analytic method is recommended. For factor 

retention, the researchers are advised to use scree plot analysis in combination with 
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either parallel analysis, or Velicer’s Minimum Average Partial (MAP) test, or both, 

rather than Kaiser criterion [116].    

When the structure of a scale is supposed to be known from previous studies, it can 

be assessed with CFA. This method requires checking the multivariate normality 

assumption, which is often neglected in CFA studies [93]. CFA can be conducted with 

different estimators. Maximum Likelihood with Robust standard errors (MLR) 

estimator was shown to give sufficiently unbiased results; however, for a large sample, 

other estimators can be applied [168]. To assess the global fit between the tested model 

and the data, it is recommended to consider the results of the chi square test, which 

should reveal no significant differences between the model and the observed 

covariances; the Comparative Fit Index (CFI), which compares the fit of the model 

with the fit of a null model; the Root Mean Square Error of Approximation (RMSEA) 

as a parsimony-adjusted index; and the Standardized Root Mean Square Residual 

(SRMR), which is the square root of the difference between the residuals of the sample 

covariance matrix and the model [117]. These fit indices, as well as any modifications 

of the model, if there are valid reasons for them, should be reported thoroughly and 

transparently [124].   

Dimensionality can also be explored with Very Simple Structure Analysis (VSS) 

and Item Cluster Analysis (ICLUST), though these methods are less common that FA 

[201]. VSS assesses the fit of several models of increasing complexity (that is, with the 

increasing number of factors) using the residual matrix of each model. ICLUST 

hierarchically clusters items of the scale and visualizes the results as a cluster diagram. 

The clustering approach is bottom-up, and items are grouped in subscales so that the 

value of internal consistency reliability of the resulting subscale is maximized [202]. 

The indicators of internal consistency reliability are described below, and hierarchical 

clustering of variables is discussed in more detail in section 3.2. 

In the frame of IRT, dimensionality assessment can be conducted with MSA [238]. 

This approach does not imply the restrictive assumption of multivariate normality and 

thus gives less biased estimations of dimensionality compared to FA [58]. MSA 

includes checking the assumptions of homogeneity, monotonicity, local independence 

and invariant ordering. Homogeneity means that the items form a single scale 

measuring the same latent trait (θ), taking into account unique properties of the items 

and the measurement error. Monotonicity means that for each item, the probability of a 

particular response level Pi(θ) is a monotonically non-decreasing function of the latent 

trait θ. The local independence assumption states that one’s response to an item i is not 

influenced by the responses to the other items of the scale. The invariant ordering 

assumption asserts that the items are ordered on their difficulty in the same (invariant) 

way at all levels of the latent dimension θ. The MSA procedures allow detecting items 

that violate the assumptions [238], and thus, at the stage of the scale development, a 

suitable set of items can be selected.  

One of the most important characteristics of a psychometric instrument is reliability. 

Internal consistency reliability can be understood as the consistency of results given by 



2.3. Methods of Educational Data Analysis 

 

21 

 

any item or group of items and the scale in general. Statistically speaking, it is the 

degree to which the items co-vary [71]. Internal consistency reliability is still most 

frequently estimated with Cronbach’s alpha, which calculates the proportion of 

variance in the scale score explained by the trait being measured in relation to the total 

variance. This coefficient, however, is prone to bias, as the value of alpha increases 

with the number of items in the scale. In addition, Cronbach’s alpha is sensitive to 

negatively formulated (reversely coded) items, and it is based on assumptions that are 

hardly ever met [60]. Other reliability coefficients include beta, a more conservative 

coefficient that explains variance in the data by a general factor via average covariance 

between items of the worst split half. The latter means such a split of the scale that 

minimizes the covariance value. Guttman’s lambda-6 is an estimate based on the item 

variance accounted for by linear regression [58]. Currently, MacDonald’s omega is 

considered the most unbiased estimate of internal consistency reliability. Similarly to 

Cronbach’s alpha, it calculates the ratio of the trait-related variance to the total 

variance, but under more realistic assumptions. It was recommended to report the 

commonly used alpha and the more unbiased omega with confidence intervals, as these 

are more informative than point estimates [60].  

Item-level functioning, or item analysis, explores individual items of the scale. Item 

difficulty and item discrimination are assessed differently in the frame of CTT and IRT. 

In CTT, item difficulty for a polytomous item is its mean value, and item 

discrimination is the corrected (that is, calculated with this item removed) item-to-scale 

correlation. In IRT, such as Rash models for polytomous items, item difficulty can be 

understood as the point on the latent continuum at which the highest and lowest 

categories have equal probability of being observed. In item trace line visualization, it 

refers to the centre of the middle category for an odd number of categories, or the 

transition between adjacent central categories for an even number of categories. Item 

properties in the frame of IRT are characterised by item fit and person fit measures 

[257]. Person fit indicates how many respondents have response patterns that do not fit 

the model. Person-item map shows the location of person abilities and item difficulties 

estimated by the model along the same latent dimension. This visualization can be used 

to explore the extent of item coverage, determine the comprehensiveness of the scale, 

and detect redundant items [36]. 

To summarise, psychometric properties of a scale can be assessed by methods, most 

of which belong to the frameworks of CTT or IRT. Validity, dimensionality, reliability, 

and item functioning of a scale can be explored in different ways, and researchers ought 

to widen the scope of their psychometric techniques to include versatile methods from 

both frameworks. Checking assumptions, which are required for psychometric tests to 

give unbiased results, could inform further analytical choices and is a prerequisite of 

methodologically rigorous research.      
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2.3 Methods of Educational Data Analysis  

In this section, I outline the concepts related to educational data analysis, and 

specifically, data analysis of large-scale educational surveys. In educational science, 

studies with rather small samples are not infrequent, which are problematic in terms of 

statistical power of the tests and generalizability of their findings; large-scale 

educational surveys, however, are exempt from this shortcoming. In the frame of these 

surveys, teachers’ and students’ attitudes towards technology are measured among 

many other individual characteristics, learning achievements, skills, and demographic 

variables, such as Economic, Social, and Cultural Status (ESCS) and gender [63], [76], 

[77]. 

Two of these international surveys, PISA and ICILS, are selected for this work. 

PISA is conducted by the Organisation for Economic Cooperation and Development 

(OECD) once every three years to measure 15-year-old students’ literacy (competence 

required for coping with adult life) in different domains, attitudes to schooling 

(including attitudes towards ICT), and a broad range of demographic factors. ICILS is 

conducted by the International Association for the Evaluation of Educational 

Achievement (IEA) to measure various aspects of students’ and teachers’ interaction 

with ICT. The data collected in the frame of these surveys are of high quality, and the 

samples are sufficiently large to be suitable for a wide spectrum of methods, which are 

discussed below. International comparisons in these surveys were criticised as 

insufficiently valid for a number of methodological reasons (see, for instance, [88] and 

[197]); therefore, single-country (German) samples are analysed in this work.         

2.3.1 Supervised Learning 

Supervised learning, which includes classification and regression tasks, relies upon 

techniques traditionally used in the frame of statistical analysis or developed more 

recently in the frame of ML [164]. ML differs from statistics in regard to data pre-

processing (splitting the data into the training set and the test set), choice of variables 

(less theory-driven than in statistics), and model evaluation (predictive accuracy instead 

of explanatory power). ML strives to tackle the bias-variance trade-off in order to 

achieve high predictive accuracy, while statistics focuses on model estimation, 

inference and fit [229]. In section 3.1, attempts to integrate these approaches are 

discussed, and in this section, I describe methods used in the frame of each of them and 

relevant to the tasks of this thesis. In particular, I focus on the RF algorithm for 

supervised learning tasks and missing data imputation; describe statistical analysis with 

plausible values and replicated weights; and outline methodological advantages and 

pitfalls of HLM.  

Machine Learning: Random Forest 

RF belongs to the family of algorithms based on decision trees. The idea of a decision 

tree is to split the dataset on a particular variable based on information gained from this 
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split. As splits are binary (yes or no), continuous variables are transformed into 

categorical variables, that is, lesser than or greater than a certain value. For illustration 

purposes, I built a decision tree with the PISA data to predict students’ mathematical 

proficiency (the classification task) based on their attitudes towards ICT, ESCS, and 

gender. The tree is shown in Figure 2.3. Node labels contain the following information: 

the predicted class for the node; the probability per class of observations in the node 

(conditioned on the node, the sum across a node equals one); and the percentage of 

observations in the node. For this decision tree, the first two splits are based on the 

ESCS value, and the third on the value of an attitude towards ICT (a student’s ICT 

autonomy). Split labels specify how the decision tree splits the data.  

 

Figure 2.3: Decision Tree for Students’ Mathematical Proficiency Levels.   
ESCS is economic, social, and cultural status; AUTO is ICT autonomy; INTE is ICT interest; 

SOCI is ICT in social interaction; class 1 is mathematical proficiency below Level 2; class 2 is 

Levels 2–4; class 3 is Level 5 and above. 

Decision trees have a number of advantages: they are interpretable as they mirror 

human decision-making more accurately than other predictive models, they handle a 

wide range of problems and different types of variables, and they impose no 

assumptions on the data [90]. Their substantial disadvantage is the problem of 

overfitting, when the algorithm is unable to generalize well to new data.   

This problem is resolved in RF by generating a large number of bootstrapped trees 

(a ‘forest’ of decision trees) based on random samples of variables and aggregating 

their results. RF has gradually grown from a single algorithm [28] into a framework of 

various models [55], [69]. RF is effective for highly dimensional data and handles 

interactions and nonlinearity [69], [164]. It has become a widely used method for 

classification tasks [55], as it has lower predictive error than logistic regression [29], 
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[50]. For multiclass tasks, it does not require the proportional odds assumption needed 

by ordinal regression [71], [172]. RF is increasingly used for missing data imputation, 

as it is adaptive to interactions and nonlinearity [227], performs well even with data 

missing not at random [245], and has better imputation accuracy than nearest 

neighbours imputation and multiple imputation by chained equations [163], [256]. To 

measure model performance of RF, different metrics can be used [41], [125]. One of 

the most commonly used metrics is the area under the Receiver Operating 

Characteristic (ROC) curve [132]. ROC is a probability curve, which is plotted with 

true positive rate on the y-axis against false positive rate on the x-axis. The area under 

the curve (AUC) represents the ability of the model to separate classes. For a perfect 

classifier, the area is 100%, and for a random classifier, when true positive rate is equal 

to false positive rate, it is 50%. The AUC can be extended to multiclass problems, with 

separate comparisons for each pair of classes [101]. 

RF models are better predictors than decision trees, but they are less understandable. 

Breiman [29] described this trade-off between accuracy and interpretability of a model 

as the Occam dilemma. In order to make the output of such ‘black boxes’ more 

understandable, model-agnostic (that is, flexibly applicable to any model) methods can 

be used, such as permutation variable importance and partial dependence plots [164]. 

The concept of permutation variable importance can be briefly explained as follows. A 

variable is considered important as much as deleting it would affect prediction accuracy 

of the model [29]. However, removing one variable after another and retraining the 

model each time would be computationally expensive, and instead of it, we replace a 

variable with random noise to see how it influences the model’s performance. The 

noise is created by permuting the variable (that is, shuffling its values). Permutation 

variable importance was shown to be less biased than other variable importance 

measures [5], [240]. 

Partial dependence plot for a variable shows the marginal effect that it has on the 

predicted outcome of the model [164]. It depicts the nature of the relationship between 

the variable and the outcome and indicates whether this relationship is linear, 

monotonic etc. In classification tasks, partial dependence plots can be built for each 

class separately to show the probability for the class given the values of the variable. 

Partial dependence plots can be constructed for two variables in 3D to display not only 

their influence on the outcome but also their interactions with each other [94]. 

Based on the findings showing effectiveness of RF for missing data imputation and 

for classification, it can be concluded that the RF algorithm is a suitable method for 

these tasks. It can be combined with model-agnostic methods (variable importance and 

partial dependence plots) to increase interpretability of the models. 

Statistical Methods for Educational Surveys 

In large-scale educational surveys, data are often hierarchical. It means that some 

variables are nested within other variables: for instance, students in one school can 

have similarities with each other and differ from students in the other school, so that 
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school-related differences are as influential as individual differences, or even more. 

Thus, a grouping variable (school) should be included in the model, and other school-

level context variables might be relevant as well.   

In Figure 2.4, an example of hierarchical data from PISA study is presented. For 

students of different schools, the relationships between their interest to ICT and ESCS 

vary, so that the regression lines have different slopes and different intercepts.    

 

Figure 2.4: Hierarchical Data: Varying Slopes and Intercepts.  

ESCS is economic, social, and cultural status; INTE is ICT interest. 

For hierarchical data, multilevel models are most appropriate [178] because they 

take into account the structure of the data, and failing to recognize hierarchical structure 

of the data leads to Type I error inflation [165]. It was shown that multilevel 

approaches work better than fixing standard errors of ordinary least squares estimate 

[44]. Multilevel approaches include multilevel structural equation modelling (SEM) 

[11], [89], multilevel latent class analysis (LCA) [265], multilevel multidimensional 

IRT [149], and the most frequently used method, HLM.  

HLM is a linear regression model for hierarchical data that allows for variability in 

intercepts and slopes. Therefore, this model does not require the assumption of 

homogeneity of regression slopes, or independence of different observations; it 

explicitly models non-homogenous slopes and relationships between cases in the data. 

However, distributional assumptions for residuals should be checked thoroughly [71], 

and special attention should be paid to the assumption of non-collinearity of predictors. 

This assumption can be checked by calculating values of the variance inflation factor, 

which indicates the strength of correlations between predictors; the cut-off value of 3 

was recommended as acceptable [273], meaning that multicollinearity is not present in 

the data.    
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Distributional assumptions for residuals can be easily checked with diagnostic plots. 

These include the normal distribution of residuals and the homoscedasticity 

assumption, which means that the variance of residuals should be equal across different 

levels of predictors. Figure 2.5 shows examples of diagnostic plots for HLM, which I 

built with the package sjPlot [150] to illustrate assumptions about residuals.  

 

Figure 2.5: Assumptions for HLM with Diagnostic Plots. 

With the development of multilevel modeling, possible pitfalls in application of 

HLM were recognized, and guidelines for overcoming them were elaborated [3], [160]. 

According to the methodological guidelines, models with random intercepts and 

random slopes should be fit whenever possible; in case these models fail to converge, 

models with random intercepts can be explored. In terms of data preprocessing, grand-

mean (rather than group-mean) centering of independent variables was recommended 

[103]. Variable selection (feature selection) methods for multilevel models were 

outlined in [107]. The standardization by two standard deviations was suggested, as it 

makes comparisons between continuous and binary variables possible [83]. An 

unconditional model should be compared with other models, with intraclass correlation 

coefficients (ICCs) and proportional reduction of variance reported [103]. Effect size 

measures for multilevel models were discussed in detail in [138] and [147]. Generally, 

Nakagawa’s marginal and conditional R² (see [166], [167]) can be reported as effect 

size measures for random effects. When the researcher follows these recommendations, 
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HLM can be an effective way of dealing with the hierarchically structured data typical 

for large-scale educational surveys.    

As it is often the case with large-scale surveys, analysis of PISA data should include 

plausible values and replicate weights. Plausible values are random values from the 

posterior distributions. Replicate weights are more informed standard error estimates 

retaining information about the complex sample design. Instructions given by PISA 

Data Analysis Manual [178] on computation of statistical estimates and standard errors 

with plausible values and replicate weights can be summarized as follows: 

To calculate a final estimate (e.g., a regression coefficient), estimates for models with 

all plausible values and the final weight are averaged ([178] , p. 118): 

𝜃 =
1

𝑀
∑𝜃ᵢ

𝑀

𝑖=1

 

The standard error of this final estimate is calculated as follows: 

The sampling variance is calculated by averaging sampling variances for all 

plausible values ([178], p. 118): 

𝜎² =
1

𝑀
∑𝜎ᵢ²

𝑀

𝑖=1

 

Each of them is calculated as the averaged (with the coefficient specified below) 

sum of squared differences between the final estimate and each of replicate estimates 

([178], pp. 73–74): 

𝜎ᵢ² =
1

𝐺(1 − 𝑘)²
∑(𝜃ᵢ − 𝜃)²

𝐺

𝑖=1

 

The imputation variance is calculated as the averaged (with the coefficient specified 

below) sum of squared differences between the final estimate and an estimate for each 

of plausible values ([178], p. 100): 

𝐵 =
1

𝑀 − 1
∑(𝜃ᵢ − 𝜃)²

𝑀

𝑖=1

 

The final variance is calculated as the sum (with the coefficient specified below) of 

the sampling variance and the imputation variance ([178], p. 100): 

𝑉 = 𝜎² + (1 +
1

𝑀
)𝐵 
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The standard error of the final estimate is the square root of the final variance ([178], 

p. 119). In these formulae, θ is a statistical estimate (e.g., a regression coefficient); σ² is 

the sampling variance; B is the imputation variance; M is the number of plausible 

values (for the 2015 and 2018 datasets, 10); G is the number of replicate weights (for 

the 2015 and 2018 datasets, 80); k is a deflation factor. PISA uses the Fay method with 

a k factor of 0.5 ([178], p. 73). This approach allows making unbiased estimates of 

regression coefficients and their standard errors in regression models, such as HLM, 

when these are applied to PISA data. 

To summarise, classification and regression tasks in educational data analysis can be 

handled by ML and statistical methods. For large-scale educational surveys, such as 

PISA, statistical analysis requires dealing with plausible values and replicate weights. 

HLM is a statistical tool of choice applied to hierarchical data, and the RF algorithm is 

one of the most effective and unbiased methods for supervised learning tasks and 

missing data imputation. Based on these findings reported in literature, the flexible use 

of ML and statistical methods for data analysis of large-scale educational surveys can 

be feasible.        

2.3.2 Unsupervised Learning 

Unsupervised learning deals with unlabelled data. An example of such approach is 

clustering, which is discussed in detail in this section. This work deals with model-

based clustering, specifically, Latent Class Cluster Analysis (LCCA), and the problem 

of selecting the number of clusters. As clustering discerns latent groups of observations 

in the data, it is categorized as a person-centred approach [263] and is extensively used 

in organizational psychology and educational science. In particular, LCCA was applied 

to the teachers’ data from ICILS 2013 [63]. Here, basic concepts related to distance-

based and model-based clustering and different approaches to selecting the number of 

clusters are explained.     

Distance-Based and Model-Based Clustering 

Clustering evolved as an unsupervised ML technique [23] aimed at finding similarities 

between observations. It is a rapidly changing area, in which novel algorithms 

constantly arrive [199]. Performance of clustering algorithms can be compared by 

means of internal criteria, which assess the result itself [99], or external criteria, which 

compare it to a reference result, e.g., the known cluster partition [253]; in some studies, 

both internal and external criteria are used [209].  

Various taxonomies of clustering methods can be found in literature (see, for 

instance, [4], [64], [263]); in the frame of this work, distance-based and model-based 

clustering [7], [199] are discussed. Distance-based methods, which could be also called 

dissimilarity-based [111] or partitional [4], belong to a wider group of methods that 

were labelled as heuristic [95] or algorithmic [263]. Distance-based methods conduct 

partition of observations based on a dissimilarity criterion, while model-based methods 
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fit probabilistic models to the data; the former are mostly ML techniques, while the 

latter were developed in the frame of statistical analysis [64].  

Distance-based clustering includes unsupervised learning methods that are simple 

and computationally inexpensive [23]. These methods require that the number of 

clusters is chosen prior to the analysis. The most widely used distance-based method 

for interval data is k-means [189], which was first introduced in 1960s [155]. The 

algorithm starts with random assignment of each cluster centre, or centroid, and 

observations are clustered to the nearest centroid; then centroids are repositioned based 

on the created clustering. The process of relocation of centroids and re-clustering of 

observations repeats until a stable configuration is found (the cluster centroids do not 

move). For categorical data, k-medoids and k-modes are extensions of k-means. In k-

medoids, or partition around medoids, an actual central data point is used as a measure 

of the centre instead of the cluster centroid, while in k-modes, clusters are defined 

based on the number of matching categories between data points [42].  

