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Abstract: Chronic tendon ruptures are common disorders in orthopedics. The conventional surgical
methods used to treat them often require the support of implants. Due to the non-availability of suit-
able materials, 3D-printed polycaprolactone (PCL) scaffolds were designed from two different starting
materials as suitable candidates for tendon-implant applications. For the characterization, mechanical
testing was performed. To increase their biocompatibility, the PCL-scaffolds were plasma-treated
and coated with fibronectin and collagen I. Cytocompatibility testing was performed using L929
mouse fibroblasts and human-bone-marrow-derived mesenchymal stem cells. The mechanical testing
showed that the design adaptions enhanced the mechanical stability. Cell attachment was increased
in the plasma-treated specimens compared to the control specimens, although not significantly, in the
viability tests. Coating with fibronectin significantly increased the cellular viability compared to the
untreated controls. Collagen I treatment showed an increasing trend. The desired cell alignment and
spread between the pores of the construct was most prominent on the collagen-I-coated specimens.
In conclusion, 3D-printed scaffolds are possible candidates for the development of tendon implants.
Enhanced cytocompatibility was achieved through surface modifications. Although adaptions in
mechanical strength still require alterations in order to be applied to human-tendon ruptures, we are
optimistic that a suitable implant can be designed.

Keywords: printing; degradable; defect repair; tendon graft; cytocompatibility; surface modification

1. Introduction

Tendon disorders are one of the major diseases in orthopedics [1], which often lead
to functional limitations and long-term pain. In addition to acute trauma, intrinsic factors
such as age and health status play a role in the pathogenesis, as do extrinsic factors, such
as smoking and nutrition [2]. If these tendon injuries are not treated immediately or
adequately, long-term damage, such as fatty degeneration, extensive retraction and the
formation of scar tissue may occur [3]. Especially for ruptures of large tendons, surgical
treatment is often unavoidable. However, due to the lack of suitable implant materials to
support conventional surgical methods, re-ruptures are common complications, with rates
of between 11% and 94% [4]. Even if a re-rupture does not occur, the resulting reparation
tissue is often insufficient due to its lower load-bearing capacity [5]. To avoid these high
rates of re-rupture and loss of functional tissue, it is of greatest interest to develop implant
materials with good biological and mechanical properties to support tissue regeneration
after surgical-tendon refixation.
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Polycaprolactone (PCL) is a promising candidate through which to produce such
scaffolds. PCL is a biodegradable polyester with a degradation rate of two to four years. It
degrades to slightly acidic metabolites [6]. It offers the opportunity for the body to replace
the scaffold with functional tissue without long-term residues. PCL is able to absorb higher
forces and shows higher stiffness compared to other polymers, such as polyglycolic acid
(PGA), poly-l-lactid acid (PLLA) or their copolymers (PLGA) [7,8]. The elasticity of PCL is
mainly dependent on the molecular weight [9]. PCL is already used as a suture material
or as a carrier for drug-delivery systems [6]. In the literature, it has been studied as a
tendon-implant material with different electrospun or woven design variants [10–13], but
currently, there is no commercially available PCL construct for tendon ruptures [14]. As a
FDA-approved material, PCL induces, for example, massive foreign-body reactions in vivo
when used as an electrospun fiber mat with a very small fiber diameter [15]. Therefore,
more research is needed to produce varied designs. In addition, its cost-effectiveness and
high durability make it interesting for commercial production [16]. Electrospun PCL was
evaluated in preclinical animal models for chronic tendon defects, but it did not convince
the researchers due to its limited mechanical strengths and the foreign-body reactions
observed [17].

Three-dimensional-printing technology offers the possibility of processing PCL in a
more controlled manner than with electrospinning and of adapting the mechanical and
biological parameters [18]. Using computer-aided design (CAD) software, scaffolds can
be produced with highly controllable properties, such as size, porosity and interconnectiv-
ity [19,20]. The ease of handling also makes it very attractive for use in conventional settings.

