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Abstract

Web-based learning has become an integral part of everyday life for all ages and back-
grounds. On the one hand, the advantages of this learning type, such as availability,
accessibility, flexibility, and cost, are apparent. On the other hand, the oversupply of
content can lead to learners struggling to find optimal resources efficiently. The interdisci-
plinary research field Search as Learning is concerned with the analysis and improvement
of Web-based learning processes, both on the learner and the computer-science side.

So far, automatic approaches that assess and recommend learning resources in Search
as Learning (SAL) focus on textual, resource, and behavioral features. However, these
approaches commonly ignore multimodal aspects. This work addresses this research gap
by proposing several approaches that address the question of how multimodal retrieval
methods can help support learning on the Web. First, we evaluate whether textual
metadata of the TIB AV-Portal can be exploited and enriched by semantic word embeddings
to generate video recommendations and, in addition, a video summarization technique
to improve exploratory search. Then we turn to the challenging task of knowledge gain
prediction that estimates the potential learning success given a specific learning resource.
We used data from two user studies for our approaches. The first one observes the
knowledge gain when learning with videos in a Massive Open Online Course (MOOC)
setting, while the second one provides an informal Web-based learning setting where
the subjects have unrestricted access to the Internet. We then extend the purely textual
features to include visual, audio, and cross-modal features for a holistic representation of
learning resources. By correlating these features with the achieved knowledge gain, we
can estimate the impact of a particular learning resource on learning success.

We further investigate the influence of multimodal data on the learning process by exam-
ining how the combination of visual and textual content generally conveys information.
For this purpose, we draw on work from linguistics and visual communications, which
investigated the relationship between image and text by means of different metrics and
categorizations for several decades. We concretize these metrics to enable their compat-
ibility for machine learning purposes. This process includes the derivation of semantic
image-text classes from these metrics. We evaluate all proposals with comprehensive
experiments and discuss their impacts and limitations at the end of the thesis.

Keywords: Web-based learning, informal learning, natural language processing, mul-
timodal information extraction, user study, deep learning, knowledge gain prediction,
semantic image-text relation, semantic image-text class, semantic gap
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Zusammenfassung

Web-basiertes Lernen ist ein fester Bestandteil des Alltags aller Alters- und Bevölkerungs-
schichten geworden. Einerseits liegen die Vorteile dieser Art des Lernens wie Verfügbarkeit,
Zugänglichkeit, Flexibilität oder Kosten auf der Hand. Andererseits kann das Überangebot
an Inhalten auch dazu führen, dass Lernende nicht in der Lage sind optimale Ressourcen
effizient zu finden. Das interdisziplinäre Forschungsfeld Search as Learning beschäftigt sich
mit der Analyse und Verbesserung von Web-basierten Lernprozessen.

Bisher sind automatische Ansätze bei der Bewertung und Empfehlung von Lernressourcen
fokussiert auf monomodale Merkmale, wie Text oder Dokumentstruktur. Die multimodale
Betrachtung ist hingegen noch nicht ausreichend erforscht. Daher befasst sich diese
Arbeit mit der Frage wie Methoden des Multimedia Retrievals dazu beitragen können
das Lernen im Web zu unterstützen. Zunächst wird evaluiert, ob textuelle Metadaten des
TIB AV-Portals genutzt werden können um in Verbindung mit semantischen Worteinbet-
tungen einerseits Videoempfehlungen zu generieren und andererseits Visualisierungen
zur Inhaltszusammenfassung von Videos abzuleiten. Anschließend wenden wir uns der
anspruchsvollen Aufgabe der Vorhersage des Wissenszuwachses zu, die den potenziellen
Lernerfolg einer Lernressource schätzt. Wir haben für unsere Ansätze Daten aus zwei
Nutzerstudien verwendet. In der ersten wird der Wissenszuwachs beim Lernen mit Videos
in einem MOOC-Setting beobachtet, während die zweite eine informelle Web-basierte
Lernumgebung bietet, in der die Probanden uneingeschränkten Internetzugang haben.
Anschließend erweitern wir die rein textuellen Merkmale um visuelle, akustische und
cross-modale Merkmale für eine ganzheitliche Darstellung der Lernressourcen. Durch die
Korrelation dieser Merkmale mit dem erzielten Wissenszuwachs können wir den Einfluss
einer Lernressource auf den Lernerfolg vorhersagen.