Model-based clustering, which is also described as finite mixture modeling [159], 

started as latent structure analysis [141] implemented with the expectation 

maximization algorithm [54]. Model-based methods for the interval data, assumingly 

represented by a mixture of normal distributions, are called Gaussian mixture models, 

or profile analysis [228]. For categorical variables with assumed multinomial 

distributions, the model-based method is LCCA [141]. It can be applied to dichotomous 

[30] and polytomous categorical data. In the frame of statistical analysis, LCCA (also 

termed LCA) is defined as a statistical approach to modeling a discrete latent variable 

using multiple, discrete observed variables as indicators [140]. This approach allows to 

the local independence assumption to be relaxed [251], covariates to be included in the 

model (see [235], [250]), and the bootstrap likelihood ratio test to be conducted for the 

model selection [61], [170]. In this work, LCCA is considered exclusively from the 

clustering perspective, so that the discrete latent variable represents the cluster 

assignment. Previous studies showed that LCCA was an effective method for clustering 

categorical data, while a “naive” approach (treating the data as interval and applying k-

means) resulted in poor performance [199]. As a more flexible model-based clustering 

tool, LCCA is preferable in many real-world circumstances, e.g., unequal covariance 

matrices, unequal numbers of observations in clusters and poorly separated clusters [7]. 

LCCA represents the next generation of tools that provides the researcher with the 

wealth of diagnostic information, and therefore it is increasingly used in educational 

research [32], [63], [65], [146]. 

Selecting the Number of Clusters 

Selecting the number of clusters was discussed in literature as a rather controversial 

[95] and philosophical [262] topic. It was emphasized that clustering is always “in the 

eye of the beholder” [64], and it would be meaningless to speak about unique objective 

“true” clusters [111]. In practical terms, the number of clusters in any clustering 

method is selected based on pre-specified criteria. The most commonly used metrics for 
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distance-based methods are the elbow method for the within sum of squares, the gap 

statistics, and the Average Silhouette Width (ASW) [23]. For model-based approaches, 

in which clusters are understood as latent classes, information criteria are used. When 

there is no agreement between different criteria, it might be difficult to select the 

number of clusters [205], and domain knowledge of the researcher plays a pivotal role 

[269]. The interpretability of clusters, parsimony of the solution, and the size of 

population shares should be taken into consideration [190].  

Here, I describe approaches and criteria used in this work for selecting the number 

of clusters in LCCA. They are related to model fit, cluster separation, and the stability 

of cluster partitions.     

Model Fit. The Bayesian Information Criterion (BIC), which was introduced by 

Schwartz [226] in 1970s, is one of the most well- performing and widely used 

information criteria. It is defined as follows:  

𝐵𝐼𝐶 = −2 log 𝐿 + 𝑝 log 𝑛 

where p is the number of free parameters in the model, n is the number of 

observations, and L is the maximized likelihood function of the model. For a large n, 

minimizing the BIC corresponds to maximizing the posterior model probability [262]. 

In addition to the BIC, the Integrated Completed Likelihood (ICL) criterion was 

introduced by Biernacki et al. [21]:  

𝐼𝐶𝐿(𝑚,𝐾) = max
𝜃

log 𝑓(𝑥, �̃�|𝑚, 𝐾, 𝜃) −
𝜐𝑚,𝐾

2
log 𝑛 

where x is the data, �̃� is the estimated cluster membership for observations in the 

model m with K as the number of clusters, θ refers to the estimated mixture parameters, 

and υm,K is the number of free parameters in the model. The ICL is equal to the BIC 

penalized by the estimated mean entropy [19], which means that it aims at finding well-

separated clusters and thus should not overestimate the number of clusters [95].    

Cluster Separation. The ASW is the criterion traditionally used for selecting the 

number of clusters in distance-based methods. The ASW is the averaged value of 

silhouette widths for observations, which are defined as follows [212]:  

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥⁡{𝑎(𝑖), 𝑏(𝑖)}
 

where a(i) is average dissimilarity between observation i and all other points of the 

cluster to which i belongs, and b(i) is average dissimilarity between i and all 

observations of the nearest cluster to which i does not belong. To calculate the ASW, a 

dissimilarity (or distance) measure should be selected [254]. For categorical variables, 

the dissimilarity measure defined by Kaufman and Rousseeuw [130] is typically used, 

as it was shown that none of the dissimilarity measures for categorical variables is 
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always superior or inferior to others [24]. The dissimilarity between two rows is thus 

calculated as follows:  

𝑑𝑖,𝑗 =
∑ 𝜔𝑘𝛿𝑖𝑗

(𝑘)𝑑𝑖𝑗
(𝑘)𝑝

𝑘=1

∑ 𝜔𝑘𝛿𝑖𝑗
(𝑘)𝑝

𝑘=1

 

where the dissimilarity di,j is the weighted mean of the contributions of each variable 

dij
(k)

 with weights ωkδij
(k)

. When weights ωkδij
(k)

 are not specified, they are equal to 1. 

The contribution dij
(k)

 of a variable to the total dissimilarity is 0 if both values are equal, 

and 1 otherwise. The ASW values range from –1 to 1, and higher positive values 

indicate better defined clusters characterized by within-cluster compactness and 

between-cluster separation, while values close to 0 or negative values show that the 

clusters are not well-separated [48].   

Figure 2.6 shows clusters with different separation. In the figure, multidimensional 

data is presented in two-dimensional projections, which are used here solely for 

illustration purpose; the ASW values and silhouette plots give a more precise picture of 

cluster separation.    

 

 
Figure 2.6: Clusters with Different Separation. 

Stability of Partitions. Cluster validation should be conducted in order to evaluate the 

stability of clustering. For this purpose, bootstrap validation is typically used to check 

whether the chosen cluster solution depends on the specific dataset or can be 

generalised to the new data [23]. To perform this validation, we cluster the original data 

and apply the cluster solution to a bootstrap sample, which is also clustered anew. 

Thus, we have two cluster partitions for each bootstrap sample: the partition created by 

the original solution on the new sample and the new partition of this sample. They are 

compared using an external metric of our choice; this value is averaged over multiple 

repetitions to obtain the indicator of stability [110].  

To compare partitions, external measures should be used, such as the Adjusted Rand 

Index (ARI) and the Jaccard coefficient [95]. These measures can be explained as 

follows [209]. We need to compare two different cluster partitions U = {U1, U2, …Ur} 

and V = {V1, V2, …Vs} conducted on the same data. Let n be the total number of 
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observations, and nij the number of objects in common between two partitions Ui and 

Vj, which sums as 𝑛𝑖. = ∑ 𝑛𝑖𝑗𝑗  and 𝑛.𝑗 = ∑ 𝑛𝑖𝑗𝑖 . There will be pairs of observations 

placed in the same cluster in both partitions: 

𝑎 = ∑(
𝑛𝑖𝑗
2
)

𝑖,𝑗

 

Other pairs of observations will be placed in the same cluster in one partition but in 

different clusters in the other: 

𝑏 =∑(
𝑛𝑖.
2
)

𝑖

−∑(
𝑛𝑖𝑗
2
)

𝑖,𝑗

 

 

Still other pairs of observations will be in different clusters in both partitions: 

𝑐 =∑(
𝑛.𝑗
2
)

𝑗

−∑(
𝑛𝑖𝑗
2
)

𝑖,𝑗

 

. 

The Jaccard coefficient is defined as 

𝐽 =
𝑎

𝑎 + 𝑏 + 𝑐
 

 

The ARI is defined as 

 

𝐴𝑅𝐼 =
∑ (

𝑛𝑖𝑗
2
) − [∑ (

𝑛𝑖.
2
)𝑖 ∑ (

𝑛.𝑗
2
)𝑗 ] (

𝑛
2
)⁄𝑖,𝑗

1
2 [
∑ (

𝑛𝑖.
2
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𝑛.𝑗
2
)𝑗 ] − [∑ (

𝑛𝑖.
2
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𝑛.𝑗
2
)𝑗 ] (

𝑛
2
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The ARI is one of the most frequently used external criteria [253]. The Jaccard 

coefficient is also widely used and easily interpretable as the proportion of observations 

placed in the same cluster in both partitions [109]. Both metrics assess the stability of 

partitions in bootstrap validation, with the higher value indicating the higher stability. 

In this work, the ARI and the Jaccard coefficient are used to find the number of clusters 

which maximizes the stability of partitions.  

To summarise, selecting the number of clusters is a challenging task that requires a 

flexible approach. For that purpose, distance-based and model-based clustering apply 

different criteria. Model fit indices, such as the BIC and the ICL, and distance-based 
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measures such as the ASW, are widely used in cluster selection. The stability of cluster 

partitions should be taken into account for discerning generalizable clusters in the data. 

This work relies on these measures in selecting the number of clusters in LCCA.   

2.4 Methods of Scholarly Communication: Knowledge 

Graphs 

Scholarly communication in the XXI century is gradually shifting from the outdated 

document-centred to more advanced modalities. Currently, research findings are still 

shared with academic community via “pseudo-digitized” publishing formats that can be 

accessed electronically but are static and unstructured. These formats hinder machine 

readability of publications and eventually lead to a decrease in the reproducibility of 

research results [13]. KGs, as effective tools of information retrieval [200], are 

changing the landscape of information flows. According to a definition in [26], a KG 

consists of an ontology describing a conceptual model (e.g. with classes, relation types, 

and axioms), and the corresponding instance data following the constraints posed by 

the ontology. Nowadays, KGs are applied in various domains [272], including physics 

[218], healthcare [236], [270], business [161], and education [194], [206]. In academia, 

SKGs are novel scholarly communication instruments in the frame of the scholarly 

knowledge ecosystem [6]. SKGs deal with bibliographic metadata (e.g., [246]) and 

present research findings to the academic community in a more effectively structured 

machine readable form. The ORKG is an SKG that implements a research contribution 

model [252] encompassing actual results (contributions) from the academic literature. 

The ORKG research service infrastructure initiative integrates crowdsourcing and 

automated techniques for generating scholarly knowledge graphs [126] which enable 

the user to compare research contributions [174] and create FAIR literature surveys 

[175]. This cutting-edge technology is crucial to resolving the problems of 

contemporary scholarly communication.   

The topic of wider acceptance of SKGs by the academic community was discussed 

in the frame of the ORKG [13] and, more generally, in KG research. A stronger culture 

of user-centric research with an interdisciplinary approach is required to involve 

specialists of different domains in the use of these novel instruments [215]. In 

particular, in order to facilitate the acceptance of SKGs by different professional and 

demographic communities, it is crucial to take into account mechanisms which humans 

employ to process information [192]. This would help to create SKG-powered 

interfaces appealing to various groups of users.   

Effective methods of optimising information load, which take into account 

mechanisms of human perception, were suggested by cognitive load theory [243]. 

Cognitive load is a measure of the cognitive strain an individual feels when dealing 

with a task; for instance, in the context of user satisfaction with a website, cognitive 

load was defined as the amount of cognitive processing a person applies to find 

information [118]. Cognitive load can be intrinsic (that is, inherently present in a 

perceived object), germane (intertwined with the former and required to learn), and 
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extraneous (caused by the manner in which the information is presented). Extraneous 

cognitive load can be minimized by effective presentation of information. It was shown 

that that cognitive load has greater influence on user satisfaction with a website than 

performance outcomes; thus, reducing cognitive costs of information processing might 

be more important than increasing benefits [118]. Cognitive load can be preliminary 

assessed prior to being experienced by users, so that the design features can be planned 

holistically while taking into account essential user characteristics. To decrease 

extraneous load by effective structuring of information, a few principles should be 

taken into account that were confirmed by a few decades of research related to the 

theory [243]. The modality principle requires supplementing verbal material with visual 

and/or audial presentation of information. According to the spatial contiguity principle, 

visual and verbal information should be spatially integrated to avoid the split attention 

effect, when the user has to put cognitive effort into integrating disparate pieces of 

information. Presented information should not be redundant, to avoid the redundancy 

effect [37], and the most important information should be emphasised, to evoke the 

signalling effect, which can be also described as high affordance [66].  

The crucial role of visual materials outlined by cognitive load theory is coherent 

with research findings. The visual modality “worth a thousand words” [264] and is 

beneficial in various contexts, such as instructional design [37]. Visual presentation of 

information schematizes relationships between the data, assists in establishing links 

between entities, elucidates similarities and differences between phenomena, facilitates 

pattern recognition, and supports understanding by saving cognitive resource of the 

user [46]. For information visualisation, researchers resort to such easy to use 

instruments as dashboards [188], which were applied in different areas for summarising 

and visually presenting data [9], [40], [67]. A dashboard can be defined as a visual 

display of the most important information needed to achieve one or more objectives, 

consolidated on a single screen [70]. It is an interactive tool with dynamically updated 

data that allows information monitoring [106]. SKG-based dashboards are yet to be 

developed in different domains, and this work takes an opportunity to extend the range 

of scholarly communication means and facilitate SKG acceptance in academia.     

To summarise, SKGs as novel instruments of information retrieval play an important 

role in the transition from previous outdated to contemporary formats of 

communication. For wider acceptance of this technology, user-friendly SKG-powered 

interfaces need to be developed, which are based on principles of human information 

processing. The visual modality of presenting information implemented in dashboards 

might be beneficial in this regard, as it increases the ease-of-use of the technology and 

thus facilitates its acceptance.       

2.5 The Topic of Human Attitudes towards Technology 

This section discusses the topic of human attitudes towards technology, one of the most 

important topics to be measured, researched, and communicated in the contemporary 

world. An attitude is a multifaceted structure comprised of affective, cognitive, and 
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behavioural components [97]. Human attitudes towards technology can be 

conceptualized in different ways [268]; they are vitally important in our digitalised 

world, as they influence various areas of study, work, organisational behaviour, and 

individual well-being. This topic is the common thread of the thesis contributions. Each 

of these contributions focuses on a specific attitude or a set of attitudes described in this 

section.    

Psychometric instruments are needed to measure human attitudes towards 

technology, and in the area of human-technology interaction, many such instruments 

were developed. However, some of them ignore individual differences [221], while 

others describe users’ interaction with already outdated technology without taking into 

account the rapidly changing digital environment [12]. Franke, Attig, and Wessel [80] 

developed the ATI scale, an economic nine-item instrument that measures affinity for 

technology interaction. The authors defined affinity for technology interaction as the 

tendency to actively engage in intensive technology interaction. This construct is rooted 

in need for cognition, “a stable individual difference in people’s tendency to engage in 

and enjoy effortful cognitive activity” [34], which is important for human information 

processing [39]. Affinity for technology had been explored by other researchers [62], 

[129], but the scales they developed were not sufficiently effective in terms of construct 

definition or dimensionality. In this thesis, the ATI scale was selected for psychometric 

reassessment, as it is a unidimensional economic scale measuring a clearly defined 

construct rooted in an established psychological attribute. The ATI items can be found 

at https://ati-scale.org/.    

While the ATI scale is intended for a wide audience and captures interaction with a 

wide range of technologies, large-scale educational surveys are usually more specific in 

regard to the target group and the technology. For educational data analysis, I selected 

surveys that provide researchers with a large amount of high quality data, PISA and 

ICILS. In both cases, attitudes towards ICT in learning context are the topic of 

research; in PISA, these are students’ attitudes, and in ICILS, I selected teachers’ 

attitudes. They are based on different conceptual frameworks which I describe in this 

section.  

In PISA, the ICT questionnaire changed with years. PISA 2003, 2006, and 2009 

assessed students’ confidence related to three types of ICT tasks (basic, Internet-

related, and high-level tasks). In PISA 2012, positive components of attitudes towards 

ICT (perceiving ICT as a useful tool) were measured as a construct independent of 

negative components (perceiving ICT as an uncontrollable entity). In PISA 2015, a new 

conceptualization of ICT engagement [87] was introduced, and was also used in PISA 

2018. This framework was based on self-determination theory [52] and included 

dimensions of ICT competence, ICT interest, ICT autonomy, and ICT in social 

interaction. The items of student ICT familiarity questionnaire, with the attitudes 

towards ICT covered by items IC013-IC016, can be found at 

https://www.oecd.org/pisa/data/2015database/. Scale indices for each dimension were 

obtained in the frame of IRT by means of generalized partial credit model, which 

https://ati-scale.org/
https://www.oecd.org/pisa/data/2015database/
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allowed for the item discrimination to vary between items within any given scale [182]. 

The scales are valid reliable instruments according to psychometric assessment [135], 

[162].  

In ICILS, the teacher survey was designed as auxiliary to the student survey, and 

therefore, the topic was less highlighted in literature (see, for instance, [76] and [77]). 

ICILS 2018 studied, among other factors, teachers’ positive and negative views on ICT. 

The items can be found at https://www.iea.nl/data-tools/repository/icils (to retrieve the 

data from the IEA website, it is necessary to agree to the terms and conditions 

associated with their use). To measure positive views on ICT, teachers were asked, to 

what extent they agree or disagree that using ICT at school helps students develop 

greater interest in learning, to work at a level appropriate to their learning needs, to 

develop problem solving skills, and facilitates other important aspects of learning. To 

measure negative views on ICT, teachers were asked, to what extent they agree or 

disagree that using ICT at school distracts students from learning, results in poorer 

calculation skills, and leads to other negative consequences. It was shown that attitudes 

to ICT were important factors of teachers’ interaction with technology in the 

professional context [63].  

Results of research on human attitudes towards technology can be shared with the 

academic community via means of scholarly communication, as discussed in the 

previous section. However, human attitudes towards technology are not only a possible 

topic of scholarly communication but also an intrinsic part of it, as they underlie the 

perception of communication means, which nowadays are predominantly digitalised. 

The degree to which researchers are eager to use a novel technology, including SKGs, 

or their behavioural intention to use the technology, depends on a number of attitudinal 

factors, which was studied in various domains. According to the usability paradigm, as 

exemplified by technology acceptance model, interaction with technology is 

determined by its perceived usefulness and perceived ease-of-use. Three decades of 

research have brought new insights to this paradigm; in particular, it was shown that 

perceived ease-of-use is a more influential factor for actual user experience than 

perceived usefulness [137]. In the frame of this paradigm, eight most common models 

of user acceptance, including the technology acceptance model, were integrated to 

develop the unified theory of acceptance and use of technology. According to the 

theory, there are four factors influencing the actual use of a technology. External 

factors are social influence and facilitating conditions, and internal factors are 

performance expectancy, which is an equivalent of perceived usefulness, and effort 

expectancy, which is an equivalent of perceived ease-of-use. Empirical research 

applying the theory to different contexts confirmed the key role of these factors in 

technology acceptance [249]. In terms of information theory, ease-of-use is related to 

optimally structured information aimed at avoiding information overload, as the latter 

is associated with information anxiety and information avoidance [232]. Excessively 

complicated, as well as oversimplified, input leads to decreased interest and reduced 

attention, thus stirring boredom [244].  

https://www.iea.nl/data-tools/repository/icils
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The user experience paradigm emerged as a countermovement to the usability 

paradigm, as it focused on affective aspects of human-technology interaction beyond 

the task-related view [144]. In addition to pragmatic or instrumental qualities of 

technology, user experience models embrace its holistic, aesthetic and hedonic aspects 

[104]. Pragmatic qualities include perceived practicality and ease-of-use, while hedonic 

qualities are related to pleasure-bringing stimulation. Pragmatic qualities were found to 

be more influential for the outcome than hedonic qualities; in particular, perceived 

ease-of-use was shown to be a predictor of perceived usefulness, enjoyment, and 

behavioural intention to use the technology [115]. Therefore, perceived ease-of-use of 

technology positively influences users’ attitudes to this technology and thus facilitates 

its acceptance. 

To summarise, human attitudes towards technology is an important topic, as in our 

digitalised world they influence virtually every sphere of life. In this work, a few 

frameworks related to this topic are dealt with. These are the ATI scale as a 

psychometric instrument measuring affinity for technology interaction, the ICT 

engagement framework in PISA 2015 and 2018, and the ICT framework used in the 

teacher survey in ICILS 2018. Human attitudes towards technology could be a topic of 

scholarly communication, but more importantly, they need to be taken into account in 

developing contemporary means of scholarly communication, such as SKG-powered 

interfaces.       