In the process “from bench to bedside”, biocompatibility is an important aspect. A
known problem in the use of PCL is its high hydrophobicity and poor wettability, which
are unattractive for cells and result in minor cell growth on the material’s surface [21].
For this reason, surface modifications to PCL are of great interest in the development of
PCL-based implants. Potential options through which to increase the wettability include
plasma-chemical methods, which create functional groups on the polymer surface and
thereby increase the hydrophilicity [22]. Depending on the applied gas, different functional
groups are formed. In the case of oxygen low-pressure plasma treatment, carbonyl, carboxyl
or hydroxyl groups are formed [23]. Another good possibility for surface modification is
offered by biomimetic coatings with special proteins. In this method, proteins which are
part of the extracellular matrix and form integrins for the formation of cell contacts are
suitable candidates. These proteins include collagen, fibronectin and laminin [24,25]. Due
to the fact that polymers are almost inert due to their aliphatic CH structure, a combination
of these processes is often used in order to achieve the best possible coating success [26].

The aim of this study was to fabricate, characterize and modify 3D-printed PCL-
based scaffolds with adequate mechanical and biological properties for possible later
use in tendon-implant applications. The authors’ main hypotheses were that 3D-printed
PCL based specimens would increase load-bearing capacities compared with electrospun
specimens, that cell adhesion in contact with the printed and surface-treated material
would be possible, and that the cell bodies would be spindle-shaped in its appearance,
indicative of cytocompatibility.

2. Materials and Methods
2.1. Bulk Material

Two different commercially available PCLs were used as bulk materials. (Table 1).
Molecular weight was characterized at the Technical University Braunschweig. Gel per-
meation chromatography (GPC) measurements were performed on a PSS SECcurity2
instrument equipped with a SECcurity2 vacuum degasser, a SECcurity2 TCC6500 column
oven (all PSS GmbH, Mainz, Germany), a 1200 isocratic pump (Agilent Technologies Ger-
many GmbH & Co. KG, Waldbronn, Germany), a SECcurity2 1200 refractive index detector
(PSS GmbH, Mainz, Germany) and a manual injection valve (Rheodyne®, IDEX Health &
Science LLC, Oak Harbor, WA, USA). Both PCL species were recorded in THF at 40 ◦C on a
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PSS triple SDV column setup (1 × pre-column, 2 × main columns, each 10 µm particle and
pore size) with a concentration and flow rate of 1 g/L and 1 mL/min, respectively.

Table 1. Specifications of different used polycaprolactone starting materials.

Distributor Purity

Molecular
Weight (g/mol)
(Manufacturer
Information)

Molecular
Weight (g/mol)

(Own
Measurements)

Further Name

Sigma, Darmstadt,
Germany technical 45.000 34.000 PCL45

ITV, Denkendorf,
Germany medical - 86.000 PCL86

2.2. Manufacturing of Test Specimens

The commercially available software, autoCAD® (Autodesk, San Raphael, CA, USA),
was used to design different test specimens of 3D-printed PCL scaffolds.

An extrusion -based BioX Cellink bioprinter (Cellink, Freiburg, Germany) was used for
specimen printing (Figure 1A). PCL granules were melted in the printing cartridge, melted
PCL was pressed through a 150-micrometer nozzle and specifically placed on a glass slide
in three layers. Printing of PCL45 was carried out at 80 ◦C, 700 kPa and 8 mm/s, PCL86
was printed at 135 ◦C, 700 kPa and 3 mm/s. Two different designs were chosen: design 1,
with a square pattern; and design 2, with a diagonal interlayer between the crossed layers
(Figure 1B).
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Figure 1. BioX Cellink 3D printer (A); scheme of the two printed design variants (B) and microscopic
picture of final constructs. Scale bar = 500 µm (C).

For mechanical testing, specimens according to DIN EN 5272 (Figure 2A) with
0.5-millimeter thickness were designed. For further-cell culture tests, specimens with
dimensions of 10 mm × 10 mm × 0.5 mm were produced.