Weiterhin untersuchen wir wie verschiedene Kombinationen von visuellen und textuellen
Inhalten Informationen generell vermitteln. Dazu greifen wir auf Arbeiten aus der
Linguistik und der visuellen Kommunikation zurück, die seit mehreren Jahrzehnten die
Beziehung zwischen Bild und Text untersucht haben. Wir konkretisieren vorhandene
Metriken, um ihre Verwendung für maschinelles Lernen zu ermöglichen. Dieser Prozess
beinhaltet die Ableitung semantischer Bild-Text-Klassen. Wir evaluieren alle Ansätze mit
umfangreichen Experimenten und diskutieren ihre Auswirkungen und Limitierungen am
Ende der Arbeit.

Stichworte: Web-basiertes Lernen, Informelles Lernen, Natürliche Sprachverarbeitung,
Vorhersage von Lernerfolg, Multimodale Informationsextraktion, Nutzerstudie, Deep
Learning, Semantische Bild-Text Relation, Semantische Lücke
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1 Introduction

1.1 Motivation

The advent of web-based learning, driven by two decades of digitization, has proven its
worth and necessity during the Covid-19 pandemic. Internationally, children, college
students, researchers, and employees of sectors like, for instance, public administration
or information and communication, were forced to work and, to some extent, learn in
front of their computer screens [52]. However, a clear trend was noticeable even before
this worldwide situation arose. By 2018 one in three students in the US was enrolled in
an online course [205], 22 of the top 25 US universities offer online courses for free [169],
and even 45% of elementary school students report their favorite learning methods to be
educational games and online videos [282].

Depending on many subjective and topic-related factors, web-based learning has certain
disadvantages compared to traditional learning. Disadvantages are, for example, the
less motivating, impersonal online classrooms, the associated social isolation, technical
inequalities for different social backgrounds [195], and the lack of assessment for a majority
of online resources when compared to, for instance, text books [236]. However, there
are many advantages connected to this trend as well. At first, it is accessible and, thus,
convenient. Given a device that is able to connect to the internet, a learner is free to
consume content any time of the day and, with enough network coverage, wherever he or
she wants. The second advantage, affordability, underlines accessibility even more. The
increasing cost of traditional education, ranging from textbooks over public transportation
to college tuition, traditionally prevents students from families with lower incomes from
partaking in higher education [61]. Lastly, from an individual’s perspective, Web-based
learning allows for more flexibility, enabling work-life balance, and can also be adapted to
personal preferences and interests.

With this trend comes the need for a better automatic understanding of learning material.
That entails, improving computer-based algorithms in their ability to describe complex
content similar to humans. Otherwise, it becomes more and more challenging to explore
the vast amount of available content. In other words, typical information retrieval (IR)
methods in search engines are not tailored toward the learner, but monetary gain in terms
of, for example, ad revenue. A learner-focused approach, however, needs reliable ways
to generate optimal results for learners. This task is challenging due to multiple factors.
First, the given information often only consists of a search query where the learner might
not even be sure whether it fits their needs. Occasionally, platforms collect historical data
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of previous searches that hint at personal interests or fields of study. In a perfect world, a
retrieval algorithm has to recommend an optimal set of resources to achieve the desired
learning goal of the learner, given these sparse clues. However, this algorithm requires
a thorough and human-like understanding of the respective databases’ textual, visual,
and audio-visual material. Simple author-provided annotations like keywords or tags,
combined with popularity measures and video categorizations, allow for good, superficial
results, at least on the entertainment side of video consumption (e.g., YouTube [175]).
Nevertheless, techniques like these are prone to generate unsatisfying results due to
clickbait titles [270] because their annotations are not guaranteed to have a direct link to
the content. On the other hand, semantic feature extraction methods, realized for example
through semantic word embeddings [182, 22], directly derive metadata from the content
of a given material, which, in theory, circumvents this problem. The trade-off here is
the accuracy of the generated labels, which is limited by an algorithm’s capabilities to
interpret not only text, image, and audio individually, but also their combinations. Further,
it has to factor in subjective quality measures for learning resources to make the correct
decision when being forced to decide between, e.g., two content-wise identical videos with
significant differences in presentation quality.

