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Abstract

The six studies collected in this thesis deal with praxeological analyses of mathematical practices in a
Signal Transmission module of an electrical engineering study programme. The research framework is
the AnthropologicalTheory of the Didactic (ATD). Our analyses concern the introduction of the Dirac
delta impulse in textbooks on signals and systems, the lecturer’s sample solution to an exercise on the
envelope demodulator, and the lecturer’s sample solution and the students’ solutions to an exercise on
amplitude modulation. Three research foci are developed in the collected studies. The first focus isThe
subject-specific reconstruction of mathematical practices (Hochmuth & Peters, 2021; Peters & Hochmuth,
2021). We analyse two exercises and the corresponding sample solutions given by the lecturer and
students’ solutions. Based on methodological developments we were able to reconstruct aspects of two
different mathematical discourses as well as how they interact within the analysed practices. We also
propose a graphical representation of the results of our analyses.

The second focus isThe epistemological and philosophical relationship between mathematics and electri-
cal engineering (Hochmuth & Peters, 2020, 2022). Our aim is to gain a better understanding of the
mathematical practices involved in the introduction of the Dirac delta impulse in a textbook on signals
and systems. We realised that certain mathematical steps could be better understood from an engineering
point of view if historical-philosophical studies of the relationship between physics and mathematics
were also taken into account. Here, we are not referring to the philosophical positions of students or
lecturers. We are referring to philosophical studies that focus on the societal aspects that play a role in
the historical concrete formation of practices. The case of the Dirac impulse is well suited to illustrate
the fruitfulness of such studies for subject-specific analyses.
Finally, the third focus isRevisiting the relationship between mathematics and electrical engineering,

on how ideas for the development of teaching can be derived from the other two perspectives (Peters,
2022; Peters &Hochmuth, 2022). Looking back at our previous studies, we show how our research
findings allow for a conceptualisation of the relationship between mathematics and engineering that
differs from the standard application and modelling approaches. We also focus on the phenomenon
of disconnectedness of the mathematical practices in mathematics service courses and engineering
courses.Based on our analyses of engineering mathematical practices, we develop the idea of modifying
exercises from a mathematics service course. The key feature of this approach is that it is an alternative to
the usual approaches that propose the use of engineering application examples or the use of modelling
tasks.
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Introduction and Background
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Prologue: Humpty Dumpty

Inmany publications (e.g. Bosch, Chevallard, García, &Monaghan, 2019; Chevallard, 2020; Chevallard,
Farràs, Bosch, Florensa, Gascón, Nicolás, & Ruiz-Munzón, 2022) and whenever I have heard him speak
about ATD, Yves Chevallard used the famous quote from Lewis Carroll to emphasise the importance of
ATD-specific meanings of terms, sometimes in contrast to what they mean elsewhere:

“I don’t know what you mean by ‘glory,’” Alice said.
Humpty Dumpty smiled contemptuously. “Of course you don’t– till I tell you. I meant
‘there’s a nice knock-down argument for you!’”
“But ‘glory’ doesn’t mean ‘a nice knock-down argument,’” Alice objected.
“When I use a word,” Humpty Dumpty said in rather a scornful tone, “it means just what
I choose it to mean – neither more nor less.”
“The question is,” said Alice, “whether you canmakewordsmean somany different things.”
“The question is,” said Humpty Dumpty, “which is to be master – that’s all.” (Carroll and
Gardner, 1960, p. 268/9)

I was intrigued by this from the beginning, because on the one hand it is an odd quote to point out
the relevance of theory-specific meanings of notions. Do we need Humpty Dumpty to remind us that
concepts are theory-specific?1 And doesn’t the seemingly absurd exchange between Alice and Humpty
Dumpty also harbour the danger of the misunderstanding that absurd attributions of meaning are to
be given power here by means of an argument of authority? But on the other hand, it also seemed to
resonate somehow with our work on mathematical practices in engineering education. Of course, the
why and how of this resonance was not clear to me from the start. It has merely evolved from a hunch,
in parallel with our research.
In the context of ATD, the Humpty Dumpty principle states that ATD words, even if they have

an everyday meaning or a meaning in other theoretical frameworks, primarily mean what they mean
according to ATD. Chevallard (2020) writes, addressing friends and colleagues: “In the case in point, we
are collectively the ‘master’. A praxeology [praxéologie, praxeología] is exactly what the ATD says it is
– neither more nor less.” (p. 16). I would like to take a more detailed look at the passage from Lewis
Carroll with the help of Hancher (1981). On her way through the world behind the looking glass, Alice
meets Humpty Dumpty, who is sitting on a wall and whom she already knows from the nursery rhyme2.
They start to discuss birthdays and un-birthdays and after explaining to Alice why it is better to celebrate
un-birthdays, Humpty Dumpty closes with “There’s glory for you!”. The conversation then proceeds as
quoted. Hancher elaborates on the linguistic interpretation of this passage and how it relates to different
models of verbal meaning. I will not go into details here but use his observation that
1This questioning is of course based on my background in German academia. The ATD community includes a variety of
people from diverse backgrounds, not all from academia. So I may not be the main addressee here.

2Humpty Dumpty sat on a wall, / Humpty Dumpty had a great fall. / All the king’s horses and all the king’s men / Couldn’t
put Humpty together again.
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Prologue: Humpty Dumpty

[t]he usual reading of the passage shades off in two different directions. At one extreme
Humpty Dumpty stands guilty of a secret arbitrariness in his use of words. A monster
of private language, he deserves the fall that is in store for him. But in the other direction
it has been noticed that Humpty Dumpty resembles his creator, C. L. Dodgson, who as
a professional logician approved of the practice that has since been named “stipulative
definition.” “Any writer maymean exactly what he pleases by a phrase so long as he explains
it beforehand,” Dodgson once wrote in a letter, apropos of his forthcoming book on logic.3
(Hancher, 1981, p. 49, emphasis added by Hancher, footnote added by J.P.).

The practice of definition is what the Humpty Dumpty principle of the ATD refers to. The other
direction of interpretation, which sees Humpty Dumpty as a “monster of private language”, is what
makes this quote seem so odd. But if we take a closer look, once again following Hancher, at Humpty
Dumpty’s conversation with Alice, we can see that his use of words is not secretly arbitrary. Humpty
Dumpty is eager to explain the assigned meanings to Alice and he later helps her to understand the
meanings of the words in the poem “Jabberwocky”. The only odd thing about Humpty Dumpty in the
quoted passage (and the discussion with Alice that precedes it) is that he defines the words after he has
used them, rather than “beforehand”, as Dodgson wrote.

The reason why the quoted discussion between Alice andHumptyDumpty is interesting even beyond
theHumpty Dumpty principle of the ATD lies in the following final quote fromHancher:

But Humpty Dumpty is not really to blame; for everything, including temporal sequence,
is reversed on his side of the looking-glass. He is no more accountable for using words in
a novel way before he stipulatively defines them than the White Queen is for crying out
before she pricks her finger with a pin, or than Alice is for distributing the plum-cake before
she cuts it. To clear Humpty Dumpty of the charge that he practices a perverse private
language, it is only necessary to take into account, as Alice and most readers do not, the
peculiar order of the world in which he speaks. (p. 50)

This piece of literature illustrates the importance of taking into account the “world” in which people
live and act, if we want to understand their practices. Who is the master of assigning meanings to words,
acknowledgement to practices? And this is why Chevallard’s quote resonated so well with our work
on mathematical practices of engineers from the very beginning. When we started analysing passages
from a text on signal theory, we found that the argumentations was unclear at certain steps. We had the
impression that the unclear steps occurred at places that were significant both for an understanding what
it means that an engineering practice is pragmatic and for a better understanding of the relationship
between mathematics and engineering sciences. Additionally, in discussions with other researchers,
we noticed a deficit-oriented view on engineering practices. Sometimes people judged engineering
mathematics according to the norms, values, and rules of their own academic mathematics background.
At the risk of exaggerating the illustrative example, let me use it again to present the stance of this work:

3In this bookDodgson writes in a chapter aboutThe Existential Import of Propositions: “They [writers and editors of Logical
text books, J.P.] speak of the Copula of a Proposition ‘with bated breath,’ almost as if it were a living, conscious Entity,
capable of declaring for itself what it chose to mean, and that we, poor human creatures, had nothing to do but to ascertain
what was its sovereign will and pleasure, and submit to it. In opposition to this view, I maintain that any writer of a book is
fully authorised in attaching any meaning he likes to any word or phrase he intends to use. [...] I meekly accept his ruling,
however injudicious I may think it.” (Bartley, 1986, p. 323)
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If we, as researchers in mathematics education who mainly have a background in academic mathematics,
look at engineers’ mathematical practices like Alice wonders about Humpty Dumpty’s way of talking.
And if we misjudge engineers like “most readers” misjudge Humpty Dumpty. Then we not only restrict
ourself in our endeavour to understand engineers’ practices, but we may also fail to design learning
environments that aim to help engineering students learn mathematics. The general research interest
underlying this thesis is to understand mathematical practices of electrical engineers at university, while
avoiding a deficit-oriented perspective from the point of view of academic mathematics. I will present
research foci and research questions that concretise this general research interest in chapter 1. Since
it is important to understand the “peculiar world” in which electrical engineers act, we have included
in our studies, at least the part of the technical context that is relevant to our research. In chapter 2, I
will both summarise the basic context relevant ideas and present the data underlying our studies. The
AnthropologicalTheory of the Didactic (ATD) has already made an appearance in this introduction,
although only in the form of theHumpty Dumpty principle. I have also touched on other principles of
ATD on my way to the general research interest and stance of this work without naming them. I will do
so in chapter 3, where I will also present the aspects of ATD that are relevant to the studies. A literature
review and the embedding of the work in the international research field is done in chapter 4, while
the discussion of the research questions is done in chapter 5. The published studies on mathematical
practices in electrical engineering education are presented in Part II of this thesis:

Study I: Hochmuth, R., &Peters, J. (2020). About the “Mixture” ofDiscourses in theUse ofMathematics
in SignalTheory. EducaçãoMatemática Pesquisa: Revista do Programa de Estudos Pós-Graduados
em EducaçãoMatemática, 22(4), 454–471. https://doi.org/10.23925/1983-3156.2020v22i4p45
4-471 (page 120)

Study II: Peters, J., & Hochmuth, R. (2021). Praxeologische Analysen mathematischer Praktiken in der
Signaltheorie. In R. Biehler, A. Eichler, R. Hochmuth, S. Rach, &N. Schaper (Eds.), Lehrinno-
vationen in der Hochschulmathematik: praxisrelevant – didaktisch fundiert – forschungsbasiert
(pp. 109–139). Springer Spektrum. https://doi.org/10.1007/978-3-662-62854-6_6 (page 59)

Study III: Hochmuth, R., & Peters, J. (2021). On the Analysis of Mathematical Practices in SignalTheory
Courses. International Journal of Research in Undergraduate Mathematics Education, 7 (2),
235–260. https://doi.org/10.1007/s40753-021-00138-9 (page 91)

Study IV: Hochmuth, R., & Peters, J. (2022). About two epistemological related aspects in mathematical
practices of empirical sciences. In Y. Chevallard, B. B. Farràs, M. Bosch, I. Florensa, J. Gascón,
P. Nicolás, & N. Ruiz-Munzón (Eds.), Advances in the Anthropological Theory of the Didactic
(pp. 327–342). Birkhäuser Basel. https://doi.org/10.1007/978-3-030-76791-4_26 (page 139)

Study V: Peters, J., & Hochmuth, R. (2022). Sometimes mathematics is different in electrical engineering.
Hiroshima Journal ofMathematics Education, (15), 115–127. https://doi.org/10.24529/hjme.
1510 (page 157)

Study VI: Peters, J. (2022). Modifying Exercises inMathematics Service Courses for Engineers Based on
Subject-Specific Analyses of Engineering Mathematical Practices. In R. Biehler, G. Gueduet,
M. Liebendörfer, C. Rasmussen, & C. Winsløw (Eds.), Practice-Oriented Research in Tertiary
Mathematics Education: New Directions. (pp. 581–601). Springer. https://doi.org/10.1007/978-
3-031-14175-1_28 (page 171)
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1. Overview of the studies and research
questions

The six studies in this dissertation are based on my collaboration with Reinhard Hochmuth during my
time as a research associate in his research group at Leibniz Universität Hannover. Our work builds
on the completed KoM@ING project1, which also provided the data for the studies. Stefan Schreiber
was also involved in the KoM@Ing project. Study I in particular builds on the results of his work
with Reinhard Hochmuth (e.g. Hochmuth & Schreiber, 2015, 2016). The studies in this thesis are
numbered chronologically, in the order in which we worked on the topics: Study I has a stronger focus
on ATD than the Kom@ING studies. Here we already talk about discourses and how they “mix” but
the notion of discourse as well as the reconstructed mathematical practices are still rather superficial
(from today’s perspective, of course). Another focus in Study I is to refer to historical-philosophical
studies in order to clarify certain vague passages in a textbook. We also embedded this reference in the
theoretical framework of ATD. In Studies II and III we went from textbook analysis to the analyses of
lecturer sample solutions to exercises and students’ solutions. Here we deepened the subject-specific
reconstruction ofmathematical practices. In particular, we have advanced two importantmethodological
developments: institutional discourses and methodological steps to relate the results of institutional
analyses to individual student work. In Study IV we took up and expanded the historical-philosophical
perspective from Study I. We also took the developments from Studies II and III into account. Studies V
and VI elaborate in two directions what we learned from previous work.
In addition to a chronological order, a thematic order is also suitable. This is particularly useful for

structuring the main research foci and associated research questions in this chapter. In presenting the
foci and research questions, I also refer to the studies in which these questions were elaborated. The
research foci now arrange the studies differently, this time thematically. In this order, with the research
foci as structuring elements, the studies are also presented in Part II.
For this PhD project, we focused on material from the module Signal Transmission of the electrical

engineering study programme at the University of Kassel (see chapter 2 for details). The general research
interest that was also already stated in the Prologue can be formulated as the following research question:

RQ: How can we understand the mathematical practices in electrical engineering courses at University
while avoiding a deficit-oriented perspective from the point of view of academic mathematics?

This general research question has developed into three research foci and four research questions. The
first research focus is concerned with the specific mathematical content: The subject-specific reconstruction
of mathematical practices. A basic observation that was fundamental to our work was that mathematical
practices of higher semester electrical engineering courses could be roughly classified into practices from
mathematics service courses, practices from basic electrical engineering courses, and newmathematical

1See https://www.kompetenzen-im-hochschulsektor.de/koming/, Teilprojekt A
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1. Overview of the studies and research questions

practices (e.g. concerning the Dirac impulse). This observation itself is evident when looking at study
guidelines, module descriptions or textbooks. However, it was not clear how those practices from the
different course contexts interacted, how they differed and what possible connections looked like. This
leads to the first research question:

RQ1: How can mathematical practices in the module Signal Transmission be reconstructed, and what
connections, differences and interactions can be identified with regard to mathematical practices
frommathematics service courses, from basic electrical engineering courses, and newly introduced
mathematical practices?

This question is addressed in Study II on page 59 of this thesis, were we analyse two exercises and corre-
sponding lecturer sample solutions from the course Signals and Systems. On the basis of methodological
developments, we were able to reconstruct aspects of two different mathematical discourses as well
as their interactions within the analysed practices. We also propose a graphical representation of our
analyses results. As our results refer to institutional mathematical practices, the question arises:

RQ2: How can analysis results of institutional mathematical practices be related to individual students’
actions?

This question is addressed in Study III on page 91 of this thesis. Here we explicitly draw attention to the
difference between institutional practices and individual actions. With a focus on exercises we have also
developed methodological steps to apply institutional analysis results to individual students’ solutions.
The second research focus is: The epistemological and philosophical relationship between mathematics

and electrical engineering. We explore this in Study I on page 120 and Study IV on page 139 of this thesis:

RQ3: How can epistemological and philosophical studies contribute to analyses of mathematical practices
in electrical engineering courses and how can this lead to an alternative conceptualisation of the
relationship between mathematics and engineering?

In Study I we aim to gain a better understanding of the mathematical practices involved in the introduc-
tion of the Dirac delta impulse in a textbook on signals and systems. Therefore this study also addresses
the first research focus2. We realised that certain mathematical steps could be better understood from
an engineering point of view, if historic-philosophical studies on the relationship between physics and
mathematics were also taken into account. However, we are not concerned here with the philosophical
positions of students or teachers. We are referring to philosophical studies that focus on the societal
aspects that play a role in the historical concrete formation of practices. The case of the Dirac impulse is
very well suited to illustrate the fruitfulness of such studies for subject-specific analyses. We take this up
in Study IV and deepen our considerations. In this study, we also have the results of Study II and Study
III at our disposal and can thus relate the considerations of societal aspects of the historical formation of
practices to the subject-specific analyses. In particular, we show how our considerations apply at a more
general level to all empirical sciences. For example, we also consider psychology.

The last two studies constitute the third research focus: Revisiting the relationship betweenmathematics
and electrical engineering. Here we explore the question:
2To a certain extent, all studies contain aspects of all three research foci. Subject-specific analyses, epistemological and
philosophical considerations about the relationshipbetween electrical engineering andmathematics, and a conceptualisation
of this relationship with a view to teaching design are not independent of each other. See chapter 5 for more details on this.
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RQ4: How can institutional analyses of mathematical practices and an alternative conceptualisation of
the relationship between mathematics and engineering contribute to teaching design and lecturer
support?

In Study V on page 157 of this thesis we look back at our previous studies and show how our research
results allow for a conceptualisation of the relationship between mathematics and engineering which
differs from the standard application- andmodelling approaches. Overall, we developed anunderstanding
that sometimes mathematics is different in3 electrical engineering. Correspondingly, the question of
howmathematics can become different for electrical engineering comes to mind, where mathematics for
engineering refers to mathematics service courses. Considering the in and for and their relationship also
relates to an understanding of the relationship between mathematics and engineering. In Study VI on
page 171 of this thesis we focus on the phenomenon of disconnectedness of the mathematical practices
in mathematics service courses and engineering courses. We develop the idea of modifying exercises from
a mathematics service course on the basis of our analyses of engineering mathematical practices. This
small scale approach on teaching design for mathematics service courses illustrates how considerations
of the in/for relationship and correspondingly the relationship between mathematics and engineering
can be productive for teaching development. This approach is characterised by the fact that it presents
an alternative to the usual approaches that propose to use application examples from engineering or deal
with modelling tasks.

3Thenotions ofmathematics in and for engineeringoriginate from the title of the Special Issue: Mathematics in/forEngineering
Education of the International Journal of Research in Undergraduate Mathematics Education (Pepin, Bieler, & Gueudet,
2021).
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2. Institutional and subject-specific context

This chapter describes the institutional- and subject-specific context of the studies I–VI, as well as the data
used for the analyses. Our analyses focus on mathematical practices in the module Signal Transmission
in the 4th semester of the Bachelor study programme of electrical engineering at the University of Kassel.
This module is called Signalübertragung in Figure 2.1.
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Allgemeiner Studienplan Bachelor Elektrotechnik
Studienbeginn Wintersemester

Figure 2.1.: General study plan for the Bachelor of Electrical Engineering at the University of Kassel1

Our analyses concern

• the introduction of the Dirac delta impulse by Fettweis (1996) in Study I.This is taken up and
related to the introduction of the Dirac delta impulse by Frey and Bossert (2009) in Study IV;

• the lecturer sample solution to an exercise about the envelop demodulator in Study II;

• the lecturer sample solution to an exercise about amplitude modulation in Study II, Study III.
Study V and Study VI draw on these results;

• students’ solutions to an exercise on amplitude modulation in Study III.

Our analyses have shown that the differentiation of two mathematical discourses, one related to the
electrical engineering courses and one related to the mathematics service courses, is very fruitful2. The

1The study plan is the one that is valid in 2011–2013. Actual study plans can be found at https://www.uni-kassel.de/eecs/
studium/bachelor/elektrotechnik. By February 2023, there have been no relevant differences.

2See chapter 3 for our ATD related understanding of the notion discourse and chapter 5 for a more detailed discussion of the
methodological aspects with respect to our results.
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2. Institutional and subject-specific context

subject-specific content concerning the notions of signal, the Dirac delta impulse and amplitude modu-
lation and -demodulation is important as background for our analyses and for the characterisation of
the mathematical discourse related to electrical engineering. In particular, our work with the amplitude
modulation exercise has shown that complex numbers is a very suitable topic to illustrate the two different
mathematical discourses more concretely. A summary of the most important aspects of the introduction
of the Dirac delta impulse is given in section 2.1. A summary of the most important aspects of amplitude
modulation and complex numbers in electrical engineering and in the mathematics service course as
well as references to the studies in which those aspects are introduced more thoroughly can be found in
section 2.2.

The distribution of courses within the study programme can be seen in Figure 2.1. Here the modules
per semester are shown together with the appointed Credit Points. The mathematics service courses are
Analysis in the 1st semester and Lineare Algebra in the 2nd semester. At the University of Kassel complex
numbers are treated in Lineare Algebra (see Strampp, 2012, Chapter 3). The relevant basic electrical
engineeringmodule is GET II (Wechselstromlehre) in the 2nd semester3. Thus, the complex numbers are
first dealt with in the mathematics service course before they are introduced in GET II in the following
semester. Thedatawe used for our analysis was originally collectedwithin theKom@INGproject. Of this
data, we selected that which was relevant for our research questions. The data is summarised in Table 2.1
and consists of lecture notes: LN, exercises (with lecturer sample solutions): E(S); literature/textbooks:
Lit; a description of the boundary conditions by the lecturer: BC; module descriptions: MD; student’s
lecture notes: Stud LN; and students’ exercise solutions: Stud E.

Module Semester LN E(S) Lit BC MD Stud LN Stud E

Lineare Algebra Winter 2011/12 - x xa x x x x
Analysis Summer 2012 - x xb x x x x
GET II Summer 2012 x x(S) xc x x - -
Signalübertragung Summer 2013 x x(S) xd x x x (x)
a Strampp (2012) b Strampp (2015) c Albach (2011) d Fettweis (1996) and Frey and Bossert (2009)

Table 2.1.: Data for the analyses in studies I–VI.

For themodules Analysis and Lineare Algebra, all the student’s lecture notes and the student’s exercise
solutions are by the same person, as are the student’s lecture notes for Signal Transmission. The solutions
to the exercises in the module Signal Transmission come from a group of students4. To indicate the
difference in the origin of the students’ related data, the latter is bracketed. There are no lecture notes
for the mathematics service course modules Analysis and Lineare Algebra because the lecturer used the
textbooks of which he is also the author of. The module Signal Transmission consists of the two lectures
Signals and Systems and Digital Communication. Both lectures were offered together as a unit in the
summer semester 2013. Lecture notes and exercise sessions covered both lectures without differentiating
between them. A total of five exercise sheets were integrated into the lectures, whichwere handed out and
addressed at suitable times in the lectures. Analyses of two exercises, about the envelope demodulator and
3TheUniversity of Kassel also allows for a start in the summer semester. In this case the mathematics service course starts
with Analysis. Lineare Algebra is in the second semester and Signalübertragung and GET II in the third semester.

4The number varies depending on the task. We explicitly consider those solutions in Study III on page 91.
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about amplitude modulation, with lecturer sample solutions are central for our studies. Both exercises
are from the second exercise sheet and represent two subtasks of problem 4. The first subtask is about
the envelope demodulator. The second subtask deals with amplitude modulation and is divided into
three items, of which the third is the main focus of our analysis. The relevant part of the exercise sheet
with lecturer sample solutions is shown in the appendix of Study II on pages 83–87 of this thesis. An
English version of the exercise and lecturer sample solution on amplitude modulation can be found in
Study VI on pages 187–188.

2.1. The introduction of the Dirac delta impulse in Signal
Transmission

An important topic in the Signal Transmission module is the concept of signal. Aspects of the notion of
signal gathered in our studies are on the one hand relevant to our epistemological considerations, see
Study I and Study IV.On the other hand, they also contribute to the characterisation of the ET-discourse
which is central to our subject-specific praxeological analyses in Study II and Study III. Since the term is
important for both epistemological studies and subject-specific analyses, we can also use it to discuss the
relationships between them. We do so in Study IV.

Concerning our analysis of the introduction of the Dirac delta impulse by Fettweis (1996) in Study I,
the distinction between two types of signals, real signals and idealised signals is of central importance.
This distinction is based on Fettweis’ preference for a physical understanding of the concepts of signal
theory over a rigorous mathematical approach and his explicit reflection of this. He presents the relation
between mathematics and physics as a dilemma between mathematical precision and the understanding
of physical reasoning. He states that

with increasing refinement of the underlying mathematical relationships, understanding
the physical justification of the chosen approach becomes increasingly difficult. So what is
gained in mathematical rigour on the one hand is lost again on the other when it comes to
insight into the actual applicability to physical actualities. (p. iii, translated fromGerman
by J.P.)

By stating a dilemma, Fettweis upholds the importance of mathematical rigour but prefers physical
understanding. This leads Fettweis to explicitly address the deviation from mathematical rigour by
discussing a different kind of argument to justify mathematical practices that can in principle be fully
justified with mathematics but the necessary apparatus for this would reduce the focus on the physical
understanding. Before I go more into detail, I want to note that this is not specific for Fettweis (1996).
Similar aspects are also found in the work of Frey and Bossert (2009), who are, considering Fettweis’
dilemma, more on the side of mathematical rigour, and, in the case of the Dirac delta impulse, in the
work of Dirac (1981) himself.

Fettweis’ explicit handling of the situationmakes his textbook interesting for our analyses (see Fettweis,
1996, p. 4ff): He first introduces real- and idealised signals. Real signals occur in communication
transmission and are irregular and highly diverse. They are of finite duration, continuous and sufficiently
differentiable. Due to their irregularity and high diversity, real signals are not suitable for numerical-
and analytical calculations and cannot be used as measurement signals. Therefore, idealised signals are
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introduced that necessarily violate some of the properties of real signals. Fettweis gives the unit step
function u(t) as an example and states:

A real signal, which we want to approximate idealised by a unit step function, would thus
correspond to a function fn(t), which increases very rapidly but steadily from 0 to 1 in
the vicinity of t = 0. If difficulties arise when using the unit step function, we would
therefore have to replace u(t) by fn(t) and, after carrying out the intended analysis, let fn(t)
approximate the ideal course more andmore. (Fettweis, 1996, p. 9, translated fromGerman
by J.P.)

Fettweis’ deviation frommathematical rigour plays explicitly a role in the introduction of the Dirac
delta impulse, an important tool for the description and characterisation of signals and systems. Briefly,
in the introduction of the Dirac pulse, specific sequences of functions are considered. In the course of
the process, limit and integration are then interchanged at one step, although, from the perspective of
the mathematics service course, the mathematical prerequisites for this are not fulfilled (p. 14). Frey and
Bossert (2009) make a similar step, except that they interchange limit and differentiation (p. 109). This
situation, viewed from different perspectives, allows different conclusions to be drawn in each case. From
the perspective of the mathematics service course this step is wrong. A mathematical reference model5,
which could have been built on the basis of an academic mathematics perspective, would probably find a
deficit here. Both authors refer also to distribution theory for amathematically precise introduction of the
Dirac delta impulse. If those steps are read from the perspective of distribution theory, they are justified.
The justifications and explanations are just not given, a well accepted method in engineering and also
physics6. This is a typical technique for holding up mathematical rigour without explicitly performing
it. But as Bueno (2005) states: “The suggestion that the delta function is ultimately a distribution
misses a significant point about Dirac’s strategy; namely, the pragmatic role that the function plays in
describing—in an elegant and simple way—the relevant relations.” (p. 471). This pragmatic role of the
Delta impulse, the third perspective, is also at the core of Fettweis’ introduction and very important for
electrical engineering practices in Signal Transmission. Our general interest in avoiding a deficit oriented
perspectives and explicitly looking out for engineering specific justifications allows us to bring this
pragmatic role and its importance into the foreground. In our praxeological analysis in Study I, we also
refer to epistemological considerations concerning the relationship of mathematics and physics (Wahsner
& Borzeszkowski, 1992) to flesh this out more. In Study IV, besides others, we bring this together with
the two different mathematical discourses that are important in our subject-specific reconstructions.

2.2. Amplitude modulation and complex numbers

In addition to the description and characterisation of different transmission channels (systems), the
question of the realisation of signal transmission via a specific channel then also plays a major role. An
important criterion here is the possible multiple utilisation of the transmission channel: Several signals
are to be transmitted simultaneously without crosstalk occurring between signals at the receiver. A
5See chapter 3 and for a critical discussion of the epistemological reference model in relation to our approach concerning
institutional discourses, see chapter 5.

6This is also mentioned by Fettweis: “Eine solche Vorgehensweise ist in der Tat sowohl aus physikalischer als auch aus
mathematischer Sicht geboten und entspricht der auch in anderen physikalischen Bereichen üblichen Vorgehensweise.”
(p. 6)
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simple procedure that can be carried out with little technical effort is analogue amplitude modulation
and demodulation. Therefore, amplitude modulation is an important topic in the Signal Transmission
module as it allows to discuss general aspects of modulation and demodulation, which are also important
inmodern, muchmore complex devices, in amore technically accessible context. As the signal-theoretical
background is vital for our analyses, it is presented in most of our studies. The most detailed version
concerning amplitude modulation can be found in Study VI.The envelope demodulator is covered in
Study II.

The basic principle of amplitude modulation is that the amplitude of a high-frequency carrier signal
cos(ωt) is varied in relation to that of the low-frequency message signal cos(Ωt). The AM signal can
then be represented as x(t) = A[1 +m cos(Ωt)] cos(ωt). The message signal usually is something much
more complex, e.g. music from a radio broadcast. The frequency of the carrier signal is the one people
tune to on the radio when they select a station7. Tuning to a radio station means configuring a filter that
only lets through carrier signals with the chosen frequency. Every message that is modulated onto the
carrier signal then can be received by reconstructing it via a demodulation process.

An important aspect of our analyses lies within the graphical representation of amplitude modulation.
This is also the topic of the exercise on amplitude modulation whose sample solution we have analysed
(exercise and sample solution are given in the appendix in Study VI on pages 187–188 of this thesis).
There are two important graphical representations of signals in electrical engineering: the waveform
representation, which is the shape of the graph when the signal is interpreted as a function, and the
phasor representation, which is the representation of the signal when it is interpreted as a complex
number, as an arrow in the Argand diagram. Both types are shown in Study VI on page 177 of this
thesis in Figure 28.1, which shows the waveform representation of amplitude modulation, and in Figure
28.2, which shows the relationship between the phasor- and waveform representation of a sinusoidal
signal. In circuits in which only signals of one frequency occur, the periodicity of the signal, or the
rotation of the phasor, can be neglected. In amplitude modulation, where signals with two different
frequencies occur, this is no longer possible. The AM applet by Liu and Kernetzky (2018) provides an
excellent dynamic visualisation of amplitude modulation both, in phasor- and waveform representation:
https://www.lntwww.de/lnt_applets/physAnSignal_en/index.html.

The exercise on amplitudemodulation asks for developing the phasor representation from the algebraic
expression of an amplitude modulated signal. The property of complex numbers to describe periodic
signals as a rotating phasor or as a combination of several rotating phasors is at the core of the characterisa-
tion of themathematical discourse related to electrical engineering. In Study II we analysedmathematical
practices in lecturer sample solutions to exercises on the envelope demodulator and amplitude modula-
tion. On the basis of these analyses, especially the one concerning the amplitude modulation exercise,
we have reconstructed the two mathematical discourses and, in doing so, also sharpened discourse as
a methodological notion of ATD (see chapter 5 for more details). In Study III we look at students’
solutions to the amplitude modulation task and analyse their practices using our institutional analysis as
a reference. In Study IV we relate our findings on the two mathematical discourses to epistemological
and societal considerations on the relationship between mathematics and empirical sciences like physics
or electrical engineering. The question of how the relationship between mathematics and electrical
engineering can be understood as something other than application or modelling is explored in Study V,
and in Study VI I show how our analyses can lead to new ideas for teaching design.

7Usually people use FMbroadcasting because frequencymodulation (FM) has some advantages above amplitudemodulation.
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3. The Anthropological Theory of the
Didactic1

In the prologue, I have already illustrated with a famous passage about Humpty Dumpty and Alice how
important it is to take their peculiar world into account when trying to understand people’s actions. In
particular, our interest in the mathematical practices in an engineering study programme has made it
necessary to find a theoretical framework in which this can be considered. The AnthropologicalTheory
of theDidactic (ATD), which has alreadymade its appearance in the Prologue, is, inmy view, particularly
well suited for this purpose.

TheAnthropologicalTheory of theDidactic stands in a French research tradition2 and has its origins in
theTheory ofDidactic Situations, whichwasmainly developed in the 1970s and 1980s (Brousseau, 2002),
and in theTheory of Didactic Transpositions (Chevallard, 1985, 1989). Comprehensive introductions
in ATD can be found, for example, in Bosch and Gascón (2014) and Chevallard (1992, 2019).

ATDallows to look at theworld of engineers in such away that themathematical practices of engineers
can be modelled in a way that takes into account their subject-specific peculiarities. A fundamental
principle of the ATD that enables this is the emancipatory principle that consists in

avoiding taking for granted the elements of the social world we are studying, a world we
know very well because of our experience as students and citizens and sometimes also as
teachers, educators or parents. [...] The strategy proposed by the ATD consists in setting
forth a wide set of basic notions used to model—or conceptually reconstruct—the didactic
world in a “fresh” perspective, to avoid being contaminated by the visions of the persons
and institutions that are part of this world. (Bosch, Chevallard, García, andMonaghan,
2019, p. xii)

The “basic notions” from the ATD that are central to the studies are the institutional standpoint of
ATD, according to which human practices, such as doing mathematics, are always located in institutions
and institutional conditions determine which actions and justifications are considered adequate; the
modelling of knowledge or practices as praxeologies that exist depending on the respective given institu-
tional conditions; and the model of (didactic) transposition, which allows us to examine and describe the
development, change and dissemination of knowledge across different institutions. In the following I
will explain these terms in more detail. In doing so, I will refer back to chapter 2 at appropriate points to
show how the theoretical models are concretely fleshed out in our context. I will also highlight important
aspects and refer to the respective studies in which they are relevant.

1The presentation of the ATD in this chapter is based on elaborations presented in varying degrees of detail in our studies,
mainly in Study II and Study III and in my unpublishedMaster’s thesis (Peters, 2021).

2An impression of the French research tradition can be gained from Laborde (2016), who takes a look at German subject
matter didactics (Stoffdidaktik) from a French perspective.
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3. The Anthropological Theory of the Didactic

3.1. The institutional standpoint of ATD

ATD is a research programme for the study of human practices from an institutional perspective. The
notion of institution is addressed on different levels. Chevallard (1992) introduces it by way of example:

It is now time to say a few words about this central character, institutions. Once again, an
institution can be just about anything. In reality, because of the current meaning of the
word, some of you may be surprised to see on which objects I may be led to stick this label.
A school is an institution, as is a class; however, there is also the institution of “practical
work”, the institution of “lectures”, the institution of “family”. Daily life is an institution
(in a given social setting), and so is the state of being in love (in a given culture), etc. (p. 144)

Later on in his 1992 publication Chevallard refers to the social anthropologist Douglas (1986) who
elaborates the idea that all knowledge depends on (social) institutions and, conversely, all institutions are
based on shared knowledge. She focuses on the question of how systems of knowledge, or “the collective
foundation of knowledge” (p. 45), are created. The central idea in her work is that the emergence
and entrenchment of knowledge is not only an individual cognitive process, but a genuinely social
process. Conversely, the process of institutionalisation is not only a social-political but also an intellectual
process (p. 45). Knowledge and institutions are not independent aspects that merely relate to each other,
but cannot be understood separately. Mary Douglas elaborates on the process by which institutions
come into being: “Minimally, an institution is only a convention.” (p. 45) However, certain conditions
are required for communities to form stable institutions on the basis of conventions. In particular, the
legitimisation of conventions plays a major role.

It is important to emphasise that already from Chevallard’s exemplary introduction of the term, but
also fromDouglas’ elaborations, that by institution is not merely understood the bureaucratic or social
organisations that are called institutions in everyday life (such as school or university). Also “surprising”
things like family, or being in love inWestern society are understood as institutions. Elsewhere, Chevallard
explicitly includes (social) entities and structures that fulfil a certain formative function (Chevallard,
2019, p. 72). Institution understood as a stable social organisation is also taken up by Castela (2015),
whose work was an important basis for our studies:

I define an institution I as a stable social organisation that offers a framework in which
some different groups of people carry out different groups of activities. These activities are
subjected to a set of constraints, - rules, norms, rituals - which specifies the institutional
expectations towards the individuals intending to act within the institution I. An individual
has to satisfy these expectations, at least, to a certain extent depending on the institution.
Hence, using the ATD vocabulary, the individual (s/he) is subjected to the institution’s
expectations and becomes an institutional subject (from Latin sub-jectus: literally thrown
under). [...] Institutions tend to constrain their subjects but conversely they provide the
resources (material and cultural) necessary for activities to take place. Epistemologically,
the existence of institutions is an absolute precondition for the development of human
culture. They foster collective processes for facing and solving human problems; and they
favour the dissemination of inventions/innovations, even when they do not create specific
schools for that. (S. 7)
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Legitimation, Douglas (1986) writes about legitimisation of conventions, is noted by Castela (2015) in
the form of “rules norms and rituals” and the subjection of individuals to the institution’s expectations.
Legitimisation with a view to institutional norms is also taken up by Castela (2020). However, this
subjection is understood to be productive and dialectical3.

In addition to an exemplary introduction and a reference to sociological notions of institution, insti-
tution is also explained through its relation to persons, institutional positions and objects of knowledge.
Chevallard (1992) writes, if a person is aware of a certain object of knowledge or if an object of knowl-
edge exists within an institution, it is said that the objectO exists for the person X or the institution I .
The personal relation of X to O is noted by R(X,O)4 and the institutional relation of I to O is noted
by RI (O) (cf. p. 142). Within an institution, there are different positions that people can hold. For
example, in a teaching institution there is usually the position of student and the position of teacher.
The institutional relations to one object of knowledge differ for different institutional positions. To
indicate this one writesRI (p, O), where p stands for the institutional position. Chevallard then writes

A person X becomes a good subject of I relative to the institutional object O when his
personal relationR(X,O) is judged to be consistent with the institutional relationRI (O).
This person may also prove to be a bad subject, [...] and may, in the end, be expelled
from I . Here is where a development relating to intra-institutional evaluation comes into
play, relating to the mechanisms according to which I is led to pronounce, through some
of its agents, a verdict of conformity (or non-conformity) of R(X,O) to RI (O). [...] In
particular, the institutional relation [...] is nobody’s personal relation, [...]: conformity is
not identity. (p. 146/7)

The aspect of legitimation is also central when looking at the relationship between persons, institutions,
and objects of knowledge. It emerges in the form of the “good- and bad subject”, the “intra-institutional
evaluation” and the “non-/conformity” of the individual with the institutional relation. The aspect, that
personal relations are not identical to institutional relations is central to our work in Study III and gives
rise to the question of how the work of an individual can be analysed based on analyses of institutional
relations (see RQ2).
Based on what I have written here so far about the ATD, we can now look back at the institutional

and subject specific context in chapter 2. The term institutional in the chapter title refers merely to the
organisation of the study programme of electrical engineers and the distribution of the courses that are
relevant for our studies. But now we can start to use ATD as a lens. The module Signal Transmission is
the central institution for our studies. As a module with accompanying lecture and exercise sessions it is
part of the teaching institution University. It was set as a concrete topic, i.e. it is part of the thematic
classification5 of electrical engineering and is considered relevant for the teaching of future engineers.
3According to Bosch, Chevallard, García, and Monaghan (2019) in ATD dialectic is understood praxeologically (see sec-
tion 3.2): “Any praxeology that enables one to overcome two opposed types of constraints by turning them into a new kind
of conditions that supersede them. In this context, one , therefore, speaks of supersession (French dépassement, German
Aufhebung, Spanish superación)” (S. xxii).

4This formal notation of the relationship of institutions, persons and practices may seem to be unusual and abstract, it
highlights the relations and abstracts from concrete qualities. This has the advantage that complex relationships can be
written down in a concise way. An interesting example where this is productively used is the work byWinsløw (2017), who
introduces a compact ATD version of Klein’s “double discontinuity”.

5With regard to the classification and legitimation of conventions and their significance for processes of institutionalisation, I
would like to refer again to Douglas (1986).
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We use the abbreviation SST6 to index this institution. From the organisation of the study programme
the importance of mathematics service courses for the programme is apparent. In our analyses, we
have also noted the presence of accompanying institutional influences from the outset. In Study I we
identified “higher mathematical ideas” in the justifications of practices in the introduction of the Dirac
delta impulse in the textbook by Fettweis (1996), see also Figure 7.1. So we took practices associated to
the mathematics service courses into account, indicating those institutional influences with HM. In
our analyses of the exercise and sample solution on amplitude modulation complex numbers became
an important mathematical topic. A comparison of the way complex numbers are introduced in the
mathematics course Lineare Algebra (considered as an institution, denoted by HM) and how they are
used in GET II (considered as an institution, denoted by ET) show how two different institutions can
have different relations to an object of knowledge (see also section 28.2.2.1 in Study VI).
Coming back to the introduction of ATD, we can now have a more detailed look on the relation

between persons and institutions, in particular on its role in ATD studies. Bosch and Gascón (2014)
write that

[i]n order to answer the question of why people do what they do, what makes it possible for
them to dowhat they do, etc., ATDpostulates that what explains the behavior of people are
not only their personal idiosyncrasies but also the existence (or availability) of institutional
constructions that each person adapts, adopts, and develops either individually or collec-
tively. An ATD analysis therefore starts by approaching institutional praxeologies and then
referring individual behavior to them, talking in terms of the “praxeological equipment”
of a given person. Observable behavior obviously consists of a mixture of personal and
institutional ingredients. This dialectic between the personal and the institutional makes
it possible to explain both the regularities of our behavior and its personal “footprint”.
People evolve as they enter different institutions and, at the same time, these individual
participations enable institutions to appear, run, and change. (S. 69)

Institutional praxeologies, see section 3.2, thus function in ATD studies as reference points for the
analysis of individual actions (or their products). The key point here is that individual actions are not to
be understood exclusively as “personal idiosyncrasies” but that aspects of the institution always play a
constitutive role in them. What Bosch and Gascón calls “adapts, adopts, and develops” is described by
Chevallard as establishing conformity between the individual and the institutional relation to the object
(of knowledge or action). Here, and this is an important point, conformity is not to be understood as
identity. This point is central to our Study III.

The institutional point of view is important in the ATD research programme in two respects. On the
one hand, any form of knowledge, understood as practices, is located in institutions and is subject to
institutional conditions. It follows that mathematics education research must take these conditions into
account. TheHumpty Dumpty principle resonated so well with our work because, in order to make

6The indices we use to refer to different institutions come fromGerman standard abbreviations: SST stands for Signal- und
Systemtheorie, i.e. signals and system theory; HM stands for Höhere Mathematik, i.e. higher mathematics, a collecting
term for mathematics service courses; and ET stands for Elektrotechnik, i.e. electrical engineering, or GET in the study plan
in Figure 2.1 which stands for fundamentals of electrical engineering. A note on the translation of “Höhere Mathematik”
as higher mathematics: in German, “Höhere Mathematik” denotes mathematics courses that cover mathematics beyond
school mathematics. Higher mathematics is a verbal translation and does not imply that this kind of mathematics is
somehow better or has a higher status or standpoint, e.g. in relation to mathematics of engineering courses.
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sense, Humpty Dumpty has to be taken seriously. And that means taking into account the conditions
of his world. The practices of engineering students cannot be understood sufficiently well if they are
understood exclusively as individual actions. In this context, it is important to emphasise once again that
institutional conditions are not only external conditions, but are constitutive within practices. On the
other hand, the institutional point of view also concerns researchers themselves. They too are subject
to institutional conditions and the “researchers’ institutional subjections affect the way of conceiving
and understanding reality” (Bosch, 2015, p. 53). The analysis of institutional conditions is thus also an
essential component of mathematics education research7.

Mathematics is a body of knowledge ... produced through specific research activities; both,
knowledge and activities, are acknowledged as mathematics by international mathematics
institutions. Mathematics is at the same time a body of knowledge, a field of activities and
an institution. This looks very much like a closed world. When someone of this world, that
is, a mathematician, begins to investigate on mathematics education, especially but not
only in vocational education, he needs tools to distance himself with the “alma mater”. (p.
18)

The most widely used tool in ATD for analysing institutional conditions, which also includes reflection
on one’s own standpoint, is the reference epistemological model (REM). Lucas, Fonseca, Gascón, and
Schneider (2019) consider the REM as a phenomenotechnique (in the sense of Bachelard8), with which
didactic phenomena can be produced and thus studied in the research process, depending on the concrete
choice of reference model. They write:

REMs facilitate a detachment from the DEMs of the considered educational institutions
and help give visibility to phenomena that could remain unnoticed and unexplained. In
particular, in the light of a REM, it can become clear that the official raison d’être assigned
by theDEM to a certain domain of schoolmathematics presents limitations, contradictions
or incompleteness. (p. 78)

Here, in the difference betweenREMandDEM (dominant epistemological model), didactic phenomena
become visible and thus investigable.

An alternative to this is the explicit reconstruction of institutional conditions, such as done by Castela
(2015), Castela and Romo-Vázquez (2011), and Romo-Vázquez (2009). Their work is a vantage point for
our own development. Furthermore, I discuss the epistemological reference model in relation to our
own approaches in chapter 5.

3.2. The modelling of practices as praxeologies

In ATD, knowledge is understood as human practices that include not only practical aspects of “know-
how” but also knowledge in the sense of “know-why”. This is subsumed under term praxeology, a double
word composed of the two components praxis and logos. The anthropological principle states that in the
ATD,
7Bosch (2015) calls this, following Elias (1956), “detachment principle” (p. 52).
8“Phenomenotechnics understands thephenomena tobeobserved as co-generatedby tools that are themselves amaterialisation
of the theory under whose premise and for whose purpose they were constructed.” (Diaz-Bone, 2008, p. 51, translated
from German by J.P.)
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didactic phenomena are considered as inherent to any group of human beings, as part
of humanity. Being human beings means co-creating and disseminating knowledge, and
also failing to do so. [...] [A]ny human activity can be described as a praxeology or as
an amalgamation of praxeologies of different “sizes”. (Bosch, Chevallard, García, and
Monaghan, 2019, p. xiii).

A praxeology is a basic epistemological model of knowledge and associated practices in the form of the
two inseparable and interrelated blocks of praxis P, denoting the practical parts of practices and logos L,
denoting the part that explains, makes intelligible, or justifies praxis “in whatever style of ‘reasoning’
such as an explanation or justification may be cast. Praxis thus entails logos which in turn backs up
praxis” (Chevallard, 2006, p. 23). This model was used in Study I. In our other studies we needed the
more differentiated 4T-model: The praxis block P consists of types of tasks T and relevant solution
techniques τ. The logos block L consists of a two-level reasoning discourse. At the first level, technology
θ describes, justifies, explains, etc. the technique. At the second level, theory θ organises, supports and
explains technology. Overall, a praxeology can be represented as a 4T-model: [T, τ, θ,Θ].
The set of tasks which can be solved with a certain technique within an institution is called the scope

of the technique. An important aspect of technology is the raison d’être of a body of knowledge. This
is the reason why it exists in an institution, what it is good for, and why it is studied. Practices can be
modelled on different levels of granularity. On the one hand, point praxeologies, containing a single
type of task, can be integrated into local praxeologies, containing a set of types of tasks with a common
technological discourse. All point- and local praxeologies that share a common theory are called regional
praxeologies. Integrated praxeologies are sometimes called mathematical organisations (MOs). On the
other hand, praxeologies can be differentiated further: Techniques that are complex can be interpreted as
a (sub)task that are then part of (sub) praxeologies. In our studies we use the latter to flesh out engineering
praxeologies in high details, see specifically Study II and Study III. In the quotation from Chevallard
(2006) above, the part “in whatever style of ‘reasoning’ such as an explanation or justification may be
cast” refers to another principle of ATD:The principle of institutional relativity states that

a given object can be part of a type of tasks, a technique, a technological or a theoretical
element depending on the praxeology we are considering and the way this praxeology exists
and evolves in a given institutional setting. Not only does a praxeology changewhenmoving
from one institution to another [...], the very elements of a praxeology can have different
functions depending on the type of praxeology that is considered. (Bosch, Chevallard,
García, andMonaghan, 2019, p. xv).