2.6 Summary 

In this chapter, I outlined basic theoretical concepts and explained methods that are 

used in this thesis. In regard to method versatility, I schematized four possible ways to 

facilitate its introduction: the consecutive use, the toolbox choice, the simultaneous use, 

and the range extension, and gave examples of these approaches to method versatility 

implemented in previous studies. Then, I described the basic notions from the area of 

psychometric analysis. They include CTT and IRT frameworks, with parametric IRT 

(RSM) and nonparametric IRT (MSA) as distinct approaches. I outlined concepts of 

convergent and discriminant validity, dimensionality, internal consistency reliability, 

and item functioning, and explained how these can be assessed by methods of CTT and 

IRT.  

The next section gave an overview of ML and statistical techniques applied to large-

scale educational surveys. There was a specific focus on the RF algorithm as a ML 

method, HLM as a statistical method, as well as PISA data analysis with plausible 

values and replicated weights. In regard to unsupervised learning methods used for 

educational data analysis, I described distance-based and model-based clustering and 

gave an overview of methods that can be used for selecting the number of clusters in 

various clustering approaches: model fit, cluster separation, and the stability of 

partitions.  
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In relation to scholarly communication, I briefly described SKGs as the novel 

modality of information retrieval and explained the main principles of technology 

acceptance that should be taken into consideration for developing user-friendly 

interfaces to facilitate the use of SKGs by a wider audience. The topic of technology 

acceptance is reiterated in the last section of this chapter, in which I discussed human 

attitudes towards technology and the ways these are measured, researched, and 

communicated. 
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Chapter 3 

3 Related Work 

In this chapter, I summarise the current state of research in the areas related to the 

thesis. I start with describing novel methods of psychometric instruments validation, 

which include an analytic procedure combining CTT and IRT techniques, and methods 

of assessing construct validity. In regard to supervised learning, I describe ML and 

statistical methods recently applied to large-scale educational surveys and give an 

overview of studies suggesting integration of statistical and ML approaches. In regard 

to unsupervised learning, I refer to previous works that criticize cluster selection based 

solely on a model fit index and explore the possibility of an integral approach to 

selecting the number of clusters. In the last section, I outline novel KG-based interfaces 

and dashboards and focus on the ORKG resource comparison interface.   

3.1 Recent Developments in Psychometric Analysis 

In the literature on psychometric analysis, it was emphasized that a scale validation 

should be conducted as an iterative process that requires a multi-method assessment 

[220]. In other words, even when the results of a psychometric study are convincing 

and exhaustively reported, it is always beneficial to re-examine the main characteristics 

of the instrument with more rigorous, or newly developed, or simply different methods. 

Thus, the twofold goal is achieved: the scale is more comprehensively validated, and 

methodology of psychometric research is further developed.  

An analytic procedure, or a psychometric protocol, for assessing item properties 

with CTT and IRT methods, was developed by Dima [58]. In terms of different ways of 

introducing method versatility, this procedure belongs to the consecutive use of these 

methods, when results obtained with one set of them is reassessed with the other. 

Psychometric analysis in accordance to this procedure consists of six steps that explore: 

(a) item descriptive statistics; (b) item properties according to non-parametric IRT, with 

homogeneity, monotonicity, local independence, and invariant ordering assumptions 

checked; (c) item properties according to parametric IRT requirements; (d) the structure 

of the scale according to EFA, CFA, VSS and ICLUST; (e) reliability of the scale and 

item properties according to CTT; (f) score statistics and distributions. To explore 

dimensionality of a scale, commonly used EFA and CFA can be combined with less 
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frequently employed ICLUST and VSS, and with still underused nonparametric IRT 

(MSA). Results of these methods can be compared to reach a conclusion about the 

structure of the scale. For reliability assessment, Cronbach’s alpha with the confidence 

interval, McDonald’s omega with the confidence interval, Guttman’s lambda-6, and 

worst split half reliability (beta) are estimated. This allows for comparison between 

different indices and for correction of possible bias. To evaluate item functioning, 

methods of CTT and IRT are used, with the latter enriching the former with person fit 

measures and graphical presentations such as item trace lines and the person-item map. 

In terms of method versatility, this can be categorized as the consecutive use of 

different methods, as CTT, nonparametric IRT, and IRT (RSM) are used consecutively 

in the psychometric protocol.  

In psychometric studies, novel advanced methods for determining convergent and 

discriminant validity of psychometric instruments were discussed. In terms of 

correlation analysis, the heterotrait-monotrait ratio of correlations criterion was shown 

to be an effective estimator of correlations between constructs [79]. In [210], different 

correlation-based techniques were compared, and recommendations on rigorous 

analysis were given. In addition to various forms of correlation analysis, more 

advanced methods were discussed in literature. In particular, SEM was recognized as 

an effective tool for demonstrating convergent and discriminant validity [220]. 

However, assumptions for SEM should be met in order for the analysis to be 

meaningful. Ignoring multivariate normality assumption was discussed as a major 

problem in studies using SEM [93]. Other methods to explore convergent and 

discriminant validity, as summarized in [22], include bivariate regression analysis, 

analysis of standard deviations of the differences between scores, and exploring the 

ICCs.  

Hierarchical clustering of variables was suggested as a possible method for 

assessing the construct validity of psychometric instruments [45]. In hierarchical 

clustering, variables that are strongly related to each other, and thus contain similar 

information, are united in the same cluster. This clustering method can be either 

divisive or agglomerative. Agglomerative clustering starts with each variable forming a 

separate cluster, and the number of clusters is reduced at each stage based on a 

similarity or dissimilarity criterion, until all units are agglomerated in a single cluster. 

In divisive hierarchical clustering, the process goes in the opposite direction: all 

variables are initially united in a single cluster and then separated into different 

clusters. Various clustering algorithms and dissimilarity criteria can be used for this 

purpose; in [45], for instance, complete linkage method and Ward’s linkage method are 

discussed and compared with FA. The ClustOfVar package in R implements an 

approach of agglomerative hierarchical clustering that can be used for various 

purposes. The authors defined a synthetic variable of a cluster as the first principal 

component in PCA [43]. The similarity (or homogeneity) criterion for numeric 

variables is calculated as squared correlations to the synthetic variable. Hierarchical 

clustering of variables as a method of construct validity analysis might be insufficient 

as it lacks mathematical precision such as in [210]: hierarchical clustering in its most 
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frequently used implementations does not account for the measurement error. It is 

possible to include the measurement error in clustering but such an algorithm would 

become excessively complicated. Even in its simplest form, hierarchical clustering is 

rather computationally expensive. Therefore, this approach is suitable for rather small 

(< 250) samples and as an additional means of assessing construct validity; specific 

values can be obtained with other methods.  

Hierarchical clustering of variables might be helpful for presenting a general picture 

(a nomological network) with various levels of granularity. In Figure 3.1, an example 

of a dendrogram presenting the results of hierarchical clustering of variables is shown, 

with the names of the variables removed. The height of the dendrogram indicates the 

values of the aggregation criterion. With the chosen level of granularity, as depicted by 

the green horizontal line, three clusters are selected (these are indicated with different 

shades of blue). It is possible to choose a different height, or a different level of 

granularity, to obtain a partition of the data into four of more clusters. This approach 

can be useful when a researcher needs to explore a nomological network of a construct, 

so that the scores on the scale under scrutiny are compared with the scores on a number 

of theoretically related and unrelated scales. 

 

Figure 3.1: Hierarchical Clustering of Variables. 

To summarise, a few developments in the area of psychometric analysis are relevant 

to my work on increasing method versatility in validation of psychometric instruments. 

These include (i) the psychometric protocol with CTT and IRT methods and (ii) 

hierarchical clustering of variables in application to validity analysis.      
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3.2 Recent Developments in Educational Data Analysis 

In this section, I discuss recent developments in educational data analysis. These 

include statistical and ML techniques applied to large-scale educational surveys, such 

as PISA. As research on ICILS teacher data is scarce, and in the context of this work I 

am interested in cluster selection strategies, in the unsupervised learning subsection I 

focus on various suggestions for selecting the number of clusters in LCCA that can be 

useful for my analysis.       

3.2.1 Machine Learning and Statistical Methods  

A large amount of high-quality data provided by large-scale educational surveys can be 

analysed by means of various ML techniques [214]. On the NEPS website [169], 

multiple projects using ML methods are presented that aim to explore panel attrition, 

predict consequences of educational choices, and identify prospective university drop-

outs. For occupational coding in NEPS and other surveys, naïve Bayes and Bayesian 

multinomial were used in [20]. For PISA 2012, different classification and dimension 

reduction algorithms, including RF and nearest neighbours, were tested on the Finnish 

data [214]. In [82], low rank matrix factorization was applied to the missing data 

imputation, and boosted regression trees models were trained for classification tasks on 

the Australian PISA data. Model agnostic methods, such as exploring feature 

importance and building partial dependency plots, were used in this study to make the 

results of the tree models more interpretable. In another study, RF was involved in 

feature selection on the process data in PISA 2012 [100]. Generally, RF was used in 

educational studies in different contexts. It was applied to predict the drop-out versus 

graduation results after the first two semesters [18], student success in an introductory 

statistics course [233], academic achievements based on students’ cognitive 

psychological tests results [92], and the student progression in a virtual learning 

environment [102].  

Multilevel statistical approaches to PISA, with school-level predictors included in 

the models, were widely used. With a two-level model for the Hong Kong data in PISA 

2006, it was found that the school size is positively associated with students’ science 

literacy scores [242]. A two-level HLM for the Indian data in PISA 2010 showed that 

school-level predictors influenced students’ scores in reading, mathematics and science 

[10]. A multilevel mediation model was used on the Turkish data for the relationship 

between school-level ESCS and students’ math anxiety, self-efficacy, and achievement 

in PISA 2003 [267]. In some cases, intraclass variance could be low; for instance, in a 

two-level HLM, school-level variables in the Irish data explained only 1% of variance 

in students’ science achievement in PISA 2006 [49]. A multi-group exploratory SEM 

and a multivariate regression model was applied to PISA 2015 data (China and 

Germany) to explore relationships between students’ attitudes to ICT and their 

mathematical, reading, and scientific literacy [162]. A three-level HLM involving 44 

countries participating in PISA 2015 was applied to study relationships between 

various ICT factors and students’ mathematical, reading, and scientific literacy [119].   
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Mutually enriching statistical and ML perspectives are integral part of data science 

[59]. In educational data analysis, integration of ML and statistical methods is yet to be 

obtained and has only recently started to be practiced in developing subfields of 

educational data mining and learning analytics (see [204] and [211]). However, 

statisticians and data analysts have discussed integration of ML and statistics from 

theoretical perspectives for rather long time [81]. Breiman [29] urged statisticians to 

embrace algorithmic thinking typical for ML. In this line of thought, novel methods 

were developed which combine ML and statistics. A combination of ML and statistical 

methods for training the most effective predictive model on the dataset in question was 

presented [105]. A bi-dimensional approach was suggested that takes into consideration 

explanatory power and predictive accuracy of a model, thus combining statistical and 

ML approaches to model evaluation [229]. Statistically reinforced ML was introduced 

as an approach, in which ML models are augmented by investigating significance and 

effect sizes typical for statistical models [213]. In terms of different ways of 

introducing method versatility, these belong to the simultaneous use of methods.  

Another way to integrate ML and statistics is to select tools from either of these 

toolboxes depending on the study aims and the dataset characteristics. The best 

techniques for specific tasks can be chosen based on existing research on their 

comparative effectiveness. In a large-scale benchmarking experiment, RF was 

compared with logistic regression for binary classification tasks, and it performed 

better in terms of accuracy than this commonly used statistical method in 69% of the 

datasets [50]. In another study, eight ML methods (multi-layer perceptron, Bayesian 

neural network, radial basis functions, generalized regression neural networks also 

called kernel regression, k-nearest neighbour regression, CART regression trees, 

support vector regression, and Gaussian processes) compared unfavourably in terms of 

accuracy with statistical ones [156]. In [33], RF was compared in a simulation study 

with statistical inference used for the task of identifying genes associated with a 

phenotype; the authors showed that statistical and ML methods can be used 

complementary. Thus, a specific method for a specific task needs to be thoroughly 

selected. In this work, the toolbox approach to method versatility is applied to ML and 

statistical techniques in analysis of the PISA data.  

3.2.2 Custer Selection in Model-Based Clustering 

LCCA, or LCA
1

, has developed rapidly to include ordinal data analysis [56], 

confirmatory methods [222], growth models [128], and Bayesian approaches [142]. In 

educational science, this method is increasingly applied to large-scale surveys data. 

Multilevel LCCA was used to explore the relationships between the curriculum and 

mathematical achievements and strategies in Dutch primary school students, and a 

considerable teacher effect was found [65]. LCCA was used to cluster students in 

                                                 
1
 As I explained in section 2.3.2, LCCA is called LCA when discussed from the statistical 

perspective rather than from the perspective of clustering. To avoid confusion, hereinafter in 

this work I call the method LCCA.  
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Taiwan based on their mathematical learning strategies as assessed by PISA 2012 

[146].  

In regard to ICILS data, students’ responses to ICILS 2013 were explored by means 

of LCCA, with findings specifying the influence of extended or insufficient computer 

use on students’ computer and information literacy [32]. In another study based on 

ICILS 2013 data, LCCA was applied to explore teachers’ views on ICT in three 

European countries [63]. Both studies relied on model fit criteria, such as the BIC and 

the Akaike’s Information Criterion (AIC), for cluster selection.   

In the context of this work, I am primarily interested in different approaches to 

cluster selection in LCCA. Various information criteria for LCCA cluster selection 

were suggested and compared [170]. These studies gave mixed results, and there is no 

universally accepted criterion for choosing the number of clusters [234]. It was shown 

that the BIC is useful when the sample size is sufficiently large, and for small samples, 

the AIC is appropriate [61]. Although the BIC has a number of advantages over other 

information criteria [170], overreliance on the BIC as a single criterion was not 

recommended [61]. However, for a long time it was the only criterion implemented in 

commercial software, such as Latent Gold [195].  

In other studies, criteria used for selecting the number of clusters in LCCA were not 

restricted by model fit indices. For instance, it was suggested that the elbow heuristic 

for the BIC plot can be applied for this purpose [74], [171]. This means that the 

researcher determines the “elbow” of the plot, after which the change in successive 

values becomes less noticeable. The elbow heuristic implies the subjectivity of choice 

but is effective and simple, and therefore is common in EFA [116] and in cluster 

analysis [23].  

The stability of cluster partitions was shown to be an important criterion for 

selecting the number of clusters. An estimation scheme for clustering instability was 

developed [68] to inform the selection of the number of clusters so that the 

corresponding estimated clustering instability could be minimized. In Hennig’s works 

on clustering (see, e.g., [110]), different methods for the stability assessment were 

suggested, including splitting the dataset or “jittering” the observations; the bootstrap 

validation procedure was shown to be an effective method of cluster selection.   

Moreover, Hennig and Liao maintained that a criterion typically used in distance-

based clustering, the ASW, which is needed for checking whether clusters have 

relatively small within-cluster dissimilarities, could be an aid in model-based clustering 

such as LCCA [111]. It is not a common practice to use distance-based criteria for 

model-based clustering, and this approach was rather unorthodox. After that, 

Anderlucci and Hennig [7] applied the ASW criterion to LCCA models and showed 

that LCCA can perform at least as well in terms of the ASW as distance-based 

methods. Thus, the long established routine of relying solely on model fit indices, or 

even the single fit index (the BIC), was supplemented with alternative criteria for 

selecting the number of clusters in LCCA. 
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To summarise, a few developments in supervised and unsupervised learning 

methods applied to educational data analysis are relevant to my work. These include (i) 

previous studies applying HLM, RF, or LCCA as a clustering method, to PISA and 

ICILS data; (ii) works that integrate, or combine in the frame of the toolbox approach, 

statistical and ML methods; and (iii) studies on selecting the number of clusters in 

LCCA based on a different set of criteria than solely fit indices.      

3.3 Recent Developments in Knowledge Graph-Based 

Interfaces  

Novel user-friendly KG-based interfaces are continuously created that aim at 

facilitating acceptance of this technology by wider groups of users, including non-

experts, and various aspects of technology acceptance related to KG-based interfaces 

are explored. In order to reduce cognitive load of the user, a visualised knowledge map 

for semantic tagging was suggested, and its effectiveness was evaluated with a field 

experiment [120]. Development of an interface with easily understandable 

visualisations that allows both experts and novices querying a knowledge base was 

described in [136]. The user perception of two spatial presentations of web search 

interface, hierarchical tree and graph view was studied in [217]; the findings confirmed 

that the hierarchical tree interface can be more effectively employed for getting an 

overview of a field, and the graph interface for answering specific questions. A visual 

interface for non-experts querying KGs was developed, and a usability evaluation 

showed that it compares beneficially with the baseline system used by Wikidata [247]. 

A linked data-powered framework for scholarly information management was launched 

at the state level in Ecuador; the core component of the system was user-friendly 

graphical user interface [187].  

Dashboards as dynamic visualisations are increasingly used in different areas of 

research and practice. These include, for instance, dashboards presenting the 

epidemiological information to the general public [40]. In [67], a dashboard was 

described that visualised patients’ information for hospital intensive care units. The 

dashboard aimed to reduce cognitive strain experienced by the clinicians, and it was 

shown that these intuitive visualizations were useful for rapid information assimilation 

and pattern recognition facilitating diagnostic insights. In the context of urban mobility, 

KG-powered dashboards are also applicable, as they resemble instruments that humans 

are accustomed to using regularly. For instance, in [216] development of an application 

was reported that performed metadata analysis to automatically generate dashboards 

displaying various mobility indicators. In the area of academic interaction, a dashboard 

presenting information about scientific conferences was designed for less technically-

savvy audiences; it integrated statistical analysis, semantic technologies and visual 

analytics, so that the user could visualise several metrics of a specific conference [9]. In 

[143], the science citation knowledge extractor is described, which employs natural 

language processing and machine learning to retrieve key information from scientific 

publications and present interactive data visualizations. With this tool, biological and 
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biomedical researchers can understand how their work is being utilized by the 

academic community. 

In the frame of the ORKG research service infrastructure initiative, the ORKG 

resource comparison was implemented as an SKG-based interface [174]. A research 

contribution includes a research problem addressed by an academic publication, a 

method (or methods) it uses and the research results. The resource comparison interface 

allows selecting research contributions, mapping their properties (such as methods, 

results, and others), and publishing the resulting comparison online in a tabular form. 

 

 

Figure 3.2: The ORKG Resource Comparison. 

In Figure 3.2, I show an example of a resource contribution comparison on the topic 

of attitudes towards ICT in PISA 2015 and 2018. The presentation is customizable: the 

user can enable or disable properties to be shown in the tabular form. Thus, relevant 

publications can be selected that, for instance, apply specific methods to the topic of 

interest. The comparison can be shared and exported in different formats. According to 

the evaluation of user performance, the participants found the service useful and fairly 

intuitive [174].  
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To summarise, related work in the area includes (i) KG-based interfaces and (ii) 

various dashboards, which are examples of multi-relational dynamic visualizations. In 

my work on extending the range of means for scholarly communication, I relied on the 

principles used in these studies to create a dashboard that could be complementary to 

the ORKG resource comparison, an effective and intuitive interface implemented in the 

frame of the ORKG research service infrastructure initiative. 

3.4 Summary 

In this chapter, I outlined previous studies related to my research questions and 

contributions to the thesis. The literature surveyed was relevant to this thesis either in 

terms of methodology, or in terms of findings that could be used in my research.  

The first section described recent developments in psychometric analysis, on which I 

can base my own work. The psychometric protocol combining CTT and IRT methods 

to explore dimensionality, reliability, and item functioning of a scale can be a useful aid 

in facilitating method versatility in psychometric analysis. As this protocol does not 

include procedures for assessing construct validity, I referred to hierarchical clustering 

of variables used for this purpose. There are various implementations of hierarchical 

clustering, and I outlined a specific PCA-based implementation that I selected for this 

purpose.  

In the second section, I reviewed literature on supervised and unsupervised learning 

in data analysis of large-scale educational surveys, such as PISA and ICILS. In regard 

to supervised learning, I outlined applications of ML methods, such as RF, and 

multilevel methods from the statistical toolbox to educational data analysis and 

specifically to PISA. After that, I discussed previous works on various combinations of 

ML and statistics, which is yet to be accepted in educational data analysis. In regard to 

unsupervised learning, I focused on cluster selection in LCCA and discussed the studies 

showing that strategies based solely on model fit were suboptimal, and more versatile 

selection procedures would be beneficial. Resorting to the distance-based ASW 

criterion was suggested in some works, while others relied on the BIC elbow heuristic 

or the bootstrap validation procedure.  