For characterization of implants, microscopic pictures (25× magnification, Figure 1C)
were analyzed and mean filament diameter was calculated from 20 randomly selected
measurement points per mat. PCL86 specimens showed a mean filament diameter of
174.21 ± 28.50 µm and PCL45 specimens a mean filament diameter of 259.24 ± 13.74 µm.

Additionally, test specimens of electrospun fiber mats were prepared by cutting into
test-specimen shape as reference material to compare the printed specimens with formerly
used electrospun material from in vitro and in vivo studies [17,27]. Manufacturing of these
reference materials is described by de Cassan et al. [28] and Fricke and Becker [29].

Test specimens were fixed between two clamps in a material test machine (Zwick
1445, Ulm, Germany), as shown in Figure 2B. Preload was applied (0.5 N, 5 s) and further
preconditioning with 7 cycles and 3% elongation at a frequency of 1 Hz was carried out.
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Finally, specimens were pulled with a speed of 20 mm/min until failure and force-distance
diagrams were recorded. Stiffness (N/cm) was calculated as gradient of the curve in the
linear region. Elongation at break was calculated as quotient of initial length (L0 (mm)) and
length at failure (LFmax (mm)).
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Figure 2. Design of test specimen according to DIN EN 5272 (A); implementation of test specimen in
the universal testing machine for tensile testing (B).

2.3. Surface Hydrophilization with Oxygen-Plasma Treatment

For treatment with oxygen plasma, a MiniFlecto® plasma oven (Plasma Technology,
Herrenberg, Germany) was used. Different values of treatment parameters (time, pressure
and energy) were tested (n = 3 per group, Table 2). Hydrophilization success was examined
by contact-angle measurement in accordance with the “sessile-drop” method [30]. A
total of 20 µL distilled water was applied and two contact angles were measured per
specimen with a contact-angle-measurement device (OCA200, DataPhysics Instruments
GmbH, Filderstadt, Germany).

Table 2. Different plasma treatments used for surface hydrophilization.

Group Time (min) Pressure (mbar) Energy (W)

a 1 0.1 30

b 1 0.3 30

c 2 0.1 30

d 3 0.1 30

e 3 0.3 40

f 8 0.1 40

g 10 0.1 30

h 10 0.1 40

i 10 0.1 50

k 10 0.1 40

Prior to further use, specimens were shrink-wrapped in sterilization pouches (Henry
Schein, Melville, NY, USA) and subjected to electron-beam sterilization with a Rhodotron
TT100 e-beam accelerator at 25 kGy (Mediscan, Kremsmünster, Austria).

2.4. Coating with Fibronectin and Collagen I

Plasma-treated specimens (treatment f) were further coated with different coating
procedures (fibronectin or collagen I) and therefore placed in 24-well plates.

Human fibronectin (Corning, Glendale, CA, USA) was diluted in phosphate buffered
saline (PBS) to a concentration of 25 µg/mL. A total of 200 µL of this solution was applied to
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each specimen and incubated for 1 h at room temperature. After washing in PBS, specimens
were directly used for cell-culture tests.

Collagen Type I rat tail 10 mg/mL (Ibidi, Gräfelfink, Germany) was diluted with
17.5 mM acetic acid to a ready-to-use solution of 50 µg/mL and stored at −20 ◦C until
usage. For collagen coating, specimens were incubated in 400 µL collagen Type I in acetic
acid solution for 1 h at room temperature. After washing in PBS, specimens were directly
used for cell-culture tests.

2.5. Cell-Culture Tests

It was only possible to obtain PCL86 at a level of purity suitable for medical applica-
tions. Therefore, further experiments were conducted only on PCL86. In a first step, L929
fibroblasts were cultured on PCL86 specimens with two different design variants (design 1
(PCL86_1) and design 2 (PCL86_2), Figure 1).