So, institutional conditions constitute the technological-theoretical discourse, the available techniques
and the relevant types of tasks. To incorporate the references to the institutions that are relevant in our
studies, we introduced an extended praxeological model in Study II:[

T,
τHM, θHM

τET, θET
,Θ

]
SST

The index SST means that we are looking at practices within the institution Signal Transmission.
Those practices, modelled as praxeologies, possibly contain techniques or technologies originating from
the institutions HM and ET respectively. From an ATD point of view, the different institutional
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conceptualisations of complex numbers give rise to different praxeologies. The characterisations of the
two contexts, complex numbers in the mathematics service course and in electrical engineering, can
be understood as descriptions of institutional aspects that shape the logos block and thus, due to the
dialectic of praxis and logos, also the practical part of praxeologies. In our analyses we understand the
characterisations of the two contexts as characterisations of two differentmathematical discourses and
associate praxeologies or praxeological elements to the mathematical ET-discourse or the mathematical
HM-discourse. Within ATD, the term discourse is used in the etymological sense, e.g. in expressions
such as “reasoning discourse” for logos aspects (see Bosch & Gascón, 2014, p. 68). In our work, we
understanddiscoursemethodologically, andmore deeply linked toATDconcepts such as the institutional
dependence of knowledge and logos aspects like the raison d’être. I will take this up again and discuss it
more deeply in chapter 5. There I will also discuss the graphical representation of our analysis results
that is based on the extended praxeological model.

The institutional influences on practices can have diverse origins. ATD proposes to model those by a
hierarchy of mutually constraining and conditioning levels of codetermination, as shown in Figure 3.1.

Figure 3.1.: Levels of didactic codetermination,mathematical praxeologies and the knowledge of students
related to the mathematics taught. (Artigue &Winsløw, 2010, p. 6)

The levels of codetermination model institutional or societal influences (constraints, possibilities,
etc.) on practices. With the levels of codetermination, ATD proposes an order of these influences on
practices that are particularly relevant to phenomena of teaching and learning. The different levels now
provide categories that help to identify institutional and societal influences and to name and structure
them accordingly. Among other things, this means identifying influences as institutional rather than
personalising them as individual characteristics.

In our works we consider the impacts of developments also located on higher levels on the constitution
of practices. In Study II and Study III we refer to historical studies on electrical engineering to highlight
differences in, and describe the two different institutional mathematical discourses. The analyses of
practices and their institutionalisation can also be informed by the results of sociological or philosophical
studies. In Study I and Study IV we refer to historical-philosophical studies to reconstruct societal
aspects, located at the higher levels of codetermination, and their reflection in concrete practices.
Artigue andWinsløw (2010) also show the relationship between institutional praxeologies and the

“student knowledge” to the levels of codetermination. The double arrow in the figure highlights that
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the students’ praxeologies are not identical to the institutional praxeologies but also not independent
idiosyncrasies. This is an important aspect in Study III where we analyse students’ solutions to the
exercises.

3.3. The (didactic) transpositions of knowledge

Praxeologies are a model to capture mathematical practices in their institutional constitution. With the
model of (didactic) transposition, ATD also offers the possibility to examine and describe aspects of the
production, development, change and dissemination of knowledge between institutions, and thus also
their relationships with each other. The Figure 3.2 represents a diagram of the basic model of didactic

Figure 3.2.:The process of didactic transposition (see Bosch &Gascón, 2014, p. 70)

transposition. This model is related to processes of organisation and transformation of knowledge
with a view to teaching institutions. Originating from studies about school mathematics the didactic
transposition is a tool tomake institutional conditions on the knowledge to be taught in themathematics
classroom accessible for analyses. Chevallard (1989) assumes here that “[s]chool mathematics, for
example, has essentially evolved frommathematicians’ mathematics. More generally, taught bodies of
knowledge have been derived from corresponding scholarly bodies of knowledge.” (p. 7). In general,
scholarly knowledge is produced e.g. in universities or research institutes. The knowledge to be taught is
determined by official curricula. Politicians, scientists, educators and other members of the noosphere9
are involved in this process. This ultimately becomes taught knowledge, which is taught in teaching
institutions and in turn results from the curricular documents via a didactic transposition process. Here,
one can then additionally differentiate the learned knowledge. In summary, the didactic transposition
refers to the transformation of disciplinary or “scholarly” knowledge performed in order to make it
teachable (and learnable). From a critical point of view, this model of the transformation of scholarly
knowledge into knowledge to be taught is quite narrowly conceived. Bergsten, Jablonka, and Klisinska
(2010) and Sträßer (1992), among others, formulate some critical remarks on didactical transposition
theory. A particularly relevant point for our studies is that from this conception, where scholarly
knowledge is transformed into knowledge to be taught, the institutional dependence of knowledge may
not be sufficiently taken into account. The researcher’s own institutional location, usually in university
mathematics, might be ignored and used as a (natural?) reference model. Even if this is explicitly taken
into account and a REM is used to “detach” the researcher from its own institutional involvement, a
REM based on university mathematics seems to be the natural point of reference based on this model

9In the ATD, noosphere refers to “the sphere of those who ‘think’ (noos) about teaching-, its relationship to ‘scholarly
knowledge’ which usually legitimates its introduction in educational institutions, and the specific form it takes when
arriving in the classroom [...].” (Bosch and Gascón, 2014, p. 71). The noosphere comprises all agents involved in the process
of (didactic) transposition from scholarly knowledge to knowledge to be taught. This comprehensive term also expresses
the fact that the agents involved in this transposition process and the associated historical and institutional conditions are
not always easy to identify.
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3.3. The (didactic) transpositions of knowledge

of didactical transformation. I will resume a critical reflection on the REM in chapter 5. Nevertheless,
the model of (didactical) transposition draws attention to the possible variety of institutional references
and corresponding actors and can be used fruitfully. Castela (2015), for example, refers in particular to
external transpositive effects concerning the production and legitimation of mathematical knowledge,
which are relevant in the transition from scientific mathematics to vocational domains.

Based on this basic concept, there are different uses within ATD, depending on the research question.
The transition from scholarly mathematical knowledge to knowledge to be taught is also referred to as
external didactic transposition, the transition to taught knowledge as internal didactic transposition,
see Figure 3.3. The institutional dependence of knowledge, e.g. of mathematics, raises the question

Figure 3.3.: Internal- and external didactic transposition (Winsløw, 2011)

of which mathematics should be taught in other areas, such as in study programmes like electrical
engineering. Schmidt and Winsløw (2021) pose this question in the context of mathematics service
courses for engineering students. They note that while the selection of mathematical content takes place
according to the needs of the engineering study programme, the actual teaching is carried out according
to generic standards and methods for teaching mathematics. The specific institutional conditions of
engineering thus enter into the external didactic transposition, but not into the internal one. They call
this the parallel model of didactic transposition, see Figure 3.4. The figure implies that mathematics in

Figure 3.4.: The parallel model for didactic transposition in engineering education (Schmidt &Winsløw,
2021, p. 266)

engineering study programmes is essentially taught in the mathematics service courses. Since Schmidt
andWinsløw focus specifically on these courses, its adequate that they use this model. In our own studies,
however, we point out that mathematical practices, especially in higher semester engineering modules
such as Signal Transmission, can be described as a mixture of practices of mathematics from service
courses, mathematics as developed and used in basic electrical engineering courses, and specific signal
theory content. Moreover, our analyses show that mathematical practices in these courses cannot be
understood solely as the application of mathematics taught in service courses. Schmidt andWinsløw
especially highlight an important issue that also becomes relevant in Study V and Study VI: While
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the internal didactical transpositions are developed by different teachers (i.e. persons occupying the
institutional teaching positions) the student position is occupied by the same person in each institutional
setting (i.e. engineering courses and mathematics service courses). Therefore, the detached internal
didactical transpositions potentially causes a disconnection ofmathematics taught inmathematics service
courses and mathematics in engineering courses. This situation of detached mathematics motivates
questions on how the relationship of mathematics and engineering can be understood (Study V) to
enable teaching developments (Study VI) that potentially help to promote connections.

I would now like to conclude this section by reiterating my description of the work of Artaud (2020),
given in Study VI on page 180 of this thesis. Artaud identifies two different transposition processes
through which mathematical knowledge, in subjects such as electrical engineering, is created10. (1) Either
the mathematical knowledge required in electrical engineering institutions is already elaborated and
developed in other institutions, for example academic mathematical research institutes. This knowledge
then enters the electrical engineering institution via didactic transposition processes, so to speak externally,
and serves the mathematical education of future electrical engineers. Here, one can localise the HM-
discourse and the idea of mathematics for engineering. Through this exogenous didactic transposition
process, however, the academic mathematical knowledge is changed and adapted especially to the needs
of electrical engineering institutions for the education of future engineers, but maintains the orientation
towards academic mathematics. Schmidt andWinsløw (2021) also note this and it is to this aspect that
their parallel model for didactic transposition refers. (2) Or, the relevant mathematical knowledge has
been developed in the course of a historical process by actors specialising in electrical engineering. In
this case, the mathematical knowledge entered the electrical engineering institution a long time ago
via an institutional transposition process to be put to use. The investigation by Bissell (2004) of the
introduction of complex quantities in electrical engineering, driven by Steinmetz (1893) among others,
that allows to manipulate graphical and pictorial representations instead of complicated mathematical
expressions and also led to systems thinking and black box analysis Bissell (2004, p. 309), give a glimpse
on such an institutional transposition process. In the course of time this knowledge was used in electrical
engineering and was didactically transformed in order to be taught. This didactic transposition process
is endogenous. Here the ET-discourse and the idea of mathematics in engineering can be situated. We
show in our studies that mathematical practices differ depending on the transposition process and that
these differences are relevant for didactic questions.

10Artaud’s studies come from the field of economics, but she makes statements on a general level.
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4. Research on engineering mathematical
practices

This literature review is based on the literature discussed in the studies of this thesis and aims to situate
them within the field of research. The research programme of this thesis, the ATD, has already been
introduced in chapter 3. Important references that focus on specific aspects of ATD can be found
there. I would like to highlight once again the work of Castela (2015), Castela and Romo-Vázquez
(2011), and Romo-Vázquez (2009), which is an important starting point for our ownwork. In particular,
they refer to external transpositive effects regarding the production and legitimation of mathematical
knowledge that are relevant when moving from academic mathematics to vocational domains. In doing
so, they differentiate the model of the didactic transposition process with regard to different institutional
influences and extend the praxeological 4T-model: they distinguish between a theoretical and a practical
component of the technology. This distinction serves to reconstruct the institutional dependence of
technological discourses of different courses with regard to higher levels of codetermination. Castela and
Romo-Vázquez focus on tracing the impact of external didactic transformation and different modali-
ties of institutional validations. Our studies extend and adapt this idea of a further differentiation of
praxeological blocks. However, our focus is on aspects of internal didactic transposition.

Considering ATD as a research programme, Bosch, Chevallard, García, andMonaghan (2019), Bosch,
Gascón,RuizOlarria, Artaud, Bronner, Chevallard, Cirade, Ladage, andLarguier (2011), andChevallard,
Farràs, Bosch, Florensa, Gascón, Nicolás, and Ruiz-Munzón (2022) give an insight into typical ATD
studies. Overall, one can identify four broad areas in which ATDwork can be classified: (1) ATD as a
research programme in mathematics (or other fields) education, (2) teacher education in mathematics
and questions around professionalisation, (3) studies on teaching design, essentially in the paradigm of
“Questioning the World”1 and (4) didactic studies in (university) mathematics and mathematics-related
university courses or other contexts (such as museum or vocational training). The Studies I-VI in this
thesis belong to the fourth area. Before focussing more specifically on didactic studies in university
mathematics courses in electrical engineering, I would like to mention the work by Gascón and Nicolás
(2017, 2019). Referring toWeber’s 1917 distinction between normative and scientific statements, the
authors specified the ATD’s position regarding the responsibilities and goals of didactics as a science.
They formulate clear criticism of the lack of separation of value judgement and research results:

However, some expressions appearing in works by people using the ATD – for instance “to
turn the study of probability into somethingmeaningful”, “true raison d’être of the ele-
mentary algebra”, “undesirable consequences of the disintegration of school mathematics”
– can be disturbing andmisleading, as they assume value judgements which, in turn, induce
normative prescriptions or proscriptions concerning teaching. Actually, these judgements

1This “paradigm” (Chevallard, 2015) is comparable to approaches of inquiry-based learning, see also the introductory remarks
of Florensa Ferrando (2018).
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4. Research on engineering mathematical practices

and norms, although frequent in ATDwork, cannot be presented as research results, not
even as consequences of them. (Gascón and Nicolás, 2019, p. 10)

I agree with the criticism of value-laden assessments in research studies. This applies in particular to my
criticism of the deficit-oriented view on engineering practices. However, I disagree with the rejection of
formulating teaching proposals based on research findings. Research focus 3 is specifically concernedwith
developing ideas for teaching design and lecturer support based on our findings. I think the reason for the
disagreement heremight be, among other things, the status given toREMas a fundamental methodology
that is also adopted by Gascón and Nicolás (2019). As explained in more detail in chapter 5, REM as
a methodology aims in principle to identify differences, which in turn can be interpreted as deficits.
Didactic design then aims to overcome these deficits. Value-laden teaching designs that are justified by
research results thus could follow from the value-laden interpretation of the REMmethodology. Our
methodological approach differs from this. Our teaching design and support proposals are generally not
aimed at making anything better (in the above sense). We show which possibilities for teaching design
and lecturer support can be found on the basis of our studies. What end these design ideas then serve
is independent of this. Here we refer, among other things, to aims stated in the literature, for example
promoting connections between mathematics and engineering (see below). The work in research focus
2 also serves as an explication of the basis of my general stance. Here I agree with Gascón and Nicolás
(2019): “To raise those principles may help to not only illuminate the link between research and teaching
proposals but also increase the degree of self-awareness of the theory” (p. 10). Considering Weber’s ideal
type concept, as far as I know, there has been no discussion in the ATD so far.
The study of engineering mathematical practices is an important topic in research on university

mathematics education (Winsløw, Gueudet, Hochmuth, &Nardi, 2018). It is an integral part of current
publications (Biehler, Liebendörfer, Gueudet, Rasmussen, & Winsløw, 2022) and a regular feature
of conferences such as the INDRUM conferences (Trigueros, Barquero, Hochmuth, & Peters, 2023).
It can be divided into the two strands mathematics for engineering, referring to mathematics service
courses and mathematics in engineering, referring to mathematics as an integrated part of engineering
courses (Pepin, Bieler, & Gueudet, 2021). Our studies can mainly be associated with the research
focus mathematics in engineering. Romo-Vázquez and Artigue (2022) give a state of the art overview
of mathematics education research for engineers with a specific focus on ATD. They begin with a
historical overview, focusing on the challenges in the field, and continue with examples of recent research
and development, especially of ATD. Regarding the role of mathematics in engineering, in addition
to the work of Castela and Romo-Vázquez already mentioned, the work of González-Martín (2021,
2022) should also be mentioned. The author addresses the issue of coherence of practice in relation
to aspects of the integral concept and its use in calculus and mechanics and electricity and magnetism
courses. These essentially curricular differences have also been observed and investigated by Dammann
(2016). More specifically, González-Martín (2021) conducts praxeological analyses of the introduction of
integrals in the textbooks of the engineering courses and contrasts this analyses with lecturers interviews.
Although Gonzales focuses more on curricular differences, he finds a similar “entanglement of elements
from mathematics and engineering (both in the technique and in the technology)” (p. 229). Frode
Rønning also conducted praxeological analyses in signal theoryRønning (2021) and electrical engineering
Rønning (2022). Rønning (2021) bases his praxeological analysis in the context of Fourier analysis on
textbooks in (basic and advanced) mathematics and in signal theory and aims at answering the question
“What characterises the praxeologies connected to Fourier series in mathematics and in signal theory?”

28



(p. 191). He also complements his data by a lecturer’s video and gives a historic background on Fourier
series. Similar to González-Martín, Rønning (2021) also examines the differences in basic mathematics
praxeologies, advanced mathematics praxeologies, and engineering praxeologies. Identifying differences
is an important result and certainly gives cause to think about making appropriate adjustments and to
promote the development of teaching to address this. Contrary to these studies, our research interest
is directed towards a more refined analysis of mathematical practices in engineering and how different
mathematical discourses interact within these practices. Rønning (2022) presents a project that aims
at redesigning a mathematics service courses for engineering programmes. One aim of the project is to
adapt the curriculum of mathematical topics to the needs of engineers (see also Schmidt andWinsløw’s
2021 parallel model for didactic transposition, Figure 3.4). In addition, the electrical engineering lecturer
and the mathematics lecturer cooperated closely in the project. One aim of this cooperation was to
introduce examples from electrical engineering into the mathematics course. Using the ATD, his aim is
to

study the discourses that develop to see how the praxeologies in mathematics and engi-
neering influence and interact with each other. I will inquire into the challenges and
opportunities that arise at the interface between mathematics and electronics, as seen from
the viewpoint of the teachers in the two subjects. (p. 604)

Unlike in our studies, Rønning does not start from the institutional dependence of knowledge but
assumes that the didactic systems differ because they refer to separate courses. Looking at the didactic
system in the electronics course, he now examines howmathematical and electronic praxeologies interact.
In addition to his ATD analysis he also interviewed the two lecturers. A very interesting aspect from the
short interview he presents is that both lecturers talk positively about the cooperation while emphasising
the importance of “division of labour” (p. 614) and therefore reflecting the institutional separation of
the mathematics service course and engineering courses. Both, González-Martín and Rønning include
analyses of didactic praxeologies or -systems in their studies, and thus also study processes that are not
considered in Studies I-VI of this thesis.
The studies in research focus 3 also refer to the strand mathematics for engineering, especially math-

ematics service courses. Alpers (2020) and Hochmuth (2020) present overviews of the research field
in relation to this topic. Our studies can also be understood as aiming for an integration of the two
perspectives mathematics in/for engineering, especially our teaching design proposal in study VI.The
lack of connections between mathematics courses and engineering is an important research topic. A
literature review with regard to this topic was made in Study VI on pages 171ff of this thesis. Modelling
and application examples are the standard proposals to facilitate connections. In Study V, we reflect on
the standard approaches to application and modelling to make the epistemology of this relationship
accessible for discussion. Combined with epistemological reflections from Study IVwe argue that a naive
application of mathematics (see “applicationism” by Barquero, Bosch, and Gascón (2013)) or modelling
cycles (Blum& Leiss, 2007) are insufficient for our purposes. Kortemeyer (2019) and Kortemeyer and
Biehler (2022) proposes a modification of the modelling cycle that forms the basis of the Studi-Expert
solution they developed in the context of basic electrical engineering courses. They use it to analyse
mathematical exercises from basic electrical engineering courses. For the more complex exercises in signal
theory in our studies, this does not seem sufficient to us. Here, too, the relationships between the mathe-
matical practices and orientations that we have addressed cannot be adequately represented. An approach
to modelling developed within the ATD is study and research paths (SRP).This approach belongs to the
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“Questioning theWorld” (Chevallard, 2015) paradigm and generally represents an important research
area within ATD (Winsløw, Matheron, &Mercier, 2013). With reference to engineering, the work by
Bartolomé, Florensa, Bosch, and Gascón (2019), Bosch, Florensa, Markulin, and Ruiz-Munzon (2022),
and Florensa Ferrando (2018) should be mentioned here. Study and research paths is a design-based
teaching development framework, therefore thementioned studies have a different focus than the studies
collected in this thesis. Subject-specific analyses can inform the design of study and research paths.
Especially from our research perspective, the focus on a crucial question that is the start of the study and
research path and guides its processes is relevant here. This question is not only a question from a specific
context, but also a question that has the potential to challenge the content specific institutional rationales.
Although her work is thematically outside the scope of this review, I would also like to mention the study
by Jessen (2014)2. She investigates design and implementation of a bidisciplinary study and research
path combining mathematics and biology at the school level. She notes:

The SRP enables most students to make the two disciplines interact. As already said it is
crucial to choose a strong generating question that engages the students to develop the
intended praxeologies, and the quality of this choice could secure the possibility of actual
interdisciplinary work. This means that a thorough a priori analysis must be the starting
point of all bidisciplinary SRP designs since the interaction between disciplines is clearly
not obvious or automatic. (p. 216)

In my opinion, Studies I-VI collected in this thesis show how such a thorough a priori analysis could be
done. Additionally, Jessen discusses interesting questions regarding the cooperation of the mathematics-
and biology teacher:

Is it sufficient that two teachers (representing each discipline) formulate the design? or is it
necessary for the teachers to do an analysis of the didactic transposition [...] of the interplay
of the involved scientific disciplines in order to identify interdisciplinary praxeologies
combining the school disciplines? (p. 2017)

Given the institutional constraints and possibilities, which are also reflected in the “division of labour”
from Rønning’s interview, these questions are highly relevant to the collaboration between mathematics
and engineering lecturers. In a study on the views of engineers and mathematicians on the concept of
continuity, Alpers (2018) shows that there is a separation reflected in the different views ofmathematicians
teaching service courses and lecturers of the engineering faculty.

2This work is part of her dissertation thesis (Jessen, 2017).
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Before discussing the research questions in this chapter, I will first summarise the overall research contri-
bution of the studies collected in this thesis. At themethodological level, the studies show three important
developments: (1)The notion of discourse has been developed as a phenomenotechnique. This will be
discussed together with RQ1. (2) Methodological steps were elaborated to relate institutional analyses to
individual student works. This is at the essence of RQ2. (3) Results of historical-philosophical studies
were considered in order to clarify concrete subject-specific practices via higher levels of codetermination.
I will take this up when discussing RQ3.

Another contributionof the studies is the concrete demonstrationof howeachof thesemethodological
developments can be fruitfully used for praxeological analysis. Related to this is our proposal for the
graphical representation of the results of praxeological analyses. This proposal aims in particular to
make the partially intertwined different mathematical discourses explicit. These developments are now
leading to a new way of looking at the relationship between engineering and mathematics, especially
mathematics service courses. And last but not least, conclusions for teaching support and teaching
design can be drawn from all these developments, as I will elaborate in the discussion of RQ4.

Since Study I–Study V were jointly written by me and Reinhard Hochmuth and Study VI is based
on our collaboration, it is appropriate that I specify Reinhard Hochmuths and my own contribution.
Considering the three methodological developments, the elaboration of the notion of discourse from
a mere synonym of technology to a methodological tool for our praxeological analyses was mainly my
responsibility. The question how to relate institutional analyses to individual student works, especially
working out the steps based on Schwemmer (1975) andWeber (1904) was Reinhard Hochmuths work.
The same applies to working on the question how influences from higher levels of codetermination on
concrete practices can be reconstructed. References to the work of Borzeszkowski andWahsner (2012)
andWahsner and Borzeszkowski (1992) were mainly elaborated by Reinhard Hochmuth and the section
“About Mathematical Practices in Psychology” in Study IV was solely written by him. The concrete
execution of the methodological developments in praxeological analyses was my responsibility. This
includes the concrete praxeological analyses and the subject-specific elaboration of the twomathematical
discourses, taking into account references to studies by Steinmetz (1893) and Bissell (2004) and Bissell
and Dillon (2000, 2012). The same holds for the proposal of the graphical representation of our analyses
results. The development of a new view of the relationship between engineering and mathematics has
taken place across all studies. Here I cannot assign any main responsibility. But I have elaborated the
references to modelling and application in Study V.The same holds for the elaboration of the example
for teaching development based on our studies in Study VI. The idea for this example was a mutual
development, the detailed formulation was done by me. In addition, we have also developed ideas for
teaching support in the respective studies. Since these were developed in joint discussions, it is difficult
to assign responsibilities here.
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5.1. Focus 1: The subject-specific reconstruction of mathematical
practices

Two research questions are grouped under this focus, which I will discuss below. First, I will address
RQ1, for which Study II is central. In addition, the methodological contribution (1), the notion of
discourse and its concrete practical implementation for praxeological analysis will be presented. Since
Study II was worked out at the beginning of the project and the methodological concept of discourse
in particular developed over the whole period, I will also address here developments from later studies.
The same holds for descriptions of the two mathematical discourses. The best formulated description
can be found in Study VI.The central contribution for RQ2 is Study III. In this part, I also discuss the
methodological contribution (2), steps to relate institutional analyses to individual student works.

RQ1: How can mathematical practices in the module Signal Transmission be reconstructed, and what
connections, differences and interactions can be identified with regard to mathematical practices
frommathematics service courses, from basic electrical engineering courses, and newly introduced
mathematical practices?

A general observations relating to this question is the occurrence of mathematics in the electrical
engineering study programme in different institutionally situated courses. However, as mentioned in
chapter 1, it is not clear how those practices from the different courses interact in the module Signal
Transmission, how they differ and what possible connections look like. Similarly, the problem of the
disconnection between mathematics as it occurs in engineering and mathematics as it is taught in service
courses1, which is an important topic in university mathematics education research (Hochmuth, 2020;
Winsløw, Gueudet, Hochmuth, &Nardi, 2018). From our own analysis experience and from discussions
with others, the phenomenon of a potentially deficit-oriented view of the mathematical practices of
engineering students and teachers, but also of the mathematical practices in engineering textbooks,
has also become apparent. Apart from the associated (research) ethical problem that such a deficit-
oriented position more or less clearly denies engineers their own and engineering-specific justification
of such practices, this deficit-oriented view also obscures insights into the engineering-specificity of
these practices and potentially promotes problematic epistemological views. We have not systematically
explored the problem of research ethics or epistemological views of students and lecturers further. At
the institutional level, this touches on the question of the epistemological conception of the relationship
between electrical engineering and mathematics (see also “applicationism as the dominant epistemology
at university” in the works of Barquero, Bosch, &Gascón, 2013). This is discussed further under research
focus 2 with RQ3. But the aim to understand the engineering specificity of mathematical practices
in Signal Transmission courses became one of the main driving factors for our studies. At this point,
research foci 1 and 2meet: We showed that the consideration of philosophical-historical studies is suitable
for clarifying this engineering specificity to some extent with regard to the historical-societal development
located at higher levels of codetermination. This is the core of research focus 2, to which I will return
below. In the following, the first research focus aims at a detailed subject-specific praxeological analysis.
Thus, while focus 2 elucidates influences from higher levels of codetermination, in focus 1 we carry out a
detailed differentiation with regard to different institutional influences at the level of the praxeological
model.
1This aspect is explored further under RQ4.
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The answer to RQ1 touches on the three levels of theory, methodology and method: The extension of
the praxeological model reflects our methodological developments at the theoretical level. The starting
point for this development were methodical problems that we encountered in the analysis of the lecturer
sample solutions2: A central methodical step of a praxeological analysis is the assignment of praxeological
elements (i.e. type of task, techniques, technologies, and theory) to segments of a text. In our analyses
we mainly focus on techniques and technologies . The texts we analysed are lecturer sample solutions or
textbooks of Signal Transmission, and the segments are text passages in textbooks or solution steps in the
lecturer sample solutions like the transformation of an algebraic expression. One transformation in the
solution to the amplitude modulation exercise is particularly interesting and suitable to illustrate our
methodological approach: The transformation from line (2) to line (3), see e.g. the appendix of Study
VI on pages 187–188. In the following I will focus on this step. For the full analysis see Study II and
Study III3. Highlights of the analysis are also given in Study IV, Study V, and Study VI each to illustrate
aspects to address the different questions of the studies.
The techniques that we could assign to this transformation from line (2) to line (3) are techniques

taught in themathematics service course. This step is only possible becausewe as researchers can recognise
and explain these techniques in a way that makes it possible to relate them to the mathematics service
course. This requires two things: firstly, an analysis of the content of the mathematics service course
to be sure that the corresponding techniques4 can be related to it. We have done this based on the
corresponding course materials, see chapter 2. And secondly, the recognition and explanation of the
mathematical techniques themselves, based, among other things, on the institutional situatedness of the
researcher. Researchers in mathematics education are often representatives (understood as institutional
position within ATD) of the institution academic mathematics5. The mathematics education researcher
as a representative of academic mathematics, who takes the exogenous didactic transposition (Artaud,
2020) from academic mathematics to the mathematics service course of the electrical engineering study
programme (cf. Figure 3.4) into account is then able to recognise and explain mathematical steps in
a solution and assign techniques from the mathematics service course. Here I would like to make a
brief comment on the aspect of explaining. With reference to the theory of rational explanation by
Schwemmer (1975), “an action is explained precisely when the ‘calculations’ (Dray) that led to it are
reconstructed, i.e. when they can be interpreted as means to an end pursued by the agent.” (p. 45,
translated fromGerman by J.P.). Since we are looking at a lecturer sample solution, that is, institutionally
accepted adequate techniques and technologies, the means and ends are the institutional means and
ends. The “agent” is not seen as an individual but a representative of institutionally accepted knowledge.
In research focus 2, where we analysed students’ solutions, this is no longer the case. Therefore, in Study
III, we introduced methodological steps to deal with the situation.

Interestingly, this transformation makes a “clearly” structured mathematical expression more “compli-
cated”. The overall task of this exercise is to draw a phasor diagram and, again from amathematics service
2In Study V, we presented the extended praxeological model by exemplifying part of the analysis and introducing our
extensions at the point in the analysis where the extension became necessary. Introducing aspects of the research framework
integrated with an illustrative excerpt of analysis is well suited to describe this methodological development triggered by
methodical difficulties (cf. pages 161ff of this thesis)

3The analyses in those two studies differ a bit as they address different questions. We slightly reworked the analysis for Study
III to focus our research interest in this study.

4In this example, only techniques are considered for now. But in the context of the overall analysis, technologies of the
mathematics service course also play a role, of course.

5Scholarly mathematics in the model of the didactic transposition.
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course perspective and how drawing phasor diagrams was introduced there, it seemed to be much easier
to draw this diagram from the less complicated algebraic expression6. So we couldn’t assign technologies
that justify or explain this step from the perspective of the mathematics service course. To be able to
do so we had to look for the electrical engineering reasoning (means and ends) behind this transforma-
tion. Analyses of the course material from Signal Transmission served as a basis here. In principle, this
transformation allows to draw the phasor diagram in a way to graphically represent important aspects of
amplitude modulation. Relevant for this step is knowledge about how the two different frequencies are
assigned to message- and carrier signal, how the relationship between those two signals is defined by the
modulation process, and how this is reflected in the multiplication and the additions in the mathematical
expression (see also the description of AmplitudeModulation in section 2.2). Complex numbers and
how they are used in electrical engineering became a central topic, so we took textbooks from basic
electrical engineering courses (especially GET II, cf. chapter 2), historical studies by Bissell (2004) and
Bissell and Dillon (2000, 2012), and original historical documents (Steinmetz, 1893) into account. Thus,
we could describe the institutional relation of electrical engineering to complex numbers and show how
this relation differs from the institutional relation of the mathematics service course to complex numbers
(see section 28.2.2.1 in Study VI, on pages 176ff of this thesis for a detailed description.).

From this institutional electrical engineering perspective, we could assign technologies to this step in
the sample solution because we have reconstructed mathematical ends and means specific to electrical
engineering based on endogenous didactical transpositions (Artaud, 2020). In order to distinguish be-
tween the different institutional references, we have given the techniques and technologies corresponding
indices: HM referring to themathematics service course and ET referring to electrical engineering courses
(see footnote 6 on page 20). In order to be able to describe these different institutional conceptions of
mathematical practices well in our work, we have introduced the notions of institutional mathematical
ET-discourse and institutional mathematical HM-discourse.
I understand discourse as a methodological tool that bundles certain aspects of models that already

exist in ATD7. The starting point is the informal notion of discourse within ATD: Here, the term
discourse is already used in the etymological sense, e.g. in expressions such as “reasoning discourse”,
according to Bosch and Gascón (2014, p. 68). Chevallard (2019) also refers to the etymological origin in
“logos”:

To understand a given technique τ is to understand why τ requires to perform the task t1
(using the technique τ1), then the task t2 (adopting the technique τ2), and so on – we sup-
pose here that performing τ on t equates to performing the succession of tasks t1, t2, . . . , tn.
To understand (why) τ amounts to understanding why performing t1, t2, . . . , tn add up to
performing t. To this need responds in the position p of I a “discourse” on τ that purports
to explain τ, that is an account of τ that claims to “make it clear.” It is such a discourse,
that can vary from institution to institution, and even from position to position within a
given institution, that is called a technology of the technique τ and is denoted by the Greek
letter θ (theta). (p. 87)

Thus, an institutional mathematical discourse refers to mathematical technologies that are justified
in that specific institution. Since technologies and techniques are dialectically related, we can also
6In Study III we look at students’ solutions to this exercise and, in fact, there is one student who tries exactly this and fails to
produce an adequate diagram: See Figure 9 on page 105 of this thesis.

7The reflections on the concept of discourse also go back to my unpublished master’s thesis (Peters, 2021).
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assign techniques according to the specific institutional discourse. In order to justify the assignment
of a technique or technology to a specific institutional discourse, it is necessary to describe the relevant
institutional knowledge and to characterise its institutional specificity. This is based on theATDprinciple
of institutional relativity. Modelling tools ofATDthatweused tofleshout this institutional specificity are:
The scope of techniques, different raisons d’être, processes of exogenous- and endogenous transpositions
(Artaud, 2020), and research on external- and internal didactic transposition processes. We also used
historical and philosophical studies (Bissell, 2004; Bissell & Dillon, 2000, 2012; Borzeszkowski &
Wahsner, 2012; Wahsner & Borzeszkowski, 1992) and historical documents (e.g. Dirac, 1981; Steinmetz,
1893), which are particularly useful for, besides other, identifying raisons d’être.

This approach is based on the institutional situatedness of the researcher, self-reflection and the explicit
analysis of institutional conditions that are probably initially alien (e.g. electrical engineering ends and
means of mathematical actions that are results of endogenous and internal (didactical) transpositions) to
the researcher. In some of its aspects this opposes the standard approach of ATD to construct a reference
epistemological model (see also REM on page 21). The REM is meant to help facilitating a detachment
from the social reality under investigation. Bosch (2015) underlines the importance of the researcher
emancipating herself from the prevailing societal reality:

I will call it the “detachment” principle, after the work of the German sociologist Nor-
bert Elias (1987). Because researchers in didactics deal with a reality that takes place in
social institutions, and because they often participate at these institutions (as researchers,
teachers, students, or in several positions at the same time), we need to protect ourselves–
to emancipate–from the institutional points of view about this reality, that is, from the
common-sense models used to understand it. (p. 52)

Here, emancipation is understood as detachment, the researcher’s position is “outside” the studied
system. The reconstruction of institutional discourses is based to some extent on the involvement of
the researcher in institutional conditions in order to be able to identify ends and means that are not
part of her own institutional situatedness. In order to provide some justification for this approach, I
would like to refer here to Schlaudt (2014)8, who also deals with everyday realism in his book “Was ist
empirischeWahrheit” (What is empirical truth). He states that we can only be (naive) realists in everyday
life because we locate ourselves in an epistemic distance to this world from the outset (p. 44). He quotes
Holzkamp (1973), who puts it this way: “The world-relation of conscious knowledge implies a distance
of the knower from the object of knowledge, through which the human being can reflectively grasp
himself in his relation to the world and to other people9” (p. 157). And if everyday knowledge is possible
on the basis of this reflected epistemic distance, research is even more so.
However, it is unclear and would be interesting to be discussed what similarities the reconstruction

of institutional discourses and the construction of REMs share. For example, the construction of a
REM seems to require reflection on one’s own institutional situatedness too. Otherwise, academic
mathematics would be naively set as a naturalised reference. I have already referred to this point in the
introduction of didactic transposition on page 25. From the perspective of the REMmethodology, the
8This reference to Schlaudt and everyday realism at this point is somewhat artificial and also not necessary in the course of the
text so far. I will refer to Schlaudt’s pragmatic theory of truth in the discussion of RQ3 and briefly justify why it is useful
for our studies and also compatible with ATD.

9Das Weltverhältnis des gewußten Wissens impliziert eine Distanz des Erkennenden zum Erkenntnisgegenstand, durch
welche der Mensch sich selbst in seiner Beziehung zur Welt und zu anderenMenschen reflektierend erfassen kann

35



5. Discussion of the research questions

mathematical ET-discourse could possibly be interpreted as the dominant epistemological model (DEM)
of the electrical engineering institution. According to Lucas, Fonseca, Gascón, and Schneider (2019),

[t]he DEM of a domain of the mathematical activity assigns an official raison d’être to
it–that is, a set of possible questions whose answer requires, in an essential way, the use of
the knowledge components of that domain and, consequently, gives meaning to the school
study of the domain. Both the DEM and the official raison d’être (of this domain in I) are
usually quit transparent to and unquestioned by the subjects of I (p.78 ).

Both methodological approaches can be seen as phenomenotechniques in the sense of Bachelard. But
both produce different didactical phenomena. The REM is usually meant to serve as a reference for a
comparison with the institutional knowledge to be taught or actually taught (the DEM).The identified
differences are probably understood in the form of deficits (incompletenesses, limitations and contradic-
tions, see Lucas et al. (2019, p. 78)). This is then usually referred to in the design of teaching environments
or tasks that are intended to overcome these deficits. The focus on these kinds of phenomena and didactic
questions is certainly justified, but the possible tendency towards a deficit-oriented view of the DEM
should be reflected.

Our methodological approach enables us to ask a different kind of questions and to focus on another
kind of phenomena. In our ATD analyses in the context of Signal Transmission, we are not concerned
with identifying the “incomplete, limited, or contradictory” nature of the mathematics found in signal
theory in order to make a proposal for better teaching of signal theory or related mathematics service
courses that overcomes those. Our question, and it is in this context that the need for a methodological
notion of discourse has arisen, is that of an understanding of and the relationship of institutionally
different subject-specificmathematical practices. This, of course, also enables the development of learning
environments and tasks, see focus 3.
By analysing two lecturer sample solutions in Study II, we showed that an extended praxeological

model is suitable for reconstructing institutional mathematical practices that show references to practices
of mathematics service courses (HM) and to practices of other electrical engineering courses (ET), see
also page 22: [

T,
τHM, θHM

τET, θET
,Θ

]
SST

Twomathematical institutional discourses could be characterised: a mathematical HM-discourse and a
mathematical ET-discourse. In terms of the two tasks and their solutions, the characterisations of the
two mathematical discourses address identifiable differences and are sufficiently precise for this purpose.
In our analyses, these two discourses are intermingled inmany ways10. We referred to these as types: Type
a) HM technique as a moment of an ET-discourse [T, τHM , θET ,Θ], Type b) ET technique as a moment
of an ET-discourse [T, τET , θET ,Θ], and Type c) HM technique as a moment of an HM-discourse
[T, τHM , θHM ,Θ].
Based on the extended praxeological model, we have developed a graphical presentation of our analysis

results. In addition to the textual presentation of analysis results, tables are also common in ATD studies
to present praxeological analysis results. However, in the case of very complex analyses, a table can be

10This detailed differentiation does not seem to me to be achievable with the REM/DEMmethodology.
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confusing and, due to the linear presentation, does not clarify the interrelationships of the praxeological
elements (e.g. techniques differentiated into subtasks) as well. I used the CmapTools programme11 to

Figure 5.1.: Schema for the graphical representation of a potential praxeological analysis

draw the diagrams of the analyses results. For a better graphical representation, the extended praxeological
model is tilted on its side, see the example in Figure 5.1: tasks are on top, all techniques necessary to solve
the task are in the second line, below each technique is the corresponding technology, and theory aspects
at the bottom. Performing a complex technique can become a task in itself. In these cases we have also
assigned techniques, technologies and theoretical aspects. To indicate the two different mathematical
discourses, I have used different colours (or shades of grey), indices and slightly different geometric
shapes. The diagrams usually start at the top or in the dark framed rectangle. The different solution
steps are shown one after the other by technique-technology pairs from left to right. Sometimes subtasks
branch off, usually drawn below the main task (sometimes I deviate from this to make good use of
space). The subdivision of the text to be analysed into sequences, for example into solution steps, and the
differentiation of subtasks are each analytical steps. These may vary depending on the research interest,
see for example the slightly different analyses of the amplitude modulation task in Study II and Study III.
As such, they are of course open to discussion. An interpretation of the result of the analysis can now,
on the one hand, concern the individual detailed praxeologies, but on the other hand, think of these
praxeologies as integrated again. Diagrams of praxeological analyses in the studies can be found on the
following pages:

• Task about the envelope demodulator: in Study II on page 76.

• Task about amplitude modulation: in Study II on page 78 and in Study III on page 98.

We also used the diagram of the analysis of the amplitude modulation task in Study III as a scheme of
reference to analyse the students’ solutions. We produced similar diagrams for the students’ solutions
and marked the found differences, see pages 103ff. I will elaborate on this in the following discussion of
the second research question:

11https://cmap.ihmc.us/
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RQ2: How can analysis results of institutional mathematical practices be related to individual students’
actions?

ATD focuses on institutional knowledge and provides models to research this in a variety of ways. In
discussing the first research question, I have shown how in exercise solutions references can be made
to different institutions relevant to the engineering study programme. We have modelled these refer-
ences with two different institutional mathematical discourses that are intertwined in these praxeologies
modelling the exercise solutions. Solving these exercises is also about integrating the respective institu-
tional mathematical discourses and transforming them into significant mathematical practices for Signal
Transmission (SST praxeologies). Thus, the question arises whether the steps at which the different
mathematical discourses each occur and interact with each other could be possible breaking points
in the students’ solution processes. The knowledge of individuals is not central to ATD.The notion
of the personal relation to an object of knowledge can be used to distinguish individual actions from
institutional praxeologies. The most important aspect here is that the personal relation to an object of
knowledge should become conform to the institutional one, but this conformity should not be mistaken
for identity12. We could consider the sample solutions written by the lecturers as institutionally accepted
knowledge because of their institutional position. This changes when we look at the students’ solutions,
because a student’s institutional position implies that the knowledge expressed must be validated against
the institutionally recognised knowledge. In educational institutions, the validation is done, among
other things, through the correction of exercises and through exams. In our studies we have not focused
on these, or other aspects of validation. What is important for us is the different status of the texts to be
analysed (i.e. the students’ solutions) and the importance of taking this into account methodologically.
To explain students’ actions, we have to reconstruct means and ends pursued by them (cf. Schwemmer
(1975)) and cannot simply identify them with the institutional ones. However, although individuals
do not need to reproduce the specific institutional praxeologies (in the sense of identity), they provide
points of reference for their actual practices (conformity). Therefore, institutional praxeological analyses
results are important points of references for analyses of individual students’ works.

In Study III we refer to Weber’s 1904 concept of ideal type and

interpret the twomathematical discourses as ideal types and theunderlying characterisations
of the discourses as a result of “mental enhancements” regarding aspects of mathematical
practices within specified institutional contexts. Furthermore, we use the two ideal typical
mathematical discourses as heuristics for our subject-specific analyses of the exercises and the
student solutions as well as to formulate hypotheses. Thus, followingWeber’s formulation,
we assume that the ideal typical discourses are to a certain extent effective and represent a
means of expressing something real in sample solutions and students works on exercises.
Thereby the relevance of this something in individual productions cannot be substantiated
by the ideal typical discourses themselves, but has to be shown in the individual productions
in a concrete and subject-specific way. (p. 245)

In this study, we alsomake twomethodological remarks that are also important beyond this specific study
(p. 245): 1. From a subject-specific point of view, the emergence has to be shown in the specific context
of exercises and related praxeologies. For example, it could be shown empirically that a subject-specific

12See also the quote by Chevallard (1992) on page 19.
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context cannot be reconstructed as a particular case of the application ofmathematical discourses. 2.With
regard to the question of whether a student experiences the identified aspects as such, corresponding
claims are accessible to empirical criticism. It might thus be possible to prove empirically that the
connections formulated by means of mathematical discourses do not contribute to the understanding of
students’ thoughts about their actions.
Regarding the subjective experiences of the students in 2., we would have to consider different data

material, for example interviews, and other research frameworks. In our studies we refer to the works of
Holzkamp (1985, 1995) who enables, among other things, the reconstruction of subject-related patterns
of reasoning. The analyses we have presented in our studies would then, in terms of research logic,
be prerequisites for such reconstructions of subjective reasoning patterns (see also Hochmuth (2018)
and Hochmuth and Schreiber (2015)). In Study III we focussed on 1., the subject-specific aspect. We
proposed four steps, based on Schwemmer’s 1976 theory of rational explanation, to guide analyses of
students’ works:

1. At the institutional level, praxeologies are to be identified and connected to ideal typical discourses.

2. Hypotheses in the specific context of signal theory or the exercises are to be formulated.

3. Concrete material (exercises, sample solutions and students’ solutions) is to be validated with
regard to corresponding observations.

4. If these are available, concrete material can be explained on this basis.

For step 1 we reworked the praxeological analysis of the lecturer sample solution to the amplitude
modulation task. We also presented our analysis result graphically and used this graphical representation
as a scheme for presenting the analyses of the students’ solutions: Praxeological aspects that we could
not identify in the student solutions, because the data did not provide this, were crossed out in the
corresponding diagram. Aspects that could be identified in the student solution and correspond to
the aspects in the lecturer sample solution were displayed without specific marking. Aspects that were
present but different were circled with dashes. Step 3 required in particular to justify and argue the
correspondence between observations in the students’ solutions and aspects of the lecturer’s sample
solution, as well as the difference of aspects in the students’ solutions to the lecturer’s sample solution
with reference the two mathematical discourses. See pages 103ff of this thesis for the full analysis.

Unlike the first research question, I consider the REM approach appropriate here. We used the
results of the institutional praxeological analysis as a reference for the analysis of students’ solutions.
The identified differences and similarities become important when the question of conformity with
institutional praxeologies becomes relevant. As a reference point for this conformity, we have used the
analysis result of RQ1, where we have particularly taken into account the engineering specificity of
mathematical practices.
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5.2. Focus 2: The epistemological and philosophical relationship
between mathematics and electrical engineering

In focus 1, especially under RQ1, we investigated the engineering specificity of mathematical practices
and were able to work out detailed references to two different institutional mathematical discourses. I
will now shift the perspective from a detailed subject-specific reconstruction to the influences of higher
levels of codetermination on the engineering specificity of mathematical practices. The reconstruction of
influences from higher levels of codetermination (cf. Figure 3.1) poses a certain problem in the ATD:The
reference epistemological model (REM) the standard approach in ATD, is an important and valuable
methodology, we also used it when analysing students’ solutions. But it has certain limitations. One
limitation is that this approachmetaphorically positions the researcher “outside” the system she studies to
enable her to identify differences with respect to a reference model that serves as a phenomenotechnique.
If we are interested in influences, conditions and constraints from higher levels of codetermination
this detachment becomes more difficult or even impossible. Bosch (2019), speaking about changes at
different levels of codetermination necessary for changing the organisation of study processes, notes that
“[t]hose at the level of civilisations are possibly the most hidden ones, since they correspond to beliefs or
assumptions that are difficult to identify, unless we move to another civilisation, through the space or
the time” (p. 4051).
In our work we most notably refer to studies by Borzeszkowski and Wahsner (2012) and Wahsner

and Borzeszkowski (1992) who raise several epistemological issues which must be resolved in each
mathematics based field that intends to describe aspects of “nature”. How those aspects are resolved
in each field has then influences on the concrete formation of practices within the historical process of
the development of the field. This can also be interpreted as being part of the endogenous transposition
process (Artaud, 2020). This is the basis of the third research question and addressed in Study I and
Study IV:

RQ3: How can epistemological and philosophical studies contribute to analyses of mathematical practices
in electrical engineering courses and how can this lead to an alternative conceptualisation of the
relationship between mathematics and engineering?