In the third section, I discussed related work on KG-based interfaces, including the 

ORKG resource comparison interface, and on dashboards from various domains. Thus, 

my work on increasing method versatility in data analysis of human attitudes towards 

technology at stages of measurement, research, and communication, is included into the 

context of related studies. 
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Chapter 4 

4 Multi-Method Approach to Validating a Scale 

In Chapter 2 (section 2.2), I discussed the background of psychometric research, and in 

Chapter 3 (section 3.2), outlined recent developments in the area. This chapter presents 

my work on method versatility in psychometric analysis, which I conducted to deal 

with RQ1. 

 

 

 

As I explained in Chapter 2, various ways of introducing method versatility can be 

found in literature. I chose the consecutive use of different methods for the 

psychometric work, as reassessing a scale developed by other researchers was 

consistent with the idea of iterative multimethod assessment [220]. In order to get the 

data for reassessment, I selected a recently developed scale that (i) intended to measure 

a construct related to human attitudes towards technology, (ii) could be considered 

useful from the domain knowledge perspective, and (iii) was validated with commonly 

used, relevant, and transparently reported methods. This was the ATI scale by Franke, 

Attig, and Wessel [80], and when I contacted the authors, they were willing to share the 

dataset. Results of their study showed that the ATI scale was a valid unidimensional 

instrument with high reliability. Their methods included CTT assessment of item 

functioning and EFA for dimensionality, with parallel analysis as a factor retention 

method and PFA as a factor analytic method. For reliability, the authors reported the 

value of Cronbach’s alpha, and construct validity of the scale was indicated by Cohen’s 

correlations with other constructs. These methods were sufficient according to the 

standards of the field, in which they were - and still are - the most commonly used 

methods. They were reported transparently and gave space for reassessment with the 

aim of reconfirming the results of the analysis and increasing method versatility in the 

area.       

 

RQ1. How to facilitate method versatility in validation of psychometric 

instruments related to human attitudes towards technology? 
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4.1 Analytical Strategy 

The analytical strategy included applying nonparametric IRT (MSA) and parametric 

IRT (RSM) methods to reassess the results obtained with CTT methods on 

dimensionality, reliability, and item functioning of the ATI scale. Hierarchical 

clustering of variables was used to reassess the results for convergent and discriminant 

validity obtained by the authors with correlation analysis. In terms of method 

versatility, it was the consecutive use of different methods for the same task of 

psychometric assessment, as depicted in Figure 4.1. The data analysis was conducted 

with R, version 3.5.2 [196]. A coherent system of packages tidyverse was used for data 

manipulation and visualization [260]. The R script is available on GitHub 

https://github.com/OlgaLezhnina/ExtPsych-ClustATI.  

Exploring and imputing missing data was not requited, as there was no missingness 

in the dataset. Prior to the analysis, the decision on outlier removal was made. As there 

were no valid reasons to remove the outliers (see, for instance, [15]), the cases with 

aberrant response patterns (Guttman errors) and multivariate outliers were kept in the 

dataset for further analysis. 

 

Figure 4.1: Method Versatility: Consecutive Use.  
T stands for task, M for method, R for result.   

For convergent and discriminant validity assessment, I used hierarchical clustering 

of variables. I did not repeat the correlation analysis conducted by the authors, as the 

latter was reported in [80] and could be easily reproduced by an interested researcher. 

For agglomerative clustering, I selected the ClustOfVar package [43]. The 

homogeneity criterion of a cluster was defined as the sum of correlation ratios to the 

synthetic variable (the first component obtained by PCA). The stability of partitions 

was evaluated with the bootstrap approach, and the default of 100 bootstrap samples 

was used. Dendrograms were built to visualize the results. The analysis was conducted 

both (i) on the mean values of all scales included in validity analysis (see section 4.2), 

and (ii) on all items of these scales. The former was needed to reassess the findings 

obtained by the ATI authors, as their correlation analysis was also conducted on the 

mean values of the scrutinized scales. The latter allowed a more detailed picture of the 

nomological network of the ATI scale to be obtained.  

https://github.com/OlgaLezhnina/ExtPsych-ClustATI
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Dimensionality, reliability, and item functioning were assessed by the authors of the 

ATI scale with CTT methods and reported in [80]. Some of the procedures, however, 

were repeated in the current analysis, as it was conducted in accordance with [58]. This 

psychometric protocol includes assessment of (i) item descriptive statistics; (ii) item 

properties according to nonparametric IRT; (iii) item properties according to parametric 

IRT; (iv) dimensionality with CTT methods; (v) reliability and item properties with 

CTT methods; (vi) score statistics and distributions. Thus, nonparametric IRT, 

parametric IRT, and CTT methods were applied in blocks that could be useful for 

fitting the models in accordance with each of these frameworks. Here, however, the 

analytical strategy and the results of assessment are described in a different order, for 

logical consistency: (i) dimensionality analysis, (ii) reliability assessment, and (iii) item 

analysis, as assessed by CTT and IRT methods. I report analytical choices not covered 

by the protocol, as well as my amendments to the procedures that constitute it, with 

references to sources that gave me grounds for these decisions.  

In the frame of dimensionality assessment, CFA, EFA, VSS, and ICLUST were used 

as traditional CTT methods. CFA was conducted with the MLR estimator. The 

following rules were applied to assess the global fit between the tested model and the 

data [117]: the chi square test should reveal no significant differences between the 

model and the observed covariances (p ≥ .05); the thresholds for fit indices should be 

CFI ≥ .95, RMSEA ≤ .08, and SRMR ≤ .08. I made a few amendments to the procedure 

described in [58] regarding the assumption checking: multivariate normality of the data 

was tested with Mardia’s test of multivariate normality [93], and the package 

QuantPsyc [73] was selected for the implementation of the test, as it was proved to give 

unbiased results [127]. In addition, I explored modification indices of the CFA model 

[93]. In EFA, PAF was used as a factor analytic method. For factor retention, scree plot 

analysis, parallel analysis, and the acceleration factor (which is a numeric expression of 

the scree plot inspection results) were used. As my amendments to the procedure, the 

KMO and the Bartlett’s test of sphericity were conducted with the psych package 

[202], and for the factor extraction, the nFactors package was used [198]. These 

decisions were informed by existing guidelines for EFA [71], [116]. VSS was 

conducted, and the Velicer MAP results obtained. Also, the hierarchical clustering of 

the items was conducted, and the results of ICLUST with alpha and beta values for the 

subscales were presented graphically.   

Dimensionality of the ATI scale was reassessed by methods of nonparametric IRT 

(MSA). Homogeneity values for the scale and for each item with standard errors (SE) 

were obtained. An Automated Item Selection Procedure (AISP) was conducted to 

explore scalability of items and dimensionality of the scale at increasing threshold 

levels of homogeneity from .05 to .80. Assumptions for MSA (monotonicity, local 

independence, invariant item ordering) were checked. The monotonicity test and the 

invariant item ordering test were conducted with the default minisize (n = 80). The 

threshold of the Crit value = 40 for the monotonicity test was taken; ideally, an item 

should have the Crit value of 0, as recommended in [225]. 
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Internal consistency reliability of the ATI scale was assessed with alpha, beta, 

lambda-6, and omega estimates. Confidence intervals for alpha and omega coefficients 

were reported.  

Item functioning was assessed in the frame of the CTT approach, as to include 

frequencies of endorsement, the inter-item correlation matrix, item-total associations, 

the distribution of total scores, item discriminations (corrected item-total correlations) 

and Cronbach’s alphas when the item is removed. A detailed picture of item 

functioning was obtained by parametric IRT methods. RSM was fit to determine 

whether the ATI scale satisfies requirements for additive measurement. Item fit was 

explored; mean square values from 0.6 to 1.4 were taken as acceptable, while 

standardized fit statistics values above 2 were considered not suitable for measuring the 

latent construct on an interval level [58]. Item trace lines were built to explore the 

relationship between the latent trait and the probability to endorse a specific category of 

the item. Person fit was evaluated with the same thresholds as item fit. Separation 

reliability of the scale (with the cut off value of 0.80) and person separation (with the 

cut off value of 2) were assessed. The person-item map was built to visually explore 

how the items relate to the latent trait continuum.   

In the process of dimensionality testing, one of the items appeared to be less scalable 

than the others. Further analysis was conducted on (i) the initial scale and (ii) the scale 

with the less scalable item excluded. The results for both versions were presented, as 

they give information about the scale and the item relevant to the specific sample; 

further research on a much larger and diverse sample is required to make decisions 

about any possible changes in the scale.   

4.2 Data 

The dataset (N = 240) was shared by the authors of the ATI scale on my request (and is 

currently in free access at https://ati-scale.org/). The data was collected by means of the 

MTurk in the USA. Demographic variables were not included in the current analysis. 

There were scores on 12 scales in the dataset: (a) the ATI scale, nine items; (b) 

Technical Problem Solving Success (TPSS, four items); (c) Technical System Learning 

Success (TSLS, three items); (d) Interest in Technology (Interest, four items); (e) Need 

for Cognition (NFC, four items); (f) Geekism (GEX, 15 items); (g) a short form of Big 

Five Inventory (BFI-10, five scales, each with two items); and (h) Regulatory Focus 

Scale adapted for technical systems (RFC, six items). Reversely coded items were 

recoded. Hereinafter, the reversely coded items (in the ATI scale, these are ati03R, 

ati06R and ati08R) are indicated with the letter R.  

There were no missing data in the scale dataset due to strict quality filtering, 

including completeness check. As the authors of the scale reported, those respondents 

who (a) did not complete their survey, (b) completed the survey twice, (c) failed to 

answer the built-in attention checks, or (d) resided outside the USA were excluded 

https://ati-scale.org/
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from the dataset. For more information on the sample, the scales, and the quality 

filtering, see [80]. 

4.3 Results 

Convergent and discriminant validity of the ATI scale was explored with hierarchical 

clustering of variables. The analysis was conducted for the means of the 12 scales 

involved, and the stability of partitions was checked with the default of 100 bootstrap 

samples. The results suggested that the eight-cluster partition and the nine-cluster 

partition were most stable. The eight-cluster partition was explored: the ATI construct 

formed one cluster with Geekism, Interest in Technology and RFS constructs. In case 

of the nine-cluster partition, the ATI formed one cluster with Geekism and Interest in 

Technology constructs. For the most parsimonious two-cluster partition, the results 

were similar (see Figure 4.2).   

 

Figure 4.2: Dendrogram and Two-Cluster Partition of the Means. 
The scales are labelled with abbreviations used in [80]. NFC is Need for Cognition; TSLS is 

Technical System Learning Success; TPSS is Technical Problem Solving Success; RFS is 

Regulatory Focus Scale adapted for technical systems; GEX is Geekism; INT is Interest in 
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Technology; BF are Big Five scales: BF.E is Extraversion; BF.O is Openness; BF.A is 

Agreeableness; BF.C is Conscientiousness; and BF.N is Neuroticism. 

The dendrogram for the two-cluster partition, with the height indicating the values 

of the aggregation criterion, is presented in the upper part of Figure 4.2. The lower part 

of the figure depicts correlations of cluster elements with the synthetic variable in both 

clusters. The ATI was closely related to such constructs as Geekism and Interest in 

Technology, and other technology-related constructs were in the same cluster with it, 

while the Big Five dimensions (Extraversion, Openness, Agreeableness, 

Conscientiousness, and Neuroticism) formed another cluster. The gain in cohesion for 

the two-cluster partition was 20.59%, for the eight-cluster partition 85.96%, and for the 

nine-cluster partition 91.60%.  

Hierarchy of variables was also constructed for all items of all scales. The ATI items 

were close to Geekism, Interest in Technology and Need for Cognition items. The 

stability of partitions was explored with the default of 100 bootstrap samples. The two-

cluster partition showed the relatively high stability according to the ARI, with the next 

stability maximum at 26 clusters. The two-cluster solution was explored: it gave a gain 

in cohesion of 6.99%, and all items of the ATI scale were close to items of other 

technology-related scales in one of the clusters, with Big Five items in the other cluster. 

The 26-cluster partition was explored. The gain in cohesion was 71.19%. Items of the 

ATI scale formed clusters with items of Geekism, Interest in Technology, and Need for 

Cognition scales.  

Overall, the results of hierarchical cluster analysis confirmed the findings by Franke, 

Attig, and Wessel [80], who reported that the scale had high correlations with 

technology-related constructs and low correlations with the Big Five constructs. 

However, the method that I used to reassess construct validity, hierarchical clustering 

of variables, allowed for more granular picture of the nomological network: for any 

cluster partition, it could be seen how the constructs relate to each other. The same is 

the case for all items of the scrutinized scales (see the dendrogram in Figure 4.3).  

Validity analysis required other scales to be involved; the remaining procedures of 

psychometric assessment were conducted only on the items of the ATI scale. In my 

reassessment of dimensionality, reliability, and item functioning of the ATI scale, I 

consecutively (i) used the same procedures and criteria as the authors of the scale 

(EFA, Cronbach’s alpha, CTT methods), and (ii) reassessed the results with parametric 

IRT and nonparametric IRT methods.   
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Figure 4.3: Dendrogram of the Items. 
The scales are labelled with abbreviations used in [80]; ‘R’ means that the item is reversely 

coded.  
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Prior to other procedures, multivariate normality of the data was studied with the 

Mardia’s test as my amendment to the protocol, as the latter includes checking 

multivariate outliers based on the Mahalanobis D2 values but not on the Mardia’s test. 

The results of the test for skew and kurtosis were significant, with p < .001, which 

meant that the multivariate normality assumption was violated. Aberrant response 

patterns of respondents were explored with analysis of Guttman errors. There were 13 

outliers (cases with a number of Guttman errors higher than the cut-off value of 65.5). 

As there was no valid reason to remove the outliers, the cases were kept in the dataset 

for further analysis. 

For dimensionality analysis, CFA with the MLR estimator was conducted on the 

ATI scale, with one factor as known from [80]. The results did not show a good fit of 

the model. The chi square test was significant χ2 (27) = 231.34, p < .001. As for the fit 

indices, the values of CFI = 0.84, RMSE = 0.19, SRMR = 0.07 indicated insufficient 

fit. CFA for the ATI8 scale also did not show good fit, and changes based on 

specification search with modification indices were not able to significantly improve it. 

The situation can be explained by the fact that the data was not multivariate normal, 

and CFA, even with a robust estimator, is generally not recommendable in this case. 

EFA was conducted on the ATI scale. The KMO verified the sampling adequacy for 

the analysis. For the scale, the KMO was .89, and KMO values for individual items 

were above .85. Bartlett’s test of sphericity, χ2 (36) = 1448.93, was significant with p < 

.001, thus assumptions for the EFA were met. PAF was used as a factor analytic 

method. To determine the number of factors, parallel analysis, scree plot analysis and 

the MAP test were used. All methods supported one-factor solution, as shown in Figure 

4.4.  

 

Figure 4.4: The EFA Scree Plot. 
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The decision to retain one factor was supported by VSS analysis, which indicated 

that the first level of complexity achieves a maximum of .92 with one factor. MAP 

achieved a minimum of .06 with one factor. ICLUST also gave one cluster solution, 

which is graphically presented in Figure 4.5.  

 

Figure 4.5: The ICLUST Visualization. 

Therefore, one factor, which explained 55% of variance, was retained in the final 

analysis. Standardized factor loadings for all items except one ranged from .68 to .85, 

while for item ati03R the loading was .28. 

Dimensionality of the ATI scale was reassessed with nonparametric IRT (MSA) 

methods. An AISP was conducted to explore scalability of items and dimensionality of 

the scale at increasing threshold levels of homogeneity. According to the AISP results, 

the ATI scale is unidimensional. As the minimum threshold level for homogeneity is 

.30, items with value 0 at this level or below are considered unscalable. For the ATI, 

there was one item (ati03R), which showed a lack of scalability at the threshold as low 

as .25 (see Table 4.1). Thus, it could be recommended to remove this item from the 

scale. 



Chapter 4. Multi-Method Approach to Validating a Scale 

 

58 

 

 Further analysis was conducted for both versions of the ATI scale, the current 

version (ATI) and the eight-item version with item ati03R removed (hereinafter called 

ATI8). The results are reported separately whenever the comparison between the two 

versions is meaningful; in other cases, the results for the original version (ATI) are 

reported.  

Table 4.1: AISP with Increasing Homogeneity Thresholds. 

Items .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .55 .60 .65 .70 .75 .80 

ati01 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 0 

ati02 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 0 

ati03

R 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

ati04 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

ati05 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

ati06

R 

1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 0 

ati07 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 0 

ati08

R 

1 1 1 1 1 1 1 1 1 1 1 0 2 3 0 0 

ati09 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

 

The complete item set of the ATI scale had a homogeneity value H = .55 with a 

standard error of .03, and the complete item set of the ATI8 scale had a homogeneity 

value H = .64 with a standard error of .03. Thus, removing item ati03R would lead to 

increase in homogeneity of the whole scale and to increase in homogeneity of all items, 

as can be seen from Table 4.2.  

Table 4.2: Homogeneity Values for ATI and ATI8 Items. 

Scales  ati01 ati02 ati03R ati04 ati05 ati06R ati07 ati08R ati09 

ATI H .57 .61 .23 .58 .63 .57 .60 .54 .60 

ATI8 H .62 .67 - .64 .69 .63 .68 .59 .65 

 

According to the local independence (conditional associations) test, all nine items of 

the ATI scale meet the local independence criterion. The monotonicity test (with the 

default minisize of n = 80) gave criterion values (Crit) of 0 for all items, except for item 

ati03R; for this item, the Crit value was 41. As the threshold for the Crit value is 40, 

and ideally, an item should have the Crit value of 0, the monotonicity test for item 

ati03R showed a violation of the assumption, while other items showed very good 

monotonicity. The invariant item ordering (IIO) test for the ATI scale (with the default 

minisize) showed that there were significant violations of invariant ordering for items 
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ati01, ati06R and ati07 (one violation per each item) and three significant violations of 

invariant ordering for item ati03R. The output of the test explicitly suggested removing 

item ati03R from the scale. When IIO test was conducted for ATI8 scale, it showed 

zero violations of invariant ordering for each item.  

Results of reliability analysis the ATI and ATI8 scales are presented in Table 4.3. 

They include Cronbach’s alphas with confidence intervals, McDonald’s omegas with 

confidence intervals, Guttman’s lambdas-6 and the worst split halt reliabilities (betas). 

Both scales, the original ATI and the ATI8, had excellent reliability according to all 

indices. 

Table 4.3: Reliability Indices for ATI and ATI8.  

Scale Version Alpha Guttman’s λ-6 Beta Omega 

ATI .90[.88-.92] .92 .83 .90[.88-.92] 

ATI8 .92[.91-.94] .93 .86 .92[.89-.94] 

 

Item functioning was explored with CTT methods. The ATI items showed sufficient 

variation to differentiate respondents on their affinity for technology interaction. 

Frequencies of endorsement showed that all response options were represented in the 

data (see Figure 4.6). 
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Figure 4.6: Barplots for the ATI Items. 

Associations between the items were positive. Item ati03R showed the weakest 

correlations with other items, ranging from .14 to .26, while other items correlated with 

each other in range from .46 to .85.  
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Item discriminations (corrected item-total correlations) and Cronbach’s alphas when 

the item is removed are presented for all items of the scale in Table 4.4. It can be seen 

that item ati03R has the lowest discrimination value, and its removal would lead to 

increase in the value of alpha for the scale. 

Table 4.4: Item Analysis (CTT). 

Items ati01 ati02 ati03R ati04 ati05 ati06R ati07 ati08R ati09 

Item-total .71 .77 .27 .73 .79 .71 .76 .66 .74 

Alpha-rm .89 .88 .92 .89 .88 .89 .88 .89 .89 

“Item-total” stands for item-total correlation, “alpha-rm” stands for alpha when the item is 

removed.  