For testing with L929-fibroblasts, approximately 1.2 × 106 cells were thawed and cultured
in a T175 cell-culture flask. Incubation was performed in DMEM (FG0415, Biochrom, Berlin,
Germany) plus supplements (10% FCS (Thermo Fischer Scientific, Waltham, MA, USA), 1%
penicillin–streptomycin (Capricorn Scientific GmbH, Ebsdorfergrund, Germany) and 1% Gluta-
max (Thermo Fischer Scientific, Waltham, MA, USA) at 37 ◦C and 5% CO2 for up to 70–80% of
confluence. Cells were detached from the culture flasks with trypsin-EDTA (Pan-Biotech GmbH,
Aidenbach, Germany) and counted using a Casy cell counter (CASY, OMNI Life Science GmbH,
Basel, Switzerland). Sterile PCL86-specimens (d1 and d2, Table 3) were placed in a 24-well plate
and seeded with approximately 20,000 cells per well in 500 µL DMEM plus supplements. As
positive control, cells were seeded in empty wells (n = 6). Subsequently, cell-culture plates were
placed in an incubator at 37 ◦C and 5% CO2 for up to 7 days.

Table 3. Different cell-culture tests performed for cytocompatibility testing.

Scientific Question Cell Type Cell Viability Test Microscopy

Influence of design variants
PCL86_1 vs. PCL86_2 L929

24 h (n = 4)
3 d (n = 4)
7 d (n = 4)

-

Influence of design variants
PCL86_1 vs. PCL86_2
and plasma treatments

a/b/c/e/f/h

hbm-MSC
24 h (n = 6)
3 d (n = 5)
7 d (n= 4)

24 h (n = 1)
3 d (n = 1)
7 d (n = 4)

Influence of fibronectin and
collagen I coating on

plasma-treated (f) PCL86_2
variant

hbm-MSC
24 h (n = 6)
3 d (n = 5)
7 d (n = 4)

24 h (n = 1)
3 d (n = 1)
7 d (n = 4)

Cell viability was tested after 24 h, 3 d and 7 d using sterile WST-8 tests (Colorimetric
cell viability kit I, PromoCell GmbH, Heidelberg, Germany). Cellular dehydrogenases
transformed the tetrazolium-salt WST-8, depending on cell viability, to the orange-colored
WST-8 formazan. In a first step, cell-culture medium was replaced by 200 µL fresh medium
(DMEM plus supplements). A total of 20 µL of WST-8 solution (1:10) was added in each
well and incubated for 4 h at 37 ◦C and 5% CO2. A 100-microliter supernatant of each well
was used for colorimetric measurement in a microplate reader at 450 nm absorption. In
case of signals higher than the measurable range, supernatant was diluted accordingly
(1:1 in PBS).

In a second step, human-bone-marrow-derived mesenchymal stem cells (hbm-MSCs)
were used for further in vitro characterization (ethical vote #565 to Andrea Hoffmann
by institutional ethics committee). The 24-well-plates were coated with polyHEMA to
avoid cell attachment and growth at the bottom of the plates. One g polyHEMA (Sigma,
Darmstadt, Germany) was diluted in 50 mL 1:1 acetone/ ethanol mixture (both Sigma,
Darmstadt, Germany), vortexed and panned until complete dissolution of polyHEMA.
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Sterile filtration was performed with a PVDF-sterile-filter (0.22 µm) and 100 µL were
inserted in each well for 5 min. Subsequently, plates were dried and washed twice with PBS.

Hbm-MSCs were thawed and cultured in a T175 cell-culture flask with a density of
at least 2000 cells per cm2 in DMEM (FG0415, Biochrom, Berlin, Germany) supplemented
with 10% FCS (Thermo Fischer Scientific, Waltham, MA, USA), 25 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES) buffered solution (Sigma, Darmstadt, Germany),
100 U/mL penicillin/100 µg/mL streptomycin (Capricorn Scientific GmbH, Ebsdorfer-
grund, Germany) and 2 ng/mL recombinant human FGF-2, (Peprotech, Rocky Hill, CT,
USA) for 2–3 d to a confluence of 70–80%. Cells were detached and counted as described
for the L929 cells.