The short answer to this question is thatwe understandmathematical practices in electrical engineering
as results of historical societal processes, which also go back to these respective engineering specific
resolutions of epistemological issues. Therefore, referring to epistemological and philosophical studies
can specifically enrich the logos-block in praxeological analyses and contribute to a wider understanding
of actual justifications of practices. In Study I we illustrated this with an analysis of the introduction of
the Dirac delta impulse in the textbook by Fettweis (1996). Summarising our findings, the technological-
theoretical discourse is a mixture of higher mathematics ideas, engineering reasoning13 and a principle
concerning the interplay between real- and idealised signals reflecting the connection of mathematics and
physics in general. The praxeological analysis can be found on pages 130ff of this thesis, an unpublished
graphical representation of this analysis is given in Figure 7.1. In section 2.1 I noted that the interplay
between real signals, which are in principle measurable and observable, and idealised signals, which are

13In Study I, we distinguished between higher mathematical ideas and engineering reasoning. In particular, we had not yet
understood engineering reasoning as mathematical ET-discourse.
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neither observable nor measurable, is important for the justification of a pragmatic introduction of the
Dirac delta impulse. In Study IV we summarise

But the central point in our argumentation is not that distribution theory is not used
here as the basis for justification, which would correspond to a rather deficit-oriented
view. Rather, our point is that the electrotechnical mathematics discourse, in its reference
to empirical objects, not only allows for a justification of the step, but also establishes
a reference of symbols and argumentation to empirical objects and contexts. A purely
distribution-theoretical argumentation could not make this possible. (p. 336)

In Study IV we refer to the pragmatic theory of truth by Schlaudt (2014) and historic-philosophical
studies byWahsner and Borzeszkowski (1992) to reflect on the relationship of mathematics and empirical
sciences, especially physics. Since physics and electrical engineering have important properties in common
with regard to the following considerations, I consider the reference to physics appropriate at this point.
According to Schlaudt (2014), empirical truth consists in the mastery of objective means to achieve
subjective14 (respectively intersubjective) ends (p. 160, translated fromGerman by J.P.). A statement is
thus considered true, or valid accepted knowledge, if it offers a successful action procedure. Schlaudt
gives the example of a weight measurement. The statement “yweighs 5 kg” does not mean here that the
numerical property 5 kg is assigned to the object y but provides information about the behaviour of y, i.e.
about what effect the object y has, had and will have on this scale under standard conditions (calibrated,
undisturbed scale). (p. 158/9). Schlaudt’s philosophy of truth is thus well compatible with ATD15. In
Study IV we write

Mathematics abstracts from behaviour and focuses on the pure quantity as well as presup-
poses the existence of objects in an axiomatic system of relations. But empirical sciences
cannot “forget” these constituents. Instead, they are inherently reflected in the practices by
constituting, incorporating and framing specific mathematical practices. ... [In empirical
sciences, J.P.], truth (valid knowledge) must always establish a reference beyond theory.
Empirical sciences cannot be divided into an empirical (non-mathematical) part that regu-
lates the relationship to reality and a mathematical part that is free of this relationship to
reality. (p. 330/1)

Thus, on an epistemological level, it is at least made clear that the relationship between electrical engi-
neering and mathematics cannot be understood as a naive application of mathematics (applicationism,
cf. the work by Barquero, Bosch, and Gascón (2013)) or as separate worlds (modelling cycles, e.g. by
Blum and Leiss (2007)).

From the ATD perspective, I base the understanding of this relationship on the acknowledgement of
the mathematical practices of engineers as institutional mathematical practices in their own right and

14The relationship between objectivity and subjectivity in Schlaudt’s theory of truth cannot be presented here. I would like to
quote only one short sentence that may be suitable to counteract misunderstandings that this theory of truth is subjectivist:
Truth depends “not on the skill of the individual, but on what is socially possible” (p. 159, translated fromGerman by J.P.).

15Job and Schneider (2014) also refer to a pragmatic perspective, although differently than Schlaudt. They “envision the
development of calculus as an epistemological transition between two types of praxeologies, pragmatic and deductive, a
praxeology being an anthropological and epistemologicalmodel of knowledge” (p. 635). This also fitswell with the presented
perspectives I discussed at the introduction of the Dirac delta impulse, where limit and integration are interchanged at one
step, see section 2.1.
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with engineering-specific conceptualisations of mathematical knowledge. In our analyses (see Focus
1), we showed that the engineering-specificity of the mathematical practices in the Signal Transmission
courses could be reconstructed as a mixture of mathematical practices related to academic mathematics
(the HM discourse) and mathematical practices related to mathematics developed within engineering
institutions (the ET discourse).

5.3. Focus 3: Revisiting the relationship between mathematics
and electrical engineering

In research foci 1 and 2, the aim was to model mathematical practices in a subject-specific way and to
relate their justifications also to societal influences of higher levels of codetermination. We have developed
an understanding of the relationship between mathematics and electrical engineering that enables us to
work out the engineering specificity of mathematical practices. I have interpreted our methodological
developments as phenomenotechnique in the sense of Bachelard, see also footnote 8 on page 21. With
the elaboration of new phenomena, one can now also ask corresponding didactic questions. In this
third focus, I take this new understanding of the relationship, and the reconstructed two mathematical
discourses as a starting point for exploring the possibilities for teaching design and lecturer support:

RQ4: How can institutional analyses of mathematical practices and an alternative conceptualisation of
the relationship between mathematics and engineering contribute to teaching design and lecturer
support?

In StudyV,wemade initial reflections on application andmodelling, which are commonly used in studies
of mathematics education in engineering to capture the relationship between mathematics and engineer-
ing, and to serve for the improvement of learning and for teaching design (Alpers, 2020). Our aim in this
study is to make the epistemology of this relationship accessible for discussion. In summary, the standard
approaches of modelling and application have the following problem: “Application and modelling both
entail a conceptualisation of electrical engineering knowledge as consisting of inner-mathematically
justified mathematical practices and extra-mathematical engineering knowledge” (Peters andHochmuth,
2022, p. 123). In this understanding, the mathematical practices are learned in mathematics service
courses and later applied in the engineering context. And the extra-mathematical engineering knowledge
provides the application context or the source of themodelling problem. This characterisation is certainly
an exaggeration, but I think it highlights the problem of the separation of “mathematics” from “the
rest of the world”, or the problem of the idea of an application of mathematical concepts that remain
unchanged. In Study V we also refer to understandings of modelling (e.g. Bissell & Dillon, 2000) and
application (e.g. Rønning, 2022; Schmidt &Winsløw, 2021) that differ from this problematic one. We
also present an ATD based approach to modelling that takes an epistemological and institutional point
of view and can be connected to the ATD notion of study and research paths (e.g. Bartolomé, Florensa,
Bosch, & Gascón, 2019; Chevallard, 2006; Florensa Ferrando, 2018). Study and research paths focus
on a crucial initial question that guides the learning process and have the potential to question the the
content specific institutional rationales.

The considerations in Study V make general epistemological backgrounds explicit and thus accessible
for discussions in the context of teaching design and lecturer support. In Study I and Study IV, we also
worked out what it means for electrical engineering mathematical practices to be pragmatic. Pragmatic
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does not necessarilymean that themathematical practices cannot be represented as adequately aswouldbe
necessary from a academic mathematics point of view, but due to the time constraints and conditions of
engineering study programmes, one simply has to deviate from this. Pragmatic, as we have worked it out,
means that the mathematical practices of electrical engineering have been developed as historic-specific
manifestation in societal institutionalised teaching contexts with a view to solve epistemological problems
specific to engineering. In their pragmatics, they fulfil subject-specific purposes. These subject-specific
purposes can then be addressed explicitly in the teaching. Both, mathematics and electrical engineering
(or physics) have a relevant part in solving these epistemological issues. This represents something to be
learned, and references to historical-philosophical work can help to highlight these aspects, for example
as part of logos blocks of praxeologies, and thus make them accessible for teaching. This could, for
example, also enrich the search for rich and fruitful initial questions for SRPs. These aspects are obscured
if the relationship between electrical engineering and mathematics is only understood in terms of (naive)
application or modelling.
In Study VI, I take our findings on the two mathematical discourses as a starting point and show,

with the formulation of a concrete example, how tasks from the mathematics service course can be
modified to potentially promote connections between mathematics and electrical engineering. The
core idea of this approach is to bring aspects of the mathematical ET-discourse into the mathematical
HM-discourse without adopting the engineering context. In the worked example I show this with the
topic complex numbers. Here the two mathematical discourses differ, for example, in the raisons d’être
for complex numbers. In themathematics service course, complex numbers allow for generalisation, they
are useful to solve equations, and they are formal objects of calculation. Phasor representations serve to
illustrate calculation rules, and the Euler equation eiφ = cos(φ) + sin(φ)i is introduced as a convenient
abbreviation (pointwise). In electrical engineering complex numbers are, among other things, central
to describe periodic signals. This aspect is not present in the HM-discourse, but can be introduced by
using complex numbers to describe closed curves. In Study VI, an existing task on ellipses from the
service course, which was originally only intended to train students to transform an unusual expression
into a known formula, is modified to enable students to explore this new, engineering related, aspects of
complex numbers. This modified exercise contains, in particular, rotational aspects of complex numbers
that have not been covered in the mathematics course so far. An important aspect that is also central to
this exercise modification, but cannot be elaborated on here, is that this new exercise is still purely an
inner-mathematical exercise without any electrical engineering context.
In addition to the exercise modification proposal in Study VI, we also made suggestions in Study II

and Study III on how institutional analyses could be fruitfully used in teaching support and exercise
design: The analysis of the two exercises in Study II has shown that the two mathematical discourses
can be reconstructed in lecturer sample solutions. In particular, the graphical representation of the
analysis results makes their intertwining explicit. This can reveal discourse switches and associated
passages in the solution process that may represent structural obstacles. These can be addressed explicitly
in class. If students have difficulties with these structural hurdles in their solution process, this can
be explicitly addressed. Difficulties with techniques, for example, can also be considered with the
justifying and explaining technologies and located in the respective discourse. In Study III we worked
out methodological steps that enabled us to use the institutional analysis results to explain students
solutions. Our use of the graphical representation of our analysis results as a schema for the analysis of
student solutions could, in a simplified form, also be used by lecturers to give individual feedback.
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Epilogue: Sometimes mathematics is
different - Some perspectives

At the beginning (p. 7), I formulated the general research interest: How can we understand the mathe-
matical practices in electrical engineering courses at University while avoiding a deficit-oriented perspective
from the point of view of academic mathematics? This has now been discussed with regard to the three
research foci. Our aim to avoid a deficit-oriented perspective from the point of view of academic mathe-
matics allowed us to shine a light on the pragmatic role of mathematical practices in engineering and
the intermingling of the two mathematical discourses. Our understanding of pragmatic does not mean
that every practice that deviates from academic mathematical rigour is simply justified as pragmatic.
Not every vague step in a textbook is clear from the perspective of the ET-discourse, not every “wrong”
transformation from the perspective of the HM-discourse can be explained from the ET-discourse. The
means must be institutionally recognised, as must the ends. The recognising institution here is not
necessarily, naturally, and unquestioningly academic mathematics. This enables us to ask questions like:
are identified deviations or vague steps justified mathematical practices in electrical engineering? If so,
how do these differ frommathematical practices taught in the mathematics service courses? Could these
differences be made fruitful for teaching? But we can also ask the same questions to practices taught
in the mathematics service courses. Are they actually also meaningful practices in terms of electrical
engineering means and ends? Praxeological analyses of higher level electrical engineering courses can also
identify HM-techniques and logos aspects that are particularly relevant. This does not mean that logos
aspects that do not appear should be dropped from the mathematics service courses. The HM-discourse
is characterised by a rather close relationship to academic mathematics and this should be maintained1.
The justificatory and argumentative power of mathematical proofs, rigour and other logos aspects is
still important. But the question can now be, which aspects of praxeologies one wants to keep, even if
they no longer occur later, and what didactic purpose this serves. And which ones should be dropped in
favour for other things.
To continue the idea from Study VI, one would now need to identify engineering raisons d’etre and

other ET-discourse aspects that could be integrated into mathematics service courses in a compatible way,
analogous to the example in StudyVI. After the very focused analyses in the studies collected in this thesis,
this would now have to be pursued more broadly across all topics from the mathematics service courses.

1Of course, this position can also be questioned. I want to present a short argument whymaintaining this orientation towards
academicmathematicsmight be desirable: The first one is connected to Fettweis’ dilemma. Referring tomathematical rigour
had an important function and, besides other, enabled him to deviate from it when introducing the Dirac delta impulse.
References to distribution theory for a mathematically sound introduction require students to trust the mathematical
rigour without checking it themselves. Experiences with mathematical rigour and the power of proof in other, more
accessible topics can help to build and foster this trust. A similar argument, but focussing the societal need for trust, is
given by Bissell and Dillon (2000): “One reason arises from seeing the operation of communities of professional practice
in terms of trust (Porter, 1996). Engineers, scientists, doctors – professional groupings – need to establish a tradition of
trust within wider society – if only because technical matters cannot be resolved elsewhere.” (p. 10).
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Since mathematics service courses usually have students from different engineering study programmes,
potential engineering discourses from other engineering disciplines would also have to be considered.
Studies from the engineering mathematics education community can serve as fruitful reference points
for interesting topics and logos aspects. I think the methodological approaches developed in our studies
could also be fruitful for the design of study and research paths or projects as presented by Rønning
(2022).

Small-scale exercise redesign approaches as presented in Study VI can become alternatives to more
complex course design approaches that are always in danger of coming into conflictwith rigid institutional
conditions2, see also the considerations by Barquero, Bosch, and Gascón (2013). A distinctive feature of
the approach presented in Study VI is “that identified important aspects from engineering mathematical
practices are brought into the mathematics service course without also introducing the engineering
context” (p. 583). It would be interesting to study if this this approach allows to promote meaningful
connections between engineering and mathematics service courses, while maintaining the division
of labour mentioned by Rønning (2022). The idea of division of labour is strongly related to the
institutional relativity of knowledge and, on the organisational level also to the institutional separation of
mathematics service courses and engineering courses. Therefore, helping to maintain division of labour
has the potential to consolidate existing institutional structures and can thus also prevent changes. On
the other hand, institutional conditions of this magnitude are difficult, if not impossible, to change.
Therefore, I see this more as an extension of action possibilities under existing conditions. Subject science
(Schraube &Osterkamp, 2013), which is well compatible with ATD (Hochmuth, 2018; Hochmuth &
Schreiber, 2015), provides a very well elaborated framework to explore such questions about lecturers’
action possibilities in addition to subject-specific analyses.

In addition to research projects, our work also offers possibilities for the development of professional
development for lecturers. We have already worked in this direction: Ruge and Peters (2021) developed
an understanding of professional development that is based on subject science, which, among other
things, adopts a view of professional development that goes beyond the derivation of practical and
applicable tools from research. The approaches presented in this thesis do not provide directly applicable
tools either. Instead, they showhow there is potential for lecturer development in the process of analysing
the respective institutional mathematical discourses and reflecting on the institutional situatedness of
mathematical practices. As part of the European project PLATINUM 3, which aims to develop inquiry-
based mathematics education (IBME), we have developed a professional development workshop for
lecturers (I. Gómez-Chacón, Hochmuth, Rogovchenko, & Brouwer, 2021). A tool in the form of a
table was designed to facilitate reflections on IBME aspects of exercises with a view to redesign. Among
the characteristics of IBME we suggested for reflection were “enabling discourses on techniques” and
“enabling interdisciplinary knowledge linking” (p. 131). Together with our colleagues from Spain, who
developed a similar workshop at the Complutense University in Madrid as part of the PLATINUM
project, we cooperatively developed a follow-upworkshop thatwas held inMadrid (I.M.Gómez-Chacón,
Hochmuth, & Peters, 2022). The methodological developments presented in this thesis could serve to
develop this further.

2See also the discussion in Study VI.
3https://platinum.uia.no/
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6. The subject-specific reconstruction of
mathematical practices

Study II: Praxeologische Analysen mathematischer Praktiken in
der Signaltheorie

Study II has first been published as Peters, J., & Hochmuth, R. (2021). Praxeologische Analysen
mathematischer Praktiken in der Signaltheorie. In R. Biehler, A. Eichler, R. Hochmuth, S. Rach, &
N. Schaper (Eds.), Lehrinnovationen in der Hochschulmathematik: praxisrelevant – didaktisch fundiert –
forschungsbasiert (pp. 109–139). Springer Spektrum. https://doi.org/10.1007/978-3-662-62854-6_6.

Study III: On the Analysis of Mathematical Practices in Signal
Theory Courses

Study III has first been published asHochmuth, R., & Peters, J. (2021). On the Analysis ofMathematical
Practices in SignalTheory Courses. International Journal of Research in UndergraduateMathematics
Education, 7 (2), 235–260. https://doi.org/10.1007/s40753-021-00138-9.
Reproduced with permission from Springer Nature.

Remarks on the figures

The illustrations in this publication are inconveniently placed. Figure 1 on page 240 is mentioned at the
bottom of page 238 and would be best placed at the top of page 239. Figure 3 on page 241 belongs to the
section “Step 1: Institutional Analysis” beginning on page 247. Figure 4 on page 242 also belongs to this
section. Figures 5 to 11, which are all placed in the section “Step 1: Institutional Analysis”, are results
of the analyses of the students solutions and therefore belong to “Steps 2 to 4: Analyses of Students’
Solutions”. Figure 12, which is on page 253, is part of the “Discussion” on page 257 and Figure 13 is part
of the original exercise sheet and belongs in the “Appendix” on page 258.
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Zusammenfassung

Im Fokus dieses Beitrags steht die Analyse mathematischer Praktiken, wie sie 
in der Signaltheorie eines Elektrotechnik-Studiengangs gelehrt werden. Den 
theoretischen Rahmen der Analyse bildet die Anthropologische Theorie der Didaktik 
(ATD). Im Sinne dieser werden die mathematischen Praktiken der Signaltheorie 
als institutionalisierte Verknüpfungen von Praktiken der Höheren Mathematik 
für Ingenieure, der Mathematik, wie sie in elektrotechnischen Grundvorlesungen 
entwickelt und verwendet wird, und spezifischen signaltheoretischen Inhalten 
verstanden. Dabei unterscheiden wir zwei Mathematikdiskurse, einen Höhere-
Mathematik- und einen elektrotechnischen Mathematik-Diskurs. Auf der Basis 
eines entsprechend erweiterten praxeologischen 4T-Modells rekonstruieren wir im 
Folgenden exemplarisch an zwei signaltheoretischen Aufgaben die jeweiligen Dis-
kursaspekte sowie deren Verknüpfungen und stellen diese Ergebnisse grafisch dar. Die 
beiden Beispiele zeigen, dass das erweiterte praxeologische Modell geeignet ist, um 
aufgabenbezogen potenzielle, mit der Verknüpfung der analytisch unterschiedenen 
Diskurse verbundene Hürden bei studentischen Aufgabenbearbeitungen zu identi-
fizieren und fachbezogene Anregungen für die Lehrpraxis zu generieren.
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6.1  Einleitung

Die Mathematik in Lehrveranstaltungen zur Signaltheorie ist unter anderem dadurch 
gekennzeichnet, dass sie Praktiken der Höheren Mathematik für Ingenieure, der 
Mathematik, wie sie in elektrotechnischen Grundvorlesungen entwickelt und ver-
wendet wird, und spezifisch signaltheoretische Inhalte verknüpft. Diese Feststellung als 
solche bedarf zu ihrer Begründung keiner eigenen Forschung, da sie sich aus Prüfungs-
ordnungen und Modulbeschreibungen sowie der darin vorgenommenen zeitlichen und 
inhaltlichen Verortung von Lehrveranstaltungen bzw. deren Inhalten ergibt. Aber auch 
ein Blick in einschlägige Literatur zur Signaltheorie (etwa Fettweis 1996; Frey und 
Bossert 2009) offenbart auf den ersten Blick die genannten Bezüge. Schließlich scheint 
es auch einen gewissen Konsens darüber zu geben, die Bezüge und Verknüpfungen als 
„pragmatisch“ zu betrachten und in den Zusammenhang von Praxisbezogenheit (etwa im 
Sinne von Anforderungen aus elektrotechnischen Anwendungen) zu stellen (vgl. z. B. 
Rach et al. 2014). Wie die Verknüpfungen allerdings im Detail aussehen, welche Über-
legungen, Vorstellungen, Praktiken jeweils einfach übernommen, neu eingeführt, ggf. 
modifiziert usw. werden, erschließt sich nicht unmittelbar.

In dieser Arbeit werfen wir nun einen genaueren Blick auf die Verknüpfungen der 
verschiedenen mathematikbezogenen Praktiken. Dabei geht es uns insbesondere darum, 
den die mathematischen Praktiken in der Signaltheorie rechtfertigenden Diskurs zu 
rekonstruieren, wobei ein eher defizitorientierter Blick aus Sicht der Universitäts-
mathematik vermieden werden soll. Dieser bestünde etwa darin, einerseits anzumerken, 
dass gewisse Techniken oder Aussagen der Universitätsmathematik (etwa aus der 
Fourier-Analysis oder der Distributionentheorie) in elektrotechnischen Signaltheorie-
Lehrveranstaltungen nicht den universitätsmathematischen Normen genügend verwendet 
werden, und andererseits nicht im Detail nach fachbezogenen Gründen und Recht-
fertigungen für die spezifischen Abweichungen sowie nach deren (ggf. ingenieurwissen-
schaftlichem) Mehrwert zu fragen. Wir gehen diesbezüglich zum einen davon aus, dass 
dem spezifischen Diskurs in der Signaltheorie die Lösung gewisser Aufgaben zukommt, 
und zum anderen, dass die häufig in Lehre und Literatur nicht explizit gemachte Ver-
knüpfung von verschiedenen fachlichen Orientierungen gehorchenden Praktiken den 
Studierenden beim Einstieg in die Signaltheorie potenziell Probleme bereitet.

Unseres Erachtens stellen ein adäquater Umgang mit den verschiedenen fachlich-
institutionellen Orientierungen und deren spezifische signaltheoretische Integration 
ein wichtiges Lernziel signaltheoretischer Lehrveranstaltungen dar. Die gegebenen-
falls auftretenden Probleme von Studierenden sind also auch als darauf bezogene 
Lerngelegenheiten zu verstehen. Probleme treten insbesondere beim Bearbeiten von 
Übungsaufgaben auf, wenn etwa nicht klar ist, welche Argumente gerade eben zulässig 
sind oder nicht, aber auch bei der Einführung neuer Begriffe oder Objekte, wie etwa dem 
Dirac-Impuls. Hochmuth und Peters (2020) fokussierten auf diesen zweiten Problem-
bereich und rekonstruierten zentrale Aspekte der Verknüpfung eines elektrotechnischen 
und eines HM-bezogenen Mathematik-Diskurses im Kontext der Einführung des 
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Dirac-Impulses in der Signaltheorie. Deren Rekonstruktion erforderte es, insbesondere 
auch epistemologisch-philosophische Vorstellungen bezüglich des Verhältnisses von 
Mathematik und Ingenieurwissenschaften einzubeziehen. Damit konnte das, was all-
gemein als „pragmatische“ ingenieurwissenschaftliche Verwendung von Mathematik 
umschrieben wird, an diesem Fall praxeologisch charakterisiert werden. Unsere Ana-
lysen wiesen ebenfalls darauf hin, dass ein Verständnis darüber, was es bedeutet, dass 
eine mathematische Praxis in der Elektrotechnik „pragmatisch“ ist, über die Auffassung, 
dass Mathematik in der Elektrotechnik lediglich angewendet wird1, hinausgehen 
muss. Die reine Anwendungsinterpretation schien uns prinzipiell mit einer mehr oder 
weniger expliziten defizitorientierten Sicht auf mathematische Praxen in der Elektro-
technik verbunden. Stattdessen konnten wir epistemologische Probleme aufzeigen, 
die die Mathematik nicht lösen kann, sondern erst deren geeigneter Einbau in den 
„pragmatischen“ Signaltheorie-Diskurs.

In dieser Arbeit fokussieren wir auf den ersten Problembereich, also potenzielle 
Probleme beim Bearbeiten von Übungsaufgaben. Wir werden anhand der Analyse zweier 
Beispielaufgaben aus der Signaltheorie zeigen, dass ein spezifisch erweitertes praxeo-
logisches 4T-Modell der Anthropologischen Theorie der Didaktik (ATD) geeignet ist, um 
aufgabenspezifische Verknüpfungen eines elektrotechnischen und eines HM-bezogenen 
Mathematik-Diskurses zu rekonstruieren und ihre jeweils spezifischen Beziehungen dar-
zustellen. Dabei beziehen wir uns unter anderem auf Vorarbeiten von Castela (2015). 
Wir adressieren dabei explizit zwei analytisch voneinander getrennte Mathematikdis-
kurse, die wir entsprechend ihren institutionellen Bezügen Höhere-Mathematik-Dis-

kurs (HM) und elektrotechnischer Mathematik-Diskurs (ET) nennen. Zur genaueren 
Charakterisierung der Diskurse vergleiche Abschn. 6.2.1 und Abschn. 6.4. Dabei 
unterscheidet sich unser Zugang insbesondere von Ansätzen, die einen Mathematik-
diskurs von einem (unmathematischen) Elektrotechnikdiskurs abgrenzen und die Ver-
knüpfung zwischen Mathematik und unmathematischer Elektrotechnik untersuchen. 
Darüber hinaus werden Konstrukte wie der Modellierungskreislauf (z. B. Blum und 
Leiß 2007) von uns nicht verfolgt, da diese unter anderem nicht geeignet sind, die 
den mathematischen Praktiken in der Signaltheorie zugrunde liegenden komplexen 
Wechselbeziehungen zwischen Mathematik und Elektrotechnik zu erfassen, und damit 
insbesondere epistemologisch problematisch sind. Die von Biehler et al. (2015) vor-
geschlagene Modifizierung des Modellierungskreislaufs für die Analyse bestimmter 
mathematikhaltiger Aufgaben aus elektrotechnischen Grundveranstaltungen erscheint 
uns für die komplexeren Aufgaben aus der Signaltheorie nicht ausreichend, da sich auch 
hier die von uns adressierten Beziehungen zwischen den verschiedenen mathematischen 
Praktiken und Orientierungen nicht adäquat abbilden lassen, diese aber unseres Erachtens 
ein nicht zu vernachlässigendes Charakteristikum der in diesem Beitrag untersuchten 
Aufgaben darstellen. Anschlussfähig scheinen unsere Überlegungen insbesondere an 

1Vergleiche dazu auch die Arbeit von Barquero et al. (2011) zum applicationism.
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den im Kompetenzrahmen des SEFI-Netzwerks (Alpers et al. 2013) formulierten Stand-
punkt zur Modellierung zu sein. Dort wird die Wahl des jeweils adäquaten Modells, das 
selbst schon immer eine Mischung aus Mathematik und mathematisch repräsentierter 
Ingenieurwissenschaft darstellt, hervorgehoben.

Wir werden zeigen, dass das im Folgenden von uns eingeführte praxeologische 
Modell ein für die Forschungs- und Lehrpraxis geeignetes Werkzeug darstellt, um in 
Aufgaben Beziehungen zwischen den verschiedenen mathematischen Praktiken mit 
Blick auf spezifische, im gewissen Sinne institutionelle Hürden bei deren Bearbeitung 
zu identifizieren. Zusätzlich machen wir einen Vorschlag zur grafischen Darstellung der 
Praxeologien und ihrer Blöcke. Die textförmige Darstellung der verschachtelten Struktur 
der verschiedenen mathematischen Diskurse stößt unseres Erachtens an Grenzen der 
Verständlichkeit und Handhabbarkeit. Die vorgeschlagene Art der Darstellung hebt die 
Verschlingung der verschiedenen mathematischen Diskurse, deren Übergänge bzw. das 
jeweilige Zueinander von Techniken und der darauf bezogenen Technologien für weitere, 
das Lernen der Studierenden und die Lehre betreffende Überlegungen hervor. Das 
eröffnet unter anderem erweiterte Möglichkeiten des Feedbacks an Studierende und für 
explizierende Bemerkungen in Vorlesungen und Tutorien.

Im Folgenden wird nun zunächst der theoretische Rahmen der ATD und dabei ins-
besondere unsere Ausdifferenzierung des praxeologischen 4T-Modells vorgestellt. Hier-
bei gehen wir auch auf Vorarbeiten (Castela 2015; Castela und Romo Vázquez 2011; 
Romo Vázquez 2009) ein. Nach einer fachlichen Einbettung der Aufgaben und einer 
Charakterisierung des elektrotechnischen Mathematik-Diskurses stellen wir die Analyse 
der Übungsaufgaben vor. Anschließend diskutieren wir unsere Ergebnisse und gehen 
dabei insbesondere auf unseren Vorschlag, praxeologische Analysen grafisch darzu-
stellen, ein. Hier skizzieren wir schließlich einige für die Lehrpraxis relevante Aspekte.

6.2  Die Anthropologische Theorie der Didaktik und das 
erweiterte praxeologische Modell

Die Anthropologische Theorie der Didaktik (ATD) (Chevallard 1992; Bosch und Gascón 
2014) steht in einer französischen Forschungstradition und hat ihre Ursprünge in der 
Theorie didaktischer Situationen, die hauptsächlich in den 1970er- und 1980er-Jahren 
entwickelt wurde (Brousseau 2002), und in der Theorie didaktischer Transpositionen 
(Chevallard 1985). Aus diesen Bezügen ergibt sich das allgemeine Didaktikverständnis 
der ATD. Beispielsweise schreiben Bosch und Gascón 2014:

 In the framework proposed by ATD, the institutional dimension of mathematical and 
didactic activities becomes much more explicit. Doing, teaching, learning, diffusing, 
creating, and transposing mathematics, as well as any other kind of knowledge, are 
considered as human activities taking place in institutional settings. The science of didactics 
is thus concerned with the conditions governing these knowledge activities in society, as 
well as the restrictions hindering their development among social institutions. (p. 68).
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Darauf beziehen sich die für unseren Beitrag zentralen theoretischen Konzepte der 
ATD: der institutionelle Standpunkt der ATD, nach dem menschliche Aktivitäten, 
wie beispielsweise das Mathematik-Betreiben, immer in Institutionen verortet ist und 
institutionelle Bedingungen bestimmen, welche Handlungen und Begründungen als 
adäquat gelten; die Konzeption von Wissen als Praxeologien, die abhängig von den je 
gegebenen institutionellen Bestimmungen existieren, und das Konzept der (didaktischen) 
Transposition, das es erlaubt, dynamische Aspekte wie Entwicklung, Veränderung und 
Verbreitung von Wissen über verschiedene Institutionen hinweg zu untersuchen.

Konzepte der ATD wurden bereits in verschiedensten Kontexten der mathematischen 
Hochschuldidaktik fruchtbar gemacht. Hervorzuheben sind insbesondere Arbeiten zu 
Problemen im Übergang Schule – Hochschule und zu mathematikbezogenen Übergängen 
innerhalb des Universitätsstudiums (Bosch 2014; Winsløw et al. 2014, 2018). Zur Rolle 
der Mathematik in den Ingenieurwissenschaften wären neben den bereits erwähnten 
Arbeiten von Castela und Romo Vázquez auch die Arbeiten von González-Martín und 
Hernandes-Gomes (2018, 2019) zu nennen. Letztere adressieren insbesondere die Frage 
der Passung von Praktiken bezüglich Aspekten des Integralbegriffs und der Integral-
verwendung in Calculus- und Mechanik-Lehrveranstaltungen. Diese im Wesentlichen 
curricularen Unterschiede wurden auch von Dammann (2016) beobachtet und unter-
sucht. Ähnliche Differenzen bezüglich grundlegender Begriffe und deren Verwendung 
lassen sich auch in der Elektrotechnik im Kontext von theorieorientierten Grundlagen-
veranstaltungen finden, beispielsweise im Umfeld des Integralsatzes von Gauß (vgl. z. B. 
Henning et al. 2015). Unsere Analysen sind im Unterschied dazu auf Phänomene der Ver-
knüpfung, der Integration und der jeweiligen Spezifik rechtfertigender Diskurse innerhalb 
einer fortgeschrittenen Lehrveranstaltung der Elektrotechnik gerichtet.

Nachdem im Folgenden der theoretische Rahmen – und dabei insbesondere das 
4T-Modell – insoweit erläutert wird, wie es für das Verständnis unserer Aufgaben-
analysen notwendig erscheint, gehen wir anschließend auf unseren Vorschlag zur Modi-
fizierung des 4 T-Modells ein.

Mathematisches Wissen wird im Rahmen der ATD handlungstheoretisch aufgefasst 
und beinhaltet nicht nur Aspekte des „Know-why“, sondern auch praktisches Wissen im 
Sinne eines „Know-how“. Methodisch wird dies mittels des Konzepts der Praxeologie 
gefasst. Chevallard (2006) schreibt zum Begriff der Praxeologie:

What exactly is a praxeology? [...] one can analyse any human doing into two main, 
interrelated components: praxis, i.e. the practical part, on the one hand, and logos, on the other 
hand. [Logos bezieht sich auf menschliches Denken, rationalen Diskurs, die Autoren]. How are 
P [Praxis, die Autoren] and L [Logos, die Autoren] interrelated within the praxeology [P/L], 
and how do they affect one another? The answer draws on one of the fundamental principle 
of ATD [...] according to which no human action can exist without being, at least partially, 
‘explained’, made ‘intelligible’, ‘justified’, ‘accounted for’, in whatever style of ‘reasoning’ 
such as an explanation or justification may be cast. Praxis thus entails logos which in turn 
backs up praxis. For praxis needs support – just because, in the long run, no human doing goes 
unquestioned.[...] Following the French anthropologist Marcel Mauss (1872–1950), I will say 
that a praxeology is a ‘social idiosyncrasy’, that is, an organised way of doing and thinking 
contrived in a given society. (Chevallard 2006, S. 23, Hervorhebungen im Original)
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Eine Praxeologie besteht also aus zwei zusammenhängenden, aufeinander bezogenen 
Blöcken: Der Praxisblock („Know-how“) besteht aus Aufgabentypen T  und einer Reihe 
von relevanten zugehörigen Techniken τ zur Lösung der Aufgaben. Der Logosblock 
(„Know-why“) wird durch die zwei Ebenen eines Begründungsdiskurses gebildet: 
Auf der ersten Ebene werden die Techniken des Praxisblocks durch Technologien θ 
unter anderem erklärt, gerechtfertigt, motiviert und begründet. Auf der zweiten Ebene 
organisiert und ordnet die Theorie � ihrerseits die Technologien. Insgesamt kann eine 
Praxeologie als 4 T-Modell dargestellt werden: [T , τ , θ , �].

Eine Kernposition der ATD ist, dass Praxeologien immer in Abhängigkeit spezifischer 
Institutionen existieren. Das Verständnis von Institution innerhalb der ATD geht deut-
lich über bürokratische Einrichtungen wie Schule, Universität, Gerichte usw. hinaus und 
lehnt sich an das von Douglas (1991) ausgearbeitete Verständnis an. Chevallard (2019) 
fasst darunter explizit (soziale) Entitäten und Strukturen, die eine gewisse formative 
Funktion erfüllen. Diese institutionelle Abhängigkeit bedeutet, dass in unterschied-
lichen Institutionen je andere Aufgabentypen relevant, andere Lösungstechniken adäquat 
und andere Begründungsdiskurse akzeptabel sind. Fokussiert man also ein spezifisches 
Element mathematischen Wissens in unterschiedlichen Institutionen, ergeben sich 
unterschiedliche Praxeologien. Didaktische Fragestellungen sind zunächst auf dieser 
institutionellen Ebene angelegt, wobei der Fokus entsprechend jenseits individueller 
Merkmale und Eigenschaften der handelnden Menschen liegt. Damit einher geht ein 
Subjektverständnis als generisches Subjekt, das unter institutionellen Bedingungen 
stehend verstanden wird. Bosch (2015) charakterisiert das Subjektverständnis der ATD 
wie folgt:

An institution lives through its actors, that is, the persons that are subjected to it – its 
subjects – and serve it, consciously or unconsciously. […] Freedom of people results from 
the power conferred by their institutional subjections, together with the capacity of choosing 
to play such or such subjection against a given institutional yoke. (Chevallard 2005, zitiert 
nach Bosch 2015, S. 52)

Dabei wird die Unterwerfung unter institutionelle Bedingungen nicht repressiv, sondern 
vor allem produktiv und konstitutiv verstanden. Diese institutionelle Abhängigkeit von 
Wissen reflektiert sich in unserer Erweiterung des praxeologischen Modells.

Während es Praxeologien erlauben, mathematisches Wissen in seiner institutionellen 
Konzeption eher statisch zu fassen, bietet die ATD mit dem Konzept der (didaktischen) 
Transposition die Möglichkeit, dynamische Aspekte der Produktion, Entwicklung, Ver-
änderung und Verbreitung von Wissen zwischen Institutionen zu untersuchen und 
beschreiben. Grundlegend ist dabei der Gedanke, dass die Analyse von in Lehr-Lern-
Kontexten relevanten Wissenselementen diese Prozesse berücksichtigen sollte. Das 
Basismodell des didaktischen Transpositionsprozesses geht dabei von einer Unter-
scheidung zwischen drei relevanten Institutionen aus: Zunächst wird das scholarly 

mathematical knowledge von Mathematikern oder anderen Experten in Universitäten 
oder Forschungsinstituten produziert. Das mathematical knowledge to be taught wird 
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über offizielle Curricula festgelegt. In diesem Prozess sind Politiker, Wissenschaftler, 
Pädagogen und andere Mitglieder der noosphere2 beteiligt. Daraus wird schließlich das 
taught knowledge, das sich wiederum über einen didaktischen Transpositionsprozess 
aus den curricularen Dokumenten ergibt (Bosch und Gascón 2006). Der Übergang 
vom scholarly mathematical knowledge zum knowledge to be taught wird als externe 
didaktische Transposition bezeichnet. Im Bereich hochschuldidaktischer Forschung 
sind hier Fragen der Organisation des Wissens in Module, Vorlesungen und in Form von 
Syllaby relevant. Der weitere Übergang zum taught knowledge wird interne didaktische 
Transposition genannt (vgl. Bosch et al. 2021).

Unser Beitrag berücksichtigt im Wesentlichen Aspekte interner didaktischer 
Transpositionen. Corine Castela und Avenilde Romo Vázquez rekurrieren in ihren 
Arbeiten (Castela 2015; Castela und Romo Vázquez 2011; Romo Vázquez 2009) ins-
besondere auf externe transpositive Effekte bzgl. der Produktion und Legitimation 
mathematischen Wissens, die beim Übergang von wissenschaftlicher Mathematik 
in berufsbezogene Domänen relevant sind. Dabei differenzieren sie das Modell des 
didaktischen Transpositionsprozesses im Hinblick auf unterschiedliche institutionelle 
Einflüsse und ihre Beziehungen untereinander aus und erweitern dabei schließlich 
das praxeologische 4 T-Modell, um diesen verschiedenen Einflüssen auf der Ebene 
praxeologischer Wissenselemente gerecht werden zu können3: Im Kontext der unter-
suchten Kurse differenzieren sie eine theoretische und eine praktische Komponente der 
Technologie. Diese Unterscheidung dient dort insbesondere dem Untersuchungsziel, 
bezüglich höherer Ebenen der Kodetermination die institutionelle Relativität techno-
logischer Diskurse verschiedener Kurse zu rekonstruieren. Der Fokus liegt in den 

2Mit noosphere wird in der ATD „[…] the sphere of those who ‘think’ (noos) about teaching-, its 
relationship to ‘scholarly knowledge’ which usually legitimates its introduction in educational 
institutions, and the specific form it takes when arriving in the classroom […].” (Bosch und 
Gascón 2014, S. 71) bezeichnet. Die noosphere umfasst alle Agenten, die am Prozess der 
didaktischen Transposition vom scholarly mathematical knowledge zum knowledge to be 

taught beteiligt sind. In diesem umfassenden Begriff drückt sich auch der Umstand aus, dass 
die an diesem Transpositionsprozess beteiligten Agenten und die zugehörigen historischen und 
institutionellen Bedingungen nicht immer einfach zu erkennen sind.
3Im Rahmen ihrer Untersuchungen bezieht sich Castela (2015) auf in Arbeiten mit Romo Vázquez 
rekonstruierte Funktionen der Technologie, nämlich Beschreiben, Motivieren, Fördern, Validieren, 
Erklären, Bewerten und Kontrollieren: „Drawing on the aforementioned textbooks, Romo 
Vázquez and I have differentiated six of them: describing the technique, validating it i.e. proving 
that this technique produces what is expected from it, explaining the reasons why this technique 
is efficient (knowing about causes), motivating the different gestures of the technique (knowing 
about objectives), making it easier to use the technique and appraising it (with regard to the field 
of efficiency, to the using comfort, relatively to other available techniques). […] This list should 
not be taken as exhaustive. For instance, […] I currently consider one more need: controlling 
the technique implementation.“ (S. 11) Wir schließen uns diesem erweiterten Verständnis der 
Funktionen von Technologie an.

65



116 J. Peters und R. Hochmuth

Arbeiten von Castela und Romo Vázquez also unter anderem auch auf dem Nachspüren 
der Wirkung der komplexen äußeren didaktischen Transformation in verschiedenen 
Institutionalisierungen didaktischer Transformationen.

6.2.1  Das erweiterte praxeologische Modell

Wir stimmen mit der Position von Castela (2015) darin überein, dass eine Aus-
differenzierung des praxeologischen Modells dazu dienen kann, mathematische Aspekte 
menschlicher Aktivitäten in unterschiedlichen Kontexten zu untersuchen, ohne sich dabei 
im Wesentlichen ausschließlich auf die akademische Mathematik und deren spezifische 
Normen zu beziehen4.

When someone of this world [der akademischen Mathematik, die Autoren], that is, a 
mathematician, begins to investigate on mathematics education, especially but not only 
in vocational education, he needs tools to distance himself with the ‘alma mater’. Since 
the beginning, this has been Chevallard’s objective with the anthropological theory of the 
didactic. I contend that the work I have presented here around the notion of praxeology 
provides a powerful tool to investigate the mathematics dimension of human social activities 
in any context, without referring to academic mathematics. […] This anthropology of the 
mathematics should investigate social practices without too narrow restrictions on what is 
an interesting object. […] It highlights dimensions of the institutional cognition that would 
be neglected otherwise, especially when the reference to acknowledged mathematics is too 
strong. Such a research program is directed towards epistemological and anthropological 
goals, intending to unearth the diversity of human mathematics praxeologies. (Castela 2015, 
S. 18, Hervorhebungen im Original)

Dies kann dazu beitragen, einer gegebenenfalls vor allem defizitorientierten Sicht auf 
mathematische Praktiken in der Elektrotechnik entgegenzuwirken. Als defizitär kann 
u. a. ein nicht vorhandener oder aus mathematischer Sicht nicht hinreichend ausgeführter 
Nachvollzug innermathematischer Begründungen von Techniken und deren ersatzweise 
nicht innermathematische Rechtfertigung interpretiert werden (siehe dazu auch unsere 
Bemerkungen in der Einleitung). Dabei ist unsere Fragestellung mit der von Castela 
und Romo Vázquez verwandt, aber doch verschieden. Wir untersuchen Aufgaben und 
zugehörige Dozenten-Musterlösungen aus einer Perspektive der inneren Strukturierung 
eines Elektrotechnik-Studiengangs an der Universität Kassel und der verschiedenen 
gelehrten Wissenselemente zum Zeitpunkt eines bestimmten Kurses. Im Kontext des 
Kurses „Signale und Systeme“ (SST) wird ein mathematischer Diskurs identifiziert, 
in den Aspekte einer vorgängigen Höheren Mathematik, ggf. vorgängige einführende 
elektrotechnische und neue signaltheoretische Aspekte eingehen. Gestellte Aufgaben 

4Wir verstehen dies insbesondere auch als eine zum epistemologischen Referenzmodell (siehe 
z. B. Bosch 2015) alternative Methode der Distanzierung vom eigenen institutionellen Standpunkt.
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erfordern bei der Bearbeitung geeignete Wahlen und Anwendungen entsprechender 
Techniken und Technologien. Relevant ist hier unserer Ansicht nach insbesondere die 
unterschiedliche epistemologische Verfasstheit des mathematischen Wissens bezogen 
auf unterschiedliche Institutionen: das einer Institution HM zuordenbare Wissen auf 
der einen und das mathematische Wissen elektrotechnischer Institutionen, z. B. Lehr-
veranstaltungen wie „Grundlagen der Elektrotechnik“, „Signale und Systeme“ usw. auf 
der anderen Seite. Wir fassen diese beiden unterschiedlichen Arten von Mathematik als 
zwei verschiedene mathematische Diskurse, jeweils in Bezug auf die entsprechenden 
Institutionen, auf: einen auf die Höhere Mathematik bezogenen Diskurs (HM-Diskurs) 
und einen auf elektrotechnische Lehrveranstaltungen bezogenen elektrotechnischen 
Mathematik-Diskurs (ET-Diskurs). Der HM-Diskurs, wie er aus bisherigen Aufgaben-
analysen von uns rekonstruiert wurde, zeichnet sich durch eine innermathematische 
Konzeption der Begriffe und Aussagen ohne konkrete Realitätsbezüge, eine 
Konzentration auf Rechenregeln und den Einbezug schulmathematischer Begriffe aus5. 
Im Gegensatz dazu weist der ET-Diskurs Realitätsbezüge auf. Darüber hinaus zeichnet 
er sich durch eine elektrotechnischtypische Art des Denkens und Sprechens über 
Mathematik und mathematische Praxen aus. Eine konkretere Charakterisierung des ET-
Diskurses geben wir nachfolgend in Abschn. 6.4 im Rahmen der fachlichen Einordnung 
der von uns analysierten Aufgaben.