In the frame of IRT, summary item fit for the ATI scale was explored. Criteria for 

item fit are the mean squares ranging from 0.6 to 1.4, and values above 2 are 

considered not suitable for measuring the latent construct on an interval level. Outfit 

and infit mean squares values of all items, except for item ati03R, ranged from 0.56 to 

0.95. For item ati03R, the outfit value was 2.52, and the infit value 2.10, which was 

above the threshold. Person fit was evaluated based on the same criteria as item fit. 

There were no respondents with misfit according to outfit values or infit values. Item 

trace lines for all items, including ati03R (see Figure 4.7), showed sufficient 

discrimination for the response categories. 

 

Figure 4.7: Item Trace Lines for Item ati03R. 
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Figure 4.8: Person-Item Map. 

The hierarchy of item difficulty and the match between person ability and item 

difficulty (scale targeting) were explored graphically via the person-item map (Figure 

4.8). The upper panel shows the person parameter distributed along the scale. The 

lower panel shows item difficulties and thresholds. The circles represent thresholds for 

items, and bullets represent item difficulties. Neither disordered thresholds, nor 

redundant items can be detected. Items are located along the scale and thus able to 

measure various levels of the latent trait.      

4.4 Summary 

In this chapter, I showed how method versatility can be introduced at the measurement 

stage of the research cycle. I applied multi-method psychometric procedures to re-

assess validity, dimensionality, and reliability of ATI scale. Method versatility was 

introduced as the consecutive use of different methods for the same task, that is, 

psychometric analysis of the scale.   

In terms of the scale validation results, it was confirmed that the ATI scale is a valid 

and reliable instrument. My findings supported conclusions by the authors of the scale 

conceptualizing the Affinity for Technology Interaction construct as close to Geekism 

and Interest in Technology constructs and distinct from Big Five constructs. The results 

for less scalable item ati03R were reported; however, item characteristics obtained for a 
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specific sample should not be automatically generalised to the population [60]. 

Therefore, based on the results of extended procedures, it can be recommended to 

further explore the item functioning on a larger sample, and only after that, final 

conclusions can be made. Overall, the scale had good homogeneity and good ability to 

differentiate respondents on the measured construct, and it can be recommended for 

research of the area of human-technology interaction. 

In methodological terms, this work exemplifies conducting psychometric validation 

as iterative multi-method assessment. I used hierarchical clustering of variables for 

construct validity analysis that commonly relies on correlations of constructs. It might 

be recommendable to explore the potential of this method in more detail, as it allows 

for various levels of granularity in relationships of different constructs, and thus, 

convergent and discriminant validity, or nomological network, of a scale can be 

assessed in detail. The dendrogram of all items of the twelve scales illustrates the 

benefit of this approach; exploring correlations of these items with each other would 

have been a cumbersome process. Methods of CTT and IRT were used to explore 

dimensionality, reliability, and item functioning of the ATI scale. In the dataset under 

consideration, the data was not multivariate normal; this case is not infrequent in the 

field [223], and neglecting this assumption would bias the results of CFA [93]. For 

dimensionality, I used nonparametric IRT (MSA) to reassess the findings obtained with 

common CTT methods. MSA does not impose the multivariate normality assumption 

on the data, and it gave detailed and concise results regarding the scale. Internal 

consistency reliability was reassessed, in addition to alpha, with beta, lambda-6, and 

omega indices. For item functioning, I used parametric IRT methods and applied RSM 

to reconfirm the results obtained with CTT. Person parameters, which are not included 

in the frame of CTT, are useful, as they take into consideration the sample-specific 

nature of the findings. The methods described in this chapter and the related R code can 

be used by researchers in the integral process of psychometric assessment of a scale or 

as separate blocks related to specific psychometric procedures. 
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Chapter 5 

5 Combining Statistics and Machine Learning 

for Educational Data Analysis 

In the previous chapter, I reported the results of my work on method versatility at the 

measurement stage of the research cycle and outlined the consecutive use of different 

methods for reassessing a psychometric instrument. In Chapters 5 and 6, I deal with the 

stage of research per se and address RQ2.  

 

 

 

This chapter relates to versatility in supervised learning methods, and Chapter 6 to 

unsupervised learning, used for data analysis of large-scale educational surveys. In the 

current chapter, I apply statistical and ML methods to educational data analysis on 

PISA, a survey that provides researchers with a large amount of thoroughly collected 

data. PISA is conducted every three years to measure 15-year-old students’ literacy in 

different domains and other attitudinal and demographic factors. Literacy scores in 

PISA are translated into proficiency levels, from Level 1b to Level 6, using cut-off 

points [182]; students with scores below the baseline Level 2 are classified as low 

performers and students with scores at Level 5 and above as high performers [180], 

[184], [193]. Therefore, both classification tasks and regression tasks with the PISA 

data are feasible. For a classification task, a performance class can be predicted, or a 

performance level, or a binary task can be formulated. For a regression task, the 

outcome variable can be a student’s score in a subject, such as mathematics, reading, or 

science.    

Students’ attitudes towards ICT (ICT competence, ICT interest, ICT autonomy, and 

ICT in social interaction) were selected as input variables because this thesis is focused 

on human attitudes towards technology. Taking ICT literacy as an outcome variable 

was not possible, as in contrast to some other surveys (such as ICILS), PISA does not 

measure actual performance in ICT. However, a vast amount of studies confirmed the 

RQ2. How to facilitate method versatility in educational research on human 

attitudes towards technology? 
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relationships between students’ attitudes towards ICT and their scores in mathematics 

and science in PISA. Already in PISA 2003-2012, positive attitudes towards ICT were 

shown to be significantly and positively associated with mathematical and scientific 

literacy scores [98], [153], [191]. Recent findings on attitudes towards ICT in PISA 

2015 showed that ICT autonomy was significantly positively associated with 

mathematical and scientific literacy scores in all countries participating in the optional 

questionnaire, and ICT in social interaction was significantly negatively associated with 

these scores in all countries [119]. For ICT competence and ICT interest, the 

significance and the sign of their relationships with literacy scores varied at the 

country-specific level [162], [173]. I used two recent PISA datasets, the 2015 and the 

2018 data, and selected solely German samples to avoid pitfalls outlined by critics of 

PISA with regard to international comparisons based on simplistic interpretations [8], 

[88], [114], [271]. In order to determine the relative importance of attitudes towards 

ICT, I compared them with each other and with two demographic variables, which 

were shown to be influential factors for academic achievement in mathematics and 

science in Germany: ESCS and gender [179], [185], [208].  

From the methodological perspective, my aim was to present a versatile way to 

apply statistical and ML methods to a large-scale educational survey. The most suitable 

tools from these two toolboxes were selected for each of the three consecutive tasks. 

For the first task, missing data imputation, I chose RF which belongs to the ML 

toolbox. For the second task, predicting proficiency levels in mathematics and science 

(below Level 2, Levels 2–4, or Level 5 and above), another implementation of the RF 

algorithm was used. For the third task, exploring associations between literacy scores 

and attitudes towards ICT with the focus on the hierarchical structure of the data, I 

preferred a traditional statistical method, HLM. In the first section of this chapter, these 

analytical decisions are justified. Then, results of the study are presented, and 

methodological recommendations are discussed. 

5.1 Analytical Strategy 

In this section, I describe my analytical strategy. In terms of method versatility, I 

applied the toolbox choice approach, as depicted in Figure 5.1.  

 

Figure 5.1: Method Versatility: Toolbox Choice.  
T stands for task, M for method, R for result.  
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The analytical choices made in this study are related to three consecutive tasks: (a) 

missing data imputation; (b) the classification task with proficiency levels (below Level 

2, Levels 2–4, or Level 5 and above) as the categorical outcome variable, and (c) the 

regression task with the literacy score as the continuous outcome variable. 

Missing data were explored with visualizations from the package VIM [133]. The 

scatterplot matrices and the aggregation plots were explored. Scatterplot matrices are 

generalisations of scatterplots to the multivariate case which highlight the missing data 

in the selected variables. Patterns of missingness can be thus observed. For more details 

on aggregation plots, see Chapter 6. For missing data imputation, I used the RF 

algorithm as an effective and unbiased method (see [91], [163], [256]). For its 

implementation in R, I selected the package missForest [237], as it was shown to be 

more robust than other versions of RF imputation [245]. Histograms of variables for the 

complete cases and the dataset after imputation were compared to visually assess the 

results of imputation. The imputed data were used for further analysis. 

For predicting students’ proficiency levels in mathematics and science (below Level 

2, Levels 2–4, or Level 5 and above), RF classification models were built, and attitudes 

towards ICT, ESCS and gender were used as predictors. RF was preferred to ordinal 

regression because RF does not require proportional odds assumption [172] and 

handles nonlinearity and interactions [69]. I used the package randomForest [145], 

which is a simple and commonly used implementation of the algorithm based on 

Breiman’s [28] original code. As the sample was imbalanced (there were substantially 

more students on Levels 2–4), the training set was oversampled with the package UBL 

[27]. To avoid excessively optimistic performance assessment, I evaluated the models 

on the test set (20% of the 2015 data) which was not oversampled; and then, on the 

2018 data. The AUC was used as a measure of model performance; the multiclass AUC 

and separate class comparisons were estimated with the package pROC [207]. The 

mean decrease in accuracy (permutation importance) was chosen as a variable 

importance measure. Partial dependence plots for each predictor were built with the 

package pdp [94]. Three-dimensional partial dependence plots for pairs of predictors 

were built to illustrate their relationships with each other and with the predicted 

outcome. 

In order to obtain a more detailed picture of relationships between attitudes towards 

ICT and mathematical and scientific literacy with the focus on the nested structure of 

the data (different schools), a multilevel regression model was required. The RF models 

as implemented in the randomForest [145] were not suitable due to a limit for factor 

levels, and a different method to build such a model was needed. It was shown that for 

predictive multilevel models (such as RF), an increase in the group size is more 

beneficial than an increase in the number of groups, while for estimative models (such 

as HLM) the opposite is the case [2]. The group size in this case is the number of 

student participants in each school, and the number of groups is the number of schools. 

In both datasets, the group size varied from one to 30 students, while the number of 
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groups was rather large (254 for the 2015 dataset and 208 for the 2018 dataset), which 

made HLM the instrument of choice.  

HLM was conducted with the package lme4 [17] in accordance with methodological 

recommendations summarized by Dedrick et al. [53] and Harrison et al. [103]. 

Restricted maximum likelihood was used as an estimation method [53]. Independent 

variables were grand-mean centred and standardized by two standard deviations for 

comparability of continuous and binary variables [83]. The need for multilevel 

modeling was assessed by exploring variance decomposition in null (unconditional) 

models with random intercepts [160]. As full models with random slopes and random 

intercepts, which were applied in accordance with [103], failed to converge, full models 

with random intercepts were built. To estimate sampling variance, Fay’s method with 

80 replicates was used, and statistical estimates were averaged for 10 plausible values 

[178]. As only six predictors were involved in the analysis (gender, ESCS and four ICT 

attitudes), they were all included in the model simultaneously (see [107] for variable 

selection methods). Significance of estimates was assessed with the type III Wald test 

[152], and a significance level of .001 was set as appropriate for these procedures and 

for the sample size [139]. Nakagawa’s marginal and conditional R² [166], [167] were 

calculated with the package performance [151]. Assumptions for residuals were 

checked with diagnostic plots from the package sjPlot [150]. In check for 

multicollinearity, the cut-off value of 3 for the variance inflation factor was used as 

recommended in [273]. ICCs and Nakagawa’s marginal and conditional R² were 

reported as effect size measures for random effects [138], [147]. 

5.2 Data 

The data for the study was obtained from the OECD website, where PISA 2015 [176] 

and PISA 2018 [177] databases are in free access. In this work, German subsets of 

PISA student questionnaire and the optional ICT familiarity questionnaire for students 

were used. Cases with 100% missing ICT responses, which were due to the fact that the 

ICT questionnaire was optional in Germany [203], were removed. In accordance with 

this criterion, 1093 cases (16.81%) were removed from the 2015 dataset and 944 cases 

(17.32%) were removed from the 2018 dataset before the analysis. The resulting 2015 

sample consisted of 5411 students (50.71% female, n = 2744; 49.29% male, n = 2667) 

from 254 German schools. The resulting 2018 sample consisted of 4507 students 

(47.33% female, n = 2133; 52.67% male, n = 2374) from 208 German schools. 

The following variables were included in analysis: the student’s mathematical and 

scientific literacy, ESCS, gender, and four attitudes towards ICT. ESCS is a composite 

score based on the three indicators: parental education, highest parental occupation, and 

home possessions (which is used as a proxy for family wealth [181]). The measure is 

constructed via PCA and standardized for a standard deviation of one, with zero 

representing the overall OECD average [181]. In the datasets, gender was coded as 1 

for female and 2 for male; in this analysis, it was recoded as 0 for female and 1 for 

male. Attitudes towards ICT were measured with the 4-point Likert scale from strongly 
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disagree to strongly agree, and the following IRT-scaled indices were calculated [182]: 

(a) perceived ICT competence, based on five items; (b) interest to ICT, six items; (c) 

ICT in social interaction, five items; and (d) ICT autonomy, five items. The measures 

were the same in PISA 2018 [183]. Mathematical literacy was defined as ‘an 

individual’s capacity to formulate, employ and interpret mathematics in a variety of 

contexts’ [181]. Scientific literacy was defined as ‘the ability to engage with science-

related issues, and with the ideas of science, as a reflective citizen’ [181]. Ten plausible 

values were included in analysis for each literacy score [178]. In both PISA waves, the 

cut-off score for performance below Level 2 in mathematics was 420.07 and in science 

409.54. The cut-off score for performance at Level 5 and above in mathematics was 

606.99 and in science 633.33 (see [184]). 

5.3 Results 

RF for Missing Data Imputation and Classification Task 

In the 2015 dataset, 2.41% of the data was missing, and 3.81% of the data was missing 

in the 2018 dataset. In Figure 5.2, scatterplot matrices for missing data are presented for 

the 2015 dataset (the upper matrix) and the 2018 dataset (the lower matrix). In the 

scatterplot matrices, the red colour depicts missing data, and the blue colour the 

observed (non-missing) cases. It could be seen that there were no discernible patterns in 

missingness. This could be also concluded from exploring the aggregation plots for 

missing values. Thus, the imputation could be conducted, and the imputed data could 

be used in further analysis without biasing the models.  
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Figure 5.2: Scatterplot Matrices for Missing Data.  
The upper matrix is for the 2015 data, the lower matrix for the 2018 data. Red is for missing 

cases, light blue is for observed data. ESCS is economic, social, and cultural status; AUTO is 

ICT autonomy; INTE is ICT interest; SOCI is ICT in social interaction.  
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RF imputation was conducted with the default settings (the number of trees = 100, 

the maximal number of iterations = 10). Histograms of variables from the complete 

cases dataset and the dataset after imputation (see Figure 5.3) showed that the 

imputation did not lead to changes in their distributions that could potentially bias the 

models. 

 

Figure 5.3: Histograms of Complete Cases and Imputed Data.  
The upper row is for the 2015 data, the lower row for the 2018 data. Dark green is for complete 

cases, light green is for imputed data. ESCS is economic, social, and cultural status; AUTO is 

ICT autonomy; INTE is ICT interest; SOCI is ICT in social interaction. 

To predict students’ proficiency levels (below Level 2, Levels 2–4, or Level 5 and 

above), two RF models were trained: the mathematics model and the science model. 

The training set (80% of the 2015 dataset) was used. Variable importance plots for the 

models are shown in Figure 5.4. Attitudes towards ICT were less important than ESCS 

but more important than gender in both models, and ICT autonomy was more important 

than other attitudes. 
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Figure 5.4: Permutation Variable Importance.  
ESCS is economic, social, and cultural status; GEND is gender; AUTO is ICT autonomy; INTE 

is ICT interest; SOCI is ICT in social interaction. 

Variable importance measures do not indicate whether association of a variable with 

the predicted outcome is positive or negative; this information can be obtained from 

partial dependence plots for each variable. In Figure 5.5, the partial dependence plots 

for the mathematics model and the science model are shown. They reveal rather similar 

patterns. The plots for class 1 (MATH-1 and SCI-1) indicate the probability for a 

student to perform below Level 2; the plots for class 3 (MATH-3 and SCI-3) indicate 

the probability to perform on Level 5 and above.  

The probability is predicted by ICT interest, ICT competence, ICT autonomy, ICT 

in social interaction, and ESCS. In the plots, higher levels of ICT autonomy predicted a 

higher probability for a student to perform on Level 5 and above in mathematics and 

science, while lower levels of autonomy increased a probability to perform below Level 

2. For ICT in social interaction, the partial dependence plots gave the opposite picture: 

higher levels of this attitude predicted a higher probability to perform below Level 2. 

The plots show nonlinearity of relationships between predictors and the predicted 

outcome, which is most clearly seen for ICT interest. 
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Figure 5.5: Partial Dependence Plots for Predictors.  
ESCS is economic, social, and cultural status; AUTO is ICT autonomy; INTE is ICT interest; 

SOCI is ICT in social interaction; MATH-1 is mathematical proficiency below Level 2; 

MATH-3 is Level 5 and above; SCI-1 is scientific proficiency below Level 2; SCI-3 is Level 5 

and above. 

Partial dependence plots for pairs of variables indicated nonlinear relationships 

between them in terms of probability of the predicted outcome for each class (below 

Level 2, Levels 2–4, or Level 5 and above). In Figure 5.6, partial dependence plots for 

ESCS and ICT autonomy, the two most important variables, are shown for the science 

model. It can be seen that the highest probability for a student to perform on Level 5 

and above in science was predicted by high levels in both ESCS and ICT autonomy. 
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Figure 5.6: Partial Dependence Plots for the Pair of Predictors.  
ESCS is economic, social, and cultural status; AUTO is ICT autonomy; SCI-1 is scientific 

proficiency below Level 2; SCI-3 is Level 5 and above. 

The models were evaluated on the test set from the 2015 data (20% of the sample). 

The multiclass AUC was 67.44% for the mathematics model and 71.66% for the 

science model. When evaluated on the 2018 data (the whole dataset), the multiclass 

AUC was 69.19% for the mathematics model and 68.51% for the science model. 

Although the model performance was suboptimal (see limitations in section 8.2), it is 

noteworthy that it did not change considerably for the 2018 data. The ROC curves for 

the class comparisons are presented in Figure 5.7. 

 

Figure 5.7: Receiver Operating Characteristic Curve for the Models.  
TP is true positive; FP is false positive; MATH 2015 is the mathematics model fit on the 2015 

test set; MATH 2018 is the mathematics model fit on the 2018 dataset; SCI 2015 is the science 

model fit on the 2015 test set; SCI 2018 is the science model fit on the 2018 dataset; class 1 is 

proficiency below Level 2; class 2 is Levels 2–4; class 3 is Level 5 and above. 
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Multilevel Modeling 

Unconditional models for mathematical literacy and scientific literacy were built. For 

mathematical and scientific literacy, multilevel modeling was required, as can be seen 

from ICC values reported in Table 5.1. 

Table 5.1: Unconditional Models for Mathematics and Science. 

 Mathematical Literacy Scientific Literacy 

 2015 2018 2015 2018 

Fixed effects  

Intercept 506.35***(1.86) 503.76***(1.07) 510.87***(1.24) 506.22***(1.07) 

Random effects  

Intercept 

variance 

3636.65 3822.62 4428.87 4628.37 

Residual 

variance 

4541.25 5162.91 5457.53 5956.34 

Effect size  

ICC .445 .425 .448 .437 

In the 2015 dataset, N = 5411; in the 2018 dataset, N = 4507. Standard errors are in parentheses. 

Fixed effects are parameter estimates. Random effects are variance estimates. ICC = intraclass 

correlation coefficient. 

***p < .001. 

For mathematical literacy and scientific literacy, full models with random intercepts 

were built. Fixed and random effects estimates are reported in Table 5.2. Assumptions 

for the full models were checked for each of 10 plausible values in mathematical and 

scientific literacy in the 2015 dataset and the 2018 dataset. Values of the variance 

inflation factor were below the cut-off value of 3, indicating that there was no 

multicollinearity in the data. Diagnostic plots for residuals showed that linearity and 

homoscedasticity assumptions were met, and residuals of the models were normally 

distributed. As the data was standardized by two standard deviations, it was possible to 

compare the relative importance of all variables, including binary (gender), based on 

their regression coefficients.  
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Table 5.2: Full Models for Mathematics and Science. 