Specimens (n = 6 per group, Table 3) were placed in polyHEMA-coated 24-well plates.
Each specimen was seeded with 20,000 cells in 500 µL of the respective medium and placed
in the incubator at 37 ◦C and 5% CO2 until further processing.

Cell viability was tested after 24 h, 3 d and 7 d, as described for L929 cells.
For the evaluation of cell morphology and cell attachment on the 3D-printed specimens,

exemplary specimens were removed at each time point (n = 1 after 24 h; n = 1 on day 3;
n = 4 on day 7), fixated in 4% buffered paraformaldehyde for 20 min, washed twice in
PBS and treated with 0.1% Triton X-100 (Carl Roth GmbH & Co.KG, Karlsruhe, Germany).
After a further washing step, incubation in 0.3 µM Phalloidin-TRITC und 0.1 µg/mL
DAPI (both Sigma, Darmstadt, Germany) for 60 min was performed. Microscopic images
were taken at 100× magnification using a confocal laser-scanning microscope (CLSM,
Leica Microsystems, Wetzlar, Germany) and representative areas were assessed for cell
distribution and morphology.

2.6. Statistics

Mean values and standard deviation were determined for all parameters. Differences
between treatment procedures (plasma treatment, coating) were analyzed with ANOVA
(SPSS version 27, IBM Deutschland gmbH, Ehningen, Germany) for normally distributed,
independent data. Post hoc test was performed with Tukey when variance equality was
assumed or Games–Howell if assumption of variance equality was not fulfilled. In case of
non-parametric data or abnormal distributed data, the Kruskal–Wallis test was used with
p < 0.05 as the threshold for significance in all statistical analyses.

3. Results
3.1. Mechanical Examination of Specimens

Compared to the previously used electrospun specimens with a maximum force at
failure of 2.19 ± 0.80 N, all the 3D-printed materials showed significant higher values. The
highest forces at failure (12.69 ± 1.48 N) were reached with the PCL45. Similar results
were obtained for the stiffness. The PCL45 was significantly stiffer than the PCL86 and
the electrospun PCL showed significantly lower values compared to all the 3D-printed
materials. The elongation at break was highest in the electrospun specimens and similar in
the 3D-printed materials (Figure 3).

Different printing patterns of PCL86 showed a trend (p = 0.086) towards higher forces
in the specimens with diagonal middle layers (8.51 ± 1.96 N, d2) compared to square
patterns (6.28 ± 1.60 N, d1). No differences were detected between the designs in terms of
stiffness and elongation.
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** = p < 0.01; left axis for N and N/mm, right axis for elongation in %.

3.2. Influence of Design Variant and Plasma Treatment on Hydrophilicity of Specimens

The specimens after plasma treatments d, g, i and k showed macroscopic changes
directly after the treatment procedure, including fusion, color changes and shrinking. They
were excluded from further evaluation.

The contact-angle measurements showed increases in surface hydrophilization for
all the other treatment procedures compared to the native controls. The contact angles
of the native specimens were 110.63 ± 1.37◦ (PCL86_1) and 89.82 ± 1.22◦ (PCL86_2);
they were significantly reduced to 16.32 ± 1.27◦ (PCL86_1_f, p = 0.08) and by trend
26.45 ± 1.70◦ (PCL86_2_f, p = 0.64) with the oxygen plasma treatment for 8 s with 0.1
bar and 40 W. The lowest contact-angle values were observed for treatment c for the design
variant PCL86_2 (12.28 ± 0.37◦; significantly reduced compared to the untreated specimens,
p = 0.08). Design variant 1 showed a much higher value after the same plasma-treatment
procedure. Treatments b, f and h showed mean values below 50◦ (Figure 4) for both design
variants and were therefore chosen for further cell-culture experiments.
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3.3. Influence of 3D-Printed Specimens on Cellular Growth