Um das Verhältnis der beiden auf epistemologischer Ebene unterschiedlich 
konstituierten mathematischen Diskurse im Rahmen der Lehrveranstaltung SST näher 
herausarbeiten zu können, verwenden wir ein erweitertes praxeologisches Modell:

Dabei geht es uns nicht um eine Erweiterung der von Chevallard entwickelten Theorie 
als solcher, sondern um eine spezifische innere Ausdifferenzierung des 4 T-Modells 
im Hinblick auf unseren Fokus. Um unsere Unterscheidung eines HM-Diskurses und 
eines ET-Diskurses im Modell repräsentieren zu können, differenzieren wir zwischen 
Techniken τHM und τET sowie Technologien θHM und θET. Als HM-Techniken und 
-Technologien charakterisieren wir dabei diejenigen mathematischen Praxen, die dem 
oben beschriebenen HM-Diskurs zuordenbar sind. Mathematische ET-Techniken τET 
und -Technologien θET werden auf Basis des ET-Diskurses zugeordnet. Diese analytische 
Ausdifferenzierung der Techniken und Technologien nach den beiden Diskursen findet 
gewissermaßen innerhalb des praxeologischen 4 T-Modells statt. Insgesamt entstehen 

[

T ,
τHM

τET

,
θHM

θET

, �

]

SST

5Die zugrunde gelegte Lehrbuchliteratur für die Vorlesungen zur Höheren Mathematik ist (Strampp 
2012, 2015; Strampp et al. 1997a, b). Die an historisch-philosophischen Arbeiten orientierten 
Überlegungen zur unterschiedlichen epistemologischen Verfasstheit von Mathematik und Physik 
im Kontext der Einführung des Dirac-Impulses in (Hochmuth und Schreiber 2015; Hochmuth und 
Peters 2018) sind hier ebenfalls anschlussfähig.
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im Rahmen der „Signale- und Systeme“-Vorlesung SST-Praxeologien (daher der Index 
in der grafischen Repräsentation des 4 T-Modells), in denen die Techniken und Techno-
logien beider Diskurse in naheliegender Weise auch zusammen gedacht werden können, 
nämlich gemeinsam in ihrer Verschlingung als SST-Techniken und -Technologien.

Im Rahmen unserer bisherigen Untersuchungen hat sich gezeigt, dass die einzelnen 
Elemente des erweiterten praxeologischen Modells in vielfältigen Bezügen zueinander 
stehen können. In Abschn. 6.5 konkretisieren wir diese Überlegungen anhand zweier 
Analysen von Dozenten-Musterlösungen und rekonstruieren die Zusammenhänge, in 
denen die praxeologischen Elemente der unterschiedlichen Diskurse miteinander stehen.

6.3  Rahmenbedingungen der Veranstaltung „Signale und 
Systeme“ im Sommersemester 2013 in Kassel

Die Vorlesung „Signale und Systeme“ bildet zusammen mit der Vorlesung „Digitale 
Kommunikation“ das Modul „Signalübertragung“. Die Prüfungsleistung des Moduls 
besteht in einer vierstündigen Klausur über beide Lehrveranstaltungen. Die Vorlesung 
„Signale und Systeme“ wird dreistündig gehalten, wobei Übungen nach Bedarf in die 
Vorlesung integriert werden. Formulierungen der Übungsaufgaben finden sich sowohl 
auf den Vorlesungsfolien (dort aber teilweise in leicht abweichender Darstellung) und 
auf Übungsblättern. Die Übungsaufgaben wurden von den Studierenden selbstständig 
bearbeitet, abgegeben und korrigiert. Musterlösungen wurden dann später im Rahmen 
der Veranstaltung vom Dozenten präsentiert. Die von uns analysierten Dozenten-Muster-
lösungen gehören zu Teilaufgaben der Aufgabe 4 (Vorlesung S. 93) des Übungsblattes 
„Aufgaben zur Vorlesung Signalübertragung am 3.6.2013“. Dabei handelt es sich um das 
zweite von insgesamt fünf im Rahmen der Vorlesung behandelten Übungsblättern.

6.4  Fachlicher Kontext der Aufgaben und Charakteristika des 
elektrotechnischen Mathematik-Diskurses

Wie bei der Darstellung unseres erweiterten praxeologischen Modells bereits ausgeführt, 
unterscheiden wir neben einem HM-Diskurs auch einen elektrotechnischen Mathematik-
Diskurs, den ET-Diskurs. Nachdem in Abschn. 6.2 die Eigenschaften eines solchen 
ET-Diskurses nur angedeutet wurden, soll in diesem Kapitel nun mit der fachlichen 
Einbettung der Aufgaben auch eine Herausarbeitung der Charakteristika dieses ET-Dis-
kurses erfolgen. Dabei führen wir die fachliche Einbettung so weit aus, wie sie unserer 
Ansicht nach für das Verständnis der Analysen notwendig ist.
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Die beiden Begriffe Signal und System sind nicht nur namensgebend für die Vor-
lesung, sondern auch zentral sowohl für die fachliche Einbettung der von uns ana-
lysierten Dozenten-Musterlösungen als auch für die Beschreibung des ET-Diskurses.

Unter einem Signal versteht das Handbuch der Elektrotechnik (Plaßmann und Schulz 
2009) „die physikalische Realisierung der Nachricht (wie es mitgeteilt wird)“ (S. 919, 
Hervorhebungen im Original), das Lehrbuch von Fettweis (1996) unterschiedet zwischen 
realen Signalen6, die physikalische Größen sind, und idealisierten Signalen7, die zur 
numerischen Berechnung und als Messsignale dienen (S. 4 ff.)8, und das Lehrbuch von 
Frey und Bossert (2009) versteht unter einem Signal „eine abstrakte Beschreibung einer 
veränderlichen Größe“ (S. 1) und liefert als Definition: „Ein (zeit-)kontinuierliches Signal 
wird durch eine reelle oder komplexe Funktion x(t) ∈ R(C) einer reellen Veränderlichen 
t ∈ R dargestellt. Der Wertebereich ist R(C) und der Definitionsbereich ist R“ (S. 2).

Diese drei Auffassungen des Begriffs Signal unterscheiden sich in einem 
ansteigenden Grad an Formalisierung und Abstraktion, erhalten aber alle den Bezug 
zu wirklichen Phänomenen aufrecht. Auch Frey und Bossert, deren Lehrbuch sich 
hier durch den höchsten Grad an Formalisierung auszeichnet, sprechen von einer Dar-
stellung bzw. einer Beschreibung durch die reelle oder komplexe Funktion. Damit sind 
zwei Charakteristika des ET-Diskurses herausgearbeitet: zum einen der Bezug zur Reali-
tät, zum anderen eine sehr unterschiedlich starke Explikation dieses Realitätsbezugs, die 
einhergeht mit einer unterschiedlich stark ausgeprägten Formalisierung. Fettweis (1996) 
formuliert das Dilemma,

… daß mit zunehmender Ausfeilung der zugrundeliegenden mathematischen Zusammen-
hänge das Verständnis für die physikalische Begründung der gewählten Vorgehensweise 
immer schwieriger wird. Was also auf der einen Seite an mathematischer Strenge gewonnen 
wird, geht auf der anderen Seite wieder verloren, wenn es um die Einsicht in die tatsäch-
liche Anwendbarkeit auf physikalische Gegebenheiten geht. (S. iii)

Nach Fettweis erfordert also das Verständnis physikalischer Begründungen ein 
Abweichen von der „mathematischen Strenge“, die andererseits als zentrale Orientierung 
und wesentlicher Maßstab für die mathematischen Praktiken fungiert. Letzteres 

6Diese treten bei der Nachrichtenübertragung auf, sind von endlicher Dauer, stetig und ausreichend 
differenzierbar. Allerdings sind sie auch sehr unregelmäßig und unvorhersehbar (andernfalls wäre 
der Informationsgehalt der Nachricht auch sehr gering) (siehe Fettweis 1996, S. 4 ff.).
7Diese verletzen einige Eigenschaften realer Signale, lassen sich durch wenige Parameter 
beschreiben, können aber zu Schwierigkeiten beispielsweise hinsichtlich Konvergenz führen (siehe 
Fettweis 1996, S. 6).
8Vergleiche insbesondere auch unsere Überlegungen in Hochmuth und Peters (2018) zum Verhältnis 
realer und idealisierter Signale.
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impliziert eine gewissermaßen defizitorientierte Sicht auf mathematische Ingenieur-
praktiken, da diese dem hervorgehobenen Maßstab letztlich nicht genügen. Unsere 
Auffassung von mathematischen Ingenieurpraktiken grenzt sich davon in der Hin-
sicht ab, dass wir einen eigenen elektrotechnischen Mathematik-Diskurs identifizieren 
und charakterisieren sowie in unseren Analysen dessen Relevanz für das Verständnis 
mathematischer Ingenieurpraktiken aufzeigen.

Der System-Begriff, der in unterschiedlichen Quellen ebenfalls verschieden stark 
formalisiert präsentiert wird, verweist noch auf ein weiteres Charakteristikum des 
elektrotechnischen Mathematik-Diskurses: Unter einem System verstehen Frey und 
Bossert (2009, S. 3) „allgemein eine abstrahierte Anordnung, die mehrere Signale 
zueinander in Beziehung setzt. Dies entspricht der Abbildung eines oder mehrerer 
Eingangssignale auf ein oder mehrere Ausgangssignale.“ Sie führen zunächst einen 
mathematisch leicht handhabbaren Systemtyp ein und betrachten nur jeweils ein Ein-
gangs- und ein Ausgangssignal, da „daher der Systemgedanke leichter zu erfassen ist“ 
(S. 6). Ein System kann als eine Blackbox aufgefasst werden, die auf ein konkretes Ein-
gangssignal mit einem konkreten Ausgangssignal reagiert. Systeme werden dann zum 
Beispiel anhand ihrer Antwort auf ein pulsförmiges Eingangssignal charakterisiert.

Dieses Input–Output- oder Systemdenken geht einher mit einer Art des Sprechens 
über mathematische Praktiken, die sich von der Art der Mathematiker unterscheidet. 
Bissell und Dillon (2000, S. 7) illustrieren dies unter anderem anhand eines ein-
fachen Beispiels: In einem einfachen elektrischen Schaltkreis sind Spannung U und 
Stromstärke I über einen Widerstand R mittels U = R · I zueinander in Beziehung 
gesetzt. Mathematisch handele es sich um einen linearen Zusammenhang mit R als 
Proportionalitätskonstante. Dieses mathematische Verständnis des Modells reiche aber 
nicht aus, um zu verstehen und zu erklären, wie sich Veränderungen von Stromstärke 
und Spannung in Stromkreisen auswirken. Hinzutreten müsse vielmehr ein Verständnis 
der Gleichung, dass es sich hier um physikalische Größen handle und das Modell das 
physikalische Verhalten eines Systems (hier eines einfachen elektrischen Stromkreises) 
beschreibe. Die mathematische Sicht blende diese für die Verwendung der Gleichung im 
elektrotechnischen Kontext im gewissen Sinne notwendige Sichtweise quasi aus. Aus 
mathematischer Sicht gelte die Beziehung zwischen Spannung und Stromstärke für jeden 
Zeitpunkt, die Veränderung des einen Wertes ziehe eine gleichzeitige Veränderung des 
anderen Wertes nach sich.

Dies entspricht im Wesentlichen der Kovariationsvorstellung eines funktionalen 
Zusammenhangs. Diese schließt die Vorstellung eines durchaus auch kausal ver-
standenen, aber im Wesentlichen quantitativen Zusammenhangs zwischen den 
involvierten Variablen ein. Die elektrotechnische Sichtweise ergänze diese Vorstellung 
aber nun wesentlich durch qualitative Aspekte, und zwar durch die spezifischen 
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physikalischen Größen und mit diesen verknüpfte Vorstellungen und Bedeutungen: „This 
means that a change in the current causes the voltage to change.“ (Bissell und Dillon 
2000, S. 7). Die elektrotechnische Rede über die Gleichung drückt also nicht nur einen 
funktionalen mathematischen Zusammenhang zwischen Variablen, sondern damit und 
darüber hinaus einen kausalen Zusammenhang zwischen elektrotechnischen Größen aus.

Nach Bissell und Dillon (2000, S. 10) handelt es sich dabei nicht nur um eine andere 
Art des Redens, sondern stellt eine eigene Art des Denkens dar9:

Moreover, this linguistic shift is more than just jargon, and more than just a handy way of 
coping with the mathematics; the shift indicates a way of thinking about systems behaviour 
in which the features of the models are deeply linked to the systems they are describing.

Im Zusammenhang mit dieser an Kausalzusammenhängen orientierten Art, über die 
Gleichung des Schaltkreises zu reden und zu denken, steht die allgemeine, über das 
einfache Beispiel weit hinausgehende Entwicklung eines Systemdenkens, das es 
schließlich auch erlaube, grafische und piktorale Repräsentationen anstelle komplizierter 
mathematischer Ausdrücke zu manipulieren10. Nach Bissel (2004) war für diese Ent-
wicklung die Einführung komplexer Größen in der Elektrotechnik, vorangetrieben u. a. 
von Steinmetz (1893), grundlegend. Er schlug vor, Größen wie Wechselstrom oder 
-spannung durch eine „komplex imaginäre Größe“ (S. 598) zu repräsentieren und in 
Polarkoordinaten als Phasor11 darzustellen, da die Sinuswelle vollständig bestimmt ist 
durch Intensität und Phase. Dieser Ansatz führte zum einen zu einer wesentlichen Ver-
einfachung von Rechnungen:

Wo wir früher mit periodischen Funktionen einer unabhängigen Variablen, ‚Zeit‘ zu thun 
hatten, gelangen wir jetzt durch einfache Addition, Subtraktion etc. konstanter Zahlen-
grössen zur Lösung. […] Selbst die Beschränkung der Methode auf Sinuswellen ist nicht 
wesentlich, da wir in der gewöhnlichen Weise die allgemeine periodische Funktion aus 
ihren Sinuswellenkomponenten zusammensetzen können. (Steinmetz 1893, S. 597)

9Im Rahmen dieses Beitrags sollen dieses einfache Beispiel und die folgenden Ausführungen 
genügen, um die eigene Art des Denkens zu illustrieren. Für eine ausführlichere Darstellung der 
Entwicklung verweisen wir zusätzlich auf die Arbeiten von Bissell und Dillon (2000) sowie von 
Bissell (2004, 2012).
10Hier verweisen wir auch auf unsere Analyse zu den rotierenden Zeigern in Abschn. 6.5.2 und auf 
die Arbeit von de Oliveira und Nunes (2014).
11Für eine sinusförmige Größe gilt A · cos(ωt + ϕ) = ℜ

(

A · e
i(ωt+ϕ)

)

= ℜ
(

A · e
iωt · e

iϕ
)

, wobei 
A die Amplitude, ω die Kreisfrequenz und ϕ der Phasenwinkel ist (jeweils zeitunabhängig). Der 
Fakto A = A · e

iϕ wird Phasor genannt. Bei der Analyse elektrischer Komponenten ist im Wesent-
lichen das Amplitudenverhältnis von Eingangssignal und Ausgangssignal sowie die Phasenver-
schiebung, die durch die Komponente verursacht wird, von Interesse. Die Funktion A · e

iωt kann 
als rotierender Zeiger in der komplexen Ebene dargestellt werden. Phasoren und rotierende Zeiger 
stellen wichtige grafische Mittel zur Interpretation und Analyse elektrotechnischer Vorgänge dar.
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Daneben führte dieser Ansatz nach Bissell (2004) aber auch zum Systemdenken und zur 
Blackbox-Analyse:

Second, it was indeed an important step towards the ‘black box’ concept. The defining 
equations for resistors, capacitors and inductors were all subsumed into a generalised, 
complex version of Ohm's relationship; and even if it would be premature to talk of ‘implicit 
2-terminal black boxes’ at this time, such a representation of components as complex 
impedances was clearly a great conceptual step. (S. 309)

In der komplexen Version des Ohmschen Gesetzes wird der komplexe Widerstand Z  
bzw. die Impedanz als Verhältnis aus komplexer Spannung und komplexer Stromstärke 
aufgefasst12:

Die Impedanz kann auch dargestellt werden als Z = R + jX mit Wirkwiderstand R 
und Blindwiderstand X. Für einen Ohmschen Widerstand gilt nun Z

R
= R, für einen 

Kondensator ZC = 1/jωC und für eine Spule ZL = jωL. Beispielsweise können so 
in elektrischen Schaltungen die Gesamtimpedanz und Phasenverschiebungen von 
Strömen und Spannungen berechnet werden. Relevant wurde das vor allem im Bereich 
Filteranalyse und -design im Rahmen einer technologischen Entwicklung im Hinblick 
auf das effektivere Ausnutzen von Bandbreite bei der Signalübertragung. Hier hat das 
Zusammenspiel von Mathematik, der Zusammenfassung von Schaltungskomponenten 
zu abstrakteren Zweipolen, die über Input–Output-Betrachtungen charakterisiert werden 
konnten, und Filter-Design zur effektiveren Gestaltung von Signalübertragungen geführt. 
Diese Aspekte eines anderen Denkens über mathematische Praxen in der Elektrotechnik 
sind insbesondere auch für die von uns in Abschn. 6.5 analysierten Aufgaben relevant.

Im Rahmen unseres ATD-Modells interpretieren wir nun diese eigene Art zu reden 
und das Systemdenken als eigenen mathematischen Diskurs – als ET-Diskurs –, der sich 
also zusammenfassend durch einen Bezug zur Realität, der sehr unterschiedlich stark 
expliziert wird, und durch ein Systemdenken auszeichnet.

Neben der Beschreibung und Charakterisierung von Signalen und Systemen ist in der 
Vorlesung auch die Signalübertragung ein zentrales Thema. Dabei spielt dann zusätzlich 
zur Beschreibung und Charakterisierung verschiedener Übertragungskanäle (Systeme) 
auch die Frage nach der Realisierung der Signalübertragung über einen bestimmten 
Kanal eine große Rolle. Ein wichtiges Kriterium ist hierbei die mögliche Mehrfach-

Z =

u

i
=

u · e
jωt

· e
jϕu

i · e
jωt

· e
jϕi

=

u

i
· e

j(ϕu−ϕi)

12Mit dem Unterstrich kennzeichnet man in der Elektrotechnik üblicherweise komplexe Größen. In 
der Elektrotechnik wird für die imaginäre Einheit der Buchstabe j verwendet, um Verwechslungen 
mit der zeitabhängigen Stromstärke i zu vermeiden.
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ausnutzung des Übertragungskanals: Mehrere Signale sollen gleichzeitig übertragen 
werden, ohne dass es zum Übersprechen zwischen Signalen am Empfänger kommt. Ein 
klassisches Beispiel ist hier die Übertragung mehrerer Radiosender über Antenne oder 
Kabel. Ein einfaches und mit wenig technischem Aufwand durchführbares Verfahren ist 
die analoge Amplitudenmodulation und -demodulation13, die schließlich in den von uns 
betrachteten Aufgaben thematisiert wird. Das Prinzip der Amplitudenmodulation wird 
in Abb. 6.1, veranschaulicht. Dabei wird die Amplitude eines hochfrequenten Träger-
signals (Abb. 6.1 links) entsprechend dem Verlauf des niederfrequentes Primärsignals 
s(t) (Abb. 6.1 Mitte) variiert. Das AM-Signal (Abb. 6.1 rechts) lässt sich darstellen als 
x(t) = A[1 + m s(t)] cos(2π f0t), wobei cos(2π f0) das Trägersignal ist. Der Modulations-
grad m ist das Verhältnis aus Amplitude des Trägersignals und Amplitude des Primär-
signals, außerdem gelten die Einschränkungen max

t∈R

|s(t)| = 1 und 0 < m < 1.
Mit der Amplitudenmodulation lassen sich mehrere Primärsignale (z. B. jeweils für 

verschiedene Radiosender) mit unterschiedlichen Trägerfrequenzen (den jeweiligen 
Senderfrequenzen) über Antenne übertragen und am Empfänger (Radiogerät) je nach 
eingestelltem Sender empfangen. Am Empfänger muss dann zur Rekonstruktion des 
Primärsignals eine Demodulation stattfinden. Eine einfache, auch technisch unauf-
wendig zu realisierende Methode der Demodulation ist der Enveloppendemodulator 
(oder Hüllkurvendetektor). Hier wird das amplitudenmodulierte Signal zunächst gleich 
gerichtet und das hochfrequente Trägersignal mit einem Tiefpassfilter entfernt (vgl.  
Fettweis 1996, S. 251)14. So wird die obere Hüllkurve (gestrichelt in Abb. 6.1 rechts) des 
amplitudenmodulierten Signals – und somit das Primärsignal – rekonstruiert.

Die in unserer Analyse betrachtete Aufgabe inklusive Dozenten-Musterlösung ist im 
Anhang abgebildet. Sie besteht aus zwei Punkten, die im Rahmen unserer Analyse als 
eigene Aufgaben aufgefasst werden:

Abb. 6.1  Trägersignal (links), Primärsignal s(t) (Mitte),  AM-Signal mitgestrichelter Einhüllende 
(rechts)

13Ein Gerät, das sowohl moduliert als auch demoduliert, nennt man Modem.
14Im einfachsten Fall ist ein Tiefpassfilter eine Schaltung aus Widerstand und Kondensator, bei der 
die Ausgangsspannung gegenüber der Eingangsspannung um einen frequenzabhängigen Faktor 
geschwächt ist. Dabei ist die Abschwächung umso stärker, je höher die Frequenz ist.
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• Im ersten Aufgabenteil soll gezeigt werden, dass unter bestimmten Voraussetzungen 
der Enveloppendemodulator ein Signal liefert, das proportional zur Amplitude des 
modulierten Trägersignals ist. Die Dozenten-Musterlösung zu dieser Aufgabe wird in 
Abschn. 6.5.1 analysiert.

• Der zweite Aufgabenteil ist in drei Unteraufgaben strukturiert. Es soll ein Primär-
signal zuerst (1) amplitudenmoduliert, dann (2) als Summe dreier harmonischer 
Schwingungen aufgeschrieben und (3) das Ergebnis schließlich in der komplexen 
Ebene als rotierender Zeiger mit variierender Amplitude grafisch dargestellt werden. 
Die Dozenten-Musterlösung zu diesem dritten Teil wird in Abschn. 6.5.2 analysiert.

Die Aufgabe ist ebenfalls Bestandteil der Vorlesungsfolien und wird nach der Einführung 
des Enveloppendemodulators im Rahmen des Abschnitts zur Amplitudenmodulation 
gestellt.

6.5  Analyse

Die in diesem Abschnitt präsentierten ATD-Analysen beziehen sich auf die Dozenten-
Musterlösungen der beiden Teilaufgaben von Aufgabe 4, die in Abschn. 6.4 inhaltlich 
vorgestellt und in den thematischen Zusammenhang der Vorlesung eingebettet worden 
sind. Alle Teile von Aufgabe 4 und die zugehörigen Dozenten-Musterlösungen sind im 
Anhang wiedergegeben.

Jede der beiden ATD-Analysen wird zur besseren Übersicht auch grafisch dargestellt. 
Dazu haben wir zunächst die Orientierung des 4 T-Modells verändert: Aufgaben-
typen, Techniken, Technologien und Theoriefacetten sind nicht mehr nebeneinander, 
sondern untereinander angeordnet. Im Rahmen unserer Analyse haben wir komplexe 
Techniken als neue Teilaufgaben aufgefasst und zu diesen wiederum die zugehörigen 
Lösungstechniken, Technologien und Theoriefacetten zugeordnet15. Der Übergang von 
komplexen Techniken zu neuen Teilaufgaben ist über entsprechend beschriftete Pfeile 
dargestellt. Zur besseren Unterscheidung von HM- und ET-Elementen der Praxeologie 
wurden unterschiedliche Farben und Formen verwendet (vgl. Legende in Abb. 6.2).

15Dieser Übergang von komplexen Techniken zu neuen (Teil-)Aufgaben kann als dialektisches 
Verhältnis zwischen Aufgaben und Techniken verstanden werden (vgl. Chevallard 2019, S. 85), 
das wir hier zur Strukturierung unserer Analyse nutzen.
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6.5.1  Der Enveloppendemodulator

Diese Analyse bezieht sich auf die folgende Aufgabe (siehe erste Unterpunkte von Auf-
gabe 4 im Anhang).

Unter der Annahme 0 < m < 1 und somit A(t) > 0 (die Einhüllende oder Enveloppe des 
AM-Signals ist stets positiv) zeige man, dass der o.g. Enveloppendemodulator tatsächlich 
ein Signal proportional zu A(t) liefert.

Die grafische Repräsentation der Analyseergebnisse zu dieser Aufgabe befindet sich in 
Abb. 6.2. Die Formulierung „…, dass der o.g. Enveloppendemodulator …“ bezieht sich 
dabei auf die entsprechende Vorlesungsfolie, auf der der Enveloppendemodulator ein-
geführt wurde.

Die Aufgabe (T1) besteht darin zu zeigen, dass der Enveloppendemodulator unter 
den gegebenen Voraussetzungen eine bestimmte Eigenschaft, nämlich ein Signal 
proportional zur Einhüllenden A(t) zu liefern, hat. Die Lösung der Aufgabe erfordert die 
Techniken Anwendung des Enveloppendemodulators (τET) auf das gegebene Signal und 
Ablesen der Proportionalität (τHM). Technologieelemente sind hier einmal, als Voraus-
setzung der Anwendbarkeit dieses speziellen Detektors, das Vorliegen eines Signals mit 
Modulationsgrad m < 1 (θET) und der Aspekt, dass elektrotechnische Größen auffass-
bar sind als Veränderliche im Kontext linearer Funktionen (θHM). Der Bezug zwischen 
linearen Funktionen und Proportionalität ist nicht notwendig Teil einer HM-Vorlesung16. 
Allerdings ist das Deuten von Parametern linearer Funktionen, im Spezialfall als 
Proportionalitätskonstante, Teil der Schulmathematik.

Die Anwendung des Enveloppendemodulators stellt eine komplexe Technik dar, die 
wir zu analytischen Zwecken als neue Teilaufgabe (T2) aufgefasst haben. Diese erfordert 
die Techniken Gleichrichtung (τET) und Anwendung des Tiefpassfilters (τET). Diese 
beiden Techniken sind für die Rückgewinnung des modulierenden Signals zentral (θET).  
Ohne Gleichrichtung würden sich positive und negative Amplitudenschwankungen 
im Mittel auslöschen (θET). Mit dem Tiefpass lässt sich schließlich das höherfrequente 
Trägersignal eliminieren (θET). Hier ist die Voraussetzung wichtig, dass die Träger-
frequenz größer ist als die Signalfrequenz (θET).

Aus beiden Techniken lassen sich nun analytisch wieder jeweils eigene Teilaufgaben 
konstruieren. Die Gleichrichtung (T3) erfordert die Anwendung der Betragsfunktion (τHM).  
Diese HM-Technik lernen die Studierenden im Rahmen der Vorlesung „Grundlagen der 
Elektrotechnik“ als mathematisches Modell des elektrotechnischen Vorgangs der Gleich-
richtung (θET) kennen. Dadurch erfährt eine HM-Technik eine neue, elektrotechnische 
Deutung. Die Anwendung des Tiefpassfilters (T4) erfordert die Zerlegung des Signals 
in konstante und oszillierende Komponenten (τET) und schließlich das Weglassen des 
Frequenzanteils (τET) als mathematische Darstellung der Wirkung des Tiefpassfilters (θET).

16Beispielsweise nicht im zugrunde liegenden Lehrbuch von Strampp (2015).
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Die Zerlegung des Signals in Gleich- und Frequenzanteile bildet eine weitere Teilauf-
gabe (T5). Da |cos| eine periodische stetige Funktion ist (θHM), kann |cos| in eine Fourier-
Reihe entwickelt werden (τHM). Diese HM-Technik kann wieder als neue Teilaufgabe 
(T6) betrachtet werden, deren Lösung zum Teil anspruchsvolle HM-Techniken erfordert, 
die hier nicht näher ausdifferenziert werden. Elektrotechnische Bezüge werden im Ver-
lauf der Lösung dieser Teilaufgabe nicht mehr hergestellt.

Zur Interpretation unserer Analyseergebnisse betrachten wir zunächst die 
rekonstruierten Praxeologien zu den jeweiligen Teilaufgaben einzeln: Insgesamt wurden 
sechs Teilaufgaben und zugehörige praxeologische Elemente rekonstruiert, die jeweils 
eine oder zwei Techniken und Technologien enthalten. Außer bei der Teilaufgabe zur 
Gleichrichtung (T3) werden ET-Techniken durch ET-Technologien begründet und HM-
Techniken durch HM-Technologien.

Bei der Teilaufgabe zur Gleichrichtung (T3) ist zur Rechtfertigung der HM-Technik, den 
Absolutbetrag auf eine Funktion anzuwenden, eine elektrotechnische Deutung relevant. 
Der Absolutbetrag stellt die Mathematisierung der Wirkung des Gleichrichtens dar.

Zum Zeigen der spezifischen Eigenschaft des Enveloppendemodulators, Teilaufgabe 
(T1), sind sowohl elektrotechnische Techniken mit elektrotechnischen Technologien als 
auch HM-Techniken mit zugehörigen HM-Technologien relevant. In allen weiteren Teil-
aufgaben treten entweder nur elektrotechnische Techniken und Technologien, (T2) und 
(T4), oder nur HM-Techniken und HM-Technologien, (T5) und (T6), auf. Bis auf die Teil-
aufgabe (T3) finden die jeweiligen mathematischen Handlungen in ihren jeweils eigenen 
mathematischen Diskursen statt.

Abb. 6.2  Grafische Darstellung der Analyseergebnisse zum Enveloppendemodulator
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Bis hierher hat sich bereits gezeigt, dass Techniken und Technologien beider Dis-
kurse vorkommen und in einem Fall, (T3), auch eine Mischung, also die Rechtfertigung 
der Technik des einen Diskurses durch Elemente des anderen Diskurses, auftritt. 
Wenn wir nun bei der Interpretation berücksichtigen, dass die Trennung in Teilauf-
gaben ein analytischer Schritt ist, die sechs Praxeologien also integriert gedacht werden 
müssen, fallen weitere interdiskursive Beziehungen auf: Bei der Anwendung des Tief-
passfilters (T4) muss das Signal in konstante und oszillierende Komponenten zerlegt 
werden, um schließlich zu zeigen, dass eine konstante positive Komponente existiert,  
nach Anwendung des Tiefpassfilters also ein positiver Proportionalitätsfaktor übrig 
bleibt. Dabei unterdrückt der Tiefpassfilter alle oszillierenden Komponenten. Die 
Rechtfertigung auf dieser Ebene ist elektrotechnischer Natur (vgl. hierzu auch die Aus-
führungen in Fettweis 1996, S. 236 ff.). In Teilaufgabe (T5) und Teilaufgabe (T6) wird 
diese Zerlegung nun als Entwicklung in eine Fourier-Reihe durchgeführt. Dabei ist das 
gesamte Vorgehen stark formalisiert ausgerichtet17. Hier findet im Verlauf der Aufgaben-
lösung ein Diskurswechsel statt, wobei die mathematische Strenge im weiteren Verlauf 
durch die Ansprüche der Aufgabenstellung nicht gerechtfertigt ist. Nach der Fourier-
Reihen-Entwicklung findet eine Rückkehr in den elektrotechnischen Diskurs statt, in 
dem das Weglassen der oszillierenden Komponenten mit Bezug auf den Tiefpassfilter 
gerechtfertigt und somit auch das Bestimmen aller Fourier-Koeffizienten außer dem 
ersten gewissermaßen infrage gestellt wird.

6.5.2  Rotierende Zeiger

Diese Analyse bezieht sich auf die folgende Aufgabe (siehe dritte Aufgabe des zweiten 
Unterpunktes von Aufgabe 4 im Anhang):

Stellen Sie x(t) unter Ausnutzung der Beziehung cos(2π ft) = ℜ{exp (j2π ft)} und des Ergeb-
nisses unter Punkt 2. in der komplexen Ebene als rotierenden Zeiger mit variierender 
Amplitude grafisch dar.

Bevor wir zur Analyse der Dozenten-Musterlösung kommen, möchten wir zwei 
Bemerkungen einfügen: Zum einen wird in Punkt 2., auf den in der Aufgabenstellung Bezug 
genommen wird, das amplitudenmodulierte Signal x(t) = A(1 + m cos (�t)) cos (2π f0t) 
als Summe dreier harmonischer Schwingungen dargestellt, wobei � ≪ 2π f0 gilt. Das 
Ergebnis lautet:

17Möglich wäre hier auch eine pragmatische Lösung im Sinne der Aufgabenstellung, die nur 
den ersten Koeffizienten berechnet, um zu zeigen, dass der positiv ist. Das Berechnen weiterer 
Koeffizienten ist in gewissem Sinne unnötig, da die zugehörigen Signalanteile durch die 
anschließende Anwendung des Tiefpassfilters unterdrückt werden. Solche Varianten finden sich 
beispielsweise in Studierendenlösungen.
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Damit wird in der von uns analysierten Aufgabe weitergearbeitet. Und zum anderen ist 
die Aufgabenstellung ungenau: Das Signal x(t) ist der Realteil des rotierenden Zeigers, 
der in der komplexen Zahlenebene dargestellt werden soll, nicht der Zeiger selbst. In der 
Dozenten-Musterlösung wird zwischen dem Realteil des Zeigers und dem Zeiger selbst 
unterschieden.

Die Aufgabe (T1) besteht nun also darin, den gegebenen Ausdruck als Realteil eines 
rotierenden Zeigers in der komplexen Ebene darzustellen. Insgesamt werden zur Lösung 
dieser Aufgabe vier Techniken rekonstruiert. Zwei davon werden wiederum jeweils auf-
grund ihrer Komplexität als Teilaufgaben aufgefasst. Die grafische Darstellung der Ana-
lyseergebnisse zu dieser Aufgabe befindet sich in Abb. 6.3.

Zur Lösung von (T1) muss das Signal x(t) zunächst so umgeformt werden (τHM), dass es 
schließlich als Realteil eines sich drehenden Trägerzeigers mit zeitabhängiger Amplitude 
A(t) interpretierbar ist. Begründet sind diese Umformungen in der Idee, Prinzipien der 
Amplitudenmodulation grafisch darzustellen (θET). Insbesondere der Rechenschritt von.

in dem x(t) als Realteil dreier im Ursprung gezeichneter rotierender Zeiger interpretier-
bar ist, hin zu.

in dem x(t) als rotierender Trägerzeiger mit zeitabhängiger Amplitude A(t) interpretiert 
werden kann, ist hier zentral. Nur wenn x(t) in dieser Form dargestellt wird, kann ein 

x(t) = A cos (2π f0t) +
Am

2
cos (2π f0t + �t) +

Am

2
cos (2π f0t − �t)

x(t) = Aℜ{exp(j2π f0t)} +
Am

2
ℜ{exp(j(2π f0t + �t))} +

Am

2
ℜ{exp(j(2π f0t − �t))},

x(t) = ℜ

{

exp (j2π f0t)

[

A +
Am

2
exp (j�t) +

Am

2
exp (−j�t)

]}

,

Abb. 6.3  Grafische Darstellung der Analyseergebnisse zu den rotierenden Zeigern
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Zeigerdiagramm gezeichnet werden, in dem die Amplitudenmodulation des Signals x(t) 
dargestellt werden kann18.

Die Technik, x(t) umzuformen, haben wir in unserer Analyse als Teilaufgabe (T2) 
aufgefasst. Dazu wird zunächst die in der Aufgabenstellung gegebene Beziehung 
cos (2π ft) = ℜ{exp (j2π ft)} auf x(t) angewendet (τHM). Hier sind zur Begründung 
Zusammenhänge zwischen der Darstellung einer komplexen Zahl in Polarform und in 
Exponentialform relevant (θHM). Im weiteren Verlauf werden Rechenregeln für komplexe 
Zahlen angewendet (θHM), nämlich das Ausklammern des Realteils (τHM) und des Faktors 
exp (j2π f0t) (τHM). Als Ergebnis ergibt sich bis hierher:

Im nächsten Schritt muss dieser Ausdruck als Projektion eines Zeigers mit zeit-
abhängiger Amplitude

auf die reelle Achse interpretiert werden (τHM). Diese Technik ist dem HM-Diskurs 
zugeordnet, da auch in der Höheren Mathematik komplexe Zahlen als Zeiger aufgefasst, 
in Zeigerdiagrammen dargestellt und die Projektion des Zeigers auf die reelle Achse als 
Realteil der komplexen Zahl interpretiert werden (vgl. Strampp 2012). Gerechtfertigt 
wird dies im Rahmen der Behandlung komplexer Zahlen (θHM). Als Nächstes wird die 
Summe A(t) als Modulation des Trägerzeigers interpretiert (τET). Die Länge des Zeigers 
exp (j2π f0t) ändert sich zeitabhängig entsprechend A(t). Somit korrespondiert dieser in 
seiner Länge variierende Zeiger mit einem allgemeinen periodischen Signal (θET).

Diese Interpretation als Modulationsvorgang wird aufgrund ihrer Komplexi-
tät als Teilaufgabe (T3) aufgefasst. Um den Ausdruck A(t) als Modulation des Träger-
zeigers interpretieren zu können, müssen zuerst der Trägerzeiger mit Amplitude A, der 

x(t) = ℜ

{

exp (j2π f0t)

[

A +
Am

2
exp (j�t) +

Am

2
exp (−j�t)

]}

A(t) = A +
Am

2
exp (j�t) +

Am

2
exp (−j�t)

18Die Abb. 6.1 rechts und das Zeigerdiagramm (siehe Abb. 4 in der Dozenten-Musterlösung im 
Anhang) stellen im Prinzip zwei Veranschaulichungen der Amplitudenmodulation dar. Das Zeiger-
diagramm hat gegenüber der Darstellung in Abb. 6.1 rechts den Vorteil, dass sich damit einige 
Effekte, die bei der Amplitudenmodulation relevant sind, darstellen lassen. Ist beispielsweise der 
Modulationsgrad m größer als 1, kommt es zu einem Phasensprung: Zu dem Zeitpunkt, an dem 
die beiden Seitenbandzeiger genau entgegen der Richtung des Trägerzeigers liegen, sind die 
beiden Seitenbandzeiger dann zusammen länger als der Trägerzeiger. Insgesamt macht der Zeiger 
der Gesamtsumme dann einen Phasensprung. Ein zweites Beispiel ist eine ungleichmäßige Über-
tragung der beiden Seitenbänder. Wenn sich deren Amplituden unterscheiden, sind die beiden 
Seitenbandzeiger nicht mehr gleich lang. Ursprünglich zeigt die Summe der Seitenbandzeiger 
immer in oder genau entgegen der Richtung des Trägerzeigers. Schwanken die Amplituden der 
Seitenbänder, schwankt die Summe der Seitenbandzeiger um diese Mittellage und es kommt zu 
zusätzlicher Phasenmodulation.
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sich mit Winkelgeschwindigkeit ω0 = 2π f0 dreht, und die beiden Seitenbandzeiger mit 
Amplitude je Am/2, die sich mit Winkelgeschwindigkeit �.  und −�  den Trägerzeiger 
drehen, identifiziert werden (τHM). Diese Technik wurde dem HM-Diskurs zugeordnet, 
da es hier darum geht, Ausdrücke als komplexe Zahl mit der jeweils entsprechenden 
Darstellung als Zeiger zu interpretieren. Hier ist die Rechtfertigung dieser Interpretation 
durch die elektrotechnische Konzeption der Darstellung von Signalen durch rotierende 
Zeiger begründet (θHM). Anschließend wird die Addition der drei Zeiger als Modulation 
interpretiert (τET), was sich durch die Auffassung von Modulation als Überlagerung 
von Signalen rechtfertigen lässt. Diese Überlagerung wird durch die Addition der ent-
sprechenden Zeiger modelliert (θET).

Die vierte Technik ist schließlich das Zeichnen des Zeigerdiagramms (τHM). Die Dar-
stellung komplexer Zahlen als Zeiger in der komplexen Zahlenebene ist eine übliche 
HM-Technik. Hier jedoch bekommt diese HM-Technik wiederum eine elektrotechnische 
Deutung, da es sich um die geometrische Veranschaulichung eines Modulationsvorgangs 
handelt (θET).

Insgesamt wurden zur Aufgabe T1 vier Techniken mit zugehörigen Technologien 
identifiziert und rekonstruiert. Zwei Techniken wurden wiederum aufgrund ihrer 
Komplexität als Teilaufgaben T2 und T3, mit jeweils zwei Techniken und zugehörigen 
Technologien, aufgefasst. Im Vergleich zur Aufgabe zum Enveloppendemodulator 
kommen hier HM-Techniken, die im Rahmen eines mathematischen ET-Diskurses 
gerechtfertigt werden, häufiger vor: Das Umformen von x(t) stellt an sich eine HM-
Technik dar, und als Teilaufgabe T2 steht sie komplett im HM-Diskurs, aber das Ziel 
dieser Umformungen ist eine ganz spezifische Form, die notwendig ist, um das Signal 
überhaupt als amplitudenmoduliert zu interpretieren. In Teilaufgabe T3 müssen Träger-
zeiger und die beiden Seitenbandzeiger identifiziert werden. Hier geht es prinzipiell 
darum, komplexe Zahlen in Polarform zu identifizieren und ihnen ihre entsprechende 
Darstellung als Zeiger zuzuordnen. Die technologische Ebene reflektiert dabei, dass es 
sich einmal um den Zeiger des Trägersignals und einmal um die beiden Zeiger der Seiten-
bänder im Kontext der Amplitudenmodulation handelt. Und schließlich wird in Aufgabe 
T1 das Zeigerdiagramm gezeichnet. Auch diese Technik ist prinzipiell in der HM anzu-
treffen. In der vorliegenden Aufgabe liegt die Begründung aber in der Veranschaulichung 
eines elektrotechnischen Vorgangs. Man könnte auch alle drei Zeiger an den Ursprung 
zeichnen, entsprechend dem vorletzten Schritt in der Umformung. Diese Darstellung 
wäre aber nicht geeignet, relevante Aspekte der Amplitudenmodulation darzustellen.

Ein weiterer Aspekt, der uns im Rahmen der Analyse aufgefallen ist: HM-Techniken, 
die sich mit den Zeigern beschäftigen (Interpretation von x(t) als Projektion eines 
Zeigers, Identifikation von Trägerzeiger und Seitenbandzeigern und Zeichnen des 
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Zeigerdiagramms), können vom Typ her in der HM vorkommen, treten aber in der vor-
liegenden Aufgabe in besonders komplexer Weise auf. Einen Ausdruck als Projektion 
eines Zeigers auf die reelle Achse zu interpretieren, ist HM-typisch. Hier kommt hinzu, 
dass der Zeiger eine zeitabhängige Amplitude besitzt. Ausdrücke als komplexe Zahl mit 
der jeweils entsprechenden Darstellung als Zeiger zu interpretieren, ist HM-typisch. Im 
Ausdruck für A(t) die beiden Seitenbandzeiger zu identifizieren und A als Amplitude 
des Trägerzeigers zu erkennen, benötigt aber spezifisches Wissen über Prinzipien der 
Amplitudenmodulation. Und schließlich ist auch das Zeichnen von Zeigerdiagrammen 
üblich in der HM. Hier muss nun aber im Prinzip auf dem Trägerzeiger ein zweites 
Zeigerdiagramm gezeichnet werden (siehe Abb. 4 im Anhang). Nur so ist der Vorgang 
der Amplitudenmodulation überhaupt adäquat dargestellt und nur so ist es möglich, an 
dieser spezifischen Grafik weitergehende Aspekte (z. B. zum Modulationsgrad m oder 
zu Übertragungsverlusten in den Seitenbändern, vgl. Fußnote 18) zu untersuchen. Das 
Erkennen der Amplitudenmodulation in diesem Zeigerdiagramm und die Möglichkeit, 
dieses Zeigerdiagramm zum Studium bestimmter elektrotechnischer Effekte nutzen zu 
können, erfordert demnach gerade einen spezifischen „elektrotechnischen Blick“, also 
den ET-Diskurs, und somit Aspekte, die mit den Überlegungen von Bissell und Dillon 
zum Systemdenken in Verbindung stehen.

6.6  Diskussion

Die Analysen der Aufgaben zeigen, dass sich in deren Lösungsschritten Techniken und 
Technologien unterscheiden lassen, die sich verschiedenen mathematischen Diskursen, 
dem HM-Diskurs oder dem ET-Diskurs zuordnen lassen. Dabei kann die Unterscheidung 
auf der Grundlage der vorher formulierten Charakterisierungen dieser beiden Diskurse 
vorgenommen werden. Im Hinblick auf die beiden Aufgaben und deren Lösungen 
adressieren die Charakterisierungen also identifizierbare Unterschiede und sind hinsicht-
lich dieses Ziels hinreichend präzise.

Insbesondere aus den grafischen Darstellungen der Analyse wird unmittelbar deut-
lich, an welchen Stellen in der Bearbeitung für Studierende eventuell problematische 
Übergänge zwischen mathematischem HM-Diskurs und mathematischem ET-Diskurs 
auftreten und explizit in der Lehre, etwa bei der Besprechung der Lösungen in der Lehr-
veranstaltung, angesprochen werden könnten. Gegebenenfalls in Aufgabenbearbeitungen 
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auftretende Schwierigkeiten können anhand der Grafik diagnostisch hinsichtlich 
ihrer technischen oder technologischen Qualität beurteilt werden. Auf dieser Grund-
lage könnte darüber hinaus auch die Ebene der Rückmeldung an Studierende bedacht 
und geeignet gewählt werden. So könnte Feedback auf technische Probleme etwa nicht 
nur die jeweilige Technik adressieren, sondern auch technologische Aspekte und deren 
jeweilige Verortung im HM- bzw. ET-Diskurs der SST berücksichtigen. Sowohl die vor-
genommene Charakterisierung der Diskurse als auch unser Vorschlag zur grafischen 
Darstellung von Ergebnissen der praxeologischen Analyse können also in fachbezogene 
Vor- und Nachbereitungsüberlegungen von Lehrveranstaltungen sowie in fachliches 
Feedback auf Aufgabenbearbeitungen als Werkzeug einbezogen werden.

Im Einzelnen und unter Berücksichtigung der jeweiligen Teilaufgabenebenen ergaben 
sich im Kontext der zwei Beispielaufgaben die folgenden drei praxeologisch zu unter-
scheidenden Typen von Verknüpfungen:

a. HM-Technik als Moment eines ET-Diskurses: z. B. in T3 in der Enveloppen-Aufgabe 
(Gleichrichtung und Absolutbetrag) und in T3 in der Aufgabe zum rotierenden Zeiger 
(Interpretation von A(t) als Modulation). Hier muss man jeweils den mathematischen 
ET-Diskurs und dessen Realisierung kennen. Feedback zu einer problematischen  
Aufgabenbearbeitung an diesem Punkt könnte also sinnvollerweise dieses möglicher-
weise nicht vorhandene Verknüpfungswissen adressieren. Dies müsste gegebenenfalls 
im ET-Diskurs plausibel gemacht werden. Aktivierende Fragen könnten im Beispiel 
der Enveloppen-Aufgabe etwa sein: Was bedeutet Gleichrichtung? Wie wird das 
elektrotechnisch und mathematisch realisiert? Was macht das mit dem Signal?

b. ET-Technik als Moment des ET-Diskurses: z. B. in T4 in der Enveloppen-Aufgabe 
(Anwenden des Tiefpassfilters)

c. HM-Technik als Moment des HM-Diskurses: z. B. in T5 in der Enveloppen-Aufgabe 
(Fourier-Reihe)

Die Typen b. und c. sind jeweils, zumindest wenn man die Integriertheit der jeweiligen 
Unterebenen unberücksichtigt lässt, innerhalb der jeweiligen Diskurse angesiedelt. 
Inwieweit diese verschiedenen Typen tatsächlich praxeologisch zu unterscheidende 
Hürden für Studierende darstellen, ist natürlich eine empirisch weiter zu untersuchende 
Frage. Schließlich müssen strukturelle Hürden in Lösungen nicht notwendigerweise tat-
sächlich zu Hürden bei der Bearbeitung führen. Auch zur Verbreitung der jeweiligen 
Schwierigkeiten kann unsere Analyse keine Aussage machen.