1.2 Summary of the State-of-the-Art

This section provides a selection of related work to provide context for the research ques-
tions and associated contributions in this thesis. Search as Learning is the interdisciplinary
research area that deals with all topics surrounding Web-based learning. That entails
thoroughly investigating every aspect of learning sessions with an informational search
intent (besides transactional or navigational intents [34]), thus implying the intent to acquire
knowledge. Search as Learning (SAL) is considered interdisciplinary, because it considers
insights and techniques from psychology, educational sciences, and computer science. As
stated by Hoppe et al. [113], this encompasses (a) improving the retrieval and ranking
process of search engines, (b) predicting and considering individual knowledge states,
intents, and needs, and (c) taking all forms of formal and informal learning settings
into consideration, especially the wide range of available types of multimodal content
(textual, visual and audio-visual). Past research on SAL has, however, widely focused
on the exploration of behavioral features (e.g., [47, 78]), and textual features of Web
resources [250], neglecting the impact of multimodal data [69]. However, multimodal
research that evaluates and measures the importance of visual and audio-visual informa-
tion for these tasks is still in its infancy. Even though modern approaches show excellent
results detecting what is seen in an image, SAL attempts to understand how the shown
information influences the learning outcome in combination with other modalities consider-
ing the current characteristics of the individual user. These characteristics entail previously
acquired domain knowledge [285, 193], Web search literacy [284, 286], or working memory
capacity [207], and task characteristics, such as the type of knowledge to be acquired (e.g.,
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factual, conceptual, or procedural knowledge) [266] and the cognitive process dimension
(e.g., understand or apply) [6].

There is evidence that visual elements can have an impact on both, searching and learning.
Several studies have examined how images may help searchers to find the information
they are looking for [196, 134]. They show that they can be used to guide their attention
and allow for a more efficient identification of relevant (passages in) Web resources.

Research on learning goes into more depth and analyzes how text, images, and videos
have to be combined to enable efficient learning. However, the fact that multimedia
representation does support many types of learning tasks can be considered as well
established [148]. Amadieu et al. [5] state that a combination of hypertext elements,
animations, and other multimedia can stimulate “deep processing of the material”, but
may also lead to problems due to the split attention effect [171].

The risks of multimedia material to cause additional cognitive load for a learner has been
discussed by Mayer and Moreno [172]. Therefore, recent research closely analyzes the
interplay of different modalities with respect to learning outcomes. For instance, studies
explore how the distribution of information on text and image influences their integration
[233, 232], the effect of the temporal sequence of presentation [9] and how inter-modality
signaling can support learners [223]. Similarly, video learning has been researched with
respect to the usefulness of structure elements [97, 4], interaction functionalities, [180, 179,
58], and added functionalities for engagement [186].

In summary, there is clear evidence that the integration of multimedia resources does
support human learning in general, and that this transfers to Web environments. How-
ever, the composition of learning resources play an important role. It can ensure the
efficient communication of learning contents, but it can also lead to cognitive overload
and distraction. In consequence, a detailed, large-scale analysis of multimedia features
in learning-oriented resources may lead to a better understanding of Web-based learning
processes.
More facets of SAL will be discussed in Section 4.2.2.

1.3 Problem Statement and Research Questions

The result of the growth of available online resources is the challenge to automatically
understand and, consequently, index the plethora of multimodal information associated
with them to recommend optimal learning resources to learners based on their individual
needs and knowledge states. The following subsections highlight the individual steps
and challenges towards this goal. Motivated by these open questions, we will derive the
research questions that we will answer in the upcoming chapters.
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1.3.1 Exploiting Textual Metadata to improve Web-based Learning

The automatic analysis of audio-visual content is a challenging task. As pointed out
by Beyer et al. [17], a fundamental problem of this research is the semantic gap between
low-level features and high-level semantics portrayed in the visual domain. To narrow
down this gap should enable us to improve the explorative search capabilities, like
video recommendation of content summarization, of video search engines like the TIB
AV-Portal [259].

Usually, video recommender systems rely on user-based information, for example viewing
history [56] or current trends [54]. However, these methods are prone to fail when the
search engine does not want to record this type of information, the user utilizes privacy
software, or visits the website for the first time [146]. This raises the question whether
possible watching interests can be made based on the currently watched video, or, to be
more precise, the metadata associated with it. A similar challenge is presented for video
summarization techniques in the context of educational videos. Related works aim to
generate a short synopsis of a given video that focuses on visual features in the form of
key frames or key fragments [8]. They are stitched then together to form a story board.
However, in the educational domain (e.g. lecture videos), where the content lacks visual
variance, these methods struggle to provide good solutions [290].