 Mathematical Literacy Scientific Literacy 

 2015 2018 2015 2018 

Fixed effects 

Intercept 496.16***(1.83) 495.08***(2.08) 505.61***(1.69) 501.20***(1.99) 

GEND 22.77*** (2.92) 18.99*** (3.04) 13.78*** (2.26) 12.57*** (3.02) 

ESCS 24.59*** (3.00) 33.03*** (3.72) 30.12*** (2.71) 35.97*** (3.62) 

COMP -6.04 (3.63) -3.15 (3.66) -6.48 (3.08) -2.75 (3.84) 

INTE 0.15 (3.16) 2.01 (3.11) -3.63 (2.55) -0.47 (3.34) 

SOCI -10.76*** (2.88) -9.21*** (3.18) -14.33*** (2.88) -21.08*** (3.25) 

AUTO 22.56*** (3.28) 17.45*** (3.41) 38.29*** (2.88) 25.99*** (3.83) 

Random effects  

Intercept var. 2948.67 2897.46 3402.02 3377.05 

Residual var. 4218.22 4859.19 5009.35 5614.08 

Effect size 

R², marginal .055 .055 .066 .057 

R², conditional .444 .408 .444 .411 

In the 2015 dataset, N = 5411; in the 2018 dataset, N = 4507. Standard errors are in parentheses. 

Fixed effects are parameter estimates. Gender was recoded as 0 for female and 1 for male. In 

the 2018 dataset, the relationship between mathematical literacy and ICT in social interaction 

was nonsignificant at level .001 in three out of 10 models. Random effects are variance 

estimates. Effect size is Nakagawa’s R². ESCS is economic, social, and cultural status; GEND 

is gender; AUTO is ICT autonomy; INTE is ICT interest; SOCI is ICT in social interaction. 

***p < .001. 

ICT in social interaction was significantly negatively associated with mathematical 

literacy and scientific literacy. ICT autonomy was significantly positively associated 

with mathematical literacy and scientific literacy, and it was almost as influential as 

gender and ESCS for mathematical literacy both in the 2015 dataset and in the 2018 

dataset. Its association with scientific literacy (β = 38.29) was the strongest among all 

variables in the 2015 dataset and the second strongest after ESCS in the 2018 dataset  
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(β = 25.99). In Figure 5.8, regression coefficients of all variables are shown with 

confidence intervals in different colours for 10 plausible values. 

 

Figure 5.8: HLM Estimates for Plausible Values.  
ESCS is economic, social, and cultural status; GEND is gender; AUTO is ICT autonomy; INTE 

is ICT interest; SOCI is ICT in social interaction. 

5.4 Summary 

In this chapter, I presented a flexible way to combine ML and statistical methods for 

data analysis of a large-scale educational survey. For each task in the analytical 

process, I selected the most suitable tool from either statistical or ML repertoire and 

justified these analytical decisions. In terms of method versatility, it is the toolbox 

choice of different methods.  

From the perspective of educational science, the results of this study highlighted the 

role of ICT autonomy: for German students, this attitude was an important variable in 

classification models, and it was significantly positively associated with literacy scores 

in HLM in PISA 2015 and PISA 2018. These findings, as well as the results on ICT in 

social interaction (significantly negative associations with mathematical and scientific 

literacy) and ICT competence (no significant associations), were consistent with 

previous works [119], [162]. Negative associations of German students’ mathematical 

and scientific literacy with ICT interest in PISA 2015 were reported as significant in 
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[162] but were non-significant in the current study. This discordance can be explained 

by the difference in analytical choices; it is to a degree inevitable, as shown in [230], 

and can be explored in further research. In the publication on the topic, my co-author 

and I emphasized that the role of ICT autonomy is probably not fully recognized by 

contemporary educational systems, with their emphasis on collaborative learning and 

group activities [57]. In line with this tendency, the OECD focuses increasingly on 

collaborative problem solving in PISA: the change in the optional ICT questionnaire 

for the next PISA wave, from which any items measuring ICT autonomy were 

excluded [148], [186], is indicative of this trend. The findings of the current work could 

be an argument supporting the importance of research on students’ ICT autonomy.  

From the methodological perspective, I illustrated how the toolbox choice of the 

most suitable methods from ML and statistical repertoire can benefit data analysis of a 

large-scale educational survey. The analytical choices reported in this chapter started 

with exploring and imputing missing data, which is a persistent problem in PISA [114] 

and in large-scale educational surveys in general [91]. For this task, I chose the RF 

algorithm implemented in the package missForest based on previous studies showing 

its effectiveness and unbiasedness (see [163] and [256]) and checked the quality of 

imputation with histograms of the imputed data in comparison to the complete cases. 

With a different RF implementation from the package randomForest, I built 

classification models for scientific and mathematical proficiency levels of German 

students in PISA 2015 and PISA 2018 in accordance with the three-part division of 

proficiency levels (below Level 2, Levels 2–4, or Level 5 and above) accepted in PISA 

(see [180], [184], and [193]). A differently formulated classification task, such as 

predicting the whole range of proficiency levels, or low vs regular academic 

performance (a binary task), would have been also possible with these data. While 

choosing an instrument for the classification task, I preferred RF to ordinal regression 

[172] and to more sophisticated ML models (see section 8.2). Performance of the 

models built for the 2015 data did not decrease on the 2018 data, indicating that the 

same patterns persisted in both years. With the help of model-agnostic methods, I 

assessed the relative importance of the variables (attitudes towards ICT, ESCS, and 

gender) for proficiency levels and visually presented nonlinear relationships between 

the predictors and the predicted outcome. To explore relationships between attitudes 

towards ICT and mathematical and scientific literacy in more detail, a multilevel model 

that takes into consideration the hierarchical structure of the data was needed. For this 

specific analysis, because of the dataset characteristics [2], HLM from a statistical 

toolbox was preferable to predictive ML models. With HLM, I obtained information on 

fixed and random effects, such as significance of relationships, their direction, and 

effect sizes. The 2018 data revealed the same patterns in associations between ICT 

attitudes and literacy scores as the 2015 data, and fixed effects estimates in HLM for 

these two years did not substantially differ.  

Combining ML and statistical approaches is beneficial for research on large-scale 

educational surveys, as the former is a valuable tool for finding generalizable patterns, 

while the latter is useful for testing hypotheses and making statistical inferences. This 
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chapter showed that a flexible choice of analytic instruments from both toolboxes 

depending on the study aims and the dataset characteristics is an effective way of 

analysing the data. 
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Chapter 6 

6 Selecting the Number of Clusters in Latent 

Class Cluster Analysis 

This chapter continues the topic of method versatility at the stage of research per se in 

relation to data analysis of large-scale educational surveys, which was discussed in the 

previous chapter. In Chapter 5, I showed how method versatility can be introduced into 

supervised learning methods applied in the area by combining ML and statistical 

toolboxes to analyse PISA data. In this chapter, I explore versatility in unsupervised 

learning methods of educational data analysis to address the same RQ2, which I repeat 

here: 

 

 

 

This chapter describes method versatility in unsupervised learning (cluster analysis) 

applied to large-scale educational surveys. I show that the simultaneous use of different 

criteria for cluster selection in LCCA leads to detecting separable generalizable clusters 

in the data. As I have already mentioned, novel clustering algorithms are often 

developed, from the perspective of method versatility, to extend the range of existing 

tools. Here, the aim is different: I do not present a novel clustering method but suggest 

a strategy for a more effective use of existing approaches. LCCA deals with unequal 

covariance matrices, unequal number of observations in the cluster, and poorly 

separated clusters, which are typical for real-world datasets, and thus this model-based 

clustering method is useful for large-scale educational surveys.  

As this thesis focuses on the topic of human attitudes towards technology, I illustrate 

the suggested strategy on the dataset of German teachers’ attitudes towards ICT from 

ICILS 2018. Studies using ICILS data mostly focus on students [32]; LCCA on 

teachers’ attitudes to ICT in ICILS 2013 was conducted in [63]. In this study, the 

number of clusters was selected based solely on model fit. It is a common procedure in 

the area, and the name “model-based clustering” already implies that model fit indices 

RQ2. How to facilitate method versatility in educational research on human 

attitudes towards technology? 
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play a pivotal role in the selection. However, it was shown that criteria such as the 

ASW used in distance-based clustering can aid the selection, and considering the 

stability of cluster partitions leads to selecting generalizable clusters. Therefore, in this 

chapter I suggest a strategy integrating model fit, cluster separation, and the stability of 

partitions criteria. To illustrate the strategy, I apply it to the simulated data with the 

known cluster structure and to the real world dataset from ICILS 2018 [78]. With the 

simulated data example, I show how model fit and cluster separation could be 

considered in terms of the trade-off between them. With the ICILS data, I provide end-

to-end LCCA starting with preprocessing of the data and including all steps of the 

selection procedure. 

6.1 Analytical Strategy 

The analytical strategy contains explanation of choices regarding data preprocessing, 

conducting LCCA, selecting the number of clusters, and visualizing the results. The 

cluster selection involves criteria of model fit (the BIC and the ICL), cluster separation 

(the ASW), and the stability of partitions, with the parsimony and interpretability 

considerations taken into account. In terms of method versatility, it is the simultaneous 

use of different methods (Figure 6.1). The data analysis was conducted with R, version 

4.0.2 [196]. The R script is available on GitHub 

https://github.com/OlgaLezhnina/LCCA.   

 

Figure 6.1: Method Versatility: Simultaneous Use.  

T stands for task, M for method, R for result.    

Prior to the analysis, a few preprocessing procedures should be conducted. Firstly, a 

hierarchical structure of the data needs to be explored to decide whether LCCA is 

sufficient, or multilevel LCA is needed based on the ICC values [165]. Then, missing 

data should be explored, and an imputation procedure chosen. The aggregation plot for 

visualizing missingness and detecting possible patterns in missing data could be built 

with the package VIM [133]. For imputation, I used the RF algorithm as an effective 

and unbiased imputation method [91]. Variable selection is an important step of the 

data preprocessing [75], but it was not applied in this work, as the explored models 

included all variables of interest. Normalization of variables is not required for LCCA, 

so this step, common for other techniques, could be omitted. Dichotomization of 

response options, although not infrequent in LCCA research [63], might be considered 

https://github.com/OlgaLezhnina/LCCA
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objectionable [154]. Therefore, the decision on dichotomization was made based on 

exploring the frequencies of endorsements of different answer options.  

The strategy for selecting the number of clusters in LCCA includes criteria based on 

model fit, cluster separation, and the stability of partitions. In order to provide the 

researcher with detailed information on model fit and cluster separation, I wrote an 

easy-to-use custom function (LCCAselection) based on the VarSelClust function from 

the VarSelLCM package [158]. The function returns a data frame with information 

criteria and silhouette indices for one- to ten-cluster solutions. As visualizations tools 

were shown to be important for deciding on the number of clusters (see [74], [95]), the 

graphical output is included in the custom function to aid the cluster selection. The 

function produces a plot that integrates (i) the BIC plot for all cluster solutions, so that 

the elbow heuristic can be applied, (ii) the ASW plot for all cluster solutions, and (iii) 

vertical lines indicating the minimal BIC and the minimal ICL. Thus, the researcher can 

make informed decisions regarding model fit and cluster separation. When two or three 

best solutions are selected, their stability can be checked by the other custom function 

(valfunc). This second function accepts the data, the number of clusters, and the 

number of bootstrap samples as arguments to return the Jaccard coefficient and the ARI 

for bootstrap validation of the cluster solution. These coefficients were chosen as they 

are two most widely used and easily interpretable metrics [109]. Other considerations, 

such as parsimony, the size of population shares, and the interpretability of clusters 

need to be taken into account for the final choice of the number of clusters. The most 

parsimonious cluster solution is preferable in case it satisfies other requirements, and 

clusters with excessively small population shares are considered inadequate regardless 

of the fit of the model [190]. Clusters should be interpretable from the perspective of 

domain knowledge of the researcher.     

The selected clusters can be explored and visualised. For this purpose, I presented 

the PCA visualisation, the silhouette plot for clusters, the barplot for the discriminative 

power of the variables, and the item probability plot. The PCA presents the clustered 

data in the two-dimensional projection and can be thus misleading; the values of 

silhouette widths in the silhouette plot are more reliable indicators of cluster separation. 

The discriminative power of the variables is defined as the logarithm of the ratio 

between the probability that the variable is relevant for the clustering and the 

probability that the variable is irrelevant for the clustering, given the best partition 

[158]. The greater value indicates that the variable is more important for the clustering. 

The item probability plot graphically presents item-response probabilities for the 

selected clusters, or latent classes.  
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6.2 Data 

6.2.1 Simulated Data 

The ordinal clustered data was simulated by generating the metric data and applying the 

discretization process to each variable with the clusterSim package [255]. The easily 

reproducible R code for simulating and analysing the data can be found at 

https://github.com/OlgaLezhnina/LCCA. The datasets contained the known structure of 

clusters. Three datasets with four clusters (N = 1550) and three datasets with six 

clusters (N = 2250) were generated, each with four response categories and six 

variables. The six datasets were named A-F. As the influence of the number of 

variables, the number of categories, sample size and unequal cluster sizes on LCCA 

performance was explored in large-scale simulation experiments [7], in this work I 

focused on cluster separation issues relevant to selecting the number of clusters. 

Therefore, the clusters had unequal covariance matrices and unequal number of objects 

in them, which is typical for real-world data. The number of “true” (formally assigned) 

clusters did not coincide with the number of separated clusters in datasets A, B, D, E. 

The values of silhouette widths for all clusters are presented in Table 6.1.   

Table 6.1: Simulated Clustered Data. 

Dataset Clusters Cluster silhouette widths Cluster samples 

A 4/1 .11, –.01, –.03, –.10 600, 200, 500, 250 

B 4/3 .33, .26, .26, .09 600, 200, 500, 250 

C 4/4 .86, .82, .81, .94 600, 200, 500, 250 

D 6/4 .80, –.29, .81, .93, –.24, .34 600, 200, 500, 250, 400, 300 

E 6/4 .72, .02, .65, .86, –.32, .76 600, 200, 500, 250, 400, 300 

F 6/6 .61, .78, .57, .59, .56, .58 600, 200, 500, 250, 400, 300 

The number of clusters is given as total/separated. 

6.2.2 The ICILS Dataset 

The dataset of teachers’ positive and negative views on ICT from ICILS 2018 was 

retrieved from the IEA website, where it is in free access for downloading [123]. The 

sampling method for the ICILS teacher survey consisted in randomly selecting 15 

teachers from those who teach regular school subjects to the students in the target grade 

(generally, grade 8) at each sampled school [76]. For this study, I selected the German 

subset of the data.  

In ICILS 2018, teachers’ views on using ICT for teaching and learning was 

measured by asking them whether they agree (“strongly agree,” “agree,” “disagree,” or 

https://github.com/OlgaLezhnina/LCCA
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“strongly disagree”) with a number of statements. Seven of these statements referred to 

positive results of using ICT in education (positive views), and another six statements 

to potential impediments of learning (negative views). The scores were on Likert scale 

from 1 (strongly agree) to 4 (strongly disagree) [77]. For this analysis, the positive 

views scores were recoded (reversed), so that higher scores represent more positive 

attitudes to ICT. Prior to the analysis, 57 rows with 100% missing variables were 

removed (.024 of the dataset), as these participants did not give responses to any of the 

items. The resulting sample consisted of N = 2271 teachers from 182 German schools. 

6.3 Results 

6.3.1 Simulated Data: Model Fit and Cluster Separation 

With the simulated data example, I illustrated the trade-off between model fit and 

cluster separation, as the cluster structure of the data, in terms of total number of 

clusters versus the number of separated clusters, was known, and the results could be 

thus assessed. The LCCCAselection function was evaluated as a possible aid to the 

researcher who is aiming to select clusters in LCCA that are not only feasible from the 

model fit perspective but also well-separated.  

The LCCAselection function was applied to the six simulated datasets. It appeared, 

as shown in Figure 6.2 and Figure 6.3, that the minimal BIC (vertical dotted lines in the 

plots) tended to indicate the “true” number of clusters in the data. The minimal ICL 

(dot-dashed lines) favoured well-separated clusters in datasets B and D, but not in 

dataset E. The BIC elbow heuristic, together with the maximal ASW, indicated the 

number of separable clusters in all datasets: one cluster (“non-clusterable” data) for 

dataset A, three for dataset B, four for datasets C, D, and E, and six clusters for dataset 

F. For well-separated clusters in the dataset C, all indices coincided in pointing at the 

correct cluster solution, and for the dataset A, the criteria were able to detect the 

problem of non-separated clusters.  

The most interesting situations were presented by datasets B, D and E, in which the 

number of “true” clusters did not coincide with the number of separable clusters. In 

these cases, the fit indices and the elbow heuristic indicated different cluster solutions.  
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Figure 6.2: Results of LCCAselection Function on Simulated Datasets A, B, C.  
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Figure 6.3: Results of LCCAselection Function on Simulated Datasets D, E, F.  

This example shows how the trade-off between model fit and cluster separation 

works in LCCA. For instance, for dataset E, if the minimal BIC and the ICL solution is 

chosen, the ARI = .91 and the ASW = .53. If the BIC elbow solution is preferred, it will 
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result in better separated clusters with the ASW = .64, but there will be a decrease in 

the ARI = .73 (see Table 6.2). 

Table 6.2: Cluster Selection Criteria (Simulated Data). 

Dataset Min BIC Min ICL BIC elbow plus ASW 

ARI ASW ARI ASW ARI ASW 

A — — — — — — 

B .80 .31 .67 .39 .67 .39 

C 1 .85 1 .85 1 .85 

D .65 .60 .51 .74 .51 .74 

E .91 .53 .91 .53 .73 .64 

F 1 .61 1 .61 1 .61 

Min BIC is the minimal Bayesian Information Criterion; BIC elbow is the elbow heuristics for 

the BIC plot; min ICL is the minimal Integrated Completed Likelihood criterion; ASW is 

Average Silhouette Width; ARI is Adjusted Rand Index. 

When the researcher aims for compact and well-separated clusters, the BIC elbow 

heuristics with the maximal ASW might be preferable to the minimal BIC value. Thus, 

the LCCAselection function can provide an aid in finding well-separated clusters in the 

data and making informed decisions about balancing model fit and cluster separation 

criteria. In this brief vignette, I did not deal with the stability of partitions; end-to-end 

LCCA on the real-world data is presented in the next section.     

6.3.2 ICILS Data: End-to-End LCCA 

The analysis was conducted on the ICILS teachers’ positive and negative views 

datasets (items A-M). The hierarchical structure of the data was explored. Multilevel 

ICCs for variables were from .002 to .039, and thus, non-multilevel methods could be 

used. Missing data (.01 of the dataset) was explored and visualized with the 

aggregation plot (Figure 6.4).  

In the aggregation plot, light blue colour indicates observed data, and dark red 

colour is for missing data. The barplot in the upper part of the panel shows the 

proportion of missingness in each variable; it can be seen that it ranges from .05% to 

3%, which is very small and implies that the imputation is viable. The grid in the lower 

part of the panel shows combinations of missing and observed data, and the horizontal 

bars to the right of the grid show the frequencies of these combinations. Patterns of 

missingness that would imply that the data was missing not at random were not 

detected. The scatterplot matrices for missing data (see the description of this 

visualization in Chapter 5) confirmed this conclusion. Imputation was conducted with 
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the RF algorithm (the number of trees = 100, the maximal number of iterations = 10), 

and the resulting dataset was used for the further analysis. 

 

Figure 6.4: Aggregation Plot for Missing Data. 
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Frequencies of endorsements of different answer options for each item were 

explored (Figure 6.5). The extreme options (“strongly agree” and “strongly disagree”) 

were not underrepresented, and merging them with “agree” and “disagree” would lead 

to a substantial loss of information. Thus, it was preferable not to dichotomize the data.  

 

Figure 6.5: Frequencies of Endorsement for the Items.  