Noch zwei kurze abschließende Bemerkungen: An den beiden in dieser Arbeit bei-
spielhaft analysierten Aufgaben ließen sich Aspekte identifizieren, bei denen höhere 
Ebenen der Kodetermination einen Beitrag zur Aufklärung des Logos-Blocks leisten 
würden, analog zu unserer Analyse der Einführung des Dirac-Impulses (Hochmuth 
und Peters 2020). Im Hinblick auf die zentralen Fragestellungen dieses Beitrags 
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schienen uns diese aber von untergeordneter Bedeutung. Unseres Erachtens zeigen 
die grafischen Darstellungen der Verschlingungen der mathematischen Diskurse auch 
noch einmal deutlich, dass sich im Kontext dieser eher fortgeschrittenen Aufgaben 
keine klare Unterscheidung in einen reinen Mathematikdiskurs und einen mathematik-
freien Elektrotechnikdiskurs, was dem sogenannten Rest der Welt im Modellierungs-
kreislauf entsprechen würde, treffen lässt. Das Verhältnis zwischen Mathematik 
und Elektrotechnik, das wir im Rahmen dieses Beitrags nicht explizit adressieren, 
sondern zusammen im mathematischen ET-Diskurs fassen, ist darüber hinaus mit der 
Anwendungsmetapher nur unzureichend erfasst. Damit stützen die Ergebnisse der 
beiden exemplarischen Aufgabenanalysen unsere methodischen und theoretischen Vor-
entscheidungen.

Anhang

Dieser Abschnitt gibt Übungsaufgaben und die zugehörigen, von uns analysierten 
Dozenten-Musterlösungen wieder, so wie sie auf dem Übungsblatt zur Vorlesung 
erscheinen.
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Abstract

The contribution aims at subject-specific analyses of student solutions of an exercise

from an electrical engineering signal theory course. The basis for the analyses is

provided by praxeological studies (in the sense of the Anthropological Theory of

Didactics) and the identification of two institutional mathematical discourses, one

related to higher mathematics for engineers and one related to electrical engineering.

Regarding the relationship between institutional observations and analyses of students’

solutions, we refer, among others, to Weber’s (1904) concept of ideal types. In the

subject-specific analyses of student solutions we address in particular transitions and

interrelations within single processing steps that refer to the two mathematical dis-

courses and different forms of embedding of mathematics into the electrical engineer-

ing context. Finally, we present a few ideas for teaching.

Keywords Mathematical practices . Student solutions . Ideal typical discourses .

Institutions . Anthropological theory of the didactic

Introduction

The use of mathematics in engineering courses and its adequate conceptualisation is a

frequently addressed issue (e.g. Alpers, 2017; Alpers et al., 2013; Barquero et al., 2011,

2013; Czocher, 2013; Harris et al., 2015; Rooch et al., 2016). In previous research we

have dealt with this in the context of signal theory (Hochmuth & Peters, in press;

Hochmuth & Schreiber, 2015). In particular, we have referred to Castela and Romo

Vázquez (2011) in which institutional references of mathematical practices (in the

sense of the Anthropological Theory of Didactics (ATD) (Bosch & Gascón, 2014;

Chevallard, 1992)) were reconstructed. In (Peters & Hochmuth, in press) we have also
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taken up their idea of an extended praxeological model, which they used to distinguish

between practical and academic knowledge aspects in a vocational context. In contrast,

we focused on investigating various elements of mathematical knowledge taught within

a signal theory course in the context of an electrical engineering university program.

We distinguished between a mathematical HM- and a mathematical ET-discourse1 and

showed, that the extended model and the identified discourses allow to figure out a

complex interweaving of mathematical and engineering practices that cannot be

conceptualised on the basis of a view that separates mathematics, the application of

mathematics and engineering science. For characterising the mathematical discourses,

we most notably used studies by Bissell and Dillon (Bissell & Dillon, 2000; Bissell,

2004, 2012).

In this study, too, the ATD serves as our theoretical framework. ATD is also used by

González-Martín and Hernandes-Gomes (2018, 2019), where they address curricular

differences between mathematics and engineering courses. In particular, they ask about

the appropriateness of practices with regard to aspects of the integral concept and the

use of integrals in calculus and mechanics courses. Similarly to Dammann (2016, p.

97), they notice that the mathematical requirements in statics lie primarily in the areas

of basic arithmetic, the processing of linear equations and systems of equations, and

that it is not necessary for students within statics to master the mathematical procedures

of differential and integral calculus. By curricular differences we mean the phenome-

non that there are mathematical topics or argumentation contexts that are dealt with in

higher mathematics, but not in engineering courses, or that are substantially different in

engineering courses and vice versa. This lack of fit is an important observation and

certainly gives cause to think about appropriate adjustments and, if necessary, to

incorporate them into the curriculum.

In contrast to these investigations, our research interest is directed towards refined

analyses of mathematical practices in the engineering sciences and the interplay of

different mathematical discourses within these practices. In (Peters & Hochmuth, in

press) we analysed an exercise and could identify transitions and interrelations within

single processing steps of a sample solution that goes beyond the vision of a pure

application of mathematics in the engineering context, a vision which has been coined

by Barquero, Bosch and Gascón (2011) as applicationism. Both the analysis of the

exercise and the figured-out characteristics of the HM- and the ET-discourse referred to

the institutional level in the sense of the ATD. If one now looks at solutions of the

exercise by individual students, the question arise, whether the identified transitions and

interrelations possibly appear as breaking points in solution processes, or, more

generally, whether and how they can be found there. To answer this question is the

main objective of this paper.

Since ATD distinguishes between institutional praxeologies and individual activities

the question comes up how institutional analyses can be used to analyse student

solutions. In our view, this question is not fully answered in ATD. For more details

regarding the appraisal and argumentations in ATD studies we refer the reader to

1 The acronyms HM and ET were introduced by Peters and Hochmuth (in press) to denote the two relevant

contexts of “Höhere Mathematik” (HM, higher mathematics) and “Elektrotechnik” (ET, electrical engineer-

ing) and associated discourses. HM and ET are the standard German actronyms for these contexts. Although

the English term electrical engineering requires the acronym EE, for reasons of consistency we stick here to

the acronym ET.
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section 3. To make progress on this issue, we need to clarify the meaning and analytical

status of discourse more concretely than in previous contributions. Following our

preceding work our use of discourse still focuses on subject-specific2 aspects and is

based on the concept of praxeology in ATD. Beyond that, however, it will prove

fruitful in the following to link the notion of discourse with Weber’s (1904) concept of

ideal types. The ideal type concept turns out to be compatible with the ATD framework

and from it methodical steps can be derived for analysing individual contributions on

the basis of institutionally based models. From the point of view of the ATD Gascón

and Nicolás (2017) have dealt with Weber: With reference to Weber’s distinction

between normative and scientific statements, the authors specified the position of the

ATD with regard to responsibilities and objectives of didactics as a science. To our

knowledge, the ideal type concept has not been discussed in the ATD so far.

We have structured our contribution as follows: In section 2 we characterise both the

electrical engineering (ET) and the higher mathematics (HM) context representing

important reference points for our analyses of the signal theory exercise and related

student solutions. To illustrate the characterisations of two different mathematical

discourses and to delimit the two contexts, we use the topic of complex numbers and

their different subject-specific rationales in electrical engineering and higher mathemat-

ics. Finally, we give a short introduction to amplitude modulation, the specific subject of

the exercise. In section 3, we introduce the ATD notions that we will subsequently use to

grasp subject-specific aspects. Against the background of differences regarding the two

course-contexts we introduce the two institutional mathematical discourses, the HM-

and the ET-discourse and connect them to Weber’s (1904) concept of ideal types.

Additionally referring back to the theory of rational explanation (Schwemmer, 1976)

and with the focus on subject-specific aspects we finally identify a methodical procedure

with four steps for applying the institutional analysis to individual student solutions.

Section 4 then starts by an institutional analysis of the exercise. The presented analysis is

based on the analysis in (Peters & Hochmuth, in press), but develops it further with a

view to the intended use in the current contribution. Applying the ideal typical mathe-

matical discourses, we generate a praxeological model which we also present as a

graphical scheme. The model is subsequently used to analyse the student solutions

following the previously identifiedmethodical steps. In particular we provide answers to

the question of whether and how the institutionally identified transitions and interrela-

tions regarding the mathematical discourses can be found there. In section 5 we finally

discuss the obtained insights and present a few ideas for teaching based on them.

Context of the Study: Signal Theory and Amplitude Modulation

Focus of our analyses are student solutions of an exercise from a signal theory course.

Signal theory courses are one of the first in-depth courses in electrical engineering

studies at German universities. They are usually scheduled for the third or fourth

2 In the institutional context, we usually skip the institutional and simply speak of subject-specific. This seems

justified to us, since discipline-specificity is unthinkable without institutions. With regard to the individual

level, we use the term individual subject-specific. The term subject-related, on the other hand, addresses

aspects that consider the individual as subject, including societal and psychological moments.
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semester, after students have attended courses on higher mathematics for engineering

and introductory theory-orientated electrical engineering courses. Signal theory is

considered to be very mathematical, while the extent to which formal mathematical

concepts are elaborated varies. Sometimes it is offered as a Fourier analysis course, as

found in mathematics studies, where electrical engineering terms or problems are

hardly considered. In contrast our contribution deals with data from a signal theory

course that is strongly oriented towards electrical engineering. The variation of math-

ematical formalism is also present in the definitions of electrical engineering concepts.3

Engineering concepts are closely related to physical quantities. They are always related

to measurement and to real phenomena.4 These observations already indicate two

characteristics of the electrical engineering context: on the one hand the reference to

reality, and on the other hand a very different degree of explication of this reference to

reality, which is accompanied by a different degree of mathematical formalisation. This

is also mentioned by Fettweis (1996, p. i) and addressed as a dilemma: an increasing

mathematical formalisation of concepts can make it increasingly difficult to understand

their physical meaning and justification.

The notion of system refers to a third characteristic: Frey and Bossert (2009)

generally understand a system to be “an abstracted arrangement that relates several

signals to one another. This corresponds to the mapping of one or more input signals to

one or more output signals”. (p. 3). They first introduce a system type that is easy to

handle mathematically and consider only one input and one output signal each, since

“this makes the system thinking [Systemgedanke] easier to grasp.” (p. 6). A system can

be understood as a black box that responds to a specific input signal with a specific

output signal. Studies by Bissell and Dillon (Bissell & Dillon, 2000; Bissell, 2004,

2012) show that system thinking and the electrical engineering way of doing and

talking about mathematics, differs from the way of mathematicians. The authors argue

that “this linguistic shift is more than just jargon, and more than just a handy way of

coping with the mathematics” (Bissell & Dillon, 2000, p. 10).

To further illustrate the electrical engineering way of thinking and doing mathemat-

ics, we give a short overview on how complex numbers and relating concepts like

phasors are treated in an introductory course on electrical engineering and in a course

on higher mathematics for engineers respectively. The following observations are based

on standard literature, lecture notes and students’ notes for two consolidated standard

courses which are held every year at the University of Kassel. Complex numbers play

also an important role in the exercise (cf. Appendix) we examine in this paper. We will

argue that in those courses the respective rationales of complex numbers and their

justifications are different and that these variations constitute partly conflicting resp.

complementary reference points for students in the signal theory course.

In Albach (2011), a standard textbook for introductory courses on electrical engi-

neering, phasors are introduced with the purpose to graphically describe time-

dependent sinusoidal5 functions, see Fig. 1. The first introduction of phasors is without

3 For example, compare definitions in the two books by Frey and Bossert (2009) and Fettweis (1996). Both

books are recommended as standard literature for the signal theory course we are studying.
4 For a more detailed discussion of such epistemological issues regarding the relationship of mathematics and

empirical sciences we refer to Hochmuth und Peters (in press).
5 Circuits are operated with sinusoidal current- and voltage forms in the power supply network as well as in

many other important areas.
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references to complex numbers: A phasor [Zeiger] is an arrow with a specific length

and a specific angle with respect to a reference.

When analysing electrical components, the amplitude ratio of the input signal to the

output signal and the phase shift caused by the component are of primary interest.

Therefore, phasors are important graphic tools for interpretation and analysis of

electrical engineering processes. Current- and voltage ratios in electrical networks

can be displayed and analysed graphically in phasor diagrams without using complex

numbers or differential equations. For the purpose of an algebraic description of

phasors, the plane in which phasors are drawn, can be considered as the complex

plane. The phasor can now be understood as a complex quantity that symbolically

represents the time-dependent voltage (see Albach, 2011, p. 42). The compatibility of

the rules for manipulating phasors and the calculation rules of complex numbers is

justified via physical relations. Furthermore, for a sinusoidal quantity the following

holds: Acos ωt þ φð Þ ¼R Ae j ωtþφð Þ
� �

¼R Aejωtejφð Þ, where A is the amplitude, ω is

angular velocity, φ is the phase angle (each independent of time) and j denotes the

complex unit in electrical engineering. The factor A ¼ Aejφ then is the mathematical

representation of the phasor, graphically represented by an arrow with length A and

angle φ with respect to a reference zero angle. The function A e j ωtð Þ is a representation

of a rotating phasor in the phasor- or Argand diagram.

In the course on higher mathematics for engineers, complex numbers are considered

in the first semester in the context of Linear Algebra (Strampp, 2012). Their introduction

is motivated by the solvability of the equation x2 + 1 = 0. For this purpose, real numbers

are extended by a number i with the property i2 = − 1. This approach is typical for the

whole chapter: the rational is aimed at an elaboration of the solvability of equations. This

results in considerations about the general solution of algebraic equations, the

fundamental theorem of algebra and Vieta’s formula. Calculation rules for complex

numbers are derived without introducing and proving formal concepts, but by stating

that all rules which are relevant for calculating with real numbers should continue to be

applicable (p. 59): Also, in further contexts it is pointed out that various terms are an

extension of already known concepts from real numbers. For example, the complex

exponential function eiϕ , which is introduced to serve as an abbreviation for cos(ϕ) +

sin(ϕ)i. Although the chapter is clearly designed to develop a practical approach to the

concepts and rules of calculation, it is subject to an orientation towards the inner-

mathematical, generalisation-oriented rational of academic mathematics.

In addition to the algebraic view on complex numbers, the chapter contains another,

geometric, orientation: An analogy to vectors is established, but the vector concept is

also distinguished from complex numbers: “We speak of phasors6 [Zeiger] and not of

vectors, since complex numbers, unlike vectors, can also be multiplied. This

6 We translated the German term Zeiger with the term phasor, which already refers to electrical engineering

concepts. But electrical engineering aspects play no role in the course and Strampp (2012) does not refer to

them either. Another possible translation of Zeiger, without the connection to engineering concepts would be

pointer. But we decided to use phasor for the following reason: In German, the term Zeiger is used both in

electrical engineering and in mathematics courses for engineers, but with different meanings (reference to

electrical engineering concepts vs. geometrical object with no further references). By using the term Zeiger

instead of vector Strampp (2012) can thus establish a connection to the electrical engineering courses without

dropping the inner mathematical conception of complex numbers. This aspect of using the same term, that has

different meanings in different course-contexts is in jeopardy of being lost through translation.
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multiplication extends the multiplication of real numbers.” (p. 60). This phasor concept

in the higher mathematics context differs from the phasor concept in the electrical

engineering context: In HM the geometrical representation of complex numbers as

arrows in the Argand diagram is used as a visualisation of calculation rules. In ET

phasors are arrows that represent measurable, time-dependent quantities such as alter-

nating voltages or currents. Complex numbers are then used for the convenient

algebraic description of phasors.

In summary, whereas the electrical engineering context is notable for system

thinking and for references to reality with different degrees of explication of this

reference accompanied by different degrees of mathematical formalisation, the higher

mathematics context is characterised by statements without references to reality and an

inner-mathematical understanding and justification of concepts, in particular and, a

generalisation-oriented rational following academic mathematics and a concentration

on calculation rules.

The exercise we investigate in this paper belongs to amplitude modulation (AM), a

central topic in signal theory. The principle of amplitude modulation is illustrated in

Fig. 2:

The amplitude of a high-frequency carrier signal (Fig. 2, left) is varied corresponding to

the course of the low-frequencymessage signal s(t) (Fig. 2, middle). The AM signal (Fig. 2,

right) can be represented as x(t) =A[1 +m s(t)] cos(2πf0 t) where cos(2πf0) is the carrier

signal. The modulation index m is the ratio between the amplitude of the carrier signal and

the amplitude of themessage signal, in addition the restrictions max
t∈R

js tð Þj ¼ 1 und 0 <m <

1 apply. With amplitude modulation, several message signals (e.g. for different radio

stations) with different carrier frequencies can be transmitted via antenna and received

without crosstalk between signals at the receiver (radio set) depending on the chosen

frequency.

Fig. 1 Relationship between phasor and time-dependent function (Albach, 2011, p. 32)
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The Anthropological Theory of the Didactic and Ideal Typical
Mathematical Discourses

ATD is a research program to study (mathematical) practices from an institutional

perspective. The notion of institution within the ATD is related to the work by Mary

Douglas (1986), who draws on ideas of Durkheim and Fleck. Her main point relevant

for ATD is the elaboration of the idea that all knowledge depends on (social) institu-

tions and conversely all institutions are based on shared knowledge (p. 45). In the

following we will take a closer look of how observations regarding institutional

practices and contexts can be referred to individual subject-specific analyses. In this

respect, we will refer in particular to Weber’s concept of the ideal type and, finally,

propose a procedure in four steps. But first we will introduce some basic terms of the

ATD. These constitute our starting point for linking the characterisations reported in

section 2 with Weber’s concept of ideal types.

The 4 T-Model and the Institutional Dependence of Knowledge

In ATD knowledge is related to human activities including not only aspects of know-

why but also practical knowledge in the sense of know-how. This is subsumed under

the term praxeology:

What exactly is a praxeology? ... One can analyse any human doing into two

main, interrelated components: praxis, i.e. the practical part, on the one hand, and

Fig. 2 Carrier signal (left), message signal s(t) (middle), and AM signal x(t) (right)

Fig. 3 Graphical representation of complex numbers. Students’ lecture note
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logos, on the other hand.… How are P [Praxis] and L [Logos] interrelated within

the praxeology [P/L], and how do they affect one another? The answer draws on

one of the fundamental principles of ATD ... according to which no human action

can exist without being, at least partially, ‘explained’, made ‘intelligible’, ‘justi-

fied’, ‘accounted for’, in whatever style of ‘reasoning’ such as an explanation or

justification may be cast. Praxis thus entails logos which in turn backs up praxis.

(Chevallard, 2006, p. 23)

A praxeology thus is a basic epistemological model to describe knowledge in the form

of the two inseparable and interrelated blocks Praxis and Logos. Those two blocks can

be differentiated further: the praxis block P (know-how) consists of problems or tasks T

and a set of relevant techniques τ used to solve them. The logos block L (know-why)

consists of a two-levelled reasoning discourse.7 On the first level, the technology θ

describes, justifies, explains etc. the techniques and on the second level the theory Θ

organises, supports and explains the technology. Since praxis and logos are dialecti-

cally interrelated, every aspect of praxis (i.e. tasks or techniques) is related to the

discourse. In short praxeologies are denoted by the standard 4T-model [T, τ, θ, Θ].

In the Chevallard quote, the part “in whatever style of ‘reasoning’ such as an

explanation or justification may be cast” refers to the idea that institutional conditions

constitute the technological-theoretical discourse and the practices available. Regarding

in particular the relationship of institutions and techniques, Chevallard (1999) writes:

Finally, in a given institution I, with regard to a given type of task T, there is

usually only one technique, or at least a small number of institutionally

recognised techniques, to the exclusion of possible alternative techniques - which

may actually exist, but then in other institutions. (p. 225, our translation)

Accordingly, we use the notion scope of the technique to address the set of tasks, which

can be solved with the institutionally recognised technique. In considering one specific

7 Within the ATD the term discourse, e.g. in expressions like “reasoning discourse” or “a discourse on praxis”

is used in the etymological sense (e.g. Bosch & Gascón, 2014, p. 68).

Fig. 4 Graphical representation of the institutional analysis
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piece of knowledge in different institutions, different praxeologies emerge: different

types of tasks are relevant, different solution techniques are adequate, and different

reasoning discourses are acceptable and constitutive. These relationships are addressed

by the term institutional dependence of knowledge. In view of section 2, we can

accordingly say that in the institution of electrical engineering, the ET-context, and in

the institution of higher mathematics, the HM-context, there are different praxeologies

concerning complex numbers. Furthermore, the characterisations of the two contexts

can be understood as descriptions of institutional aspects that shape the logos block and

thus, due to the dialectic of praxis and logos, also the practical part of praxeologies. In

the following we understand the characterisations of the two contexts as

characterisations of two different mathematical discourses8 and associate praxeologies

or praxeological elements to the mathematical ET-discourse or the mathematical HM-

discourse, if they can be characterised according to the institutional ET- or the

institutional HM context, respectively.9 In order to articulate the references to the

different institutional mathematical discourses, we use the further notations τHM and

τET as well as θHM and θET.

The Difference between Institutional Praxeologies and Individual Activities

The institutional dependency of knowledge implies that human activities are constitut-

ed and located in institutions: A praxeology does not present itself as something

individual, but as something institutional and societal. To stress the difference between

institutional praxeologies and actual individual activities, Chevallard uses the notion of

relation to objects (of knowledge): Institutions are based on shared knowledge, every

object of knowledge O is in relation to the institution I, noted as RI(O). A praxeology is

a concept to study the subject-specific content of those relations. Similarly, every

person X, that acts with an object of knowledge O is in an individual relation to it,

noted as R(X,O).

A person X becomes a good subject of I relative to the institutional objectO when

his personal relation R(X,O) is judged to be consistent with the institutional

relation RI(O). This person may also prove to be a bad subject,… and may, in the

end, be expelled from I. Here is where a development relating to intra-institu-

tional evaluation comes into play, relating to the mechanisms according to which

I is led to pronounce, through some of its agents, a verdict of conformity (or non-

conformity) of R(X,O) to RI(O). . … In particular, the institutional relation … is

nobody's personal relation, … : conformity is not identity. (Chevallard, 1992, p.

146/7)

8 This use of the term discourse goes beyond an etymological understanding (cf. footnote 6). We extend

thereby a term which already exists within the ATD. Our extended understanding blends into the already

existing concepts (e.g. institutional dependence of knowledge). We do not use the term discourse in the sense

of discourse theory. Due to the limited word count, we refrain from further elaboration of possible connections

and delimitations.
9 The two mathematical discourses can also be connected to the work of Artaud (2020), where she describes

two types of didactical transposition processes: An external didactical transposition process, originating in

academic mathematics research institutions. Here one can locate the HM-discourse. And an endogenous

didactical transposition process concerning processes within the engineering institution. Here one can locate

the ET-discourse.
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In summary, identified institutional praxeologies and discourses must be distinguished

from individual actions and their products. But, although persons do not have to

reproduce the specific institutional logos in a specific institution context, they provide

points of references for their actual practices. Consequently, institutional praxeologies

also provide important reference points for analyses of individual products, but cannot

be directly and unmediatedly be related to them. Research in mathematics education

sometimes neglect this difference10 and rather identifies individual actions and institu-

tional praxeologies. Regarding these arguments, it is important to stress once again that

we are focusing on subject-specific aspects. For example, Hardy (2009) analyses

students’ interpretations of institutional praxeologies in view of political and educa-

tional issues. Thus, of course, differences between students’ actions and institutional

praxeologies are considered. But, focusing on the subject-specific, if students use the

right symbols and write things down as they have been worked out in practice, both

actions are identified with each other. Because of these implicit identifications the

insightful explanations of the student’s interpretation possess an hypothetical character

also with respect to subject-specific aspects and not only with respect to the considered

political and educational issues. To support the overall relevance of these latter issues

Hardy proposed further studies (p. 357). However, it is not reflected in detail how this

could actually contribute to clarify differences regarding subject-specific issues, par-

ticularly in view of general characteristics of discourses.

HM- and ET-Discourse and Weber’s Notion of Ideal Type

To deal further with the issue of the difference between institutional praxeologies and

individual products regarding the HM- and ET-discourse we will recur in the following

to Max Weber’s (1904) construct of ideal type. Its use in empirical research to explain

individual actions has been investigated for many decades. We will refer to and adapt

these diverse and in part in-depth investigations focusing on subject-specific aspects.

This methodological considerations will enable us in the following to indicate a suitable

approach (see the four steps at the end of this section) and to clarify its possibilities and

limitations.

Weber (1904) introduces ideal types as a construction,

which is obtained by mental enhancement of certain elements of reality. Its relation-

ship to the empirically given facts of life consists merely in the fact that where

connections of the kind represented abstractly in that construction ... are determined

or suspected to be effective to some degree in reality, we can pragmatically visualize

and understand the peculiarity of this connection on an ideal type. This possibility can

be both heuristic and indispensable for the representation of value.…The ideal typical

term … is not a ‘hypothesis‘, but it wants to show the direction of hypothesis

formation. It is not a representation of the real, but it wants to give the representation

unambiguous means of expression. ( p. 64/5, our translation)

10 As expressed within ATD as difference between institutional and individual relations to objects of

knowledge.
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According to Weber’s introduction, we interpret the two mathematical discourses as

ideal types and the underlying characterisations of the discourses as a result of “mental

enhancements” regarding aspects of mathematical practices within specified institu-

tional contexts. Furthermore, we use the two ideal typical mathematical discourses as

heuristics for our subject-specific analyses of the exercises and the student solutions as

well as to formulate hypotheses. Thus, following Weber’s formulation, we assume that

the ideal typical discourses are to a certain extent effective and represent a means of

expressing something real in sample solutions and students works on exercises.

Thereby the relevance of this something in individual productions cannot be substan-

tiated by the ideal typical discourses themselves, but has to be shown in the individual

productions in a concrete and subject-specific way.

Weber’s construct of the ideal type has been widely criticised and expanded in the

social sciences (see Shubat, 2011, especially Chapter 1.4). There is no space here to

elaborate on this in detail. Regarding our use, the following question adapted from

Schwemmer (1984, p. 177) is particularly relevant to avoid circularity: In which way do

the characterisations associated with the mathematical discourses enter into the empir-

ical studies of individual productions and their results without withdrawing the

characterisations from empirical criticism? Our standpoint on this is the following:

Whether something is apparent in individual-related data whose concrete meaning can

be demonstrated by means of one of the two mathematical discourses is empirically

open with regard to the following two dimensions. (1) From a subject-specific point of

view, the appearance must be shown in the specific context of exercises and related

praxeologies. Thus, for example, it could be proven empirically that a subject-specific

context cannot be reconstructed as a particular case of application of the mathematical

discourses. (2) In subject-related respects, for example with regard to the question of

whether a student experiences the identified aspects as such, corresponding claims are

accessible to empirical criticism. Here, it could be proven empirically that the connec-

tions formulated by means of mathematical discourses do not contribute to an under-

standing of the students’ thoughts about her actions. In this article we focus on (1), the

subject-specific perspective. With regard to the rational explanation of concrete indi-

vidual products, we adopt a further argument by Schwemmer (1976, p. 142) concerning

the precondition of purpose-rationality as a methodological postulate: Our subject-

specific analyses are based on the assumption that solutions and works on exercises

follow the demand for a respective institutionally set subject-specific rationale. This is a

methodological requirement, since otherwise (i.e., assuming that the students and their

works do not follow any particular institutionalised disciplinary rationale) any relation-

ship between institutional disciplinary analyses and the analysis of concrete exercises

would be questioned from the outset.
11

Methodological Consequences for Subject-Specific Analyses

Against the background of ATD concrete individual actions or their products are thus

considered to be explained if their rational can be connected to praxeological analyses and

11 This does not contradict the empirical openness discussed above with regard to the two mathematics

discourses, since a concrete case could follow a different disciplinary rational, which might be completely

independent of the ones we reconstructed.
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the identified ideal typical discourses. In this respect, observations should be justified that

certain mathematical actions can be substantiated on the basis of praxeologically recon-

structed practices, including the consideration of ideal typical discourses. This implies

formulating hypotheses in observation language [Beobachtungssprache]12 with a view to

the respective subject-specific context. Specifically examined action situations are then to be

validated with regard to the existence of corresponding observation correlates

[Beobachtungskorrelate].13 Hereby, the ideal typical discourses identified by us prove to

be genetic concepts, i.e. they function as a guideline for hypothesis formation and allow the

rational to be grasped in a concrete action situation with regard to its institutional meanings.

The insights into practices gained through the discourses are of course not considered to be

valid for all times. Thus, for example, the modification of institutionalised practices (for

example, a modified treatment of complex numbers in higher mathematics courses) can

change the role of the identified ideal typical discourses in the reconstruction of concrete

practices.

In summary and with regard to our subject-specific focus, this results in the

following sequence of methodical steps:

1. At the institutional level, praxeologies are to be identified and connected to ideal

typical discourses.

2. Hypotheses in the specific context of signal theory or the exercises are to be

formulated using observational language.

3. Concrete material (exercises, sample solutions and students’ solutions) is to be

validated with regard to corresponding observation correlates.

4. If these are available, concrete material can be explained on this basis.

In the next section we first present the institutional analysis of the lecturer’s sample solution

with a view to using it as a reference for the analyses of the students’ solutions (step 1). This

will also illustrate the ATD concepts introduced in this section. Thereby we will use the

graphical method developed in (Peters & Hochmuth, in press) to present the result of the

institutional analysis, see Fig. 4. In the next step we move on to the student work and

formulate corresponding hypotheses (step 2) in observational language. With reference to

these hypotheses, we will then identify observation correlates with respect to the rationales

and, in particular, the ideal typical mathematical discourses (step 3). Finally, we explain the

student solutions regarding their institutionalised subject-specific rationales (step 4). Herewe

use the graphical scheme, i.e. Figure 3 without text, to represent the analysis results of the

students’ solutions, see Figs. 5a, 6a, 7a, 8a, and 9a.

Analyses of the Student Solutions

The exercise and the sample solution are presented in the appendix: The complete

exercise consists of three items. Results for items 1 and 2 and the complete sample

12 Using observation language means to describe an observation without interpretations (Schwemmer, 1976,

p. 165), whereas interpreting means to show actions as rational in purpose or sense (p. 168).
13 The observation correlate of an action is the part of the action that is observed and described in observation

language (Schwemmer, 1976, p. 168).
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solution for item 3 is shown. In item 1, a given message signal should be amplitude

modulated. For this purpose, the given term s(t) = cos(Ωt) must be inserted in the

formula for amplitude modulation: x(t) = A[1 +m s(t)] cos(2πf0 t). In item 2, this term

should then be represented as an expression of three harmonic oscillations. And finally,

in item 3, that is focussed in our analyses, x(t) has to be graphically displayed in the

complex plane as a rotating phasor with varying amplitude, using the relationship cos

2πftð Þ ¼R exp j2πftð Þf g and the result of item 2.

Step 1: Institutional Analysis

Item 3 is solved in three steps: [1] Transforming mathematical expressions, [2]

Interpreting mathematical expression to draw a diagram, and [3] drawing the phasor

diagram. The main part of the exercise, to display x(t) as a rotating phasor in the

complex plane, is a task (T) in the sense of the ATD. We then assign technique and

technology to each of the three solution steps [1] to [3], and only roughly summarise

theoretical aspects (see the bold framed rectangle in Fig. 4). This assignment of

techniques and technologies is then differentiated and refined in a second analysis step,

in which the three techniques assigned to the steps [1] to [3], are considered as subtasks

T1 to T3 (see the corresponding light framed rectangles in Fig. 4). All in all, we also

present the result of the analysis in Fig. 4 graphically. This graphic representation will

afterwards serve as a scheme for the analysis of the student solutions.

First we consider the three techniques that we assigned to the steps [1] to [3]: Each

of the three techniques in T is located within the HM-discourse: [1] To transform

mathematical expressions (τHM), [2] to interpret this expression for drawing a diagram

(τHM), and finally [3] to draw a phasor diagram (τHM) are activities that are present in

the corresponding higher mathematics course. For example, Fig. 3 shows a diagram

from the first lecture of the signal theory course which dealt with repeating the

properties of complex numbers according to the prior HM-course (definitions, calcu-

lation rules, phasors as visualisations of properties of complex numbers).

The mathematical expressions in the exercise and the diagram to be drawn are more

complicated than corresponding content in the higher mathematics course, but the

Fig. 5 a Analysis result for C1. b Student solution C1
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techniques themselves are certainly HM-typical. Furthermore, there is no aspect here

that suggests a location of the techniques within the ET-discourse.

Second, we consider the corresponding technologies: We have located the corre-

sponding technologies within the ET-discourse. Here, aspects of scope and purpose and

elements of justification arise that can no longer be located in the HM-discourse. In the

following we will go through steps [1] to [3] and discuss the corresponding technol-

ogies in more detail:

[1] The signal x(t) must first be transformed in lines (1) to (3) (τHM). Then x(t) can be

interpreted as a real part of a rotating carrier phasor with a time-dependent

amplitude A(t) and aspects of amplitude modulation could be visualised in the

diagram. This scope of the technique is based on the idea of graphically

representing the principles of amplitude modulation, therefore this first technique

is justified within the ET-discourse (θET). This justification, that is linked to the

overall aim of the task and also already links to steps [2] and [3] of the solution

process, can be further focused on the first step: In particular the calculation step

Fig. 6 a Analysis result for C2. b Student solution C2

Fig. 7 a Analysis result for I1. b Student solution I1
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from line (2), in which x(t) could be interpreted as a real part of three rotating

phasors drawn in the origin, to line (3), in which x(t) can be interpreted as a

rotating carrier phasor with time-dependent amplitude A(t), is central here. Only if

x(t) is represented as in line (3), x(t) can be interpreted as amplitude modulated

and a phasor diagram can be drawn in which the amplitude modulation of the

signal x(t) can be displayed graphically. There is no justification within our

reconstructed HM-discourse, that justifies the step from line (2) to line (3).

[2] In the next step the mathematical expression must be interpreted in order to draw

the diagram (τHM). The central point here is that the components of x(t) must be

Fig. 8 a Analysis result for I2. b Student solution I2

Fig. 9 a Analysis result for I3. b Student solution I3
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interpreted as belonging to the respective frequencies and thus to the respective

signals (θET).

[3] Finally, the third technique is the drawing of the phasor diagram (τHM). Here,

however, this HM technique is embedded in the ET-discourse, since it is a

geometric illustration of a modulation process (θET). The phasor diagram is an

alternative representation of the amplitude modulation in Fig. 2 (right). It has the

advantage over the representation in Fig. 2 (right) that some effects relevant to

amplitude modulation can be displayed.

In total, three techniques with corresponding technologies arise for steps [1] to [3], each

of which is characterised by an embedding of HM-techniques in the ET-discourse.

Relevant theoretical aspects come from theory of modulation and theory of complex

numbers. In Fig. 4 this part of the analysis is illustrated in the bold framed rectangle.

How the embeddings look like in each case will be clarified in a next step of analysis:

Each of the three techniques will be considered as a separate subtask, T1 to T3, with its

own techniques and technologies. In Fig. 4 these parts of the analysis are illustrated in

the light framed rectangles.

In T1, to transform x(t), the identity cos 2πftð Þ ¼R exp j2πftð Þf g given in the problem
definition must be applied (τHM). For the justification (θHM) of this step, the relation

between the representation of a complex number in polar form and in exponential form

is relevant. In the following, calculation rules for complex numbers (θHM) are applied,

namely factoring out of the real part and of exp(j2πf0t) (τHM). These are techniques that

occur in higher mathematics courses and are also correspondingly justified inner-

mathematically. There are no references to ET aspects.

In T2, to interpret x(t) as a phasor that could be drawn in the Argand diagram, two

relevant techniques play a role: First, the expression in line (3) must be interpreted as a

Fig. 10 Student solution N1

Fig. 11 Student solution N2
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projection of a phasor onto the real axis (τHM). This technique is assigned to the HM-

discourse, since also in higher mathematics complex numbers are understood as

phasors, represented in Argand diagrams. The projection of the phasor on the real axis

is interpreted as a real part of the complex number (cf. Fig. 3 and Strampp, 2012). This

is justified in the introduction of complex numbers via the connection of complex

numbers, phasors and exponential representation (θHM). And then the expression in the

square brackets, A(t), must be interpreted as modulation (τET). Here knowledge about

how the different frequencies are assigned to the different signal types, how carriers and

message signals are related by the modulation process, and how this is reflected in the

multiplication and the additions in the mathematical expression is relevant (θET).

In T3, the drawing of the phasor diagram, first the phasors must be drawn (τHM). This

technique is located in the HM-discourse. But the concrete way in which the phasors

have to be drawn, sideband phasors on top of carrier phasors, is explained by the fact

that modulation is a superposition of signals (θET). The corresponding technology is

thus located in the ET-discourse. Here again a HM-technique embedded in the ET-

discourse appears, which could be differentiated in a third step of analysis, which we

will refrain from because it is not necessary for the analysis of the students’ solutions.

As a second technique, rotational aspects have to be marked by drawing curved arrows,

which are labelled with the respective frequencies (τET). This does not occur in higher

mathematics courses and refers to electrical engineering aspects, hence our location in

the ET-discourse. The markings also indicate that these are general periodic signals:

This is based on the electrical engineering conception of the representation of signals

by rotating phasors and that the length of the phasor exp(j2πf0t) changes time-

dependently according to A(t). So, the technology is also to be located in the ET-

discourse.

Our analysis regarding the role of the two mathematical discourses in the three steps

of the solution show that the embeddings take different forms in each case (see also

Fig. 4): For the first step the embedding is formed only from HM-discourse aspects. In

this case an interpretation in the sense of applying mathematics in the engineering

context is plausible. For the second step the embedding is formed from both HM-

discourse aspects as well as ET-discourse aspects. And for the third step the embedding

contains another embedding of a HM-technique in the ET-discourse and its aspects.

Except for step one, the view that mathematics is (simply) applied in electrical

engineering is not adequate. Instead, diverse transitions between the two mathematical

discourses appear. They constitute breaks in the sense that they each follow a different

rational. These breaks often remain implicit, although they represent an important

aspect. The breaks indicate places that are not accessible from a single discourse and

its techniques, and thus mark something additional to be learned.

Steps 2 to 4: Analyses of Students’ Solutions

Following the institutional analysis which showed that the shift of representation from

the symbolic to the graphic form is the core of the solution and involves specific

transitions between mathematical discourses, we will analyse the student solutions

especially with regard to this shift of representation and focus our explanations on

transitions between the mathematical discourses. We use the graphical representation of

the institutional analysis as a reference for analysing the student solutions and as a tool

251International Journal of Research in Undergraduate Mathematics Education (2021) 7:235–260

107



to graphically represent the result of our analyses: Praxeological aspects that cannot be

identified in the student solutions, because the data does not provide this, are crossed

out in the corresponding diagram. Aspects that can be identified in the student solution

and correspond to the aspects in the lecturer sample solution are displayed without

specific marking. Aspects that are present but different are circled with dashes.

In total 15 students handed in their solutions for this exercise. According to the

assistant’s marking we categorised them as follows:

& Correct diagram: phasor diagram with no or minor corrections, e.g. added arrows

indicating the direction of rotation or angle labels (4 solutions). See also C1 and C2

in Figs. 5b and 6b.

& Incorrect diagram: phasor diagram with major corrections, e.g. added arrows

indicating phasors or adding a whole correct phasor diagram (5 solutions). See also

I1 to I3 in Figs. 7b, 8b, and 9b.

& No diagram: student solutions, that contain calculations but no diagram (6 solu-

tions). See also N1 and N2 in Figs. 10 and 11.

To protect the students’ privacy, we have rewritten the solutions without reproduc-

ing the assistant’s marking. All student solutions considered contain correct solutions

for items 1 and 2 of the exercise, possibly with the exception of minor sign errors. In the

remainder of this section we follow, thesis by thesis, steps 2 to 4.

Thesis 1: The Sample Solution Is Realised in Student Solutions

The student solution C1 in Fig. 5b largely follows the sample solution. Of the three

steps in the solution process, steps [1] and [3] can be identified in C1. Step [2] is not

identifiable, therefore it is crossed out in Fig. 5a. However, the exercise assignment did

not ask for an explicit interpretation, so the absence is not a deficit.

In step [1] the transformation of x(t) can be recognised as a HM-technique

embedded in the ET-discourse. In particular, the step from line (2) of the sample

solution to line (3), which is especially associated with the ET-discourse, is

present. The change from line (2) to line (3) in itself represents, in the sense of

our approach, a subject-specific observation correlate for the interplay of HM- and

ET-discourse. In step 3 both aspects, the drawing of the phasors in their specific

relations as well as the indication of rotational aspects are present. The validation

of the observation correlates here essentially follow the institutional analysis; there

is nothing in the student solution that suggests otherwise. With regard to the

transitions between the mathematical discourses, we can state that, except for step

two, the transitions from the institutional analysis occur. This supports our expla-

nation of the student work C1 with regard to thesis 1 on the basis of the discourse-

related observation correlate: The student solution C1 realises a correct solution in

the sense of the sample solution. This does not imply that arguments and justifi-

cations can be found in the individual considerations of the students that realise

further ideal typical aspects in the context of the change of presentation. However,

the text-related analysis does at least point to this possibility.
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Thesis 2. There Are (Almost) Correct Diagrams in Student Works, without the Step

from Line (2) to Line (3) from the Sample Solution

The student solution C2 in Fig. 6b contains a correct diagram. Steps [1] and [2] are not

present. The corresponding parts in Fig. 6a are crossed out. Especially the transformation

step of the sample solution to line (3) is not realised. The diagram can be related to the

solution for item 2: Acos2π f 0t þ
Am
2

cos 2π f 0−Fð Þðð tÞ þcos 2π f 0 þ Fð Þð tÞÞ. There, the

Fig. 12 Visualisation of curve and corresponding phasors with GeoGebra

Fig. 13 Representation of x(t) = A[1 +m cos(Ωt)] cos(2πf0t) as the real part of a rotating phasor A(t) exp(j2πf0t)

with ω0 = 2πf0
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cosine representation does not allow to separate the different frequencies of carrier and

message signal, which is, however, at the core of the representation in line (3) of the sample

solution. This student work also does not contain any verbal justifications, the observation of

which would allow further interpretations regarding the individual rationale. The correct

drawing of the diagram, however, allows an institutionally supported interpretation possible

within the ET-discourse: concepts from basic lectures in electrical engineering, which

associate elementary signals and their cosine representations with a corresponding phasor

representation (see Fig. 1), are used to create the diagram. This provides a justificationwithin

the ET-discourse that differs from the institutional analysis, thus the corresponding parts in

the diagram are circled in dashed lines. It allows the correct diagram to be drawn without

having to grasp what appears to be essential in the institutional context of amplitude

modulation. This follows directly from the institutional analysis and is compatible with an

explanation of the student solution, which identifies it as the realisation of the indicated ideal

typical mathematical discourses: The drawing of the phasor diagram can be interpreted as

HM-technique that is embedded in the ET-discourse, but with ET-aspects that differ from

the institutional analysis and bridge the void that is formed by the missing amplitude

modulation related ET-aspects. So, the step from line (2) to line (3) in the sample solution

is not necessary to create a correct diagram since other ET-aspects, in particular the

relationship between cosine and phasor (cf. Figure 1), could constitute a bridging.

Thesis 3: In Student Solutions that Do Not Contain a Diagram or a Wrong Diagram,

both Obvious and no ET-Discourse Aspects Occur. In both Groups of Works, References

to the HM-Discourse Occur. In Other Words, the Relationship between the ET-Discourse

and the HM-Discourse Can Be Very Different in Student Solutions

We first deal with the solutions with incorrect diagrams (I1, I2 and I3 in Figs. 7b, 8b

and 9b) and then move on to the student works without a diagram (N1 und N2 in

Figs. 10 und 11). We do not give a diagram for the analyses results for N1 and N2.

In the student solution I1, see Fig. 7b, steps [2] and [3] can be identified. The result from

item 2 is not transformed further, so the aspects that correspond with step [1] are crossed out

in Fig. 7a. The student solution contains an interpretation with references to carrier phasor,

two other phasors (representing the sidebands) and the respective frequencies but not to the

corresponding mathematical expressions. Especially aspects, that focus the relationship of

complex numbers, exponential representation and phasors are missing. Therefore, the HM-

aspects in subtask T2 are crossed out and the praxeological aspects in step [2] are solely

located within the ET-discourse. In step [3] both aspects, drawing of phasors in their specific

relation as well as the indication of rotation are present. But the phasors are not drawn in the

Argand diagram. The student solution essentially contains correct and relevant aspects for

graphically representing amplitude modulation. However, the assistant corrected this solu-

tion by providing the diagram from the sample solution. This indicates that the student’s

solution is not an adequate representation in terms of the institutional teaching-learning

context. Student solution and sample solution differ in the following sense: the diagram in

the sample solution contains phasors drawn into the Argand diagram and thus contains not

only the link between amplitude modulated signal and phasors, but also the link to the

mathematical description by complex numbers. This link to mathematisation is missing in

the student solution I1. So, the HM-aspects in subtask T3 are replaced by ET-aspects. Step

[3], like step [2], is solely located in the ET-discourse.
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This solution can thus be explained as a mathematically informal realisation of the ET-

discourse: phasors are graphical representations of signals, which can be handled without a

mathematical description (see also the introduction of phasors and complex numbers in

electrical engineering in section 2). Transitions between discourses are not present.

The student solution I2 in Fig. 8b contains all three steps from the sample solution, but

with significant deviations. Therefore, all three steps in T are circled in dashed lines, see

Fig. 8a. In step [1] a variety of techniques are tried out: The given relationshipΩ ≪ 2πf0 is

used to eliminate the Ω-part in the cosine. The attempts with Fourier transform and low-

pass filter are represented in subtask T1 by an additional ET-technique and –technology

block that is not present in the schema of the institutional analysis. In the end the relation

given in the problem definition is used to attempt finally a graphical representation of the

term A 1þ m½ � Re e j2π f 0t
� �

. All ET-discourse references appearing in this work, were

covered in previous lectures of the course. The interpretation of the mathematical expres-

sion in step [2] focusses ET-discourse aspects like signals and oscillation. References to

the Argand diagram, HM-discourse on complex numbers, or ET-aspects such as the

connection of cosine or complex exponential function with the phasor representation are

not present. Therefore step [2] is located solely in the ET-discourse. In I2 the Argand

diagram is present, but no phasors. x(t) is drawn as double arrow on the real axis.

Therefore, the HM-technique embedded in an ET-discourse is present, but different from

the institutional solution. Rotation resp. oscillation aspects are indicated, but these again

differ from the sample solution. In summary both, HM-aspects and the ET-discourse, are

clearly present, but not in a coherent and, in terms of the institutional solution, goal-

oriented manner. In particular, the link between mathematical terms and their graphical

representation in the spirit of modulation principles is missing.

The student solution I3 in Fig. 9b does not contain step [1]. Steps [2] and [3] are

present, but differ from the institutional analysis. Therefore, the corresponding aspects

in Fig. 9a are crossed out or circled in dashed lines.

Several elements in this solution indicate aspects of step [2]. First, each of the three

cosine-terms is underlined with a different colour. Each term is thus individually interpreted

as something to be drawn. These colours can also be found in the diagram, the respective

phasors are marked accordingly. The ET-aspects from subtask T2 are not present. The text

explains the drawing, so it also gives hints on how to interpret the mathematical expression

(in order to draw it). It contains functional aspects: “all values for x(t)”, insertion aspects, and

“x(t1)”, “x(t2), x(t3)” for the three phasors. The Phasor diagram from the HM repetition in

the first lecture of the signal theory course is reproduced (cf. Fig. 3). Step [2] is therefore

located in the HM-discourse. The last aspect is also relevant for Step [3], that is also located

in the HM-discourse. The three cosine terms are drawn as three different phasors each. In

addition to the three phasors, the diagram also contains elementary properties of complex

numbers: the connection between the cosine and the complex exponential function as phasor

and the complex conjugate. Rotational aspects are missing. Subtask T3 is solely located in

the HM-discourse. The student solution I3 can be explained as a realisation of a pure HM-

discourse. It mirrors the student solution I1, but with HM- instead of ET-discourse. Aspects

indicating a connection to amplitude modulation are missing and transitions to the ET-

discourse do not occur.