In the L929 cell culture, significantly lower cell viability in design variant 1 compared to
the control was observed after 24 h. After 3 days, both PCL86 variants showed significantly
lower cell viability compared to the control (only cells without specimen). After 7 days,
no significant differences between the control and both design variants were detected
(Figure 5).
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Figure 5. Design variant 1 showed lower cell viability of L929 cells after 24 h and both design
variants after 3 d compared to the control group. After 7 d, no statistically significant differences were
observed, although both variants showed slightly lower values than the control; * marks significant
differences (p < 0.05).

3.4. Influence of Design Variant and Plasma Treatment of Specimens on Viability of Hbm-MSCs

The differences in plasma treatment had a greater impact on the cell viability than the
design variation. In particular, treatment b had a negative influence on both design variants
(Figure 6A). A significant improvement on hbm-MSC cell viability was not observed in
any of the treatment procedures compared to the untreated specimen. However, confocal
microscopic images of the cells on the different surfaces showed a better attachment on the
plasma-treated variants compared to the untreated specimens (Figure 6B).

The coating of the implants with fibronectin (PCL86_2_f_fib) improved the hbm-MSC
cell viability significantly compared to the only-plasma-treated (PCL86_2_f) and control
specimens without any treatment (PCL86_2, Figure 7A). The collagen coating showed
a trend towards better cell viability after 24 h (p = 0.06) and three days (p = 0.072), as
well as compared to the untreated group. No differences were observed between the
coating groups.

In the descriptive evaluation of the cellular adhesion on the implant surface, pro-
nounced differences were observed, especially after seven days. By contrast, the cells on
the untreated specimens did not show any particular direction in their cytoplasms and the
plasma treatment increased the alignment of the spindle-shaped cells. The coating further
improved this alignment. More prominent spreading between the pores of the construct
was observed on the collagen-coated specimens (PCL86_2_f_coll, Figure 7B).
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Figure 6. Cell-viability testing of hbm-MSCs showed no significant differences for all groups (A);
confocal microscopic pictures of fluorescent stained specimens (red = actine skeletons of the cells;
blue = cell nucleus) showed slightly more cell growth on the plasma-treated specimens compared
to untreated specimens (B). 3D-printed specimens also showed some blue fluorescence. Scale
bar = 100 µm.
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Figure 7. Cell-viability tests showed increased viability of cells that were incubated with coated
specimens (PCL86_2_f_fib/coll) compared to only-plasma-treated (PCL86_2_f) and untreated (PCL_2)
materials; * marks significant differences (p < 0.05) (A). Confocal microscopic pictures of fluorescent
stained specimens showed more aligned cells on all treated specimens compared to the control,
especially after 7 d. Collagen coating (PCL86_f_coll) showed more cells beginning to bridge pores
(B). White scale bar = 100 µm.

4. Discussion

The aim of this study was the development and in vitro characterization of 3D-printed
PCL-based scaffolds as possible candidates for tendon-implant applications. Three different
types of scaffold (PCL45, PCL86_1 and PCL86_2) were produced and evaluated further.
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Compared to the previously used electrospun fiber mats [17,28,29], all the tested 3D-
printed specimens were superior in maximum force at break and stiffness, and showed
decreased elongation at break. This is desirable for their later use as tendon-implant
materials. Therefore, the first hypothesis, that the 3D-printed scaffolds would be superior
to the electrospun material, was confirmed, supporting the work of other authors, who
contended that electrospun fiber mats did not provide high mechanical strength [31]. The
highest strengths were achieved by the PCL45 scaffolds. The slightly lower values of the
PCL86 scaffolds might have been due to the higher printing temperatures, which were
thought to have an effect on the microstructural properties, thereby harming the mechanical
strength [31–33]. The slightly thicker struts of the PCL45 scaffolds might also have had an
effect. The adaption of the inlay design could have increased the mechanical strength by
increasing the interconnectivity of the PCL struts. Although the PCL45 had slightly superior
mechanical properties, we chose the PCL86 for further evaluation due to its medical-grade
purity and, therefore, better cytocompatibility [6,34,35].