The custom function LCCAselection was applied to the positive views dataset 

(items B, C, E, J, K, L, and M) and the negative views dataset (items A, D, F, G, H, and 

I) to select the number of clusters. For the positive views dataset, the BIC elbow 

heuristic and the maximal ASW pointed at the four-cluster solution, while the minimal 

BIC indicated the six-cluster solution. The minimal ICL, though, pointed at the seven-

cluster solution. For the negative views dataset, all criteria indicated the four-cluster 

solution.  
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In Figure 6.6, the graphical output of the LCCAselection function for the negative 

views dataset and the positive views dataset is presented. The positive views dataset is 

labelled ICIL-P, and the negative views dataset ICILS-N. Further analysis is presented 

only for the positive views dataset, and analysis of the negative views dataset was left 

to the interested reader. 

 

Figure 6.6: Results of LCCAselection Function on ICILS Data.  

The values of the cluster selection criteria for the ICILS-P data are reported in Table 

6.3. It can be seen that for the seven-cluster solution, which was indicated by the 

minimal ICL, the ASW value (.16) was lower than for the four-cluster solution (.26) 

indicated by the maximal ASW plus the elbow heuristic, or the six-cluster solution 

(.17) indicated by the minimal BIC. It meant that the seven-cluster solution had to be 

rejected, which was also in accordance with the parsimony considerations.     
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Table 6.3: Cluster Selection Criteria (ICILS-P Data). 

N clusters BIC ICL ASW 

1 33639.57 –16816.52 — 

2 30843.22 –15598.33 .24 

3 29648.88 –14998.36 .23 

4 28985.07 –14684.43 .26 

5 28902.88 –14655.55 .24 

6 28880.90 –14693.07 .17 

7 28925.91 –14651.72 .16 

8 29016.39 –14767.68 .16 

9 29115.62 –14736.12 .15 

10 29217.73 –14804.14 .17 

BIC is Bayesian Information Criterion; ICL is Integrated Completed Likelihood criterion; ASW 

is Average Silhouette Width. 

The four- and the six-cluster solutions were compared as shown in Table 6.4. 

Bootstrap validation with 100 bootstrap samples was used. For the four-cluster 

solution, the ARI was .88 and the Jaccard index .85, while for the six-cluster solution, 

the ARI was .76 and the Jaccard index .70. Thus, the four-cluster solution was more 

stable. In addition, the six-cluster solution had a very low population share in one of the 

clusters (.03 of the sample). Therefore, the stable and parsimonious four-cluster 

solution was selected as the final cluster model. 

Table 6.4: Four- and Six-Cluster Partitions Compared. 

N clusters ARI Jaccard Cluster shares (min-max) 

4 .88 .85 .10 -.43 

6 .76 .70 .03 - .41 

ARI is Adjusted Rand Index. 
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In the upper part of Figure 6.7, the results of PCA for the four-cluster solution are 

visualized. Such visualisations can be misleading, as multidimensional data is 

presented in a two-dimensional projection. Therefore, the lower part of the figure 

shows the silhouette widths for the four selected clusters. The ASW of the four clusters 

is .26, with the widths of the clusters ranging from .13 to .32. The results show that 

although the most separable clusters were found in the data, they still cannot be 

considered perfectly separated, and LCCA as the method of choice was preferable to 

distance-based methods.    

 

 

Figure 6.7: Cluster Visualization and Silhouette Plot.  
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Discriminative power of variables was calculated and presented in Figure 6.8. The 

greater values indicate that the variable is more important for the clustering. Thus, it 

can be seen that item M was the least informative for the model. Item M is formulated 

as follows: “The use of ICT in teaching and learning enables students to access better 

sources of information”.  

 

Figure 6.8: Discriminative Power of Variables. 

The item probability plot for the selected solution was built. The order of the classes 

was changed to convey the ordinal information.  

In the first class (10% of the sample), which could be described as “ICT-

enthusiastic”, most participants tended to agree or strongly agree with statements 

conveying positive attitudes towards ICT in teaching and learning. The second class 

(43% of the sample), which can be called “ICT-accepting”, also agreed with the 

statements, although less frequently endorsed the option “strongly agree”. The 

agreement to some degree persisted in the third class (37% of population), which can 

be described as “ICT-cautious”, and in which the response “disagree” to most items 

prevailed. The fourth class (10% of the sample), which might be labelled “ICT-

sceptical”, disagreed or strongly disagreed with most items. In particular, the response 

“strongly disagree” prevailed for item L, which is formulated as follows: “The use of 

ICT in teaching and learning improves academic performance of students”.  

Item M, which had, as reported previously, the least discriminative power in this 

clustering model, was positively endorsed by most representatives of all four classes, 
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and thus could not be used for differentiating the classes. The item probability plot, 

which visualizes these results, is presented in Figure 6.9. 

 

Figure 6.9: Item Probability Plot. 

6.4 Summary 

In this chapter, I employed criteria of model fit, cluster separation, and the stability of 

partitions to select separable generalizable clusters in the data. In terms of method 

versatility, it is the simultaneous use of different methods.  

From the perspective of educational data analysis, I provided the researchers with 

end-to-end LCCA including preprocessing of the data, selecting the number of clusters, 

and interpreting the results. Generalizable separable clusters were selected, interpreted, 

and visualized in the data of German teachers’ positive views on ICT from ICILS 2018. 

Conclusions about the items and their role in the model (for instance, the least 
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informative item M) can be useful for the researchers dealing with the ICILS data or 

conceiving a new scale measuring teachers’ attitudes towards ICT.     

In methodological terms, I showed that the suggested strategy is more 

comprehensive than a selecting strategy based on fit indices, be that the most 

commonly used BIC or the ICL that intends to find separable clusters. In the simulated 

data example, the combination of the fit indices and the ASW gave the clearest picture 

of the separable clusters. In case of the ICILS-P data, the strategy led to finding the 

optimal four-cluster solution, while overreliance on fit indices could have resulted in 

the choice of the six- or seven-cluster solution that would be less beneficial in regard to 

cluster separation and the stability of partitions.  

The strategy suggested in this chapter widens the scope of tools for conducting 

LCCA. With a few easily reproducible steps, the researcher can select a cluster solution 

with optimal model fit, cluster separation, and the stability of partitions. Thus, 

generalizable interpretable clusters can be more effectively found in the data.  
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Chapter 7 

7 The ORKG Dashboard: Development and 

Evaluation 

In the previous chapters, I addressed RQ1 and RQ2 and dealt with method versatility at 

the measurement stage and the research per se stage of the research cycle. I explored 

various ways of facilitating method versatility in data analysis, firstly, in relation to 

validation of a psychometric instrument, and secondly, when applying supervised and 

unsupervised learning methods to educational data. In Chapters 4, 5, and 6, method 

versatility was introduced as the consecutive use, the toolbox choice, and the 

simultaneous use of different methods, respectively. This chapter is related to the 

communication stage of the research cycle and addresses the third research question:  

 

 

 

In this chapter, I describe development and evaluation of the ORKG-powered 

dashboard. As I explained in section 3.3, an effective and fairly intuitive interface was 

already implemented in the frame of the ORKG research service infrastructure 

initiative. The ORKG resource comparison enables the user to complete the tasks 

formulated in [26], that is, to get research field overview; to find related work; to assess 

relevance; to extract relevant information; to get recommended articles; to obtain deep 

understanding of the topic; and to reproduce results. My idea was, in terms of method 

versatility, to extend the range of means for scholarly communication. An alternative 

interface, which can complement the existing one, might be useful for widening the 

audience that accepts SKGs as the novel method of scholarly communication. My 

intention was not to outmatch the ORKG resource comparison in terms of usefulness 

and performance but rather to create a visualisation that can reach a different section of 

the audience. The new interface might become a useful addition to the existing one in 

certain tasks. As explained in section 2.4, a dashboard, which maps the textual modality 

to the visual modality [157], can be effective for widening the range of communication 

tools. In comparison to other visualisations, such as mapping graphene research [248] 

RQ3. How to facilitate method versatility in communication of research results 

related to human attitudes towards technology? 
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or science citation knowledge extractor [143], the dashboard was supposed to present a 

more limited range of contributions because it was designed as an experimental 

interface for the purpose of preliminary assessment. In my work towards this goal, I 

based the development of the ORKG dashboard on the principles of technology 

acceptance outlined in section 2.5 and conducted an evaluation survey to assess the 

perception of the new service by the potential users.                  

7.1 Dashboard Development 

This section presents the development of the ORKG dashboard. In terms of method 

versatility, it is the range extension as shown in Figure 7.1.  

 

Figure 7.1: Method Versatility: Range Extension.  
T stands for task, M for method, R for result.  

The code for running the dashboard locally is in Python, with the template in 

HTML, CSS and JS. The code for data analysis of the user evaluation survey is in 

Python. The participants’ responses are publicly available as a CSV file; the answers to 

open questions were removed due to the data protection considerations. The code and 

the data can be found at: 

https://github.com/OlgaLezhnina/dashboard 

https://github.com/OlgaLezhnina/dashboard_survey 

The system architecture is shown in Figure 7.2. The backend is a Flask server 

(Python), with the orkg library used for queries and the pygal library used for visual 

presentation of results. To generate a webpage, the backend queries the ORKG server 

to get all information required for the scope of the dashboard; the results are embedded 

into the generated webpage using Jinja templates. Any other operations are handled by 

the JavaScript frontend. When the users interact with the dashboard interface, the 

information stored in the webpage is queried and displayed to them. The presentation is 

dynamic, and when a new paper on the topic is added to the ORKG, the dashboard 

contents are automatically updated.   

https://github.com/OlgaLezhnina/dashboard
https://github.com/OlgaLezhnina/dashboard_survey
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Figure 7.2: System Architecture of the Dashboard.  
API is application programming interface, JS is JavaScript, ORKG is Open Research 

Knowledge Graph, UI is user interface. 

In terms of the topic of academic papers that had to be added to the ORKG as 

resource contributions and then visualized with the dashboard, there were no specific 

requirements. Therefore, I selected the topic of students’ attitudes towards ICT in PISA 

2015 and 2018, which was explored in depth in Chapter 5. 

This choice of the topic was determined by the following considerations:  

(i) The topic belongs to the area of human attitudes towards technology and is 

therefore relevant to the overarching concept of the thesis.  

(ii) The topic is rather narrow, and therefore suitable for the dashboard created 

for illustrative purposes. 

(iii) Literature on the topic was familiar to me, because it was used for the study 

described in Chapter 5; thus, I had sufficient domain knowledge for 

structuring properties of the research contributions.   
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(iv) Potential participants of the user evaluation survey were not expected to be 

familiar with the topic and therefore could focus on evaluating the interface 

as such without being influenced by their attitude to the topic.  

I added relevant papers on the topic to the ORKG knowledge base and created a 

resource comparison R76906 https://www.orkg.org/orkg/comparison/R76906. The 

properties of research contributions included datasets, participant countries, 

methodology, attitudes to ICT, outcome variables, and results (relationships between 

students’ attitudes towards ICT and the outcome variables). The dashboard was 

designed to present only two properties out of these. Firstly, I decided to visualize the 

participant countries, that is, the countries of students whose attitudes were explored. 

Secondly, the relationships were presented between students’ attitudes towards ICT and 

their scores in mathematics, science, and reading.  

 

Figure 7.3: Basic Information for the Dashboard.  

https://www.orkg.org/orkg/comparison/R76906
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Basic information about PISA, the ICT engagement framework, and the ORKG 

project was presented to the user (Figure 7.3), and links to the relevant web pages were 

given. Information presented in the verbal modality was minimized in order to avoid 

cognitive overload of the user.       

The most important aspect, and the benefit, of the dashboard is that it presents 

information in the visual modality. The requirements for multi-relational dynamic 

visualisations such as dashboards were elaborated in [38]: they should aim for 

consistency in selection of their content; schematicity in the formal representation of 

information; versatility in encoding and setup of visualization; appealingness in graphic 

design; accessibility of media channel; and effectiveness perceived by the user. Thus, I 

focused on appeal and ease-of-use of the dashboard from the perspective of the user 

experience. At the same time, the code was supposed to be easily reproducible for a 

researcher who intends to run the service locally or create a similar dashboard, which 

meant that fairly simple visualisations should be used.  

For visualizing participant countries, the geographic map of the world was plotted 

with the pygal library (Python). The user can hover over the map to see the number of 

studies referring to a specific country. Figure 7.4 shows the results for Finland, which 

at the moment when the screenshot was taken was included in five studies. The 

dropdown menu can be used for selecting studies based on the countries of interest. The 

options included separate countries and lists with more than ten countries in aggregated 

studies. 

 

Figure 7.4: The Interactive Map.   
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Results of the studies were visualised with the barplots showing the number of 

studies with a specific finding, that is, a specific relationship between an attitude 

towards ICT and students’ scores in mathematics, reading or science (Figure 7.5).  

 

Figure 7.5: The Interactive Barplots. 

Significance of the relationships was not indicated, as the authors of the studies 

reported different significance levels. Tooltips could be used to highlight a bar; the user 

could see which relationship is depicts, and how many studies exploring this 

relationship could be found in the ORKG database. The users could select studies of 

their interest with the radio buttons below the plots.  
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After I developed the dashboard that could be run locally, it was implemented
2
 as a 

use case in the frame of the ORKG research service infrastructure initiative 

https://www.orkg.org/orkg/usecases/pisa-dashboard/. The evaluation survey was 

conducted to assess its perception by the users, as described in the next section.       

7.2 Dashboard Evaluation  

For the dashboard development, my goal was to facilitate versatility in scholarly 

communication by widening the spectrum of SKG-based interfaces. Therefore, an 

evaluation was needed to determine whether the ORKG dashboard could be a useful 

addition to the existing ORKG functionality. The ORKG resource comparison was 

used as a baseline for the evaluation of the dashboard. It was explicitly stated, though, 

that both interfaces are integral parts of the ORKG and not mutually exclusive but can 

complement each other. 

7.2.1 User Evaluation Survey 

The user evaluation survey consisted of two parts. The participants were asked (1) to 

evaluate their experiences with the actual services, the ORKG dashboard and the 

relevant resource comparison; and (2) to assess the potential usefulness of similar 

services if implemented in their area of research.  

In Section A (the first task), I used the short version of the User Experience 

Questionnaire (the UEQ-S). The instrument was psychometrically validated [112], 

[224]. It consists of eight pairs of opposite characteristics (confusing/clear, 

inefficient/efficient, complicated/easy, obstructive/supportive, boring/exciting, not 

interesting/interesting, conventional/inventive, and usual/leading edge), which the 

participant evaluates on the scale from -3 to +3. The UEQ-S questions were obligatory 

to answer.  

In Section B (the second task), the participants were asked to evaluate, on the scale 

from 1 to 5, how advantageous similar services could be for different aspects of 

scholarly communication if implemented in their area of research. There were five such 

aspects to be assessed: get acquainted with a new topic; answer a specific question; get 

an overview of relevant research; explore novel methods of scholarly communication; 

and make their own research visible for others. The participants also evaluated (on the 

scale from 1 to 5) the overall usefulness of the dashboard and the resource comparison 

if jointly implemented in their area of research. Both parts of the survey included open 

questions, so that the participants could comment on their experience with the 

dashboard and with the resource comparison separately and reflect on the idea of 

implementing both services in their area of research.  

                                                 
2
 See the authors’ contributions in the related publication.   

https://www.orkg.org/orkg/usecases/pisa-dashboard/
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Finally, as science domains might influence the researchers’ attitudes to scholarly 

communication (see [31], [266]), participants were asked to give relevant information 

about themselves: whether they worked in technical or humanitarian professions; 

conduct mostly quantitative or mostly qualitative research; and deal with academic 

literature rather frequently or only occasionally. Option “other” was included in each of 

these questions.        

7.2.2 Results of Evaluation 

The survey was administered via the LimeSurvey service. The participants were invited 

via social media in professional groups interested in the ORKG and Open Science. The 

sample (N = 32) included representatives of humanitarian professions (n = 15) and 

technical professions (n = 13); the participants who chose the option “other” specified 

their professions as “biology”, “nursing”, and “art”. Mostly quantitative research was 

conducted by 14 participants, and mostly qualitative by 11 participants. In terms of 

academic literature, 21 participants dealt with it “rather frequently”, and 10 “only 

occasionally”. The scores on the UEQ-S items given to the dashboard and the resource 

comparison by all participants are presented graphically in Figure 7.6.  

 

Figure 7.6: UEQ-S Results.  
D is dashboard, C is comparison. The UEQ-S items: 1) confusing/clear, 2) inefficient/efficient, 

3) complicated/easy, 4) obstructive/supportive, 5) boring/exciting, 6) not interesting/interesting, 

7) conventional/inventive, and 8) usual/leading edge. The UEQ-S scale starts from -3, only the 

upper part of the graph is presented for visual clarity. 
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It can be seen that the dashboard received higher scores on all items than the 

resource comparison. The difference is especially prominent for item 3, that is, the 

participants perceived the dashboard as easier to use than the resource comparison.  

Subgroups of participants were compared: humanitarian vs technical professions, 

quantitative vs qualitative research, dealing with academic literature frequently vs 

occasionally. All subgroups found the dashboard clearer (item 1), easier (item 3), more 

supportive (item 4), more exciting (item 5), and more interesting (item 6) than the 

resource comparison.  

For participants with technical professions, the dashboard was easier than for those 

with humanitarian professions. In other items, though, humanitarians gave higher 

scores to the dashboard than technical professionals (Figure 7.7). Technical 

professionals considered the dashboard more usual (item 8) than the resource 

comparison, but it was not the case for humanitarians.  

 

 

Figure 7.7: UEQ-S Results, Technical vs Humanitarian Professions.  
D is dashboard, C is comparison. Hum stands for humanitarian professions (n = 15), Tech 

stands for technical professions (n = 13). The UEQ-S items: 1) confusing/clear, 2) 

inefficient/efficient, 3) complicated/easy, 4) obstructive/supportive, 5) boring/exciting, 6) not 

interesting/interesting, 7) conventional/inventive, and 8) usual/leading edge. The UEQ-S scale 

starts from -3, only the upper part of the graph is presented for visual clarity. 

Participants who conducted mostly quantitative research found the dashboard 

substantially easier, more efficient, and more supportive than those who conducted 
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mostly qualitative research. The latter group, though, perceived it as more exciting and 

more inventive than the former (Figure 7.8). 

 

Figure 7.8: UEQ-S Results, Quantitative vs Qualitative Research.  
D is dashboard, C is comparison. QN stands for “mostly quantitative research” (n = 14), QL 

stands for “mostly qualitative research” (n = 11). The UEQ-S items: 1) confusing/clear, 2) 

inefficient/efficient, 3) complicated/easy, 4) obstructive/supportive, 5) boring/exciting, 6) not 

interesting/interesting, 7) conventional/inventive, and 8) usual/leading edge. The UEQ-S scale 

starts from -3, only the upper part of the graph is presented for visual clarity. 

Participants who dealt with academic literature frequently found the dashboard 

substantially easier and more exciting than those who dealt with the literature 

occasionally. The latter group assessed the dashboard as more interesting than the 

former (Figure 7.9).  

When asked to assess similar services if implemented in their area of research, the 

participants found integration of the dashboard and the resource comparison useful, 

with the score 4.25 (SD = 0.95) on the scale from 1 to 5. In terms of specific tasks, the 

respondents were asked to evaluate the usefulness of the services if implemented in 

their areas of research for the following tasks: (1) get acquainted with a new topic; (2) 

answer a specific question; (3) get an overview of relevant research; (4) explore novel 

methods of scholarly communication; and (5) make their own research visible for 

others. Responses were on the Likert scale from 1 (not helpful at all) to 5 (very 

helpful).   
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Figure 7.9: UEQ-S Results, Literature: Frequently vs Occasionally.  
D is dashboard, C is comparison. Fr stands for “rather frequently” (n = 21), Oc stands for “only 

occasionally” (n = 10). The UEQ-S items: 1) confusing/clear, 2) inefficient/efficient, 3) 

complicated/easy, 4) obstructive/supportive, 5) boring/exciting, 6) not interesting/interesting, 7) 

conventional/inventive, and 8) usual/leading edge.  

The results are presented in Table 7.1. The dashboard was evaluated as more helpful 

than the resource comparison for getting acquainted with a new topic, and the resource 

comparison for answering a specific question. Both services were found useful for 

getting an overview of relevant research.   

Table 7.1: Responses to Section B Items. 