The solution to item 3 in N1 contains only an interpretation, that could be associated

to step [2], cf. Fig. 10. The part of the calculation in item 2 to which this statement
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refers is “…(cos(Ωt + 2πf0t) + cos(Ωt − 2πf0t))”. The arguments of the cosine terms are

each interpreted as a complex number in Cartesian representation, whose imaginary

parts cancel each other out due to different signs. This ignores the fact that there are no

complex numbers and that the terms under consideration are arguments of cosine

functions that cannot simply be added. We assign this part of the solution to the ET-

discourse: the relation to oscillations and the relation between time-dependent sinusoi-

dal functions, i.e. oscillations, and complex numbers is relevant in the ET-discourse. In

the solution N1, the cosine is obviously also not interpreted as a time-dependent

function, but as a somewhat unclear mixture of oscillation and complex number.

While the solution N1 has ET-discourse aspects, albeit incorrectly, the solution N2

does not contain ET-discourse aspects. In this work, the addition theorems are not used

to transform the cosine terms. Instead, cosine terms are rewritten using the complex

exponential function, the multiplication is performed according to the calculation rules,

and then converted back into cosine terms. This corresponds to the rationale of the HM-

discourse to use the complex exponential function to simplify calculations.

With regard to thesis 3, we can therefore conclude that here too, the student work

could be explained on the basis of praxeological aspects and, in particular, the ideal

typical mathematical discourses. In contrast to theses 1 and 2, the explanations are

much more diverse, depending on the complexity of thesis 3. With regard to a transfer

of these subject-specific explanations to individual and subjective justifications, anal-

ogous considerations apply, as they were formulated in the concluding discussion of

thesis 1 and will be taken up again in the following final chapter.

Discussion

The praxeological approach enabled us to explain student solutions of an exercise in the

context of amplitude modulation. The detailed analyses of the exercise and the student

work were based on an identification of different ideal typical mathematical discourses

within the signal theory course. Moreover, we have described a systematic sequence of

methodical steps enabling a well-founded and productive connection between on the

one hand institutional and ideal type analyses and on the other hand individual student

work. The extensive use of a graphical tool for representing praxeological structures

allow us to understand deeper possible relationships between the interrelated mathe-

matical discourses and their effects, which transcends the vision of the role of math-

ematics in engineering as something essentially to be applied. This refers both to the

sample solution and thus to institutionalised taught knowledge, as well as to individual

student solutions with their very own discourse configurations. The latter results goes

beyond analyses in which praxeological models are used as a reference to prove that

student solutions differ from this reference.

In view of the (possibly non-existent) correspondence between subject-specific

explanations and the subjective considerations of the students, we like to share the

following remark: The ideas and considerations on which our analyses are based

are compatible with actual-empirical research approaches in the field of subject

science, which aim to reconstruct subject-related patterns of reasoning (Holzkamp,

1985, chapter 9). Studies concerning the extent to which the explanations pre-

sented in section 4 fit with students’ individual considerations would of course
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require further empirical data, for example interviews. But their analyses presup-

pose, in terms of research logic, such praxeological analyses and subject-specific

explanations that we have presented.

Our outcomes potentially enable HM- and ET-lecturers to make didactic decisions

about whether or not to explicate various mathematical discourses that are effective in

electrical engineering courses. Here, of course, appropriate didactic tools must be devel-

oped that do not use the research-related terms introduced in this paper. Simplified variants

of the graphical representation of the praxeological analysis, see Fig. 3, could eventually

be quite useful for lecturers to identify changes and breaks in mathematical discourses.

Analogously, one could argue with regard to our analyses of the student work: Here, on

the one hand, discourse-relevant observations or diagnoses would be possible and, on the

other hand, these could of course form a basis for appropriate feedback to the students.

Both suggestions could be useful and effective for teaching and learning, even if our

explanations do not correspond one-to-one with the ideas of the teachers when creating the

sample solution or of the students when working on the exercises, since the aspects we

identified refer to some extent to the institutional knowledge to be taught.

Finally, we give an example of how our findings can be used to develop concrete

suggestions for modifying exercises: In the course on higher mathematics, which our

sample students have attended, nearly all exercises concerning complex numbers cover

standard topics including change of representation, calculations with complex numbers

and determining the roots of polynomials. The following exercise is an exception:

Which curves are described in the complex plane by

ae−ti þ beti; a; b∈ℝ constant; t∈ℝ?

This exercise was hardly worked on by students of the course, and was labelled with

“too difficult” in the students’ lecture notes. The exercise immediately changes its

character when software such as GeoGebra can and may be used. Then one can see,

among other things, that circles and ellipses appear as curves (see Fig. 12).

The illustration of the terms as phasors gives rise to a connection between algebraic

and geometric aspects of complex numbers (see our characterisation of the HM-

discourse in section 2): By representing the two complex numbers as aligned phasors,

the peak of their sum always moves on the curve. Moreover, this exercise can further be

adapted so that a similar type of curves appears as the one relevant to the complex phasor

diagram of the exercise we examine in this contribution.14 In other words: By using

software, an otherwise essentially unprocessed task can be extended in such a way that it

becomes connectable to the mathematical ET-discourse of our considered exercise.

As far as we know, such an approach of modifying the teaching in higher mathe-

matics has been little studied up to now. Generally, application problems from the main

subjects are supplemented to show that mathematics can be applied in a meaningful

way, which mainly addresses mathematics for engineering. In our suggestion of an

exercise, the HM-discourse would be expanded with regard to the mathematical ET-

discourse, or rather its practices, in order to establish connections to signal theory,

which addresses elements of mathematics in engineering within HM.

14 Here we also refer to the work of De Oliveira and Nunes (2014) who investigate rotating phasor pathways

derived from different standard amplitude modulation systems.
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Appendix: Exercise and sample solution

The exercise under consideration is structured in three items:

1. A message signal s(t) = cos(Ωt) has to be amplitude modulated. The result is x(t) =

A[1 +m cos(Ωt)] cos(2πf0t)

2. The result of item 1. Has to be written as the sum of three harmonics. The result is

x tð Þ ¼ Acos 2π f 0tð Þ þ
Am

2
cos 2π f 0t þ Ωtð Þ þ

Am

2
cos 2π f 0t−Ωtð Þ

3. The result of item 2. Has then to be displayed graphically in the complex plane as a

rotating phasor with varying amplitude.

Our analysis focusses item 3. of the exercise. The exact problem definition of item 3 is:

3. Graphically display x(t) in the complex plane as a rotating phasor with varying

amplitude using the relationship cos 2πftð Þ ¼R exp j2πftð Þf g and the result under

item 2.

Sample solution:

One first writes

x tð Þ ¼ Acos 2π f 0tð Þ þ
Am

2
cos 2π f 0t þ Ωtð Þ þ

Am

2
cos 2π f 0t−Ωtð Þ

¼ AR exp j2π f 0tð Þf g þ
Am

2
R exp j 2π f 0t þ Ωtð Þð Þf g

þ
Am

2
R exp j 2π f 0t−Ωtð Þð Þf g

¼R exp j2π f 0tð Þ Aþ
Am

2
exp jΩtð Þ þ

Am

2
exp − jΩtð Þ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A tð Þ

8

>>><

>>>:

9

>>>=

>>>;

ð1Þ

and interprets the expression in the square bracket as a real-valued time-dependent

amplitude A(t), which modulates the carrier phasor exp(j2πf0t) rotating at frequency f0
in Fig. 13.
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7. The epistemological and philosophical
relationship between mathematics and
electrical engineering

Study I: About the “Mixture” of Discourses in the Use of
Mathematics in Signal Theory

Study Iwas first presented at the 6th InternationalConference on theAnthropologicalTheory of theDidactic
(citad6) January 22-26, 2018 in Grenoble (France) and has been published as Hochmuth, R., & Peters, J.
(2020). About the “Mixture” of Discourses in the Use of Mathematics in Signal Theory. Educação
Matemática Pesquisa: Revista do Programa de Estudos Pós-Graduados em EducaçãoMatemática, 22(4),
454–471. https://doi.org/10.23925/1983-3156.2020v22i4p454-471.
In later studies we have also presented our analysis results graphically. We have not done so here.

However, I have already worked with a graphical representation of the analysis result without publishing
it. Since a graphical representation of the result is helpful for understanding the praxeological analysis,
I present the graphical representation of the analysis result of Study I in Figure 7.1 below. This also
represents a preliminary version to later representations and can thus serve as a comparison.

During the publication process, a number of editorial decisions were made that would have required
an adjustment to the text. However, we did not have the opportunity to do this before publication. As
some of these make the paper difficult to read, a list of important corrections and comments is attached
in the Erratum below.

Erratum

• The first section heading is missing: Page 446 begins with the title of the paper. This should be the
section “Introduction”. The paper contains no numbering of sections and subsections but we refer to
section- and subsection numbers in the text. The intended section- and subsection numbering is as
follows:

1. Introduction
2. Context and focus
3. Theoretical framework

3.1. Anthropological theory of the didactic
3.2. Epistemological-philosophical observations regarding physics
4. Praxeological analysis

4.1. General considerations on signals
4.2. The Delta-impulse
4.3. Further remarks related to epistemological-philosophical issues
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5. Conclusion

• The three characterising properties on page 458 are

δ(t) =
{
∞ for t = 0
0 for t ≠ 0

,
∫ ∞

−∞
δ(t) = 1,

∫ ∞

−∞
φ(t)δ(t − t0) = φ(t0)

• The properties of real signals x(t) on page 463 should be numbered. Those numbers are used later to
refer to the properties respectively:

(1) They are of finite duration, i.e. there exist t0 and t1 with t1 > t0, such that x(t) = 0 for t <
t0 and t > t1.

(2) They are continuous for all t ∈ (−∞,∞).
(3) They are sufficiently differentiable.

• The labels of the properties of δ(t) = {fn(t)} on page 465 should be (i) and (ii) instead of (1) and (2).

• Last sentence on page 465 should be “For narrower and narrower pulses fn(t − t0) the function φ(t)
could be replaced by the value φ(t0) (p4).”. The same error, the missing φ can be found on page 467:
“The ever shorter durations of the pulsed signals justify the replacement of φ by φ(t0) (l6).”

Study IV: About Two Epistemological Related Aspects in
Mathematical Practices of Empirical Sciences

Study IV has been published as Hochmuth, R., & Peters, J. (2022). About two epistemological related
aspects in mathematical practices of empirical sciences. In Y. Chevallard, B. B. Farràs, M. Bosch, I.
Florensa, J. Gascón, P. Nicolás, & N. Ruiz-Munzón (Eds.), Advances in the Anthropological Theory of the
Didactic (pp. 327–342). Birkhäuser Basel. https://doi.org/10.1007/978-3-030-76791-4_26.

It is based on the lecture “About the Use of Mathematics in Other Sciences” by Reinhard Hochmuth
and the Presentation “Mathematical discourses in practices of electrical engineering studies” by myself,
both held at the Intensive Research Programme Advances in the AnthropologicalTheory of the Didactic
and their consequences in curriculum and in teacher education, Course 4, 15 - 26 July, 2019 at the Centre
de Recerca Matemàtica in Barcelona.
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Figure 7.1.: Unpublished graphical representation of the analyses result from Study I.
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Abstract 

An important issue for research in university mathematics education is the use of 

mathematics in engineering. Here we focus on praxeologies in a course on system and 

signal theory (SST), which represents a typical module in electrical engineering studies 

in the third or fourth semester. In such courses, mathematics already studied in 

introductory mathematics courses will be applied, but also enriched by the introduction 

and development of new practices, in particular the so-called Dirac-impulse. We claim 

that the introduction and justification of the Dirac-impulse in SST is a convenient case 

where basic facets of epistemological relations between mathematics and engineering 

sciences might be illustrated and shown to be important for a detailed description and 

analysis of logos blocks of praxeologies. The background for our considerations 

regarding logos blocks of praxeologies that concern the introduction of the Dirac-impulse 

is given by philosophical studies by Wahsner and Borzeszkowski (1992, 2012) and a few 

illuminating remarks by Dirac. 
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Résumé 

Une question importante pour la recherche en éducation mathématique universitaire est 

l'utilisation des mathématiques en ingénierie. Ici, nous nous concentrons sur les 

praxéologies dans un cours sur la théorie du système et du signal (SST), qui représente 

un module typique dans les études d'ingénierie électrique au troisième ou quatrième 

semestre. Dans ces cours, non seulement applique-t-on les mathématiques déjà 

enseignées et apprises dans les cours d'introduction à la mathématique, mais on introduit 

et utilise aussi de nouveaux concepts mathématiques, en particulier ce que l'on appelle 

l'impulsion de Dirac. Nous affirmons que l'introduction et la justification de l'impulsion 

de Dirac dans SST est un cas pratique par lequel les facettes fondamentales des relations 

épistémologiques entre mathématiques et ingénierie pourraient être illustrées et 

démontrées importantes pour la description détaillée et l’analyse des logos blocs de 

praxéologies. Le contexte de nos considérations au sujet des logos blocs de praxéologies 

concernant l'introduction de l'impulsion de Dirac est donné par des études philosophiques 

de Wahsner et Borzeszkowski (1992, 2012) et quelques remarques éclairantes de Dirac. 

Mots-clés: Théorie du signal, impulsion de Dirac, épistémologie, TAD. 
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About the “Mixture” of Discourses in the Use of Mathematics in Signal Theory 

The use of mathematics in engineering and sciences is an important topic for 

research in university mathematics education. This is partly because of high dropout rates 

and the search for measures optimizing teaching and learning of mathematics in other 

study fields. Here we focus on praxeologies in a course on system and signal theory (SST) 

representing a typical module in electrical engineering studies in the third or fourth 

semester. 

In recent years several papers have analyzed mathematical practices in 

engineering. Generally there are two interrelated foci: The first one is on aspects of 

modelling and application problems, where typically an engineering problem is prepared 

such that mathematics from introductory higher mathematics courses has to be applied to 

solve the task. In most cases it is obvious that the modelling cycle used for school 

mathematics, which separates the world in a mathematical world and the rest of the world 

(see for example Blum & Leiss (2005)), is not appropriate for describing and analyzing 

such activities since the engineering problem is a priori formulated in mathematical terms. 

Therefore, it has been suggested to use ATD for describing and analyzing the intertwined 

mathematical and engineering practices (see for example HOCHMUTH, BIEHLER AND 

SCHREIBER, 2014)). Moreover, Castela and Romo (2011) have introduced extended 

praxeological models, an idea which was adapted by Peters, Hochmuth & Schreiber 

(2017) to analyze tasks in a signal and system theory course. The institutional separation 

between mathematics and engineering in courses and curricula were also the starting point 

for investigations in (Barquero, Serrano, L. & Serrano V., 2013), where so called “study 

and research courses” are proposed for overcoming the dominant epistemology of 

“applicationism”. Our research connects in particular the observations by Barquero, 

Bosch & Gascón (2011) regarding the “distinction between mathematics and the rest of 
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natural sciences” and contributes to another application of the scale of level of 

codeterminations (Bosch & Gascón, 2006) studying conditions that frame the use of 

mathematics in other sciences.  

The second focus is on the use of symbols: symbols are often both representations 

of mathematical variables and representations of physical or engineering quantities. It is 

often not clear to novices how they have to interpret symbols in view of a task and which 

argumentations are required or forbidden, see for example (Tuminaro & Redish, 2007; 

Hochmuth & Schreiber, 2015; Alpers, 2017; Peters, Hochmuth & Schreiber, 2017). 

Here we adopt a slightly different position: We relate the intertwining of 

mathematical and engineering ideas to its historical genesis process and the dissolving of 

certain fundamental epistemological problems. Often it does not seem to be important for 

an understanding of actual teaching and learning contexts to enlighten such issues in 

detail. In our praxeological analyses of the use of mathematics in SST we came across 

those issues, as we tried to substantiate technological and theoretical issues: In the 

analysis of text-books besides clear arguments that are based on techniques and 

technologies developed in higher mathematics or electrical engineering, we observed 

vague argumentations bobbing up at certain steps. We had the impression, that the vague 

steps arise at points that are significant both for an understanding what it means that an 

engineering practice is pragmatic and for a better understanding of switching between 

mathematics and engineering. 

Therefore, we began to think about incorporating basic observations from 

(Wahsner & Borzeszkowski, 1992; Borzeszkowski & Wahsner, 2012) that take into 

account the relation between mathematics and physics. They raise several 

epistemological issues which have to be resolved in any mathematically based theory 

intending to describe and calculate “nature”. These epistemological issues are also 
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relevant for engineering sciences, since they can be interpreted in relation to those issues 

as concretizations in view of subject related aims embedded within culture-historical as 

well as socio-economical processes. 

After clarifying the mathematical context and focus of our paper as well as the 

theoretical framework in sections 2 and 3, we exemplarily investigate passages from a 

SST text-book introducing the Dirac-impulse. A sketchy praxeological analysis allows 

linking vague passages to fundamental epistemological issues concerning the relation 

between mathematics and physics, respectively engineering sciences. We support our 

observations by a few illuminating remarks by Dirac.  

Context and focus 

We analyze the introduction of the Dirac-impulse in (Fettweis, 1996) with a focus 

on specific steps in the justification of some of its characterizing properties:  

𝛿(𝑡) = {∞ for 𝑡 = 00 for 𝑡 ≠ 0 , ∫ 𝛿(𝑡)𝑑𝑡∞
−∞ = 1, ∫ 𝜑(𝑡)𝛿(𝑡 − 𝑡0) =∞

−∞  

These properties are typically also introduced and used in quantum mechanics and 

go back to Dirac (1927), who was already aware of the problem that δ could not be a 

“normal” function and has to be interpreted in a specific way:  

Strictly, of course, δ(x) is not a proper function of x, but can be regarded only as 
a limit of a certain sequence of functions. All the same one can use δ(x) as though 
it were a proper function for practically all the purposes of quantum mechanics 

without getting incorrect results. (p. 625) 

The mathematical knowledge of that time did not provide a consistent and well-

defined framework for the Dirac-impulse, which was, by good reasons, not a real problem 

for Dirac, Heisenberg and Pauli in contrast to, e.g., von Neumann (Peters, 2004). 

Nowadays there are several possibilities to introduce the Dirac-impulse respecting the 

actual socio-mathematical norms in mathematics as a science. We remind of the following 

three possibilities: 
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a) In Functional analysis (see for example Schwartz (1947)) δ is 

considered as a distribution, that is a linear and continuous functional on so called 

test function spaces like 𝐶0∞(ℝ)or S(ℝ). 
b) In Non-standard analysis (see for example Landers & Rogge 

(2013))   can be seen as a “normal” function from the hyperreal numbers ℝ ∗  to ℝ ∗ . In the 19th and beginning 20th century there were some discussions (Purkert, 

1990) about the usefulness of the ε-δ-calculus for engineering students and it was 

proposed, for example by Weisbach (1860), to teach instead Leibniz’s 

infinitesimal calculus, which can be seen as a predecessor of non-standard 

analysis. Nowadays, non-standard analysis is typically not taught in mathematic 

courses for engineers in Germany.  

c) Another possibility, which is partly adopted in (Fettweis, 1996), 

considers distributions as limits of sequences of functions, which converge in a 

specific way (Antosik, Mikusiński, & Sikorski, 1973). This approach can be 

elaborated on a level that is the most part compatible with higher mathematics 

taught in courses for engineers. Within this framework, integrals with respect to δ 

were introduced and interpreted in a symbolic way, as notions representing the 

result of limit processes. 

Obviously the presentation in Fettweis is mathematically not complete and it 

could be argued whether and how it could be supplemented. In the following we do not 

want to discuss whether the introduction of more complete and formal mathematics would 

be useful from an engineering point of view. Instead we intend to demonstrate that certain 

appearing gaps can be linked to fundamental epistemological issues concerning the 

relation between mathematics and physics. This suggests that the gaps and their character 
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are in the first instance not the deficit result of too little mathematics but the expression 

of a specific historic and institutional resolution of certain epistemological issues. 

Theoretical framework 

We combine a praxeological analysis with conclusions from historic-

philosophical considerations based on a dialectic and materialistic point of view 

concerning the relation between mathematics and physics by Wahsner and 

Borzeszkowski (1992, 2012). We believe that those conclusions refer also to inherent 

characteristics of the relation between mathematics and engineering sciences. According 

to the status of our work in progress we use the praxeological approach for reconstructing 

the engineering content and inject philosophical considerations in the analyses of the 

logos-block focusing on the relation between “mathematics” (distribution theory) and 

“physical reality” (signals).  

Anthropological theory of the didactic 

In our analysis we address two concepts of ATD: First we outline a praxeological 

analysis of a SST-practice, where we focus the most elementary model of praxis/logos 

blocks. This praxeological model consists of the praxis block P containing tasks and 

techniques used to solve them and the logos block L containing the technological and 

theoretical discourse describing justifications, explanations and production of the 

elements of the praxis-block. This P/L-model could be refined into the so called 4T-model 

where the praxis block is differentiated into tasks T and techniques τ and the logos block 

is differentiated into technology θ and theory Θ, where theory forms a discourse on 

technology that is more elaborated and abstract (Chevallard, Bosch, & Kim, 2015). We 

forgo formulating tasks and techniques as well as technology and theory in detail because 

of limited space and since these details seem not necessary for representing the main point 
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of this paper. Elements of the praxis block P, will be denoted by pi, and elements of the 

logos block L, by li.  

Second, for a more detailed understanding of technological-theoretical facets, that 

form the logos block, we give a rough allocation to higher levels of codetermination.  

Epistemological-philosophical observations regarding physics 

In philosophical and concrete historical studies, Wahsner and Borzeszkowski 

(1992, 2012) figure out those conceptual and experimental-objective preparations within 

physics that facilitate to use mathematics as mean for expressing, describing and 

analyzing dynamics in terms of laws and to link mathematics with measuring practices. 

The following both aspects are in particular important (Wahsner & Borzeszkowski, 1992, 

pp. 125-135):  

a) Since only finite distances are measurable, conceptual 

contradictory identifications of infinite or infinitesimal quantities, which arise in 

mathematical structures, with finite quantities are enforced. The particular context 

dependent adequate but from a mathematical perspective inconsistent use of 

mathematical concepts is historically one of the most original achievements of 

physics.  

b) Only effects of properties of objects are measurable and not 

dynamic interactional relations. This leads to the question, which behavior can be 

transformed to a property. Related answers could be found studying the 

complicated historical genesis of physical measured quantities. 

Physical quantities are thinking-objects, which are constructed on the basis of real 

equalities, checked by specific instruments in specific experiments; they are tools for 

investigating real objects in contexts. Considering and treating physical quantities under 
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the measurement aspect allows to formulate dynamics related laws in such a way that 

their assertions can empirically be proved.  

In contrast to physics, quantities appear in mathematics merely within functional 

structured systems that presuppose their existence. This facilitates mathematics to be 

without inherent contradictions and formally consistent, but, at the same time, disable 

mathematics to make assertions about real objects and their behavior. Therefore 

mathematics needs physics (or another empirical science) to make statements about 

reality (p. 128). On the other hand, physics needs mathematics for measurements, 

calculations and expressing dynamic interactions by laws, that is: mathematics allows 

making basic relations calculable and measurable.  

Praxeological analysis 

In this section we present an ATD analysis of the introduction of the Delta-

impulse in (FETTWEIS, 1996). The main ideas and results of this analysis are also 

relevant for related SST-books like Girod, Rabenstein and Stenger (2007). 

General considerations on signals 

Fettweis characterizes signal and system theory not as a technical but as a, in 

general, physical discipline. The author stresses the importance of physical understanding 

and argues that an increasing elaboration of mathematical concepts would not only go 

beyond the scope of the book, but would make the understanding of the physical 

reasoning of methodological issues increasingly harder. He constructs the relation 

between mathematics and physics as a dilemma between mathematical precision and the 

understanding of physical reasoning. This positioning between mathematical precision 
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and the understanding of physical reasoning affects the praxeologies, especially their 

logos-blocks.  

The focus on physical understanding leads Fettweis in particular to a general 

principle concerning two different but connected concepts of signals: “real signals x(t)" 

occur at communications transmission and are irregular. Furthermore, they have the 

following properties: 

They are of finite duration, i.e. there exist t0 and t1 with t1 > t0, 

such that x(t)=0 for t < t0 and t > t1. 

They are continuous for all t∈ (-∞,∞). 
They are sufficiently differentiable. 

Following Fettweis (p. 5) real signals are characterized by irregularity and high 

diversity, so they are inappropriate for numerical and analytical calculations and are not 

usable as measurement signals. Therefore “idealized signals”, which will unavoidably 

violate some of the properties (1) to (3), are introduced. In spite of their simplicity, using 

idealized signals can cause difficulties, especially with respect to convergence. As an 

example, Fettweis (pp. 8) considers the unit step function that satisfies none of the 

properties (1) to (3) 

𝑢(𝑡) = { 0 for 𝑡 < 01 2⁄ for 𝑡 = 01 for 𝑡 > 0  

In such a case the idealized signal can be replaced by real signals, such that the 

specific difficulty does not arise any more. After an analysis using real signals the 

replacement can be reversed. This general principle is illustrated in Figure 1: 

Figure 1 

Illustration of the interplay between idealized and real signals 

 

129



 

464 Educ. Matem. Pesq., São Paulo, v. 22 n. 4, pp. 454-471, 2020 

The unit step function u(t), for example, could be replaced by continuous, in t = 0 

rapidly increasing real signals fn (t), c.f. Figure 2. 

Figure 2 

Function series approximating the unit step function 

 

The approximation is symbolically expressed by 𝑢(𝑡) = {𝑓𝑛(𝑡)} and also written 

as limit process: 𝑢(𝑡) =  lim𝑛→∞ 𝑓𝑛(𝑡). 

The general principle is justified by referencing the compliance with approaches 

in other physical disciplines (p.6), by a need of physics to use function series for 

approximations and by claiming that an adequate application of the principle generates 

unambiguous and correct results (p. 12). In the same paragraph Fettweis refers also to 

Distribution Theory as a mathematical domain. He explicitly refers the work of L. 

Schwartz, that is presented in a “very abstract and physically less appealing form” (p. 12) 

and the work of Antosik, Mikusiński, and Sikorski (1973), that could be seen as an 

elaborated mathematical basis for the presentation in Fettweis.  

The Delta-impulse 

In this section we provide a sketchy praxeological analysis of the introduction of 

the Delta-impulse. First we summarize elements of the praxis blocks 𝑝𝑖. Then we describe 

the technological-theoretical discourse with regard to the considerations in 4.1. We 

specify the elements of the logos block by 𝑙𝑖.  
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The idealized impulse 𝛿(𝑡)is defined by a series of real impulse-functions (𝑝1): 𝛿(𝑡) = {𝑓𝑛(𝑡)} with the following properties 

(1) 𝑓𝑛(𝑡) has width 2𝜖𝑛 with lim𝑛→∞ 𝜖𝑛 = 0.  
(2) All impulses 𝑓𝑛 have the same normalized area: ∫ 𝑓𝑛(𝑡)𝑑𝑡∞−∞ = 1 

This definition is illustrated by Figure 3: 

Figure 3 

Function series representing the Delta-impulse 

 

Illustrating properties of functions by graphical representations (𝑝2) is a common 

practice in engineering textbooks and in particular in SST. By idealizing (i) and (ii) the 

two properties a) 𝛿(𝑡) = {∞ for 𝑡 = 00 for 𝑡 ≠ 0  and b) ∫ 𝛿(𝑡)𝑑𝑡∞−∞ = 1 are assigned (𝑝3) and the 

idealized impulse 𝛿(𝑡)) is visualized by Figure 4 (𝑝2): 
Figure 4 

Visualization of the idealized Delta-impulse 

 

The third important property of the Delta-impulse, the sifting property ∫ 𝜑(𝑡)𝛿(𝑡 − 𝑡0) =∞−∞ 𝜑(𝑡0), is deduced as follows: 𝛿(𝑡) is replaced by a function series {𝑓𝑛} (𝑝1) according to Figure 3 (𝑝2).For narrower and narrower pulses 𝑓𝑛(𝑡 − 𝑡0)the function 
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𝜑(𝑡)could be replaced by the value (𝑡0) (𝑝4). Using property (ii) (𝑝5) and referencing to 

Figure 5 (𝑝2), the sifting property follows. 

Figure 5 

Sifting property 

 

The technological-theoretical discourse is especially based on the general 

principle connecting idealized and real signals, illustrated in Figure 1. This provides 

justifications for 𝑝1 and 𝑝3 (𝑙1): The definition via a series of real impulses reflects the 

interplay between real and idealized signals. Furthermore, it is argued that pulsed signals 

are very useful for engineering (𝑙2) (p. 12). The properties (i) and (ii) are directly linked 

to properties of pulsed signals: only the action of the signal matters, not the specific form (𝑙2). This is fulfilled, if the duration of the signal is very short, i.e. 2𝜖. The action of the 

signal corresponds to the area, in Fettweis also denoted by “Impulsmoment”, illustrated 

in Figure 6. This refers to the idea of the integral as area from mathematics courses (𝑙4). 

Figure 6 

Example of a real impulse 
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The element 𝑝2 is produced by the justifying characteristic of visualizations (𝑙5): In Figure 3 a limit-process of real signals is visualized and the corresponding result 

is shown in Figure 4. So the visualizations reflect also the idealization process. The 

illustrations act as ostensive metaphors. Dirac (1963) claimed: “The delta function comes 

in just from picturing the infinity as something, which approximates to them.” 

Additionally the principle, that the exact course of the signal doesn’t matter, the essential 

is, that it is pulsed is important for all figures (𝑙3). The ever shorter durations of the pulsed 

signals justify the replacement of 𝜑(𝑡) by (𝑡0) (𝑙6). The properties a) and b), which are 

assigned in 𝑝3, are idealizations of properties (i) and (ii), properties of real signals, which 

are transferred to properties of an ideal signal. Especially property b), which contradicts 

the understanding of the integral in higher mathematics courses, is not mathematically 

justified yet. Fettweis (p. 14) discusses this point explicitly and justifies the integration 

by referring to real signals. 

Summarizing, the technological-theoretical discourse is a mixture of higher 

mathematics ideas (𝑙4), engineering reasoning (i.e 𝑙2and 𝑙3) and a principle concerning the 

interplay between real and idealized signals reflecting the connection of mathematics and 

physics in general (𝑙1). The justification and explanation of practices considering 

idealized signals like 𝛿(𝑡) are done on the level of real signals. This correlates with 

Dirac’s (1958) hint, that one must exit the mathematical context for justification and do 

not interpret δ as mathematical symbol. 

The reconstructed elements of the logos block and other justifications and 

explanations could be assigned to different levels of the scale of levels of 

codetermination: The justification of the principle in Figure 1 lies on the level of the 

discipline (physics). The technological-theoretical elements 𝑙1, 𝑙2, 𝑙4 and 𝑙5 could be 

assigned to domain (engineering), 𝑙3 to sector (signal theory) and 𝑙6 to the level of the 
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subject (Delta-impulse). The local curriculum (level of university) and experience and 

propensity of the author of the textbook are also mentioned as a restriction for the content 

(Fettweis, p. iii). Finally we refer to a remark by Peters (2004, p. 99) that adapts a 

statement by Schwinger about Feynman-diagrams: “the δ-function ‘was bringing 

computation to the masses’“, which expresses the teaching and learning process related 

institutional aspect of the Dirac-impulse in a rather convincing way. Moreover, this 

statement indicates aspects on the level of society. 

Further remarks related to epistemological-philosophical issues 

The Dirac-impulse represents an idealized signal. Via approximation sequences 

this idealized signal, which is neither observable nor measurable, was linked to real 

signals, which are in principle observable and measurable. The scheme in figure 1 

represented the basic consideration that underlies specific and, regarding the SST-context, 

adequate identifications. In particular theoretical relations including δ as well as δ itself 

gain empirical meaning: idealized signals like δ become physical quantities in the sense 

of 3.2, which allows formulating relations like the sifting property and measurements. 

These interrelations (e.g. allowing measurement, being element of a relation) imprint 

certain properties and induce techniques and technologies treating δ, which look purely 

mathematically and were historically important aspects for developing a systematic and 

axiomatic based mathematics for δ. From the physical point of view this might be helpful 

but is not necessary.  

Furthermore, the mathematical theory as such does not allow injecting into δ 

physical meaning how it is enabled by, among others, the scheme in figure 1: For linking 

δ with measurable quantities, it has occasionally to be replaced in a SST adequate way, 

which necessarily transcends the formal mathematical context. In particular the inherent 
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and specific identification of “finite” and “infinite” cannot mathematically be proved to 

be correct but could only be mathematically explored.  

Moreover, the sifting property links a global continuous object φ to local values 𝜑(𝑡0). This is one of the issues of δ in equations, e.g. in transferring relations from discrete 

signals to continuous signals and vice versa. This gives the possibility for treating the 

dialectic between “point” and “continuum” in such a way that allows computation (δ 

appears in equations and calculus) and measuring.  

Conclusion 

We claim that a broad understanding of logos-blocks in praxeological reference 

models taking into account higher levels of codetermination is valuable, since it allows 

in particular identifying inherent issues, which have to be resolved in some way by any 

institutionalized didactical or pedagogical practice. Here the aim was amongst others to 

illustrate and identify the relevance of basic philosophical-epistemological ideas for 

enriching the logos-block of praxeologies in SST and how they contribute to a wider 

understanding of actual justifications of practices. We will move on in this direction. 
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About Two Epistemological Related Aspects

in Mathematical Practices of Empirical

Sciences

Reinhard Hochmuth and Jana Peters

1 Introduction

Mathematical practices, techniques and algorithms play a significant role in many
disciplines (Winsløw et al., 2018). Consequently, mathematical service courses have
become part of many study programs. Beyond the service courses, mathematical
practices are also developed, adapted, and taught in courses of other disciplines.
There, mathematical concepts that are also taught in introductory service courses
sometimes have different meanings. Moreover, advanced content, like for example
the Gaussian theorem in basic electrical engineering courses, is justified and used
long before it is taught in service courses. Another illustrative example is that
concepts like the Dirac impulse in signal analysis are often not covered in service
courses.

Although the use of mathematics in other disciplines and the issue of mathemat-
ical service courses have been discussed for a long time in mathematics education
(see for example the third ICMI Study by Howson et al. (1988) and for an actual
overview Hochmuth (2020)), it is only more recently that research on mathematical
practices in service courses and beyond has been playing an increasing role at
international conferences on university mathematics education like CERME
(Winsløw et al., 2018), ICME (Biza et al., 2016), INDRUM (Durand-Guerrier
et al., 2021), and RUME (Weinberg et al., 2017).

Whereas mathematical topics that are relevant in other disciplines, for example
differentiation, integration or stochastic distributions, can easily be identified in
curricula and textbooks, the respective discipline-related mathematical practices
and their respective rationales are often not explicitly known in detail (Winsløw
et al., 2018). Due to the differences between mathematical practices and rationales in
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service courses and in major-subject courses, it is often not clear to students which
activities and reasoning are allowed, required or forbidden and, in particular, how
symbols have to be interpreted with regard to a specific task in major-subject courses
(Hochmuth et al., 2014; Alpers, 2017).

In this contribution, we do not approach the study of mathematical practices in
other disciplines by looking at students’ or lecturers’ concrete practices or lecturers’
measures supporting students’ learning in service courses. Instead, we start out from
various historical-philosophical studies on the relationship of mathematics and
empirical sciences and from there we explore two epistemological related aspects,
that we have partly already investigated in detail in earlier research. One aspect deals
with the identification of mathematical objects such as continuous variables and
formal quantities with measurable, and therefore finite and discrete, quantities in
empirical sciences (Hochmuth, 2019; Hochmuth & Peters, 2020). The second aspect
concerns the characterisation of two different ideal-type (Weber, 1904) mathemat-
ical discourses and their roles in mathematical practices within empirical sciences
(Hochmuth & Peters, 2021; Peters & Hochmuth, 2021). The mathematical dis-
courses connect to what is identified with each other in the sense of the first aspect.
In this way they also refer in a certain way to the respective norms and rationales, on
the one hand of mathematics and on the other hand of the respective empirical
science. In this contribution we want to plausibly demonstrate that both aspects play
a role in the use of mathematics in empirical sciences and illustrate this by examples
from electrical engineering and psychology.

There is no place here to reflect in detail on the relationship between the two
aspects. However, we want to emphasise that both aspects are essentially the result
of institutional and societal processes. Each identification must have proved histor-
ically adequate and fruitful within the respective empirical science. And the various
mathematical discourses are, among other things, the result of the historically
specific organisation of the knowledge to be taught, taught and learned in educa-
tional institutions.

We have structured this article as follows: in the next section, we embed our
research in the context of the ATD. Afterwards, we summarise some epistemological
insights and observations from historical-philosophical and epistemological studies.
These relate in particular to the two aspects outlined above. The quite abstract
assertions are then exemplified for mathematical practices in electrical engineering
and for psychology. A short outlook on subsequent research questions concludes our
contribution.
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2 ATD-Research on the Use of Mathematics in Other

Sciences

Artigue et al. (1990) analysed different students’ conceptions about differentials
linked to mathematics and physics. Requirements regarding the institutional settings
are figured out in essentially cognitively understood legitimations and validations of
concepts and rituals assigned to mathematics or physics. They have observed, for
example, that the idea of approximation works in mathematics as a constitutive
moment of some notion and in physics as an excuse of loose reasoning, which
reflects an “old conflict between rigorous mathematics and effectiveness in physics”
(Artigue et al., 1990, p. 265). In view of teaching goals, the authors have especially
suggested to make the various types of situations where differentials are needed
more explicit.

Castela and Romo Vázquez (2011) applied and extended notions form ATD
(Chevallard, 1992, 1999) in their analysis of mathematical praxeologies in signal
and system theory courses. For studying the intrinsic intertwining of mathematics
and its use they introduced a distinction between two technological components—a
theoretical and a practical component—which reflects among others external didac-
tical transpositions and different modalities of institutional validations. This idea of
an internal differentiation of praxeological blocks is further extended and adapted in
our analyses of signal and system theory-tasks (Hochmuth & Peters, 2021).

The institutionalised separation of teaching mathematics partially in service
courses and in major-subject courses corresponds to a widespread understanding
of the use of mathematics in other disciplines essentially as an application of
previously constructed mathematical knowledge, an understanding which is coined
by Barquero et al. (2013) as “applicationism”. This understanding to some extent
neglects the intrinsic dialectics between different mathematical practices and
underlying needs, something we want to explore in this paper. In contrast,
González-Martín and Hernandes-Gomes (2018) address curricular differences
between practices, for example, regarding the integral notion and the integral use
in calculus and mechanical engineering courses. Such curricular differences were
also observed and investigated by Dammann (2016) and, for electrical engineering
contexts, by Hennig et al. (2015).

In ATD there are the following two (in fact interrelated) options possible to make
use of the idea of higher levels of codetermination: firstly, one could consider
the impact of higher levels (for example societal dominant beliefs concerning the
relationship between mathematics and other sciences like “applicationism”) on the
constitution of practices. Secondly, one could inform the analyses of mathematical
practices and their institutionalisation by research results from history, sociology
and/or philosophy of mathematics and sciences. In the following we mainly focus on
the second option and outline a perspective with consequences for further analyses
within ATD. Later, in addition to codetermination, we will also discuss the ATD
principle of the institutional dependence of knowledge.
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3 Epistemological Considerations Regarding

the Relationship of Mathematics and Empirical Sciences

Practices in empirical sciences explicitly and/or implicitly claim to show an intrinsic
relation to the world. This implies, for example, that their assertions cannot reason-
ably be justified and understood without recourse to the world. In our everyday life
we show a realistic attitude, which means that we act under the premise, that there is
conformity between mental images and reality. Philosophical reflections show that
this view is highly problematic from an epistemological point of view1 and, more-
over, complicates understanding what the specific truth of empirical knowledge is. In
our opinion, didactic studies are also at least occasionally based on the realistic
position, such as the modelling cycle. In our contribution, we want to show that
elaborate and epistemologically reflected positions are particularly helpful for a
better understanding of mathematical practices in empirical sciences. On this basis,
especially ATD-related concepts can be complemented and concretised in a suitable
way in order to examine institutionalised mathematical practices.

With this in mind, pragmatic (Schlaudt, 2014) and historic-materialistic (Wahsner
& von Borzeszkowski, 1992) views seem to be fruitful. According to the pragmatic
position, empirical truth relies in “mastering objective means for the achievement of
subjective purposes. It shows itself concretely in the agreement of will and ability in
the action, in the performatively experienced resistance of the world” (Schlaudt,
2014, p. 11).2 Accordingly, two readings of physics can be distinguished, a descrip-
tive one “according to which the laws of physics tell us how certain objects behave,
and a prescriptive one, according to which the laws are rather rules on how these
objects can be manipulated” (Schlaudt, 2014, p. 123), The latter also means, that
laws of nature have to be understood as instructions for action. Now an important
point in our context is that the “resistance of the world” with regard to assertions
from mathematics and empirical sciences like physics, engineering or psychology is
quite different. Consequently, also the control of symbolic means for the achieve-
ment of purposes is quite different and subject to significantly different validity
claims and related discourses. Such a position finally provides a basis for
reconstructing the historic-specific societal-institutional constitution of practices
and the generation of discourses, as well as for tracing its pedagogical and institu-
tional reproduction.

According to the pragmatic position, and incorporating also historic-materialistic
views, measurements in empirical sciences are not seen as the representation of a
numerical determination of a property of things, but as something that informs about
the behaviour of an object under certain norm conditions. Mathematics abstracts
from behaviour and focuses on the pure quantity as well as presupposes the existence
of objects in an axiomatic system of relations. But empirical sciences cannot “forget”

1See for example Schlaudt, pp. 42.
2All text passages originally in German were translated into English by the authors for this
contribution.
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these constituents. Instead, they are inherently reflected in the practices by consti-
tuting, incorporating and framing specific mathematical practices.

In historic specific transformations from dialectic interconnections to dualisms,
contradictory conceptual identifications of, for example, infinite and infinitesimal
quantities turn out to be particularly important (von Borzeszkowski & Wahsner,
2012). Especially with respect to metrological aspects Wahsner (1981) notes:

However, natural science (at least this applies to a physical theory) does not make its
statements directly about real objects, but about physical quantities and their relationships.
These quantities are a means to recognise reality. They are finite determinations and must be,
otherwise they cannot be measured. Natural science must therefore operate with these
“objects of understanding”. This is not metaphysics, but physics based on measurement
theory. But these quantities, these objects of understanding are not natural, or are given
directly in the imagination. They have to be produced through comparative work, through a
comparative work that presupposes a human activity, but above all, it requires the develop-
ment of a principle of scientific experience, the elaboration of a measurement theory (. . .), a
theory that states how the contact between these quantities of the mind and the real objects is
established. (p. 200)3

One aspect of mathematical knowledge is that a statement is true if it can be
derived logically from true statements within the mathematical system. Truth (valid
knowledge) is thus essentially determined inner-theoretical.4 This is different in
empirical sciences. Here, truth (valid knowledge) must always establish a reference
beyond theory. Empirical sciences cannot be divided into an empirical
(non-mathematical) part that regulates the relationship to reality and a mathematical
part that is free of this relationship to reality. This phenomenon is made explicit in
the investigations of Wahsner and von Borszeskowski on the relationship of math-
ematics and physics, but also by our investigations, especially with regard to the
electrotechnical mathematics discourse. Such a decomposition, which in our opinion
is ultimately not possible, would justify considering mathematical practices in
empirical sciences as exclusively inner-mathematically justified actions. Accord-
ingly, studies of mathematical practices in empirical sciences that ignore the empir-
ical reference, including mathematics, to reality would imply this separation in an

3
“Doch die Naturwissenschaft (wenigstens gilt dies für eine physikalische Theorie) trifft ihre
Aussagen nicht unmittelbar über die wirklichen Gegenstände, sondern über Physikalische Größen
und deren Beziehungen. Diese Größen sind ein Mittel, um die Wirklichkeit zu erkennen. Sie sind
endliche Bestimmungen und müssen es sein, sonst kann man sie nicht messen. Die
Naturwissenschaft muss daher mit diesen „Verstandesgegenständen“ operieren. Es ist dies keine
Metaphysik, sondern meßtheoretisch begründete Physik. Doch diese Größen, diese
Verstandesgegenstände sind nicht naturgegeben, bzw. unmittelbar in der Vorstellung gegeben.
Sie müssen durch Vergleichsarbeit erzeugt werden, durch eine Vergleichsarbeit, die die handelnde
Tätigkeit des Menschen voraussetzt, vor allem aber die Entwicklung eines Prinzips
wissenschaftlicher Erfahrung bedingt, die Ausarbeitung einer Meßtheorie (. . .), einer Theorie, die
aussagt, wie der Kontakt zwischen diesen Verstandesgrößen und den realen Gegenständen
hergestellt wird.”
4Of course our description of mathematical knowledge is not comprehensive. But for our consid-
erations, the point of inner-theoretical validation of knowledge is decisive. The same holds for
validation of knowledge in empirical sciences.
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empirical un-mathematical part and a mathematical part justified within mathemat-
ics. Examples are modelling cycles (Blum & Leiss, 2005) and “applicationsm”

(Barquero et al., 2013). The fact that in empirical sciences mathematical practices
also have a constitutive relation to reality have to be taken into account in didactic
analyses. ATD enables this consideration, among other things, through the principle
of institutional dependence on knowledge. In the institutions that can be assigned to
the empirical sciences (e.g. lectures in the engineering sciences, research institutions,
etc.), mathematical practices are justified, substantiated, validated and constituted
differently than in academic mathematics. The core of this otherness is the empirical
reference, which is constituted differently for each individual science.

In summary, we would like to point out that the epistemological questions
outlined above have to be resolved in every mathematically based empirical science.
Their relevance could be examined especially with regard to mathematical practices
and, in the sense of ATD, to characterisations of technological-theoretical blocks of
mathematical praxeologies in empirical sciences. Their consideration in electrical
engineering is the focus of the next section. Afterwards, we briefly turn to mathe-
matical practices in psychology.

4 About Mathematical Practices in Electrical Engineering

In various papers we have analysed mathematical practices in electrical engineering
with a focus on the technological-theoretical block (Hochmuth et al., 2014;
Hochmuth & Peters, 2020, 2021; Hochmuth & Schreiber, 2015a, 2015b, 2016;
Peters et al., 2017; Peters & Hochmuth, 2021), and also in quantum mechanics
(Hochmuth, 2019). A sociological and philosophical informed view has been crucial
for the analyses of justifications, validations and their discursive constitution. In the
following, we will elaborate on the two above mentioned epistemology related
aspects. Firstly, the two different mathematical discourses and their roles in the
use of mathematics within empirical sciences. And secondly, the identification of
mathematical formal quantities with measurable quantities in empirical sciences.