For the general testing of the materials’ cytocompatibility and the possible influence
of the design variants of the specimens, in a first step, L929 fibroblasts in direct contact
with the unmodified material were used for the cell-viability tests. After 24 h, the growth
of the cells in contact with design variant 2 was slightly better compared to design variant
1. This might be explained by the fact that more cells were able to adhere on the specimens
with diagonal interlayers, which reduced the pore diameter. After three days, both variants
showed lower cell viability compared to the control. However, this effect was no longer
detectable after 7 days. With the exception of the 3-day time point, viability of over
70% viability was achieved for the untreated cell control; this value is thought to be a
basic requirement for cytocompatibility and further use in the body [36,37]. Due to the
direct interactions of degradable materials with cells and possible high concentrations
of degradation products in direct contact, viability of 70% is not as strict a value as that
required for inert materials regarding biocompatibility. The direct contact methods in the
ISO standards were developed for permanent materials. For degradable materials, the
protocols should be thoroughly assessed and adapted [38]. Although the slightly acidic
degradation products of PCL might cause local acidosis, it has to be considered that the
degradation products of slow degrading materials might not accumulate in vivo. This
might be due to constant removal via respective processes and, therefore, may not exert
negative effects on the surrounding tissue [39].

In our study, different plasma modifications were performed on the surfaces of the PCL-
specimens to enhance their hydrophilicity, and thereby, improve their cytocompatibility, which
was further tested with the hbm-MSCs. Contact angles under 90◦ are defined as hydrophilic in
technical matters [40]. In our study, the enhancement of the hydrophilicity, understood as the
reduction in the contact angle, was highest and most homogeneous for both design variants
with the following parameters: b (1 min, 0.3 mbar, 30 W; contact angles: d1: ~45◦, d2: ~50◦),
f (8 min, 0.1 mbar, 40 W; contact angles: d1: ~16◦, d2: ~26◦) and h (10 min, 0.1 mbar, 40 W;
contact angles: d1: ~36◦, d2: ~38◦). The plasma modification of polymers is a well-known
method to introduce functional groups on polymer surfaces [22,41,42]. However, it is crucial to
determine the optimal parameters for each specimen, which enhance the hydrophilicity but do
not change the morphology of the scaffolds. We already had to exclude some parameters after
the first treatment because of obvious changes in morphology. Two of the excluded plasma
treatments had the highest values for time and energy, which might explain these morphological
changes (fusion, color changes, shrinking). Unfortunately, it remains unclear why d and g were
negatively affected, as they had lower parameters (d: 3 min, 0.1 mbar, 30 W; g: 10 min, 0.1 mbar,
30 W) compared to the plasma modification h (10 min, 0.1 mbar, 40 W), which showed positive
results (no macroscopic changes and reduced contact angle).