Service  1 2 3 4 5 

D 3.87 (1.04) 3.76 (1.15) 4.10 (0.75) 3.77 (1.10) 3.72 (1.25) 

R 3.45(1.23) 4.03 (1.00) 4.13 (0.90) 3.60 (1.22) 3.64 (1.13) 

D is dashboard; C is comparison. Standard deviations are given in brackets. 

In their answers to open questions (the responses were removed from the open 

access data due to data protection considerations), the participants stressed that both 

services could be useful for various tasks. The most frequently addressed topic in the 

comments was ease or difficulty of use of both services. In accordance with the 

responses to the UEQ-S, some participants called the dashboard easy to use, while 
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others stated that both services were not very intuitive. Criticism (the direct link to the 

papers is not provided but hidden two clicks away) and suggestions (highlighting the 

matching graph when studies are selected) were also aimed at easier use and more 

coherent presentation of information. 

7.3 Summary 

In this chapter, I presented implementation and user evaluation of the ORKG 

dashboard. I developed the dashboard as a multi-relational dynamic visualization tool 

at the intersection of computer science, graphic design, and human-technology 

interaction. My aim was to widen the scope of SKG-powered interfaces and explore 

possible ways of improving the user experience, which would eventually lead to wider 

acceptance of SKGs by research communities. In terms of method versatility, this 

approach can be categorized as the range extension: the dashboard was designed as an 

interface that would supplement the ORKG resource comparison. 

The results of the user evaluation survey are preliminary, as the sample was not 

large enough to give statistical power to inferential tests. In addition, the sampling bias 

should be taken into account: the sample was not random but consisted of volunteers 

interested in SKGs or in novel technologies in general. However, these preliminary 

results might be reassessed with further research on a larger sample, and the current 

findings are also valuable. The participants perceived the dashboard as easy to use, 

interesting, and effective. It was considered especially useful for getting acquainted 

with a new topic, which means that novices in various research areas might benefit 

from using domain-specific dashboards. The ease-of-use was the most prominent theme 

in participants’ answers to the open questions. In the future, it might be useful to 

combine inevitable variability of domain-specific dashboards with standardization 

required for the user familiarity [118], especially in case of domain novices [46]. In the 

frame of systemic approach [108] adopted in the ORKG, novelty (various dashboards) 

and familiarity (the resource comparison) can be integrated.  

User-friendly interfaces might play a role in facilitating wider acceptance of 

scholarly knowledge graphs in academic community, which is a prerequisite of the 

scholarly communication development in the age of digitalisation [96] and research 

practices appropriate for Open Science [122]. The ORKG dashboard, which I created 

with the aim to increase versatility in presentation of research results, aids the existing 

ORKG functionality with the visual modality appreciated by the wider audience. These 

findings indicate that SKG-powered dashboards might be a valuable addition to other 

graph-based interfaces in various academic domains. 
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Chapter 8 

8 Conclusion 

Method versatility is crucially important for scientific research, and data science 

perspectives and approaches that involve a wide range of various methods can be 

beneficial for other domains, such as social sciences, psychology, and educational 

science. The aim of this thesis was to facilitate method versatility at measurement, 

research, and communication stages of the research cycle in relation to human attitudes 

towards technology. I carried out four studies in relevant areas and introduced method 

versatility in four different ways as indicated in Figure 8.1.  

 

Figure 8.1: Summary of the Thesis Contributions.  
T stands for task, M for method, R for result. 
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For psychometric analysis, which is described in Chapter 4, I suggested a strategy 

with the consecutive use of different methods. The results obtained with CTT methods 

were reassessed with IRT methods, and the correlation analysis results for construct 

validity were reassessed with hierarchical clustering of variables.  

For supervised learning in educational data analysis in Chapter 5, I implemented a 

strategy with the toolbox choice of methods: RF as a ML method for missing data 

imputation and for the classification task, and HLM as a statistical method for the 

regression task. For unsupervised learning in educational data analysis in Chapter 6, I 

elaborated an extended strategy for selecting the number of clusters in LCCA with the 

simultaneous use of model fit, cluster separation, and the stability of partitions criteria.  

For SKGs in scholarly communication in Chapter 7, I suggested extending the range 

of SKG-based interfaces and developed the ORKG-powered dashboard as an 

interactive visualisation complementing the ORKG resource comparison interface. In 

this chapter, the impact of these contributions, limitations of the thesis, and ideas for 

further research are discussed.        

8.1 Research Questions Revisited 

In the thesis, three RQs were addressed, and four studies were conducted, in which 

findings on these topics were obtained. This section outlines the impact that these four 

publications had on the academic community.   

8.1.1 RQ1 Contributions 

 

 

 

To measure individual aspects of user interaction with technology, valid and reliable 

instruments are of paramount importance. Hence, psychometricians expect the 2020s to 

be “the decade of validation” [220], which should be an iterative process conducted via 

multi-method assessment. My work on the RQ1, as described in Chapter 4, was aimed 

at increasing method versatility in psychometric analysis of instruments related to 

human attitudes towards technology.  

In my study, a wide range of methods was applied to validation of the ATI scale, a 

recently developed scale measuring affinity for technology interaction. In terms of 

method versatility, this was the consecutive use of different methods. Franke, Attig, 

and Wessel [80], the authors of the scale, used correlation analysis for construct 

validity, and CTT methods for dimensionality, reliability, and item functioning of the 

scale. My strategy involved hierarchical clustering of variables for validity, and IRT 

methods for dimensionality, reliability, and item functioning. For these psychometric 

RQ1. How to facilitate method versatility in validation of psychometric 

instruments related to human attitudes towards technology? 
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properties, I used the procedures outlined in Dima’s study [58] with a number of 

amendments related to more rigorous assumption testing for CFA and EFA and the 

choice of R packages for factor retention and multivariate normality test. The strategy 

can be used at the conceptual level (multimethod psychometric analysis), or as distinct 

blocks: the CTT-and-IRT procedure (with my amendments) and the validity analysis 

with hierarchical clustering of variables.    

The results of psychometric assessment conducted by the authors of the scale with 

commonly used methods were overall confirmed, and the ATI was shown to be a valid 

and reliable unidimensional instrument recommendable for research in the area of 

human-technology interaction. A potential area for further research and improvement 

of the scale was indicated, and the findings were shared with the authors of the scale. 

This relates to a less scalable item that was detected by means of nonparametric IRT 

(scalability with AISP, the monotonicity test, the invariant item ordering test) and 

parametric IRT (item fit values); the results were consistent with those obtained by 

CTT methods (factor loadings and inter-item correlations) but substantially more 

detailed.     

The aspects in which this contribution might be useful to the research community 

can be summarised as follows: 

 the suggested strategy: the consecutive use of different methods  

 the application of the existing CTT-and-IRT procedure 

 the amendments to the procedure (CFA and EFA assumption checking)  

 the use of hierarchical clustering of variables for construct validity analysis 

 the results on the ATI scale: reconfirming the previous findings 

 the results on the ATI scale: information on the less scalable item 

 the open access R code to run the analysis 

Since being published, the paper has been cited in a number of psychometric studies 

(as can be seen in the Article Metrics on the journal website), and the freely available R 

code has been downloaded by other researchers. The work has been used by researchers 

selecting a scale to measure users’ engagement in technology interaction and 

psychometricians widening the repertoire of their methods. Multi-method validation 

procedures will eventually make research in human-technology interaction more 

replicable, and its results more implementable for enhancing the effectiveness of 

human-technology interaction. 
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8.1.2 RQ2 Contributions 

 

 

 

The insufficiently wide spectrum of methods used by educational scientists is a 

persistent problem in the area. Chapter 5 and Chapter 6 outline the contributions to 

RQ2 that are related to supervised and unsupervised learning methods in educational 

research. In both studies, I dealt with data analysis of large-scale educational surveys, 

PISA and ICILS respectively, and human attitudes towards technology were the topic 

of research: German students’ attitudes to ICT in PISA and German teachers’ views on 

ICT in ICILS.   

Chapter 5 describes the contribution in which ML and statistical methods were 

combined for analysing the PISA data. In terms of method versatility, the suggested 

strategy was the choice of the most appropriate methods from different toolboxes. I 

described my analytical choices in completing the three consecutive tasks: (a) missing 

data imputation; (b) the classification task with proficiency levels (below Level 2, 

Levels 2–4, or Level 5 and above) as the categorical outcome variable, and (c) the 

regression task with the literacy score as the continuous outcome variable. For the first 

task, I selected the RF algorithm based on previous studies showing its effectiveness 

for this purpose. For the second task, I used another implementation of the RF 

algorithm, as it was the method of choice due to the ability to handle nonlinearity and 

interactions. For the third task, however, instead of hierarchical RF or other ML 

methods, I used HLM from the statistical toolbox, as it was required by characteristics 

of this specific dataset: for RF, an increase in the group size is more beneficial than an 

increase in the number of groups, while for HLM the opposite is the case. In 

conducting HLM, I included plausible values and replicate weights in analysis, which 

makes this block useful for methodologically rigorous multilevel linear modeling of the 

PISA data. The results for educational research were reported, and the importance of 

ICT autonomy for learning was emphasized.   

This contribution can be useful to the research community in regard to: 

 the suggested strategy: the toolbox choice of different methods   

 the analytical decisions regarding RF models and HLM 

 RF for missing data imputation: the block for data preprocessing  

 RF with model agnostic methods: the block for the classification task  

 HLM with plausible values and replicate weights: regression analysis in PISA 

 the results for educational researchers: the importance of ICT autonomy 

 the open access R code to run the analysis 

RQ2. How to facilitate method versatility in educational research on human 

attitudes towards technology? 
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Chapter 6 describes the contribution that provided a strategy for selecting the 

number of clusters in LCCA. In terms of method versatility, the strategy was based on 

the simultaneous use of different methods (in this case, different selection criteria). It 

was illustrated on the simulated dataset and on the real-world data from ICILS 2018. I 

showed how the strategy was helpful in selecting generalizable separable clusters in the 

data, which would not have been possible with the commonly used model fit-based 

selection. Researchers who conduct LCCA might employ the suggested strategy at the 

general level (relying on model fit plus cluster separation plus the stability of 

partitions), or a more specific one (for instance, choosing the BIC elbow heuristic, the 

minimal BIC, and the minimal ICL for model fit, and the maximal ASW for cluster 

separation). The R script can be used to conduct end-to-end LCCA, or distinct blocks 

of the code (e.g., the selecting function or preprocessing procedures) can be flexibly 

employed for the researcher’s purposes.   

This contribution can be useful to the research community in regard to: 

 the suggested strategy: the simultaneous use of different methods  

 the data preprocessing block (missing data, visualisations, the decision on 

dichotomization of the responses) 

 the function for cluster selection: results and the plot for the BIC, the ICL, and 

the ASW 

 the function for the stability of partitions: the ARI and the Jaccard index 

 the simulated data example  

 the end-to-end LCCA example 

 the results for educational researchers: generalizable separable clusters in the 

ICILS data 

 the open access R code to run the analysis 

Since being published, the first of these papers has been cited in a number of studies, 

as can be seen in the Article Metrics on the journal website. Most authors citing the 

paper refer to the methodological aspects of my work, in particular, to the integration of 

methods from ML and statistical toolboxes. Thus, the message about the importance of 

method versatility in data analysis of large-scale educational surveys has been heard by 

the research community. In regard to the LCCA paper that is yet to be cited in other 

publications, researchers have already used a few blocks of the code (as the author of 

the code, I have been asked a few questions about it). Data analysis of large-scale 

educational surveys is an important area of studies for data scientists and educational 

scientists, and increasing method versatility can be useful for the reproducibility of 

research findings.      
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8.1.3 RQ3 Contributions 

 

 

 

SKGs are effective information retrieval tools supporting findability, equal 

accessibility, and machine readability of academic literature in accordance with open 

science principles. For their wider acceptance in various research domains, attractive 

user-friendly interfaces should be developed. Chapter 7 gives an overview of the 

contribution to the third research question. I developed the SKG-powered dashboard in 

the frame of the ORKG research service infrastructure initiative. In terms of method 

versatility, it extends the range of applications of SKGs as effective information 

retrieval tools which are useful for scholarly communication.  

This study contributes to creating and disseminating scholarly knowledge by 

facilitating the acceptance of SKGs by research communities. Preliminary results of the 

user evaluation survey showed that the ORKG dashboard is perceived as a more 

appealing (easier, more interesting, more effective) service than the baseline user 

interface. The insufficient sample size does not allow conducting inferential tests or 

making generalizable statements, but the preliminary information can be useful in 

terms of scores given to the dashboard and the resource comparison by specific groups 

of users. In addition, answers to open questions about the experience with the 

dashboard and the resource comparison, which could not be made public due to data 

privacy considerations, might inform certain aspects of the ORKG development. 

Further research on a larger sample is needed, but a preliminary conclusion can already 

be made that the implementation of domain-specific dashboards can support wider 

acceptance of SKGs, which is crucial for extending the scope of contemporary 

scholarly communication.  

This contribution can be useful to the research community in the following aspects: 

 the suggested strategy: the range extension for scholarly communication means  

 the dashboard development: technology acceptance principles 

 the dashboard development: the open access code (Python, JS, HTML with 

CSS) to run the service locally 

 the evaluation study: instruments and analytical choices 

 the evaluation study: the open access code (Python) and the data 

 the results of the evaluation: addressing specific audiences  

 the ORKG use case: integrating the dashboard and the resource comparison   

The specific use case (attitudes towards ICT in PISA) was implemented in the frame 

of the ORKG research service initiative and can be accessed by the users in 

combination with the ORKG resource comparison on the topic. New dashboard 

RQ3. How to facilitate method versatility in communication of research results 

related to human attitudes towards technology? 
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prototypes have been developed in the frame of the ORKG
3
 since this first dashboard 

was implemented, and the results of the evaluation reported to the academic 

community.       

8.2 Limitations 

Limitations of the thesis are related to (i) the conceptual level in terms of its goals and 

scope, (ii) methodological strategies suggested, and (iii) the real world datasets used to 

illustrate these strategies. In this section, I outline these three areas of limitations. 

Method versatility is not the final aim but rather a way towards the goal, which is 

methodologically rigorous scientific research. In this regard, method versatility cannot 

be sufficient on its own: as I explained in Chapter 1, it is just one of the aspects of the 

scientific approach. Versatile methods that are not transparently reported, for instance, 

would not benefit the academic community; therefore, I included transparent reporting 

in the requirements for my approach. Still, conceptually speaking, focus on versatility 

bears the risk of overemphasizing one scientific principle at the expense of others, 

which are similarly important. Another conceptual limitation is the use of 

categorizations, which are necessary for structuring the work but somewhat artificial, 

such as the tripartite research cycle, or the four ways of introducing method versatility. 

In this thesis, I illustrated the application of the consecutive use, the toolbox choice, the 

simultaneous use, and the range extension in respective studies. However, other 

approaches to introducing method versatility in data analysis can undoubtedly be 

found, with various implementations; the scope of my work is not wide enough to 

explore this topic in more detail.  

Methodological strategies of introducing versatility in data analysis that I suggested 

were selected based not only on their effectiveness but also on their simplicity that 

would make them comprehensible for a wider audience. This approach imposed some 

restrictions on the use of the most advanced methodology in studies that I conducted. 

For instance, in the supervised learning contribution, more sophisticated classification 

algorithms [125], with model hyperparameters tuned [219], might have performed 

better in terms of the AUC. In the unsupervised learning contribution, a faster method 

could be found that would combine the cluster selection function and the stability of 

partitions function. In the fourth contribution, the dashboard might have been improved 

in terms of a wider topic and in regard to accessibility (as it is currently available solely 

on desktop versions of Firefox and Chrome). However, all these amendments would 

imply making the code less comprehensible for the researchers in such domains as 

psychology or educational science, who are also a target audience of these studies. In 

addition, a strategy could cover only a limited number of analytical choices, and 

therefore, some useful and interesting topics had to be left for further research. For 

instance, the problem of variable selection could have been dealt with in the supervised 

                                                 
3
 See, for instance, https://doi.org/10.15488/11535 

https://doi.org/10.15488/11535
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and unsupervised learning contributions, but this topic was beyond the scope of these 

studies. Last but not least, the Bayesian perspective, which was discussed in literature 

as an approach to be flexibly combined with the frequentist perspective (see [47], [84], 

[86]), was not explored in the thesis contributions. The integration of Bayesian and 

frequentist methods ought to be studied in depth as a distinct topic, which would not 

have fit the framework of this thesis.   

To implement and illustrate the suggested methodological developments, real world 

datasets were used; the unsupervised learning contribution was partly based on the 

simulated data. Thus, limitations related to the datasets influenced the methodology of 

research. In the first contribution, the number of observations in the dataset kindly 

shared by the authors of the ATI scale was barely sufficient for conducting AISP 

according to the requirements for this procedure [239], and thus, the results of MSA 

should be interpreted with caution. The problem of the sample size was even more 

prominent in the dashboard evaluation study, as the number of participants assessing 

the services was insufficient for any inferential statistical tests. In the supervised 

learning and unsupervised learning studies, the sample size was suitable for any 

methodology that a researcher could possibly apply. However, flaws of sampling 

design are pervasive even for large-scale educational surveys with strict quality checks 

of the data. In particular, the following flaws of PISA sampling design were 

summarized in [114] and [271]: (i) exclusion of students with disabilities from PISA is 

problematic, as it prevents them from taking part in policy aiming at educational 

equity; (ii) there is a sampling bias towards slower-maturing students, as some students 

are excluded because of early graduation, dropout or other forms of attrition; and (iii) 

age criterion for selecting participants means that students might have had different 

exposure to curriculum, as some of them might have repeated a class or skipped one. In 

addition, concerns have been raised about plausible values and their influence on the 

results [134]. Finally, in all four contributions, the data was used that had been 

collected with self-report survey items, and thus, the social desirability issue might 

have biased the responses.         

8.3 Further Research 

Methodological and practical implications of the thesis can be expanded by further 

research. The interdisciplinary nature of this work makes it relevant both to data 

scientists developing novel methods and to domain specialists (educational researchers, 

psychologists, and social scientists) implementing a wider range of techniques in their 

respective areas. In the four contributions to the thesis, I gave recommendations on how 

to facilitate domain-specific research in terms of validating psychometric instruments, 

flexibly applying a wider spectrum of methods to data analysis of large-scale 

educational surveys, and developing novel SKG-based interfaces for scholarly 

communication. Here, I briefly outline more general considerations that can be taken 

into account by further research on method versatility.     
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In this thesis, the topic of human attitudes towards technology was selected, which is 

important for various domains, and out of these, educational data analysis and 

psychology were specifically paid attention to; in further research, another topic of 

studies can be chosen. The similar approach of providing a research domain with 

versatile methods and perspectives from data science can be implemented for medicine, 

nursing science, and other areas. In addition, ways of introducing method versatility 

can be different from those explored in this thesis (that is, from the consecutive use, the 

toolbox choice, the simultaneous use, and the range extension). Moreover, the methods 

themselves can differ from those scrutinized in this thesis; e.g., the topic of integration 

of Bayesian and frequentist approaches might be useful and interesting for every 

science domain. Studying this integration from the data science perspective, such as 

specifying conditions under which it could be beneficial, is another useful direction of 

further research.    

8.4 Closing Remarks 

As the famous saying goes, “all models are wrong” [25], but some can be useful. For 

finding better approximations of reality, a wide spectrum of flexibly selected methods 

is required. In this thesis, the problem of method versatility in analysing human 

attitudes towards technology was approached from the data science perspective in the 

frame of interdisciplinary effort aimed at providing analytical strategies to other 

domains. I showed how method versatility can be facilitated at three stages of the 

research process: validation of psychometric instruments; supervised and unsupervised 

learning in data analysis of large-scale educational surveys; and scholarly 

communication via the SKGs with user-friendly interfaces. The versatile methods were 

introduced as the consecutive use of different techniques, the toolbox choice, the 

simultaneous use, and the range extension. These and other approaches to method 

versatility can be explored by further research. Incremental progress in methodology of 

data analysis and scholarly communication will eventually provide researchers in 

various domains with the wide spectrum of instruments they need to increase the 

reproducibility of research findings and deal with the contemporary challenges in data 

analysis. 
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