The technological-theoretical blocks of mathematical practices in engineering
and in mathematics differ in terms of general characteristics (empirical
truth vs. deductive-logical truth, the ontology of objects etc.) and concrete contents.
In previous studies we have been able to reconstruct two ideal-type mathematical
discourses in relation to mathematical practices: an Electrotechnical Mathematics
Discourse (ET) and a Higher Mathematics Discourse (HM) (Hochmuth & Peters,
2021; Peters & Hochmuth, 2021). In ATD the logos is considered as a discourse on
praxis, but as praxis and logos are dialectically interrelated, every aspect of praxis
(i.e. tasks or techniques) is also related to the institutional discourse. In the follow-
ing, we will describe both mathematical discourses within the context of complex
numbers. In the concrete studies just cited on mathematical practices in signal theory
we have presented this in more detail, and in a broader context.
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The mathematical knowledge associated with the HM-discourse is characterised
by an inner-mathematical conception of terms and statements without concrete
references to reality, a generalisation-oriented rational of academic mathematics
and a concentration on calculation rules. To describe the mathematical knowledge
concerning complex numbers we refer to the textbook by Strampp (2012). This book
represents a standard approach to complex numbers. It is used as a course literature
for a consolidated two-semester standard course on higher mathematics for engi-
neers which is held every year at the University of Kassel and thus represents an
important reference point for our previous analyses with regard to mathematical
practices. Complex numbers are covered in the first semester in the context of Linear
Algebra and are introduced as a field extension of real numbers, motivated by the
solvability of the equation x2 + 1 ¼ 0. Field extension is not introduced as a formal
algebraic concept. Strampp (2012) just states that the real numbers are extended by a
number i with the property i2 ¼ � 1 and that after the extension, all field axioms
which are relevant for calculating with real numbers shall continue to exist (p. 59).
This approach is typical for the whole chapter: the rational is aimed at an elaboration
of the solvability of equations, resulting in considerations about the general solution
of algebraic equations, the fundamental theorem of algebra and Vieta’s formula. In
doing so, however, no formal concepts are introduced and proven, but rather
calculation rules for complex numbers are derived and presented. Although the
chapter is clearly designed to develop a practical approach to the concepts and
rules of calculation, an orientation towards the inner-mathematical, generalisation-
oriented rational of academic mathematics can also be observed. In addition to the
previously mentioned more algebraic view on complex numbers, the chapter con-
tains another, geometric, orientation based on an analogy to vectors. However, the
vector concept is also distinguished from complex numbers: “We speak of phasors5

[Zeiger] and not of vectors, since complex numbers, unlike vectors, can also be
multiplied. This multiplication extends the multiplication of real numbers.” (p. 60)
This HM-phasor concept differs from the phasor concept in electrical engineering,
described below, but refers to it.6 The geometrical representation of complex

5We translated the German term Zeiger with the term phasor, which already refers to electrical
engineering concepts. But electrotechnical aspects play no role in the course and Stramp (2012)
does not refer to them either. Another possible translation of Zeiger, without the connection to
engineering concepts would be pointer. But we decided to use phasor for the following reason: In
German, the term Zeiger is used both in electrical engineering and in mathematics courses for
engineers, but with different meanings (reference to electrotechnical concepts vs. geometrical object
with no further references to reality). By using the term Zeiger instead of vector Strampp (2012) can
thus establish a connection to the electrotechnical courses without dropping the inner mathematical
conception of complex numbers. This aspect of using the same term, that has different meanings in
different institutional contexts is in jeopardy of being lost through translation.
6The textbooks by Fettweis (1996) and Frey and Bossert (2009) cover signal and system theory, the
context for our second example, the introduction of the Dirac impulse. Complex numbers are also
very important in signal and system theory, especially in the context of amplitude modulation, see
for example (Peters & Hochmuth, 2021).
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numbers as arrows in the Argand diagram is used as a visualisation of calculation
rules.

To characterise the ET-discourse we first note that electrical engineering as an
empirical science inherently includes a reference to reality. However, a look at
various textbooks, e.g. Fettweis (1996) and Frey and Bossert (2009) (see footnote
5), shows a large variance in the explication of this reference to reality, which is
accompanied by a variance in the degree of mathematical formalisation. For a short
overview of how complex numbers are treated in electrical engineering courses we
refer to the standard textbook by Albach (2011). In Albach (2011) phasors [Zeiger]
are introduced in the context of alternating currents and voltages. The first introduc-
tion is without reference to complex numbers: Here a phasor is an arrow with a
specific length and a specific angle with respect to a reference angle. This arrow can
be related to a time-dependent sinusoidal7 function, see Fig. 1.

Current and voltage ratios in electrical networks can be displayed and analysed
graphically in phasor diagrams without using differential equations. On the basis of
Kirchhoff’s rules for the analysis of electric circuits, geometric calculation rules for
phasors are derived, which are analogous to the calculation rules for vectors. For the
purpose of a mathematical description of phasors, the plane in which phasors are
drawn, can be considered as the complex plane. The phasor is now understood as a
complex quantity that symbolises the time-dependent voltage (see Albach, 2011,
p. 42). Whereas in the HM-discourse phasors are used to graphically illustrate the
properties of complex numbers, in electrical engineering phasors are arrows that
represent measurable, time-dependent quantities such as alternating voltages or
currents. Complex numbers are then used for the convenient mathematical descrip-
tion of phasors, justifying the compatibility of the rules for manipulating phasors and
the calculation rules of complex numbers via physical relations.

Fig. 1 Relationship between phasor and time-dependent function (Albach, 2011, p. 32)

7Circuits are operated with sinusoidal current- and voltage forms in the power supply network as
well as in many other important areas.
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With the above explanations we have shown how phasors and complex numbers
are constituted as different epistemological objects in the mathematical discourses.
In other publications we have shown how both discourses can also be reconstructed
empirically on the basis of tasks, lecturer sample solutions (Peters & Hochmuth,
2021) and student work (Hochmuth & Peters, 2021).

In the following, we will use the introduction of the Dirac impulse in signal theory
as an example for the principle of identifying infinitesimal formal mathematical
quantities with finite measurable quantities. Furthermore, we show how this princi-
ple also interacts with the two mathematical discourses described above.

In previous work (Hochmuth & Peters, 2020) we analysed the introduction of the
Dirac impulse in the signal theory textbook by Fettweis (1996): Thereby we have
taken up Fettweis’ distinction between idealised and real signals and highlighted a
general principle (see diagram in Fig. 2), which plays an important role in justifica-
tions by Fettweis and is used by Dirac (1958) in a similar way.

Here we want to draw attention to the connection between the principle, illus-
trated in Fig. 2, and the two mathematical discourses outlined above. On this basis
we will then show how this connection is also helpful for the reconstruction of a
passage from the textbook by Frey and Bossert (2009).

In Fettweis’s approach, the real signals represent irregular transmissions on the
one hand, i.e. they refer to empirical objects, and on the other hand to functions with
pleasant mathematical properties such as sufficient differentiability. Thus, they form
a central link that enables further identifications, allow specific justifications in this
context and connect discourses. The ideas associated with idealised signals, on the
other hand, refer to irregular (according to Fettweis) mathematical objects, such as
the Heaviside function or the Dirac impulse, as well as to signals which as such do
not exist in reality, but only approximately. Here, too, references to mathematics and
empirical sciences are brought together, and mathematical discourses can start from
these. We now illustrate these general remarks with the example of a passage from
the signal theory textbook by Frey and Bossert (2009).

Frey and Bossert (pp. 208) formulate the goal to differentiate the (in the usual
sense) non-differentiable Heaviside function, which is defined by:

ε tð Þ ¼ f
1, t � 0

0, t < 0
:

Fig. 2 Illustration of the
interplay between idealised
and real signals
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The Heaviside function represents (according to Fettweis) an idealised signal. In
order to apply HM-practices, the Heaviside function is represented approximately by
the sequence of differentiable functions (real signals):

f a tð Þ ¼
1
π

tan �1 t

a

� �

þ
π

2

� �

, a > 0:

The approximation can be interpreted in the sense of the HM-discourse as
pointwise convergence. The derivation of the Heaviside function is then derived
with the following steps:

d

dt
ε tð Þ ¼

d

dt
lim
a!0

f a tð Þ ¼ lim
a!0

d

dt
f a tð Þ ¼ lim

a!0

1
π

a

a2 þ t2
¼ f

0, t 6¼ 0

1, t ¼ 0
:

The HM concept of pointwise convergence also allows to understand the equal
sign in the last step. The central step in the argumentation is the transition from the
second to the third term, which can be clarified with reference to the above principle
and through this mediated interplay between the two mathematical discourses. From
a mathematical point of view, the step from the second to the third term, i.e. the
permutation of the limit values on the basis of the pointwise convergence of function
sequences, is not permissible. This permutation can therefore not be justified in the
HM discourse. This is where the principle comes into play: The derivative of the
idealised signal cannot be calculated. Therefore, it is approximated and replaced by
real signals. These are differentiated. Then finally the limit of the calculated deriv-
atives is calculated. The above principle thus allows the step from the second to the
third term to be broken up in such a way that HM discourse elements can be made
effective. Here the principle proves to be an expression of the ET-discourse. Thus, in
the step from the second to the third term an interesting interplay between the two
mathematical discourses, mediated by the principle, results.

Of course, the discussed step could be rewritten in terms of distribution theory
(also partially addressed by Frey and Bossert, pp. 110), so that it could be justified in
this interpretation purely mathematically. But the central point in our argumentation
is not that distribution theory is not used here as the basis for justification, which
would correspond to a rather deficit-oriented view. Rather, our point is that the
electrotechnical mathematics discourse, in its reference to empirical objects, not only
allows for a justification of the step, but also establishes a reference of symbols and
argumentation to empirical objects and contexts. A purely distribution-theoretical
argumentation could not make this possible. To do so, it would have to be
supplemented in a suitable way by electrotechnical means, which would of course
be possible in principle.
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5 About Mathematical Practices in Psychology

We consider psychology as another example of mathematical practices in an empir-
ical science. Here we focus on psychometric tests, as used in diagnostics in the form
of performance, intelligence, ability or development tests.8 Such tests are also used
or developed in empirical research projects in university mathematics education (see
e.g. Kuklinski et al., 2018; Hochmuth et al., 2019). The aim of such tests is, in
particular:

to capture inter-individual differences in behaviour and experience as well as intra-
individual characteristics and changes, including their relevant conditions, in such a way
that sufficiently precise predictions of future behaviour and experience as well as possible
changes in defined situations become possible.9 (Amelang & Zielinski, 2002, Sect. 1.1)

In general, model assumptions underlying the tests can be distinguished in terms
of traits and behaviour diagnostics. In the first case, the description of experience and
behaviour in the form of traits is crucial, whereby traits are represented by hypo-
thetical constructs that are derived from and refer to observable behaviour. In the
second case, personality traits act as intervening variables, which are usually deter-
mined as the probability that a person with certain traits will exhibit certain
behavioural tendencies. Theory and empirical knowledge are interdependent in test
development and application: On the one hand, theories are available in the form of
descriptions and conceptualisations of psychological constructs (e.g. motivation,
self-efficacy, intelligence) and are usually embedded in broader theoretical contexts:
they form the basis of quantitative models. On the other hand, modelling and testing
also create opportunities for observation. These allow, for example, theoretically
suggested hypotheses to be empirically confirmed or refuted. In theoretical prelim-
inary considerations, the aim is to determine the situational test conditions as
precisely and objectively as possible (e.g. also selection of suitable cohorts, suitable
item formulations). The tests to be developed should ideally be sensitive to interest-
ing factors and robust against interfering factors. Which factors and constructs come
into view is determined by the underlying theories and their basic concepts. Each
concrete test development, both in the traits and in behaviour diagnostics, now
includes the transformation of theoretical constructs or factors into variables. This
transformation is often referred to as operationalisation. The aim of

8Psychometric tests, of course, represent only a small section of psychology as an empirical science.
It should at least be noted that throughout the history of psychology there have been repeated
controversies about how to define the specific subject of psychology and what this means in terms of
feasible and appropriate scientific methods. For example, the controversy of explanation-
understanding is to be mentioned (see e.g. Riedel, 1978). There are, for example, many relation-
ships between this controversy and our discussion in this section. For space reasons alone we cannot
go into this here.
9
“. . .interindividuelle Unterschiede im Verhalten und Erleben sowie intraindividuelle Merkmale
und Veränderungen einschließlich ihrer jeweils relevanten Bedingungen so zu erfassen, hinlänglich
präzise Vorhersagen künftigen Verhaltens und Erlebens sowie deren evtl. Veränderungen in
definierten Situationen möglich werden”.

About Two Epistemological Related Aspects in Mathematical Practices 337

149



operationalisation is then to formulate assumptions of interrelationships between
variables, e.g. between independent and dependent ones. Based on variable-related
data, the assumptions are tested by means of stochastic procedures. The goal of
operationalisation is thus to enable statistically processable and assessable findings.

To make this possible, operationalisation must ensure that the events and refer-
ence variables that are considered quantifiable and measurable by variables meet
conditions such as random variability:

Only if a result could in principle also have occurred by chance does the statement that in the
present case (according to agreed criteria) it is more frequently than simply random has
empirical substance.10 (Holzkamp, 1994, p. 85)

Random variability must therefore be ensured in the psychological design of
experiments. Which constructs or factors in which situations are suitable for trans-
formation into variables is a central specific contribution of the science of psychol-
ogy and cannot be answered mathematically alone. In contrast to electrical
engineering, for example, such transformations or “identifications” of psychological
constructs and variables are controversial in psychology (cf. e.g. Echterhoff et al.,
2013, pp. 39–42). From a historical point of view, operationalisation represents,
among other things, a starting point for the formulation of a fundamental critique
of the type of psychological research outlined here: For example, the assumptions of
connections formulated in this way would often be “secondary constructions of
abstract generality . . . that have very little to do with the real connections/contra-
dictions that should actually be up for debate [in psychology; the authors], with
which the research findings, because they `bypass the problem´, always seem
somehow trivial, meaningless, indifferent” (Holzkamp, 1994, p. 82).11 Currently, a
large part of psychological research is oriented towards the methodological approach
sketched up. With regard to this, it should have become plausible that it includes, in
its operationalisation, an identification of mathematical objects with quantities that
are considered measurable and quantitative.12

10
“Nur wenn ein Resultat prinzipiell auch zufällig zustande gekommen sein könnte, hat die

Aussage, dass es im vorliegenden Fall (nach vereinbarten Kriterien) ‘überzufällig’ ist, einen
empirischen Gehalt.”
11
“sekundäre Konstruktionen von abstrakter Allgemeinheit . . . die mit den wirklichen

Zusammenhängen/Widersprüchen, um die es eigentlich [in der Psychology; the authors] gehen
sollte, nicht viel zu tun haben, womit die Forschungsbefunde, weil sie `am Problem vorbei´ gehen,
stets irgendwie als trivial, nichtssagend, gleichgültig anmuten”. One can also compare Blumer’s
introduction of a theory of symbolic actionism, which was explicitly founded as an alternative to
“variable psychology”. ATD, with its focus on mathematics, also distinguishes itself to a certain
extent from research in didactics that is essentially psychologically based. It goes without saying
that this does not mean that psychometric tests in psychological or didactic research to investigate
specific questions, such as the effects of interventions in the face of large cohorts, are rejected.
12In psychology, operationalisations often do not take place in a single step. Therefore, a sequence
of such steps could be distinguished in detail. The last step, with regard to mathematical objects,
would then be particularly close to considerations in electrical engineering. In a certain sense, the
preceding steps would then be comprised in that step. Of course, the basic principle can only be
roughly described here.
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The second epistemology related aspect is the emergence of different mathemat-
ical discourses in mathematical practices in psychology, especially statistics, that can
also be observed in many ways. This concerns the specific selection of stochastic
models oriented to particular psychological research questions, but also their imple-
mentation in detail. This can be shown particularly well with path models and
structural equation models (cf. e.g. Renner et al., 2012). These do not result only
from quantitative calculations, but they are also usually based on theoretical psy-
chological considerations. Only this subsequently enables the psychological inter-
pretation of the calculated results.

The considerations about mathematical practices in psychology of this section
cannot, of course, replace a praxeological study based on concrete empirical mate-
rial. However, they point out that this could also be fruitful with regard to the two
epistemology related aspects highlighted in this paper. Finally, we would like to
briefly add that our reflections on psychology are also compatible with the pragmatic
position referred to at the beginning: according to this position, psychological
measurements (e.g. of an intelligence test) would not be understood as quantitative
definitions of personal characteristics, but rather as something that makes statements
about the behaviour of a person under certain conditions.

6 Outlook

In this contribution we examined a few ideas of how ATD-analyses could be
informed by epistemological-philosophical insights. Aspects from historic-
materialistic studies by Wahsner and von Borzeszkowski and philosophical-
pragmatic considerations by Schlaudt were used to discuss relationship of mathe-
matics and empirical sciences. Links to concepts of the ATD were drawn via the
scale of levels of codetermination and the institutional dependence of knowledge.
We have illustrated our considerations by examples of mathematical practices in
electrical engineering and psychology.

The philosophical-epistemological reflections on mathematical practices indicate
that they (partially) ground in major issues related to the interrelationships between
empirical sciences and pure mathematics and their historic-specific manifestation in
societal institutionalised teaching learning contexts. On this basis, especially
ATD-related concepts can be complemented and concretised in a suitable way in
order to examine institutionalised mathematical practices of teaching and learning in
educational institutions and to draw conclusions for teaching innovations. In partic-
ular, implementations of well-meant measures might produce unsatisfactory or
unintended effects as long as institutional, pedagogical and epistemological condi-
tions are not sufficiently well understood. Beyond an analysis of technological-
theoretical blocks of mathematical practices in empirical sciences like electrical
engineering, physics but also psychology, sociology, etc., the philosophical-
epistemological considerations further allow to question notions often used in
mathematical education research that claim to make essential aspects of such
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mathematical practices didactically accessible. Examples of these questions are:
Which aspects of those mathematical practices are covered and which are not
covered by approaches applying modelling cycles (Blum & Leiss, 2005) or
“Grundvorstellungen” (Greefrath et al., 2016)? How could these approaches be
reinterpreted by ATD terms, if relevant, in order to complement them appropriately
with regard to ignored aspects? And even more critically: How are those approaches
and their deficits regarding the issue of mathematical practices in empirical sciences
related to societal dominating reflections on teaching-learning issues? The latter
question is (partially) further connected to questions regarding the level of external
didactical transformations (see e.g. Bosch et al., 2021): How are the investigated
issues reflected in the construction of study programs and module structures? And
finally, regarding consequences for teaching: in addition to an emphasis on the
explication of identifications and the rationales of different mathematical discourses
in lectures and texts, the construction of suitable rich tasks with interesting opening
questions for the establishment of SRPs could be an interesting and useful way. In
connection with suitable initial problems for SRPs, the mathematical practices of the
empirical sciences, which have historically been widely recognised as adequate,
could and should indeed prove useful for their elaboration and solution by students.
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8. Revisiting the relationship between
mathematics and electrical engineering

Study V: Sometimes mathematics is different in electrical
engineering

StudyV is based on a talk I gave at the 14th International Congress onMathematical Education (ICME-14)
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Abstract

　　 In this contribution we will present an ongoing research project on mathematical practices 
in electrical engineering. Starting with interesting phenomena we have encountered in our research 

regarding the relationship of mathematics and engineering, we provide some general thoughts on 

the notions application and modelling. We then present our own vantage point: Using the 

Anthropological Theory of the Didactic (ATD), we take an institutional point of view on 

mathematical practices. This allows us to conceptualise two ideal type mathematical discourses 

corresponding to different epistemological constitutions of mathematical knowledge in 
mathematics courses for engineers and in advanced courses in electrical engineering, respectively. 

We will enrich our presentation with short vignettes of our latest research results to illustrate the 

kind of insights that the institutional point of view enables us to gain particularly regarding 

educational issues.

Key words:  Anthropological theory of the didactic, mathematical practices, electrical engineering, 

application and modelling

INTRODUCTION

The study of engineering mathematical practices is an important topic in engineering mathematics education 

(Alpers, 2020; Winsløw et al., 2018). Explicitly focusing on the specific content related needs of engineering 
mathematics for didactic analyses enables a deeper understanding of practices and potential learning 

difficulties related to them. A deep analysis of teaching materials and students’ works can then also open up 
new ideas for teaching design. In an ongoing research project on mathematical practices in Signal Theory, 
we refer to the Anthropological Theory of the Didactic (ATD) (see Bosch et al., 2019; Chevallard, 1992; 

Chevallard et al., 2022) and, besides other, its understanding of praxeology to model mathematical practices 

in electrical engineering to address those issues. Other recent ATD related studies on mathematical practices 

in engineering are done by Bartolomé et al. (2019), Florensa et al. (2018), González-Martín (2022), Palencia 

(2022), Rønning (2021) and Schmidt and Winsløw (2021). In our research project we developed three foci: 
First, with a focus on subject specific mathematical practices, we introduced an extended praxeological 
model to reconstruct the mathematical discourse that justifies the mathematical practices in signal theory 
(Peters & Hochmuth, 2021). In (Hochmuth & Peters, 2021) we show, how students’ solutions to a signal 

theory exercise can be analysed and understood on the basis of our previous analyses. The second focus 

Corresponding author: Jana Peters
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considers the epistemological relationship between mathematics and electrical engineering (Hochmuth & 

Peters, 2020; 2022). We showed that epistemological relations between mathematics and engineering can be 

important for a detailed description and analysis of mathematical practices. Considering epistemological 

aspects of mathematical practices within the framework of the ATD makes those aspects accessible for 

didactical analyses and design. The third focus highlights the potential of our ATD analyses for teaching 

design (Peters, 2022). Here the emphasis is on possible connections between mathematics as taught in higher 

mathematics courses and mathematics in engineering courses. Based on previous work, we develop an idea 

for teaching design to foster such connections without the need for the introduction of application examples 

or the complete restructuring of the course. In an early phase of our research project, when we analysed 
teaching materials and students’ works and had mainly the first focus in mind, we came across two interesting 
phenomena: First, we repeatedly encountered a deficit-orientation towards mathematical practices of 
engineers when discussing data and corresponding intermediate analysis results with colleagues. The 

mathematical practices we studied generally did not follow socio-mathematical norms of academic 

mathematics
 1
. From the standpoint of academic mathematics, mathematical practices in electrical engineering 

courses like Signal and System Theory (SST) seemed to be sometimes wrong, incomplete and sketchy. This 

was ascribed to limitations in engineering studies, but was nevertheless seen as a (necessary) deficit. Second, 
from the perspective of academic mathematics some engineering mathematical practices were difficult or 
impossible to understand. For example, in our analyses, we could identify arithmetic transformations but 

could not explain their significance and reasons from the standpoint of academic mathematics (cf. our 
analysis vignette).

Both phenomena seemed also to be connected. Engineering mathematical practices, that were difficult or 
impossible to understand, were often simply framed as deficits from the mathematicians’ point of view. As 
fruitful as analyses are that reveal such differences, it is not satisfactory to interpret them sweepingly as 
deficits. The question is also which deficits from the perspective of academic mathematics are part of an 
adequate electrotechnical mathematical practice and which are not? Which of the identified deviations from 
academic mathematics hinder the learning of mathematical concepts in engineering and which deviations are 

necessary for the adequate teaching and learning of engineering mathematical practices? However, the same 

question also arises for non-deficit mathematical practices in engineering. Is any access to a mathematical 
concept that is adequate from an academic mathematical point of view also beneficial for the learning of 
mathematical practices of engineers? We found these questions important specifically for our analyses, but 
also relevant to engineering mathematics education in general. Only a detachment from the deficit-oriented 
view of engineering mathematics practices makes these questions accessible. We could see that those 

mathematical practices were pragmatic and also necessary to solve specific epistemological problems related 
to physics or engineering, respectively. In our studies, we later, when we developed the second focus, were 

able to relate some apparent mathematical shortcomings of engineering mathematics to epistemological 

issues, which cannot be clarified by inner-mathematical considerations alone and which sometimes underlie 

1  We speak of academic mathematics when we refer to mathematical research institutes and institutes of mathematics at 

universities. We distinguish academic mathematics from other mathematical institutions, such as mathematics courses for 

engineers that are part of engineering study programs. In our studies we also use the ATD concept of didactical transposition 

to connect the relationship of different mathematical institutions with our analyses (cf. Peters, 2022).
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the conceptualisation of mathematical knowledge in electrical engineering (Hochmuth & Peters, 2020; 

2022). We realised that those positive aspects of the engineering way of doing mathematics were difficult to 
acknowledge and analyse from the perspective of academic mathematics alone.

In this contribution we want to proceed from this and move on to some general reflections on the concepts 
of application and modelling, which are often used in studies of engineering mathematics education to 

capture the relationship of mathematics and engineering. Thereby, the epistemology of this relationship 

generally remains implicit and unquestioned. On the other hand, applications of mathematics and modelling 

problems are often present as important design aspects to improve the teaching of mathematics to engineers 

(e.g. Alpers, 2020). After bringing up some critique on the standard concepts of application and modelling, 

we present our stance which enables us to avoid some of the difficulties inherent in application and modelling. 
After introducing central concepts of ATD and illustrating our stance with two vignettes from previous work, 

we come back to the notions of application and modelling and show further possibilities of alternative 

conceptualisations from the viewpoint of ATD.

ON THE CONCEPTS OF APPLICATION AND MODELLING AND AN ALTERNATIVE 

VANTAGE POINT TO BETTER UNDERSTAND ENGINEERING MATHEMATICAL 

PRACTICES

There are various definitions and understandings of application and modelling (e.g. Blum et al., 2007), most 
of which separate between an extra-mathematical world and mathematics. Often application of mathematics 

and mathematical modelling are seen as related to each other. Niss, Blum, and Galbraith (2007) summarises 

this relationship and their understanding as follows

During the last one or two decades the term ‘applications and modelling’ has been increasingly used to 

denote all kinds of relationships whatsoever between the real world and mathematics. The term 

‘modelling’, on the one hand, tends to focus on the direction ‘reality → mathematics’ and, on the other 
hand and more generally, emphasises the processes involved. Simply put, with modelling we are 

standing outside mathematics looking in: ‘Where can I find some mathematics to help me with this 
problem?’ In contrast, the term ‘application’, on the one hand, tends to focus on the opposite direction 

‘mathematics → reality’ and, more generally, emphasises the objects involved - in particular those 

parts of the real world which are (made) accessible to a mathematical treatment and to which 

corresponding mathematical models already exist. Again simply put, with applications we are standing 

inside mathematics looking out: ‘Where can I use this particular piece of mathematical knowledge?’ (p. 

10f)

These widely held understandings of the relationship of mathematics and engineering can be very fruitful, 

especially in teaching design. But it is also regularly noted that the realisation and implementation in 

everyday teaching is problematic. Barquero et al. (2013) give a survey of literature illustrating the difficulties 
and barriers as a general problem for the dissemination of modelling activities. They use their own projects 
to identify and categorise difficulties and barriers. Besides other, they

focus on describing some constraints related, in the first place, to what may be called the dominant 

117

159



J. Peters and R. Hochmuth

epistemology, that is, the way our society, the university as an institution and, more particularly, the 

community of university teachers and students, understand what mathematics is and what its relation 

is to natural sciences. (p. 316)

Regarding the meaning of applications Barquero et al. (2013) reconstructed an epistemology of applicationism 

in the relationship of mathematics to other sciences and identify it as a restriction on the notion of mathematical 

modelling:

One of the main characteristics of applicationism is that it greatly restricts the notion of mathematical 

modelling. Under its influence, modelling activity is understood and identified as a mere application of 
previously constructed mathematical knowledge or, in the extreme, as a simple exemplification of 
mathematical tools in some extra-mathematical context artificially build in advance to fit these tools. 
(p. 317)

Regarding the two worlds of mathematics and “the rest of natural sciences” they note that “it is furthermore 

supposed that both ‘worlds’ evolve with independent logic and without too many interactions” (p. 318). 

Also, they note that “in general, the mathematics taught present a highly stereotyped and crystallized structure 

that does not mingle with the systems that are modelled and, moreover, the mathematics taught are never 

‘modified’ as a consequence of being applied.” (p. 319). We can now ask whether an unquestioned academic 
mathematical perspective on mathematical practices in engineering, where mathematics is also seen as 

“never modified”, can be linked to applicationism? From the applicationsm point of view, it is suggestive to 
understand mathematical practices in engineering only as more or less deficient applications of previously 
constructed academic mathematical knowledge.

Regarding the notion of mathematical modelling Bissell and Dillon (2000) note

Mathematical modelling forms an important part of engineering education and practice. Yet precisely 

what is meant by the term ‘modelling’ is often extremely unclear - and, moreover, much of what 

students are told about the subject is considerably problematic from both a philosophical and a 
pedagogical point of view. (p. 3)

In their study they look at mathematical modelling from the practicing engineer’s perspective. From this 

perspective the usual modelling cycles are too simplistic to capture mathematical activities of engineers. 

Also, they note that instead of creating mathematical models in engineering, it is much more important for 

practicing engineers to use already existing mathematical models (Bissell & Dillon, 2000, p. 4). This shift of 

perspective on mathematical modelling in engineering, enables an understanding of mathematical models 

without a necessary separation of mathematics and the rest of the world: here engineering is not only the 

context for application or the source of the modelling problem. Engineering itself is already mathematised. 

They also characterise necessary skills for using models: manipulation is “the ability to modify the form of 

the basic model, using algebraic and other skills; essentially ‘mechanical’”, interpretation is the “ability to 

interpret the modified form of the model in a way relevant to the situation; essentially ‘reactive’”, and 
application is the “ability to apply the interpretation and make appropriate recommendations; essentially 

‘proactive’” (p. 4). Note that they speak of applying the interpretation with respect to the relevance of the 

situation. Here the applied mathematics does not necessarily remain unchanged as it is the case in 

applicationism. By connecting their considerations about mathematical modelling also with the general 

question of “the position of mathematics in engineering” they state that “there is clearly a significant 
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difference between what a mathematician calls ‘doing mathematics’ and what an engineer calls ‘doing 
mathematics’.” (p. 6).

In our research project we found that to better understand these different ways of doing mathematics and to 
analyse mathematical practices in engineering without restrictions to applicationism or a deficit-oriented 
view, we needed a different vantage point: A vantage point that enables us to understand the engineering 
specific justifications and explanations of mathematical practices and allows for deeper content specific 
analyses than the considerations by Bissell and Dillon. The ATD enables this, among other things, through 

the principle of institutional dependence of knowledge: In different subject specific institutional contexts 
mathematical practices are justified, substantiated, validated and constituted differently than in academic 
mathematics. Also, Castela (2015) emphasises

2
  the advantages of an institutional approach to research on 

mathematical knowledge in different contexts that is fundamental to the ATD. This approach “provides a 
powerful tool to investigate the mathematics dimension of human social activities in any context, without 

referring to academic mathematics.” (Castela, 2015, p. 18). This can contribute to counteracting a deficit-
oriented view of mathematical practices and provide a deeper understanding of mathematical practices in 

other siences.

INSTITUTIONAL POINT OF VIEW AND MATHEMATICAL DISCOURSES

Building on Castela’s work, we have introduced a specific extended3
 praxeological model (Peters & 

Hochmuth, 2021) that allows us to analyse mathematical practices in electrical engineering, particularly 

taking into account the engineering-specific institutional conceptualisation of mathematical practices. We 
also showed how institutional analyses of engineering mathematical practices can be related to and help 

understand individual students’ solutions to exercises (Hochmuth & Peters, 2021). In the following we will 

present vignettes from both studies to illustrate our approach.

Alongside the institutional dependence of knowledge, praxeology is another ATD concept that is important 

for our work. In ATD a praxeology is a basic epistemological model to describe institutional knowledge in 

the form of two inseparable, interrelated blocks: the praxis block (know-how) consists of types of problems 

or tasks (T) and a set of relevant techniques (τ) used to solve them. The logos block (know-why) consists of 

a two-levelled reasoning discourse. On the first level, the technology (θ) describes, justifies and explains the 
techniques and on the second level the theory (Θ) organises, supports and explains the technology. In short 

praxeologies are denoted by the 4T-Model [T,τ,θ,Θ].

We illustrate how the concept of praxeology, especially our extended praxeological model, is able to produce 

(in the sense of a phenomenotechnique, cf. Bosch et. al., 2019) an understanding of the engineering-specific 
conceptualisation of mathematical practices. We will introduce our extension to the praxeological model in 

the course of the following exemplary analysis at the step, where the need for an extension concretely arises. 

For this, we consider an exercise of an SST course at a German university that is taught in the second year 

2 She addresses the relationship of academic mathematics and mathematics in vocational contexts.
3  With respect to the standard praxeological model of ATD. In our extension we differentiated techniques and technologies 
according to two mathematical discourses, see below.
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of an electrical engineering study program. First, we focus on the lecturer’s sample solution, i.e. the taught 

knowledge in SST. The context of this exercise is amplitude modulation. The exercise under consideration 

is
 4
:

Graphically display x(t) = A cos(2πf0t) + 
Am
2

 cos(2πf0t + Ωt) + 
Am
2

 cos(2πf0t ‒ Ωt) in the complex 

plane as a rotating phasor with varying amplitude using the relationship cos(2πft) = R{exp(j2πft)}.

The lecturer sample solution is:

One first writes

x(t)  = A cos(2πf0t) + 
Am
2

 cos(2πf0t + Ωt) + 
Am
2

 cos(2πf0t ‒ Ωt) (1)

 = A R{exp(j2πf0t)} + 
Am
2

 R{exp(j(2πf0t + Ωt))} + 
Am
2

 R{exp(j(2πf0t ‒ Ωt))} (2)

 

(3)

 

= R

�
�
�
�
�

exp(j2πf0t) [A + 
Am
2

 exp(jΩt) + 
Am
2

 exp(‒jΩt)]
�
�
�
�
�

���������������
 A(t)

and interprets the expression in the square bracket as a real-valued time-dependent amplitude A(t), 

which modulates the carrier phasor exp(j2πf0t) rotating at frequency f0 in Figure 1.

Figure 1:  Representation of x(t)=A[1+m cos(Ωt)] cos(2πf0t) as the real part of a 

rotating phasor A(t) exp(j2πf0t) with ω0=2πf0.

The sample solution of the exercise represents institutional knowledge of signal and system theory. We now 

can assign the praxeological components to the steps in the solution. Since this is one exercise, the 

reconstruction of types of tasks is not relevant here. In the full analysis, as presented in (maybe this is an 

4  Literal translation from the German exercise sheet by the author. The number of the figure is adjusted to the figure counter in 
this publication.
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inconvenient pagebrake 2021) and (Hochmuth & Peters, 2021), we use the method of considering subtasks 

to further structure the analysis. For this analysis vignette, we focus on techniques as part of the praxis-part 

and on technologies as part of the logos-part of praxeologies. Tasks and theory will not be further considered 

and will therefore be understood as SST-tasks and SST-theory, i.e. tasks relevant in the institution SST and 

theory as the second level of the praxeological reasoning discourse according to the institution SST.

From line (1) to line (2), in the sample solution, using the relationship cos(2πft) = R{exp(j2πft)} is a 

technique τ. Here, connections between the representations of a complex number in polar form and in 

exponential form are relevant for the justification, the technology θ . Both, technique and technology, for this 

step are known by the students from Higher Mathematics courses earlier in the study program. Here we can 

see, that for this SST-exercise techniques and technologies from Higher Mathematics courses are relevant. 

The institutional knowledge of signal and system theory therefore has connections to knowledge from a 

different institution.
Before we go deeper into details here, we come back to the already introduced idea of institutional dependence 

of knowledge to clarify what this means for our analysis in particular. Following (Castela, 2015), an institution 

is

a stable social organisation that offers a framework in which some different groups of people carry out 
different groups of activities. These activities are subjected to a set of constraints, - rules, norms, 
rituals - which specifies the institutional expectations towards the individuals intending to act within 
the institution I. […] Institutions tend to constrain their subjects but conversely they provide the 
resources (material and cultural) necessary for activities to take place. (p. 7)

Institutional conditions, norms and aims constitute the technological-theoretical discourse and the practices 

available. This means that different types of tasks are relevant in different institutions, different solution 
techniques are adequate, different reasoning discourses are acceptable, and different reasons to study a 
subject occur. Thus, if one focuses on a specific mathematical subject in different institutions, different 
praxeologies could emerge. In the following we will show that in the context of our research, the institutional 

knowledge in SST shows references to other relevant institutions and corresponding institutional mathematical 

discourses
5
. Our analysis so far showed a praxeology concerning techniques and a technological discourse 

of dealing with complex numbers that can be assigned to an institution Higher Mathematics (HM). We 

denote this praxeology by [T, τ
HM 

, θ
HM 

, Θ]. In our work, we used the textbook by Strampp (2012), students’ 

lecture notes, and exercises from a course on Higher Mathematics for Engineers based on this textbook to 

characterise the mathematical knowledge associated with this institution, i.e. the HM-discourse: It is 

characterised by an internal mathematical conception without concrete references to reality, an orientation 

towards a generalising rational of academic mathematics, a concentration on calculation rules, and the 

inclusion of school mathematics concepts. The reason why complex numbers are studied in HM-courses is 

because they are useful for solving polynomial equations and they are important objects of calculation. 
Arrows in the Gauß-diagram are used to graphically illustrate calculation rules and properties.

5  The term discourse refers to the logos part of praxeologies: In ATD, logos is considered as a discourse on praxis (reasoning 

discourse), but since praxis and logos are dialectically interrelated, every aspect of praxis (i.e. tasks or techniques) is also 

related to the institutional discourse. Reasoning discourses are institutionally dependent, and so are the respective techniques 

and technologies. The notion of institutional discourse enables us to differentiate analytically between techniques and 
technologies that could be associated to different institutional discourses respectively.
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When we now look at the solution step from line (2) to line (3) also techniques from the HM-discourse occur: 

The real parts of the summands are factored out, calculation rules for the exponential function are applied, 

and the resulting common factor exp(j2πf0t) is factored out. But it is difficult to understand the reasons for 
this transformation from the standpoint of Higher Mathematics. Why make a clearly structured expression 

more complicated? Also, from the way complex numbers are taught in the HM-course, drawing three phasors 

associated each with one of the summands in line (2), seems much more obvious than drawing phasors 

associated to the more complicated expression in line (3). To understand why this transformation is carried 

out, we have to look for the engineering reasoning that is not part of the HM-course: x(t) is transformed in a 

specific way to graphically represent principles of amplitude modulation, that could not be represented by a 
graphical representation of line (1) or (2) (see also our second vignette of an analysis of a student solution to 

this exercise below). The cosine representation in line (1) does not allow to separate the different frequencies 
or angular velocities of the carrier-signal, ω0 = 2πf0, and the message signal, Ω . This is, however, the core of 

both the representation in line (3) and the graphical representation in Figure 1 in the sample solution. There 

is no justification within our reconstructed HM-discourse, that gives the reason for the step from line (2) to 
line (3). So, the technological discourse underlying the step from line (2) to line (3) differs from the HM-
discourse. This other mathematical discourse belongs to a different institution. In our analyses we denoted 
this other mathematical discourse as an electrotechnical mathematics-discourse (ET). In our work, we most 

notably use studies by Bissell and Dillon (Bissell & Dillon, 2000; Bissell, 2004; 2012) and the electrical 

engineering textbook by Albach (2011) to characterise this mathematical ET-discourse. In contrast to the 

HM-discourse, the ET-discourse has references to reality. The degree to which this reference to reality is 

made explicit can vary greatly, along with a different degree of formalisation and abstraction. In addition, it 
is characterised by a “linguistic shift” (Bissell & Dillon, 2000, p. 10) in the way of talking about mathematics 

and mathematical practices and an electrotechnical-typical way of “system-thinking”. One reason why 

complex numbers are studied according to the ET-discourse is that they allow oscillating signals to be 

described algebraically in a very suitable way and visualised graphically as phasors. This visualisation does 

not serve to illustrate calculation rules or properties of complex numbers but represent important analysis 

tools, e.g. for AC circuits (cf. Albach, 2011) or amplitude modulation. For a more comprehensive description 

of the discourses see (Hochmuth & Peters, 2021; Peters & Hochmuth, 2021; Peters, 2022).

The step from line (2) to line (3) can be associated to a praxeology [T, τ
HM 

,θ
ET 

, Θ]. In the next step, the 

expression in line (3) has to be interpreted in order to draw the Gauß-diagram, cf. Figure 1. The part denoted 

by A(t) must be interpreted as a modulation process (τ
ET

). This is justyfied because the phasor which varies 
in length with A(t) represents a general periodic signal (θ

ET
). In this praxeology technique and technology are 

from the mathematical ET-discourse, [T, τ
ET 

,θ
ET 

,Θ].

This brief illustrative insight into our analysis of the sample solution shows that the solution of this task can 

be linked to different praxeological configurations ([T, τ
HM 

, θ
HM 

, Θ], [T,τ
HM 

,θ
ET 

,Θ], and [T, τ
ET 

, θ
ET 

, Θ]) 

drawing on the two different institutional mathematical discourses. We could observe that both institutional 
discourses are interrelated and show up in different combinations of techniques and technologies. Transitions 
or shifts between the two mathematical discourses constitute epistemological ruptures in the sense that they 

each follow a different rational. These ruptures often remain implicit, although they represent important 
aspects. They indicate places that are not accessible from a single mathematical discourse and its techniques, 
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and thus mark something additional to be learned. Neither the modelling and application-point of view nor 

the standard praxeological model are sufficient for this kind of analyses: Application and modelling both 
entail a conceptualisation of electrical engineering knowledge as consisting of inner-mathematically justified 
mathematical practices

6
 and extra-mathematical engineering knowledge

7
 . The praxeology [T, τ

HM 
, θ

HM 
, Θ] 

could be interpreted as a purely inner-mathematical, as the HM-discourse has strong relations to academic 

mathematics and no references to reality. So this part of the analysis could be related to the application- or 

modelling view. But there is no accompanying extra-mathematical engineering knowledge where this 

praxeology (i.e. the knowledge that is modelled within ATD with this praxeology) is applied to. The mixed 

praxeology [T, τ
HM 

, θ
ET 

, Θ], where a technique from the HM-discourse gets a new ET-discourse meaning, 

does not fit this viewpoint at all. The standard praxeological model that would allow to take different 
institutional origins of practices into account and to describe the knowledge in form of HM- and ET-

praxeologies does not allow to shed light on the interrelatedness of the two mathematical discourses.

As a second vignette we present a short analysis of a student solution to this exercise
8
  from (Hochmuth & 

Peters, 2021). This is an example of a solution, where the necessary shifts between the two mathematical 

discourses do not occur (cf. Figure 2).

Figure 2 A student solution to the exercise (Hochmuth & Peters, 2021)

At the top we see each of the three cosine-terms separately underlined and each given a number. Each term 

is thus interpreted individually as something to be drawn. These numbers can also be found in the diagram; 

the respective phasors are marked accordingly (x(t1), x(t2), and x(t3)). While underlining mathematical terms 

is a technique neither specific to the HM-discourse nor to the ET-discourse the idea represented in this 
technique, that each term is something to be drawn individually, is a technology of the HM-discourse (θ

HM
): 

Each cosine-term stands for a complex number that could be drawn as an arrow starting at the origin of the 

Gauß-diagram. The sum of three complex numbers then could be drawn as the geometric sum of the 

6 Learnt in mathematical courses and applied later in different contexts.
7 Providing the context for the application of the mathematical knowledge or the modelling problem.
8 To protect the student’s privacy, we have rewritten the student solution. We omitted the assistant’s marking.
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respective arrows. The student tried to graphically add the three arrows (dashed line in the diagram in Figure 

2). Additionally, the diagram also contains elementary properties of complex numbers: the connection 

between cosine and the complex exponential function and the complex conjugate. This student solution 
reproduces the HM-discourse by drawing a diagram similar to diagrams from the mathematics service course 

where the Gauß-diagram and the unit circle are used to illustrate properties of complex numbers (τ
HM

). 

Aspects indicating a connection to amplitude modulation are missing and transitions to the ET-discourse do 

not occur. This student solution does not produce a diagram that is capable of illustrating aspects of amplitude 

modulation.

SOMETIMES MATHEMATICS IS DIFFERENT: A DISCUSSION

This short analysis vignettes show the relevance of taking into account the specific mathematical ET-
discourse for a deeper understanding of mathematical practices of electrical engineers. Reconstructed 

mathematical practices from a lecturer sample solution of a signal and system theory-task contain aspects of 

both discourses, the HM-discourse and the mathematical ET-discourse. An analysis vignette of a student 

solution to this exercise showed that referring only to the HM-discourse is both a possible student action and 

not sufficient to solve the task.
We already argued that the standard conceptualisations of the relationship of engineering and mathematics, 

modelling and application, are not able to capture the complex nature of engineering mathematical practices 

in this way. From our ATD perspective, we see this relationship not as a relation between independent fields 
of knowledge. At the core of our approach is the acknowledgement of mathematical practices of engineers 

as institutional mathematical practices in their own right and with engineering specific conceptualisations of 
mathematical knowledge. Relations to academic mathematics are present, e.g. in our analysis in the HM-

discourse. Also, relations to mathematics developed within the engineering institutions are present, e.g. in 

our analysis in the ET-discourse. In (Peters, 2022), these relations are discussed in more detail. The 

mathematical discourses interact in complex ways and are not understandable from the standard modelling 

and application point of view.

Nevertheless, there are conceptualisations, that are connectable to our stance. Concerning an understanding 

of application we would like to mention the work by Schmidt and Winsløw (2021). Using an analysis of 

didactical transpositions between institutions Mathematics and Engineering, they develop a method to design 

Authentic Problems from Engineering (APE). In their approach the idea of applying mathematical knowledge 

to engineering starts with engineering. From there they look for possibilities to let the engineering knowledge 

interact with the mathematical concepts. This approach is specifically capable of counteracting the problem 
of applicationism. Concerning modelling, we already mentioned the perspective of Bissell and Dillon (2000) 

who shift the focus to the use of mathematical models and show how in the historical process engineers 

developed mathematical practices specific to their needs and aims (see also Bissell, 2004; 2012). Another 
important line of development is the reformulation of modelling from an ATD perspective as it is presented 

for example can we change this to: by Garcia et al. (2006). This reformulation seems particularly appropriate 

to us here, of course, because we share the same framework of ATD. But apart from that, we also consider 
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the approach fruitful because it takes a decidedly epistemological and institutional perspective on modelling. 

A first important interpretation of modelling within the ATD is “that modelling is [not] just one more aspect 
or dimension of mathematics, but that mathematical activity is essentially a modelling activity in itself” (p. 

232). Two statements are then important. First mathematical modelling is not restricted to “’mathematization’ 

of non-mathematical issues” (p. 232). Also, inner-mathematical activities are understandable as modelling 

activities. Second, they highlight the meaning of modelling activity from the standpoint of ATD:

In the framework of the ATD, what is relevant is not the specific problem situation proposed to be 
solved (except in ‘life or death’ situations), but what can be done with the solution obtained –that is, 

with the constructed praxeology–. The only interesting problems are those that can be reproduced and 

developed into wider and more complex types of problems. The study of those fertile problems 

provokes the necessity of building new techniques and new technologies to explain these techniques. 

In other words, the research should focus on those crucial questions that can give rise to a rich and wide 

set of mathematical organizations. Sometimes, those crucial questions have an extra-mathematical 

origin, sometimes they have not. (p. 233)

They summarise the proposed understanding of the modelling process as

a process of reconstruction and interconnection of praxeologies of increasing complexity (specific → 
local → regional). This process should emerge from an initial question that constitutes the rationale of 

the sequence of praxeologies. From this questioning, some crucial questions to be answered by the 

community of study should arise. (p. 233)

Within ATD this approach was further developed under the notion of study and research paths (SRP) (e.g. 

Bartolomé et al., 2019; Chevallard, 2006; Florensa et al., 2018). From our research perspective especially, 

the focus on a crucial question that guides the research or learning process is relevant here. This question is 

not only a question from a specific context but a question that also has the potential for questioning the 
content specific institutional rationales. In our analysis, in the context of complex numbers, two different 
rationales, each within a specific institutional mathematical discourse, occurred. We can connect those 
rationales with the idea of different ways of doing mathematics from Bissell and Dillon (2000) and shed 
more light on the meaning of the “significant difference between what a mathematician calls ‘doing 
mathematics’ and what an engineer calls ‘doing mathematics’.” (p. 6).