For further specification, human-bone-marrow-derived mesenchymal stem cells were
chosen due to their regenerative potential [43]. They can directly differentiate into mes-
enchymal cell lineages [20] and are easy to handle. The comparison of the chosen plasma-
modified specimens (b, f, h) showed reduced cellular viability for b (which had the lowest
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hydrophilicity). Modifications f (highest hydrophilicity) and h (hydrophilicity between b
and f) showed similar values to the untreated specimens, which was surprising as we ex-
pected to observe better cell-surface-adhesion properties. However, the cellular growth on
the surface of specimens, which was evaluated descriptively through confocal microscopy,
was more pronounced in the plasma-treated specimens b and f compared to the native
control, which showed nearly no growth on the direct surface. Plasma modification h
showed the lowest cell growth on the specimens´ surfaces compared to the other plasma-
modified specimens. Other authors were able to show that a contact angle of around 70◦ is
the most compatible with cells [44]. Plasma modification b showed a contact angle slightly
below 50◦. However, since the other two variants also showed even lower contact angles, it
remains unclear why variant b had such low viability values. Other authors used chemical
techniques to hydrolyze 3D-printed PCL scaffolds. Kosik-Kosiol et al. produced an increase
in surface roughness with acetone and sodium hydroxide treatment, which significantly
reduced the water contact angle from 77◦ ± 4 for the untreated control to 62◦ ± 2 for the
treatment-group and, therefore, increased the growth of human mesenchymal stem cells
on the implant surface [45]. Park et al. showed that the implementation of PEG molecules
during the 3D-printing process and subsequent extraction by water enabled the creation of
micropores on the surface, which led to enhanced surface roughness and cell growth [46].
In addition to the fact that plasma treatment alone was not able to significantly enhance
the cell viability of hbm-MSCs, a further important aspect is that hydrophilicity induced
by plasma treatment is of short duration [47]. Therefore, it is necessary to improve the
attraction for cells for later clinical applications. In the present study, we combined plasma
treatment with collagen I or fibronectin coatings. The cell-culture tests demonstrated that
the plasma-modified specimens with subsequent fibronectin coating showed significantly
enhanced cell viability compared to the unmodified or plasma-modified scaffolds. The
collagen I coating showed a trend towards increased cell viability, although this was not
significant. However, according to the confocal microscopy, the collagen-I-coated scaffolds
showed significant cell growth on the surfaces, as well as interconnective growth. This
might have been due to the high viscosity of the collagen I, resulting in thin collagen gels
over the pores, which enabled cells to not only grow on the specimens´ surface but also
in the interspaces. Large pores seem to be one of the greatest problems for cell growth
on scaffolds [20]. Many research groups tried to overcome this problem by bridging the
pores with other polymers using different manufacturing techniques, such as electrospin-
ning [48]. Bridging the pores using proteins is a way of combining the positive effects of
enhanced interconnectivity and biological surface activation. Other authors found similarly
positive results from protein coating. Arredondo et al. investigated commercial scaffolds
for meniscus replacement and showed that the functionalization of a PCL–polyurethane
surface with fibronectin enhanced the attachment of mesenchymal stem cells due to their
integrin α5beta1, which can directly bind to fibronectin [49]. It is well known that the
α5β1 integrin plays an important role in essential biochemical and biomechanical signal
pathways for the induction of cell adhesion and proliferation [50]. He et al. also examined
3D-printed polycaprolactone scaffolds. While the basic material (PLCL (PLLA:PCL, 50:50)
was slightly different, as was the manufacturing process (the authors used solvent-based
low-temperature deposition manufacturing), they also used collagen I, which increased
the cell viability and the cell morphology on the scaffolds´ surfaces [51]. All these findings
conform with our results, as we also showed that additional protein coating can enhance
cytocompatibility using hbm-MSCs. Therefore, we recommend an additional coating with
fibronectin or collagen I on plasma-modified specimens.

Even though cytocompatibility could be enhanced, it must be concluded that both
types of PCL86 specimens still showed minor mechanical strengths compared to com-
mercial augmentation patches for tendon repair [52]. Further experiments need to be
performed in order to examine, whether up-scaled specimens for clinical application, using
a separated multi-layered design for increasing mechanical properties [32], can reduce
the risk of tendon re-ruptures, which mostly occur in the residual degenerated tendon
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material. Another way of addressing this problem was suggested by Dong et al., who
showed that blending PCL with aluminiumoxide whiskers can increase the mechanical
strength of electrospun PCL scaffolds [53].

5. Conclusions

We were able to show that the use of 3D-printed scaffolds is a suitable starting point
for the development of tendon implants with improved mechanical properties and bio-
compatibility. This can be achieved through design adaptions and surface modifications.
Although the mechanical properties and cell compatibility of the scaffolds produced here
still require alterations in order to be used in tendon ruptures, we are optimistic that a
suitable implant can be designed through further adaptations.
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