So, sometimes mathematics is different but the question appearing now from our perspective is: when is 
which discourse relevant? Our analyses show that both discourses show up in electrical engineering exercise 

solutions: The HM-discourse with its orientation towards academic mathematics is important, as well as the 

engineering specific mathematical ET-discourse. To be able to successfully solve exercises as our example, 
students have to know when which discourse is adequate and when to switch. However, this switching itself 

is often not made explicit in teaching. Analyses of student solutions of this exercise, like the one above, show 

that students difficulties could be connected to this question of switching between mathematical discourses 
(Hochmuth & Peters, 2021). Our analyses can therefore help to identify hurdles for students and to achieve 

subject-related clarifications. Lecturers can use this to explicitly address difficulties when discussing sample 
solutions.

In addition, the acknowledgement of mathematical practices of electrical engineers as a justified institutional 
discourse in itself can prevent a deficit-oriented view and open up new possibilities for teaching, task design 
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and student guidance. In our analyses, for example, we refer to different reasons for studying complex 
numbers. In the Higher Mathematics course, complex numbers are important because they allow to solve 

every polynomial equation. In electrical engineering, the general problem of the solvability of polynomial 

equations is not the main interest. Here, complex numbers are particularly important because they allow to 

describe oscillating signals. Such reasons to study a mathematical concept are part of the logos block, thus 

especially part of the institutional mathematical discourses, and may not be explicitly addressed in teaching. 

So, students may implicitly learn one reason to study complex numbers in one course and a different reason 
in other courses. The different reasons may then not fit together or even contradict each other. This could 
convey the impression that mathematics as taught in Higher Mathematics courses is not useful for or 

disconnected from engineering. In (Peters, 2022) we present a concrete teaching development idea for 

mathematics service courses based on our research findings. In doing so, we illustrate how the difference 
between the two identified mathematical discourses can be used constructively in teaching development.

References

Albach, M. (2011). Grundlagen der Elektrotechnik 2: Periodische und nicht periodische Signalformen. Pearson 

Studium.

Alpers, B. (2020). Mathematics as a service subject at the tertiary level. A state-of-the-art report for the Mathematics 

Interest Group. European Society for Engineering Education (SEFI).

Barquero, B., Bosch, M., & Gascón, J. (2013). The ecological dimension in the teaching of mathematical modelling 

at university. Recherches en didactique des mathématiques, 33(3), 307–338.

Bartolomé, E., Florensa, I., Bosch, M., & Gascón, J. (2019). A ‘study and research path’enriching the learning of 

mechanical engineering. European Journal of Engineering Education, 44(3), 330–346.

Bissell, C., & Dillon, C. (2000). Telling tales: models, stories and meanings. For the learning of mathematics, 20(3), 

3–11.

Bissell, C. (2004). Models and «black boxes»: Mathematics as an enabling technology in the history of communications 

and control engineering. Revue d’histoire des sciences, 305–338.

Bissell, C. (2012). Metatools for Information Engineering Design. In C. Bissell, C. Dillon (Eds.), Ways of Thinking, 

Ways of Seeing (pp. 71–94). Springer.

Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (Eds.) (2007). Modelling and Applications in Mathematics 

Education: The 14th ICMI Study. Springer.

Bosch, M., Chevallard, Y., García, F. J., & Monaghan, J. (Eds.). (2019). Working with the Anthropological Theory of 

the Didactic in Mathematics Education: A Comprehensive Casebook (1st ed.). Routledge.

Castela, C. (2015). When praxeologies move from an institution to another one: The transpositive effects. In W. 
Mwakapenda, T. Sedumedi, M. Makgato (Eds.), 23rd annual meeting of the Southern African association for 

research in mathematics, science and technology (pp. 6–19).

Chevallard, Y. (1992). Fundamental concepts in didactics: Perspectives provided by an anthropological approach. 

Research in Didactique of Mathematics, Selected Papers (131–167). La Pensée Sauvage, Grenoble.
Chevallard, Y. (2006). Steps Towards a New Epistemology in Mathematics Education. In M. Bosch (Ed.), Proceedings 

of the 4th Conference of the European Society for Research in Mathematics Education (pp. 21–30). FUNDEMI 

IQS – Universitat Ramon Llull and ERME.
Chevallard, Y., Farràs, B. B., Bosch, M., Florensa, I., Gascón, J., Nicolás, P., & Ruiz-Munzón, N. (Eds.). (2022). 

126

168



Sometimes Mathematics is Different in Electrical Engineering

Advances in the Anthropological Theory of the Didactic. Birkhäuser. https://doi.org/10.1007/978-3-030-76791-

4

Florensa, I., Bosch, M., Gascón, J., & Winsløw, C. (2018). Study and research paths: A New tool for Design and 

Management of Project Based Learning in Engineering. International Journal of Engineering Education, 34(6), 

1848–1862.

Garcia, F. J., Gascón, J., Higueras, L. R., & Bosch, M. (2006). Mathematical modelling as a tool for the connection 
of school mathematics. ZDM: the international journal on mathematics education, 38(3), 226–246.

González-Martín A.S. (2022) Using Tools from ATD to Analyse the Use of Mathematics in Engineering Tasks: Some 

Cases Involving Integrals. In: Y. Chevallard, B. B. Farràs, M. Bosch, I. Florensa, J. Gascón, P. Nicolás, & N. 

Ruiz-Munzón (Eds.) Advances in the Anthropological Theory of the Didactic. Birkhäuser. https://doi.

org/10.1007/978-3-030-76791-4_24

Hochmuth, R., & Peters, J. (2020). About the “Mixture” of Discourses in the Use of Mathematics in Signal Theory. 

Educação Matemática Pesquisa: Revista Do Programa de Estudos Pós-Graduados Em Educação Matemática, 

22(4), 454–471.

Hochmuth, R., & Peters, J. (2021). On the Analysis of Mathematical Practices in Signal Theory Courses. International 

Journal of Research in Undergraduate Mathematics Education, 7(2), 235–260.

Hochmuth, R., & Peters, J. (2022). About two epistemological related aspects in mathematical practices of empirical 

sciences. In Y. Chevallard, B. B. Farràs, M. Bosch, I. Florensa, J. Gascón, P. Nicolás, & N. Ruiz-Munzón (Eds.), 

Advances in the Anthropological Theory of the Didactic. Birkhäuser. https://doi.org/10.1007/978-3-030-76791-

4_24

Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), 

Modelling and Applications in Mathematics Education: The 14th ICMI Study. Springer.

Palencia, J. L. D., Redondo, A. N., & Caballero, P. V. (2022). Elements of the anthropological theory of didactics in 
the selection of contents in a course of fluid mechanics in engineering, a case study in Spanish universities. SN 

Applied Sciences, 4(1), 7. https://doi.org/10.1007/s42452-021-04894-w

Peters, J. (2022). Modifying Exercises in Mathematics Service Courses for Engineers Based on Subject-Specific 
Analyses of Engineering Mathematical Practices. In R. Biehler, G. Gueduet, M. Liebendörfer, C. Rasmussen, & 
C. Winsløw (Eds.), Practice-Oriented Research in Tertiary Mathematics Education: New Directions. Springer.

Peters, J., & Hochmuth, R. (2021). Praxeologische Analysen mathematischer Praktiken in der Signaltheorie. In R. 

Biehler, A. Eichler, R. Hochmuth, S. Rach, & N. Schaper (Eds.), Lehrinnovationen in der Hochschulmathematik: 

Praxisrelevant – didaktisch fundiert – forschungsbasiert. Springer Spektrum.

Rønning, F. (2021). The Role of Fourier Series in Mathematics and in Signal Theory. International Journal of 

Research in Undergraduate Mathematics Education, 7, 189–210. https://doi.org/10.1007/s40753-021-00134-z

Schmidt, K., Winsløw, C. (2021). Authentic Engineering Problems in Service Mathematics Assignments: Principles, 

Processes and Products from Twenty Years of Task Design. International Journal of Research in Undergraduate 

Mathematics Education, 7, 261–283. https://doi.org/10.1007/s40753-021-00133-0

Strampp, W. (2012). Höhere Mathematik 1: Lineare Algebra. Springer Vieweg.

Winsløw, C., Gueudet, G., Hochmuth, R., & Nardi, E. (2018). Research on University Mathematics Education. In T. 

Dreyfus, M. Artigue, D. Potari, S. Prediger, & K. Ruthven (Eds.), Developing Research in Mathematics 

Education: Twenty Years of Communication, Cooperation and Collaboration in Europe (pp. 60–74). Routledge.

Jana Peters

Leibniz University Hannover

E-mail:peters@idmp.uni-hannover.de

　 https://orcid.org/0000-0003-0628-7105

Reinhard Hochmuth

Leibniz University Hannover

E-mail:hochmuth@idmp.uni-hannover.de

　 https://orcid.org/0000-0002-4041-8706

127

169





Chapter 28

Modifying Exercises in Mathematics Service

Courses for Engineers Based

on Subject-Specific Analyses of Engineering

Mathematical Practices

Jana Peters

Abstract This contribution presents the idea of modifying exercises from a math-
ematics service course on the basis of analyses (in the sense of the Anthropological
Theory of the Didactic) of mathematical practices from electrical engineering. The
core of this small-scale approach is to use the respective specific conceptualisation of
mathematical knowledge in electrical engineering and in mathematics service
courses for teaching design. In earlier work, this specifically conceptualised math-
ematical knowledge could be methodologically grasped with two different institu-
tional mathematical discourses. The example shows how an existing exercise of a
mathematics service course can be modified to support connections to mathematical
practices from the engineering mathematics discourse. This illustrates exemplarily
the importance of recognising the subject specificity of institutional mathematical
practices in electrical engineering.

Keywords ATD · Mathematical practices of engineers · Modifying exercises ·
Connecting engineering and mathematics · Mathematical discourses

28.1 Introduction

Mathematics has at least two locations in engineering study programs: Firstly, in
mathematical service courses for engineers, usually students from different engi-
neering study programs learn basic mathematical practices, often taught by mathe-
maticians. Secondly, mathematical practices are also taught in specific engineering
courses (e.g. Signal Theory), usually by lecturers of the engineering faculty.
Research on university mathematics education shows, that both, mathematics in
service courses for engineers, and mathematics in engineering courses (see also
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Pepin et al., 2021), are different and often not connected (Hochmuth, 2020; Winsløw
et al., 2018, section 2.5). For example, Gueudet and Quere (2018) show differences
between mathematics in service courses for engineers and mathematics in engineer-
ing courses in terms of connections within the subject matter. With a focus on
trigonometry, they show that while in engineering courses multiple connections
are made between contexts, representations and concepts, hardly any of those
connections are found in the mathematics courses studied. Schmidt and Winsløw
(2018) show that both types of courses are separated on an institutional level. In this
regard, they note that “the selection of mathematical contents to be taught may be
based on needs and priorities from the engineering disciplines, while the actual
teaching [in mathematics service courses] is carried out according to generic stan-
dards and methods for teaching mathematics.” (p. 165). In a study on the views of
engineers and mathematicians on the concept of continuity, Alpers (2018) shows
that this separation is also reflected in the different views of mathematicians teaching
service courses and lecturers of the engineering faculty.

582 J. Peters

Most attempts to establish and support connections in mathematics service
courses to mathematics in engineering courses1 are based on the introduction of
application examples from the engineering sciences in mathematical service courses
(e.g. Härterich et al., 2012; Schmidt &Winsløw, 2018) or on more innovative course
structures for mathematical service courses, such as project work (e.g. Alpers, 2002)
and study and research paths (e.g. Barquero et al., 2008).

Both approaches can be problematic: The teaching and learning of mathematics,
like any other subject, is situated in societal and institutional conditions that consti-
tute the possibilities and restrictions of action. From the standpoint of the Anthro-
pological Theory of the Didactic (ATD), Barquero et al. (2013) study institutional
constraints and limitations within the educational system that hinder the large-scale
dissemination of modelling activities.2 In addition to a survey of literature, which
shows that difficulties and barriers in this respect are a general problem, they
systematically identify problems at different levels in a detailed study of one of
their own projects. They categorise the constraints under the headings of
monumentalism, individualism, and protectionism (Barquero et al., 2013, p. 322
ff). Furthermore, consolidated course structures (time tables, distribution of working
hours and teaching, weekly assignments) are not always changeable and teachers are
usually not empowered to change the traditional organisation of the mathematical
content.

1Other approaches that attempt to establish connections to mathematics within engineering courses
are not considered here.
2Within the ATD mathematical modelling is understood as a specific mathematical activity, more
precisely as “processes of reconstruction and connection of praxeologies of increasing complexity
. . . that should emerge from the questioning of the rationale of the praxeologies that are to be
reconstructed and connected.” (García et al., 2006, p. 243). This includes both intra-mathematical
modelling as well as processes starting from extra-mathematical questions.
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In addition to these large-scale approaches, the inclusion of isolated application
examples from engineering in mathematics service courses represents a small-scale
approach that enables changes in teaching under existing conditions. But this can be
problematic in an epistemological sense:3 Using isolated application examples could
promote the image of engineering science as application of mathematics in specific
extra-mathematical contexts (Barquero et al., 2011). This can promote the view of
engineering per se as extra-mathematical and thereby establish a distinction between
a mathematical and an engineering world4 that somewhat contradicts the attempt to
connect: Application examples can provide connections between mathematics and
the engineering context. But those connections must explicitly take the specificity of
mathematics in engineering into account. Otherwise they presuppose an understand-
ing of the relationship of mathematics and engineering as per se disconnected.
However, in everyday teaching, i.e. outside of larger teaching development projects,
recourse to isolated application examples without considering the different
conceptualisation of mathematics in engineering may appear to be the only option,
especially in view of institutional constraints.

In this contribution I present a third approach that focusses on establishing and
promoting connections within mathematical practices. The idea of modifying exer-
cises from a mathematics service course according to reconstructed aspects from
engineering mathematics practices is a small-scale approach that is based on the
research perspective and results from an ongoing research project with Reinhard
Hochmuth (Hochmuth et al., 2014; Hochmuth & Peters, 2020, 2021b; Hochmuth &
Schreiber, 2015; Peters & Hochmuth, 2021). One aspect that distinguishes this
approach from the approach of using application examples (the other small-scale
approach) is that identified important aspects from engineering mathematical prac-
tices are brought into the mathematics service course without also introducing the
engineering context.

In the following, I will build on our theoretical conceptions and the results of our
research (Sect. 28.2); show by means of a detailed example (Sect. 28.3) how an
existing exercise in a mathematical service course can be modified in such a way
that the mathematical discourse related to service courses could be internally
expanded with regard to the engineering mathematical discourse; and finally discuss
(Sect. 28.4) the connections to aspects of mathematics in engineering, that could
possibly be established and supported by this small-scale approach as well as further
considerations.

3See our considerations in (Hochmuth & Peters, 2021a). I would like to note that such epistemo-
logical considerations are also relevant for large-scale projects. In addition, epistemological aspects
are also part of institutional and societal conditions. No teaching development approach is free from
possibly coming into conflict with existing conditions.
4Barquero et al. (2011) refer to this phenomenon as “applicationism”. That the separation of the
non-mathematical engineering context and the mathematical world is not adequate is also observed
by Biehler et al. (2015) in the context of modelling cycles.
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28.2 Theoretical Perspective and Previous Research

The idea of modifying existing exercises in mathematics service courses is based on
the one hand on the general research perspective of ATD on mathematical practices
and on the other hand on concrete study results on mathematical practices in Signal
Theory by Hochmuth and Peters (2021b) and Peters and Hochmuth (2021). There-
fore, I will first give a brief overview of ATD concepts relevant here. I will then
summarise the research context and findings relevant to the exercise modification
from our studies that follows in Sect. 28.3. This then not only provides the back-
ground for exercise modification but also shows how through the process of
analysing materials, connections can be reconstructed that each in itself hold poten-
tial for change.

28.2.1 Concepts of the Anthropological Theory

of the Didactic

ATD is a research programme to study human practices from an institutional
perspective.5 The concept of institution in ATD is based on the work by Douglas
(1986). She elaborates the idea that all knowledge is dependent on (social) institu-
tions and, conversely, that all institutions are based on shared knowledge (p. 45).
Castela (2015) defines an institution I as “a stable social organisation that offers a
framework in which some different groups of people carry out different groups of
activities. These activities are subjected to a set of constraints, – rules, norms,
rituals – which specifies the institutional expectations towards the individuals
intending to act within the institution I.” (p. 7). Any form of knowledge, and thus
also actions in relation to this knowledge, is thus located in institutions and subject to
institutional conditions.

Praxeology is the concept for the detailed subject-specific specification of insti-
tutional knowledge. In ATD praxeology is used to describe knowledge in terms of
two inseparable, interconnected blocks: The praxis block consists of types of tasks
(T) and relevant techniques (τ) used to solve them. The logos block consists of a
two-level reasoning discourse. At the first level, technology (θ) describes, justifies
and explains the techniques and at the second level, theory (Θ) organises, supports
and explains the technique. A praxeology is usually represented in short as the 4 T-
model [T, τ, θ,Θ]. An important aspect of technology, i.e. part of the logos block, is
the raison d’être of a body of knowledge. This is the reason why it exists in an
institution, what it is good for, and why it is studied. When considering a particular
topic in different institutions, different praxeologies emerge: different types of tasks

5Fundamental elaborations on ATD can be found, for example, in Bosch and Gascón (2014) and
Chevallard (1992, 2019); in addition, Bosch et al. (2011) and Bosch et al. (2019) provide insight
into typical studies in this research programme.
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are relevant, different solution techniques are adequate, different raisons d’être exists
and different reasoning discourses are acceptable and constitutive. This is referred to
as the institutional dependence of knowledge.
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While praxeologies allow mathematical knowledge to be grasped rather statically
in its institutional conception, the concept of (didactic) transposition offers the
possibility to investigate and describe dynamic aspects of the production, develop-
ment, change and dissemination of knowledge between institutions (e.g. Bosch &
Gascón, 2014). The basic model of the didactic transposition process is based on a
distinction between three relevant institutions: First, scholarly knowledge is pro-
duced by experts in universities or research institutes. The knowledge to be taught is
determined by official curricula. Finally, this becomes the taught knowledge that is
taught in courses. The transition from scholarly knowledge to knowledge to be
taught is also referred to as external didactic transposition, the transition to taught
knowledge as internal didactic transposition. Schmidt and Winsløw (2018) refer to
these concepts and show in particular that the specific institutional conditions of
engineering thus enter into the external didactic transposition, but not into the
internal one. They call this “the parallel model for didactic transposition in engi-
neering education” (p. 165).

28.2.2 Mathematical Practices in Signal Theory

Schmidt and Winsløw (2018) focus on mathematical knowledge for engineering
students that is provided through mathematics service courses. In our own studies,
though, we point out that mathematical practices especially in higher-level engi-
neering courses, such as Signal Theory, are rather a mixture of practices of mathe-
matics from service courses, mathematics as developed and used in basic electrical
engineering courses, and specific signal theory content (Hochmuth & Peters, 2020,
2021b; Peters & Hochmuth, 2021). The various combinations of dark- and light grey
techniques and technologies in Fig. 28.3 are an example of such a mixture. More-
over, our analyses show that mathematical practices in these courses cannot be
understood solely as the application of mathematical concepts taught in mathematics
service courses.

To grasp this mixture of mathematical practices in Signal Theory, we introduced
an extended praxeological 4 T-model and two corresponding mathematical dis-
courses6 (Peters & Hochmuth, 2021). The starting point for the idea of exercise
modification presented in Sect. 28.3 are then analyses of an exercise with a lecturer’s
sample solution in the context of amplitude modulation and associated student
solutions (Hochmuth & Peters, 2021b). The exercise and the lecturer’s sample
solution are presented in the Appendix.

6Our understanding of discourse, i.e. its meaning and analytical status, is clarified and linked to
Weber’s (1904) concept of ideal types in (Hochmuth & Peters, 2021b).
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The amplitude modulation context will provide us with interesting insights into
the role of complex numbers in electrical engineering, which will eventually be used
in the exercise modification. To this end, I will first introduce the context and
contrast the role of complex numbers in electrical engineering with the role of
complex numbers in the mathematics service course.7 Those different roles are
grasp within our work as different mathematical discourses on complex numbers.
The analysis of the roles of complex numbers in electrical engineering and in
mathematics service courses is based on standard literature, lecture notes, and
students’ notes for consolidated standard courses which are held at the University
of Kassel. Both, the mathematics service course and the introductory course on
electrical engineering are courses that students attend before attending the course on
signal theory. The described mathematics service course is also the setting for the
exercise modification in Sect. 28.3. Secondly I will summarise the results of the
analysis of the lecturer’s sample solution and address some of the results of the
analyses of the student solutions.

28.2.2.1 Amplitude Modulation and the Role of Complex Numbers

in Electrical Engineering and in Mathematics Service Courses

Amplitude modulation (AM) is a central topic in signal theory. With amplitude
modulation, several message signals (e.g. for different radio stations) with different
carrier frequencies can be transmitted (e.g. via antenna) and received without
crosstalk between signals at the receiver (e.g. radio set) depending on the chosen
carrier frequency. The principle of amplitude modulation is illustrated in Fig. 28.1:
The amplitude of a high-frequency carrier signal cos(2πf0t) (left) is varied in relation
to that of the low-frequency message signal s(t) ¼ cos(Ωt) (centre). The AM signal
can then be represented as x(t) ¼ A[1 + m cos(Ωt)]cos(2πf0t) (right).

In Fig. 28.1 amplitude modulation is visualised using waveforms of the
corresponding signals. In the exercise we have analysed, an AM signal is to be
represented as a rotating phasor in the complex plane. This change to phasor-
representation (see Fig. 28.6 in the appendix) makes it possible to study properties
of AM that are not apparent in the waveform representation. The connection between
waveform, phasor-representation and algebraic description with complex numbers
of a periodic signal is also a basic topic of introductory courses on electrical
engineering. Albach (2011), a standard textbook for introductory courses on elec-
trical engineering, first introduces phasors with the purpose to graphically describe
time-dependent sinusoidal functions. The relationship between phasor- and
waveform-representation is shown in Fig. 28.2, left side: The phasor with lengthbi,

7The subject-specific context is also relevant in other publications within the research project on
mathematical practices in Signal Theory. These or similar presentations of amplitude modulation
and connections to complex numbers can therefore also be found in (Hochmuth & Peters, 2021a, b;
Peters & Hochmuth, 2021).
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rotates constantly counterclockwise with angular velocity ω. The projection onto the
vertical axis provides the waveform of bi sinφ . At the right side of Fig. 28.2 two
sinusoidal currents with different amplitudes bi1 and bi2 and phase difference φ2 are
shown.
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Fig. 28.1 Visualisation of amplitude modulation: high-frequency carrier signal (left),
low-frequency message signal (centre), and AM signal (right), created with GeoGebra

Fig. 28.2 Relationship between phasor and time-dependent functions. (Redrawn similar to Albach,
2011, p. 32)

As both phasors (Fig. 28.2, right side) rotate with the same angular velocity ω, the
rotation of the phasors can be neglected. When analysing electrical components, the
amplitude ratio of the input signal to the output signal and the phase shift between
input and output caused by the components are of primary interest. Therefore,
phasors are important graphic tools for interpretation and analysis of electrical
engineering processes.8 Current- and voltage ratios in electrical networks can be
displayed and analysed graphically in static phasor diagrams (or Argand diagrams).
For the purpose of an algebraic description of phasors, the plane in which phasors
are drawn, is considered as the complex plane. The phasor can now be understood
as a complex quantity that symbolically represents the time-dependent periodic
signal. The compatibility of the geometric rules for manipulating phasors and
the calculation rules of complex numbers is justified via physical relations
(e.g. Kirchhoff’s laws).

8In this contribution I focus on the role of complex numbers in the electrical engineering
conceptualisation of phasor. The introduction of complex numbers in electrical engineering had a
much bigger significance (e.g. Bissell, 2004; Bissell & Dillon, 2000, 2012).
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Furthermore, for a sinusoidal quantity the following holds: A cos ðωt þ φÞ ¼
RðAejðωtþφÞÞ ¼ RðAejωtejφÞ , where A is the amplitude and j denotes the complex
unit in electrical engineering. The algebraic representation of the rotating phasor is
Ae jωte jφ. In circuits where all quantities change with the same angular velocity, the
time dependent factor ejωt can be factored out, i.e. the rotation of the phasor can be
neglected. Here the Euler representation is important for separating rotational and
constant components.

In the case of amplitude modulation, rotational aspects can no longer be neglected
because the carrier signal and the message signal have different angular velocities.
The algebraic representation of the phasor for amplitude modulation is given in line
(3) of the sample solution in the appendix. Here, also the Euler representation is
important for separating the different frequencies of carrier- and message signal.

In the mathematics service course, complex numbers are considered in the first
part of the course in the context of Linear Algebra (Strampp, 2012). Their introduc-
tion is motivated by the solvability of the equation x2 + 1 ¼ 0. For this purpose, real
numbers are extended by a number i with the property i2 ¼ � 1. This approach is
typical for the whole chapter: the rational is aimed at an elaboration of the solvability
of equations. Calculation rules for complex numbers are derived without introducing
and proving formal concepts, but by stating that all rules which are relevant for
calculating with real numbers should continue to be applicable (p. 59). Also, it is
pointed out that various terms are an extension of already known concepts from real
numbers. For example, the complex exponential function eϕi, which is introduced to
serve as a pointwise convenient abbreviation for cos(ϕ) + sin(ϕ)i (p. 74). Although
the chapter is clearly designed to develop a practical approach to the concepts and
rules of calculation, it is subject to an orientation towards the inner-mathematical,
generalisation-oriented formal rational of academic mathematics. In addition to the
algebraic view on complex numbers, the chapter also contains a geometric view: An
analogy to vectors is established, but the vector concept is also distinguished from
complex numbers: “We speak of phasors9 [Zeiger] and not of vectors, since complex
numbers, unlike vectors, can also be multiplied. This multiplication extends the
multiplication of real numbers.” (p. 60, translated by author). Phasors provide an
illustrative justification for the formal conceptualisations of complex numbers. As
Felix Klein (1967) notes, this is a view of complex numbers that was already held by
Gauss. Klein states that Gauss “justifies the legitimacy of operating with complex
numbers by the fact that one can give them and the operations with them that
illustrative geometric interpretation. . .” (p. 64, translated by author). This meaning

9We translated the German term Zeiger with the term phasor, which already refers to electrical
engineering concepts. But electrical engineering aspects play no role in the course and Strampp
(2012) does not refer to them either. In German the term Zeiger is used both in electrical engineering
and in mathematics service courses, but with different meanings (reference to electrical engineering
concepts vs. geometrical object with no further references). By using the term Zeiger Strampp
(2012) can thus establish a connection to the electrical engineering courses without dropping the
inner mathematical conception of complex numbers. This aspect of using the same term, that has
different meanings in different course-contexts is in jeopardy of being lost through translation.
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of complex numbers in the mathematics service course differs from the meaning of
complex numbers in electrical engineering (see also the work of Steinmetz (1893)
who first introduced complex numbers to electrical engineering). Furthermore, the
compatibility of the rules for graphically manipulating phasors and the calculation
rules of complex numbers are justified via physical laws.
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28.2.2.2 ATD Analyses of the Lecturer’s Sample Solution and Student

Solutions

From the institutional standpoint of the ATD, courses of a study program can be
understood as institutions. In the following we will differentiate two institutions: an
institution HM associated with the mathematics service course and an institution ET
associated with electrical engineering.10 According to the institutional dependence
of knowledge, the different institutions give rise to different conceptualisations
(praxeologies) of complex numbers. The two different characterisations of complex
numbers in the previous section can be understood as descriptions of institutional
aspects that shape the logos blocks of the respective institutional praxeologies and
thus, due to the dialectic of praxis and logos, also the practical part, i.e. they can each
be understood as part of two associated institutional mathematical discourses: one
associated with the institution HM, i.e. the HM-discourse, and one associated with
the institution ET, i.e. the ET-discourse. An important difference between the two
institutional discourses is the difference between the respective raisons d’être: In
electrical engineering the raison d’être for complex numbers is to describe periodic
signals, together with strong connections to phasors and waveforms. In the mathe-
matics service course the raison d’être for complex numbers is to serve for
generalising concepts from real numbers, to solve equations, and as formal objects
of calculation. There is also a connection to phasors but the phasor concept is
different and usually serves to visualise properties of complex numbers.11

In our research on mathematical practices within a signal theory course, we used
the notion of institutional discourses to capture the mixture of mathematical practices
that occurred in a praxeological analysis of the lecturer sample solution of an
exercise in the context of amplitude modulation. We identified the two mathematical
discourses and associated praxeological elements to the HM-discourse (τHM and
θHM) or the ET-discourse (τET and θET) depending on the respective institutional
orientation within the solution steps.

10The acronyms HM and ET were introduced by Peters and Hochmuth (2021) to denote the two
relevant contexts of “Höhere Mathematik” (HM, mathematics service course) and “Elektrotechnik”
(ET, electrical engineering) and the associated discourses. HM and ET are the standard German
acronyms for these contexts.
11Nevertheless, this visualisation aspect is important because it contributes to the logos block,
i.e. the reasoning discourse, e.g. with regard to abstract calculation rules.
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In addition, our approach refers to the work of Artaud (2020) that allows to
connect the two mathematical discourses with two different didactic transposition
processes: Artaud has considered two different ways how mathematical knowledge
arise in fields such as electrical engineering: (1) Either the mathematical knowledge
required in electrical engineering institutions is already elaborated and developed in
other institutions, for example academic mathematical research institutes. This
knowledge then enters the electrical engineering institution via didactic transposition
processes, so to speak externally, and serves the mathematical education of future
electrical engineers. Here, one can localise the HM-discourse and the idea of
mathematics for engineering. Through the didactic transposition process, however,
the academic mathematical knowledge is changed and adapted especially to the
needs of electrical engineering institutions for the education of future engineers, but
maintains the orientation towards academic mathematics. Schmidt and Winsløw
(2018) also note this and it is to this aspect that their parallel model for didactic
transposition refers. (2) Or, the relevant mathematical knowledge has been devel-
oped in the course of a historical process by actors specialising in electrical engi-
neering. In this case, the mathematical knowledge entered the electrical engineering
institution a long time ago via an institutional transposition process to be put to use.
Bissell’s (2004) investigation of the introduction of complex quantities in electrical
engineering, driven by Steinmetz (1893) among others, that allows to manipulate
graphical and pictorial representations instead of complicated mathematical expres-
sions and also led to systems thinking and black box analysis (p. 309), give a glimpse
on such an institutional transposition process. In the course of time this knowledge
was used in electrical engineering and was didactically transformed in order to be
taught. This didactic transposition process is endogenous. Here the ET-discourse and
the idea of mathematics in engineering can be situated.

A graphical representation of our analysis result of the lecturer’s sample solution
is shown in Fig. 28.3, see also the detailed analysis in (Hochmuth & Peters, 2021b).

Fig. 28.3 Graphical representation of the ATD Analysis (Hochmuth & Peters, 2021b)
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The exercise is solved in three steps (see Appendix): Transforming mathematical
expressions, interpreting the mathematical expression to draw a diagram, and draw-
ing the phasor diagram. The main part of the exercise, to display x(t) as a rotating
phasor in the complex plane, is a task (T) in the sense of the ATD. We then assigned
techniques and technologies (τHM, θHM in light grey, τET, θET in dark grey) to each
of the three solution steps. This is shown in the bold framed rectangle in Fig. 28.3:
Without focussing on the detailed analysis one can see, that for each solution step
HM-techniques are accompanied with ET-technologies. We characterised this as “an
embedding of HM-techniques in the ET-discourse” (Hochmuth & Peters, 2021b).
We further refined the analysis in a second analysis step, in which the three
techniques assigned to the three solution steps are considered as subtasks T1 to T3,
see the corresponding light framed rectangles in Fig. 28.3: In this step we were able
to further enlight the nature of the respective embeddings.
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Although we will not go into the details of the analysis here, it is clear from
Fig. 28.3, that the two mathematical discourses, the ET-discourse (dark grey) and the
HM-discourse (light grey), interact in various ways. The view that mathematics is
simply applied in electrical engineering is not adequate, practices in Signal Theory
contain aspects of both mathematical discourses. Dealing adequately with both
discourses is therefore a requirement for engineering students.

In Hochmuth and Peters (2021b) we used this result as a reference for analyses of
students solutions. In the following I will show clips from two student solutions12 in
which the adequate switching between the discourses was not present and the correct
phasor diagram was not produced (Fig. 28.4). Two decisive steps in the course of the
sample solution are firstly the calculation step from line (2), in which x(t) could be
interpreted as a real part of three rotating phasors drawn in the origin, to line (3), in
which x(t) can be interpreted as a rotating carrier phasor with time-dependent
amplitude A(t). And secondly the change of representation from the algebraic
expression in line (3) to the phasor diagram.

The student solution on the left side of Fig. 28.4 does not contain the step from
line (2) to line (3) from the sample solution. Instead this student reproduces the
HM-discourse by drawing a diagram similar to diagrams from the mathematics
service course where the Argand diagram and the unit circle are used to illustrate
properties of complex numbers. This student solution also contains further informa-
tion on properties of complex numbers like the complex conjugate e�j2πft that are not
relevant for the solution of the exercise. The three terms from line (2) are drawn as
three separate phasors. Important aspects of amplitude modulation and references to
the ET-discourse are not present.

The student solution on the right side of Fig. 28.4 mainly contains ET-discourse
aspects but significantly deviates from the sample solution. References are made to
previous topics in the lecture (Fourier transform and low pass filter), but these are not

12In order to protect the privacy of the students, the student solutions are translated from German
and rewritten by the author without correction marks. In the detailed analyses in (Hochmuth &
Peters, 2021b) those two student solutions are labelled I2 and I3.
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goal-oriented and appropriate. Although this solution maintains an orientation
towards the ET-discourse and some rotational aspects are present, the connection
between the mathematical concepts and their graphic representation in terms of
modulation principles is missing.

592 J. Peters

Fig. 28.4 Left: student solution solely within the HM-discourse. Right: student solution mainly
within the ET-discourse (Hochmuth & Peters, 2021b)

28.3 From Analyses of Engineering Mathematical Practices

to Modifying Exercises in Mathematics Service

Courses

The summary of the analyses in the preceding section showed that adequately
working with two different mathematical discourses is a requirement for engineering
students. Furthermore, some difficulties of students, that were not able to flexibly
switch between the two discourses are shown. Subject-specific aspects, that also
seem to be at the core of those difficulties are: dynamic aspects cannot be neglected;
more than one rotating phasor is relevant and phasors have to be drawn in a specific
way; a complex algebraic expression must be represented graphically; time-
dependent exponential function.

Those analyses results now shall serve to inform an exercise modification in the
mathematics service course. The mathematics service course under consideration is a
two-semester consolidated course that is regularly held at the university of Kassel.
Material from this course consists of student lecture notes, standard literature
(Strampp, 2012), and exercise sheets with sample solutions from 2013. It consists
of two lectures, one exercise session and one special exercise session where selected,
important topics are presented, per week. Students are expected to individually work
on weekly exercise sheets, that are eventually handed in and graded. Application
examples are not present in the material. With focus on the chapter of complex
numbers we characterised the mathematical discourse, i.e. the HM-discourse, as
orientated towards the inner-mathematical, generalisation-oriented formal rational of
academic mathematics. The raison d’être for complex numbers is that they allow for
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generalisation, they are useful to solve equations, and they are formal objects of
calculation. We also noted that in the chapter of complex numbers no connections to
phasor representations other than for illustrative reasons are made. Furthermore, the
Euler equation, with which the internal relationship of the exponential function, sine
and cosine could be recognised, only serves a useful shortcut to simplify calcula-
tions. Important connections between complex numbers and trigonometric func-
tions, that go beyond this convenient calculation tool, are not present.
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The basic idea behind the proposal for exercise modification is now to modify an
existing exercise from the mathematics service course such that the HM-discourse
on complex numbers could be enriched or expanded towards the ET-discourse in
order to establish connections to mathematical practices that are relevant in electrical
engineering. However, neither the course organisation nor the general orientation
towards academic mathematics is to be changed.

To demonstrate this idea with an example, it is first noted that the exercises in the
chapter of complex numbers are mainly standard exercises: change between Euler-
and Cartesian representation, training of basic calculations, and determining the
roots of polynomials. The following exercise is an exception.13 It is the only exercise
in which a time-dependent exponential function occurs:

Which curves are described in the complex plane by

ae�ti þ beti, a, b 2 ℝ constant, t 2 ℝ?

This exercise was marked “too difficult” in the student’s notes.
The sample solution from the student’s notes is:

ae�ti þ beti ¼ að cos ð�tÞ þ sin ð�tÞiÞ þ bð cos ðtÞ þ sin ðtÞiÞ

¼ að cos ðtÞ � sin ðtÞiÞ þ bð cos ðtÞ þ sin ðtÞiÞ

¼ ðaþ bÞ cos ðtÞ þ ð�aþ bÞ sin ðtÞi

¼ xþ yi

¼
x

aþ b

� �2
þ

y

�aþ b

� �2
¼ 1

This then is recognised as the equation of the ellipse, that was introduced in the
preceding special exercise session. The cases aþ b ¼ 0 and �aþ b ¼ 0 are treated
separately, in which the ellipse becomes a straight line: for aþ b ¼ 0 we get
2b sin ðtÞi, a straight line on the imaginary axis between�2bi and 2bi. For�a + b¼ 0
we get 2a cos(t), a straight line on the real axis between �2a and 2a.

The question of the exercise already points to the raison d’être of the
ET-discourse (complex numbers are useful to describe periodic signals). But in the
sample solution, only elementary relations such as Euler’s equation and Pythagorean
identity are used to give the expression a form that could be recognised from

13Exercise and sample solution are translated from German by the author.
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previous lectures. Why ae�ti + beti describes an ellipse, or why the special cases
generate straight lines is not explained, periodic or rotational aspects are not present.

This changes when software like GeoGebra (Hohenwarter et al., 2018) is used.
With digital tools like GeoGebra, dynamic aspects can be visualised and explored
and an otherwise too difficult exercise becomes accessible. Since students may be
inexperienced in using GeoGebra, I will present the modified exercise with a step-
by-step construction of the ellipse with phasors below:14

Which curves are described in the complex plane by

C tð Þ ¼ ae�ti þ beti, a, b 2 ℝ constant, t 2 ℝ?

• Plot the corresponding locus curve in GeoGebra by following the steps below:

594 J. Peters

– Write C ¼ a e^(�i t) + b e^(i t) in the Input and confirm.
– Create sliders for a, b, and t.
– Write Locus in the Input and chose

Locus (<Point Creating Locus Line>, <Slider>).
– Replace <Point Creating Locus Line> with C and <Slider> with t.

Try different values for a and b and describe the curves. Use the slider for t to
explore how the point C moves on the curve. What happens for a ¼ 0, b ¼ 0,
a ¼ b and a ¼ � b?

• In the next step we construct phasors for ae�ti and beti:

– Write P¼ a e^(�i t) in the Input and confirm.
– Write u ¼ Vector in the Input, chose Vector (<Point>) and replace <Point>

with P.
– Write v¼ Vector in the Input, chose Vector (<Start Point>, <End Point>). and

replace <Start Point> with P and <End Point> with C.

We have now represented the point C as the sum of the two phasors. Again, try
different values for a and b and explore how the rotating phasors construct the
curve. What is the consequence of the different signs in the exponents?

By using software like GeoGebra, dynamic aspects can be visualised (see also
Fig. 28.5). In addition, connections can be made to the phasor representation,
which now goes beyond only serving to visualise properties. In this exercise, it
can be explored how the combination of two rotating phasors describes a closed
curve and how the algebraic representation of a complex number is connected to its
phasor-representation. The cases a ¼ 0 or b ¼ 0 result in circles with one phasor

14For more experienced students, this exercise could be formulated in less detail:

(a) Create the locus curve in GeoGebra including sliders for a, b and t. How does the locus curve
change depending on values for a and b?

(b) Represent the components of the equation ae�ti and beti as phasors respectively (use the
GeoGebra Vector function) and represent C(t) as the result of adding the two phasors so that
point C moves on the locus as you vary t. What is the consequence of the different signs in the
exponents?
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each. This is familiar from the lecture, as properties of complex numbers, in
particular the introduction of Euler’s formula, are illustrated with the unit circle.
So, connections to previous aspects of the lecture are established. Furthermore, the
raison d’être for complex numbers in the HM-discourse can be extended by the
aspect that complex numbers are suitable to describe periodic functions or closed
curves.
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Fig. 28.5 Ellipse with corresponding phasors, created with GeoGebra

This modified exercise also fits in the course structure, e.g. this exercise can be
part of a weekly exercise sheet. The exercise does not violate the orientation towards
the rational of academic mathematics of the HM-discourse. It is also possible to
embed the task in a mathematical-historical context: The method of constructing the
ellipse by two rotating phasors is very similar to historical conic section drawers
(e.g. Van Maanen, 1992).

28.4 Discussion

The aim of this contribution is to show, and illustrate with an example, how subject-
specific analyses of mathematical practices from signal theory can serve to modify
exercises from mathematics service courses, even within restricted institutional
conditions. The focus is to support connections between mathematical practices
from service courses and from electrical engineering within the mathematics. The
approach presented here thus represents, in addition to large-scale development
projects and the inclusion of application examples, a further possibility for changes
in teaching.
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The ATD concept of the institutional dependence of knowledge is at the core of
this approach: The same mathematic topic, e.g. complex numbers, is conceptualised
differently in different institutions, the subject-specific rationales and meanings, the
raisons d’être, overall, the mathematical discourses are different. This is associated
with a specific research stance: Within this approach, mathematical practices of
engineers are acknowledged as institutional mathematical practices in their own
right. This stance is not compatible with the introduction of application examples in
the sense of applicationism, i.e. without taking the engineering specific
conceptualisations of mathematical knowledge into account. From this stance, it is
possible to reconstruct engineering-specific mathematical discourse aspects like,
besides other, the engineering-specific raison d’être of a mathematical concept.
These aspects are mathematical aspects, and not aspects from an extra-mathematical
engineering context, that have been endogenously developed and modified over time
within engineering institutions (cf. Artaud, 2020). Therefore, they can be included in
the mathematical discourse of mathematics service courses, that are often oriented
towards academic mathematics. At this point changes are necessary: The ET-context
should be removed but the discourse aspect kept. The analysis of the AM exercise
shows that the orientation towards academic mathematics is important in engineer-
ing courses such as Signal Theory. This is also one of the reasons for maintaining
this orientation for the HM-discourse in this approach for exercise modification. In
the example, the raison d’être for complex numbers in the ET-discourse was, among
other things, describing periodic signals. In the HM-discourse, this can be
changed to: describing periodic functions or curves. If the students encounter
complex numbers in engineering the mathematical discourse on complex numbers
(i.e. the raison d’être) in the ET-discourse, to describe periodic signals, is not entirely
different from the extended mathematical HM-discourse. Therefore this approach
can contribute to reduce the metaphorical distance between the mathematical dis-
course of the mathematics service course and the engineering mathematical dis-
course inner-mathematically. This concerns both the internal didactic transposition
(cf. Schmidt & Winsløw, 2018) and the establishment of connections within the
subject matter (cf. Gueudet & Quere, 2018), e.g. connections of HM-techniques with
ET-technologies. Many of the differences in the views of mathematicians and
engineers addressed by Alpers (2018) can also be understood as aspects of a
respective institutional mathematical discourse. From the perspective presented
here, however, it is not enough for a mathematician to read engineering books and
talk to engineers, for example. To really take the engineering view seriously, it is
necessary to take it seriously in its own institutional conception. Under this precon-
dition, however, discussions with engineers, textbooks by engineers, but also his-
torical and philosophical studies are useful in order to characterise mathematical
discourses specific to engineering.

Of course, this small-scale approach presented here is not free from problems and
of coming into conflict with societal and institutional conditions either. I have shown
how, in the process of analysing institutional mathematical practices, potential for
change in teaching can be identified within existing conditions. This is double-
edged, as it can also support the position of not needing to change social and
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institutional conditions, and thus act as a counter-argument for approaches that aim
precisely to such changes. On the other hand, while acknowledging this criticism, it
can be stated that the ATD-specific research stance is also relevant for lecturers and
entails that retreating to the position that changes in teaching are entirely possible
without conflict with and change in social and institutional conditions is short-
sighted. The approach presented here presupposes lecturers to question their own
institutional standpoint, their own mathematical discourse. But this stance does not
solve contradictions and possible conflicts. There is no clear solution for societal and
institutional conflicts. Societal struggles cannot be solved on the basis of ATD15

analyses. However, such an analysis, as presented here, offers a differentiated view
of what is possible at the exercise level and what is not.

ATD focuses specifically on institutional and subject-specific conditions. In order
to take social struggles and contradictions into account, a research perspective that
addresses a more general level is necessary. A promising approach in this direction is
the subject-scientific approach from the field of critical psychology (e.g. Holzkamp,
1985; Schraube & Osterkamp, 2013). Various studies have already shown that this
approach is compatible with ATD (Hochmuth, 2018; Hochmuth & Schreiber, 2015;
Ruge et al., 2019).

Consideration of the relationship between lecturers of mathematics service
courses and teaching approaches developed in research brings the focus to the
sustainability of teaching development research and therefore also to professional
development. Ruge and Peters (2021) develop an understanding of professional
growth based on the subject-scientific approach which, besides other things, adopts
a view of professional development that goes beyond deriving practical and appli-
cable tools from research. In this sense, the approach to exercise modification
presented here also does not provide a directly applicable tool, but shows how
there is potential for teaching development within the process of analysing respec-
tive institutional mathematical discourses and reflecting the institutional situatedness
of mathematical practices.

Appendix: Exercise with Lecturer Sample Solution

The exercise under consideration is structured in three items:
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1. A message signal s(t) ¼ cos(Ωt) has to be amplitude modulated. The result is
x(t) ¼ A[1 + m cos(Ωt)]cos(2πf0t)

2. The result of item 1. Has to be written as the sum of three harmonics. The result is
xðtÞ ¼ A cos ð2πf 0tÞ þ

Am
2 cos ð2πf 0t þ ΩtÞ þ Am

2 cos ð2πf 0t � ΩtÞ

3. The result of item 2. Has then to be displayed graphically in the complex plane as
a rotating phasor with varying amplitude.

15Or any other theoretical approach.
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The ATD analysis focusses item 3. of the exercise. The exact problem definition of
item 3 is (my translation):

Graphically display x(t) in the complex plane as a rotating phasor with varying
amplitude using the relationship cos 2πftð ÞR exp j2πftð Þf g and the result
under item 2.

Lecturer Sample Solution

One first writes

xðtÞ ¼ A cos ð2πf 0tÞ þ
Am

2
cos ð2πf 0t þ ΩtÞ þ

Am

2
cos ð2πf 0t �ΩtÞ 1Þ

¼ Af exp ðj2πf 0tÞg þ
Am

2
f exp ðjð2πf 0t þ ΩtÞÞg þ

Am

2
f exp ðjð2πf 0t � ΩtÞÞg ð2Þ

¼ f exp ðj2πf 0tÞ½Aþ
Am

2
exp ðjΩtÞ þ

Am

2
exp ð�jΩtÞ�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AðtÞ

g 3Þ

and interprets the expression in the square bracket as a real-valued time-dependent
amplitude A(t), which modulates the carrier phasor exp( j2πf0t) rotating at frequency
f0 in Fig. 28.6.

Fig. 28.6 Representation of x(t) ¼ A[1 + m cos(Ωt)]cos(2πf0t) as the real part of a rotating phasor
A(t)exp( j2πf0t) with ω0 ¼ 2πf0
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