A possible avenue to solve this problem is to further process, enrich, or repurpose the
textual metadata associated with each video. Metadata is, per definition, structured
data about data [82]. Or, in other words, textual information that describe (digital) ob-
jects. Consequently, we can apply Natural Language Processing (NLP)-based content
analysis methods, like semantic word embeddings [182, 22]. They have the potential to
improve educational video Web platforms without the need for extensive data-gathering
or high processing power usually connected to algorithms that consider the visual do-
main. These considerations, together with the mentioned shortcomings of popular video
recommendation and video summarization techniques, raise our first research question:

Research Question 1

How can we utilize textual metadata associated with learning content to improve
exploratory search in video search portals?

1.3.2 Extraction of Multimodal Features for Knowledge Gain Prediction

There are numerous ways to exploit text-based content for more effective information
retrieval algorithms [300, 156, 50] in SAL, especially with the advancements in NLP. Fea-
tures from visual and audio-visual content are, however, still somewhat underrepresented
in information retrieval systems [114]. Commercial video platforms such as YouTube rely
on manual metadata such as titles, descriptions, or topic categories [56] in conjunction
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with easy-to-compute, text-based video features like continuous bag-of-words [54], which
might be too unspecific or insufficient for longer, educational content like lecture videos.
This stands in contrast to current learning research which suggests that users may prefer
images and videos when tackling certain learning needs (e.g., procedural learning tasks
[80, 209]). Since nowadays almost all media is multimodal (i.e., contains textual, visual,
and audio-visual information), especially in education, it seems necessary to consider these
modalities to understand the meaning of a multimodal document thoroughly. To capture
arbitrary layouts of Web-content and consequently, their content, requires a document
layout analysis (DLA). Machine learning algorithms that approach this task have been
proposed, for example, for historical documents [283, 237], scientific papers [303], or hand-
written pages [75]. However, neither a dedicated dataset nor an end-to-end approach have
been published for the purpose of DLA on Web documents, yet. Besides the missing visual
components of the learning resource, recent works [293] showed that the consideration
of behavioral features summarizing the interaction of the learner with the computer, and
resource features that provide statistics (e.g., readability, complexity, linguistics) about the
content, are beneficial for Knowledge Gain (KG) prediction as well.

Even though multimodal feature extraction is already a complex task, it is only a prepro-
cessing step to improve web-based learning [117], see Figure 1.1.

Figure 1.1: The Salient spaceship model outlining the main components of
the informal Web-based learning process, namely the learner, the interface
and the IR backend (D). This thesis investigates the feature extraction process
and the feature processing part of the IR backend and analyzes how the
information displayed on the interface (C) influence the learners knowledge

gain.

Statistics about multimodal learning resources need to be aligned with realistic learning
results to understand how others might benefit from a certain type of learning material [208,
293]. In SAL, this type of data is collected via user studies that resemble formal or informal
learning settings. A formal setting, in this context, means controlled environments where
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participants are constrained by design regarding, for example, available websites, learning
resources, resource type, or generally how they are supposed to consume knowledge.
Brockman and Dirkx [33] found that such a scenario provides critical thinking and
independent learning skills that people need to perform well in demanding work situations.
It also enhances their ability and desire to learn on their own [158].

Learning in an informal setting on the other hand, is mainly initiated by individuals in
their everyday life, characterized by free access to any search engine and available Web
resource. In the context of user studies, the challenge is to replicate real-life scenarios as
well as possible while simultaneously enforcing a specific learning task. In addition, the
participants should not feel constrained in their actions and act naturally. Otherwise, the
drawn conclusions may not apply to general learning scenarios. If possible, they should
be allowed to use familiar browsers and search engines, and the underlying recording and
tracking software should not disturb the learning process.

It is also helpful to choose topics that are somewhat interesting to the participant, which
brings up the following challenge: to choose the appropriate task topic and task type [106].
The goal when choosing the task topic is to cover two aspects: on the one hand, ensure
that it is not too simple, or, in other words, the average participant does not already
know everything about it. Otherwise a gain in knowledge would not be possible. On the
other hand, a topic too complex would prevent the person from learning as well. Further,
we need to align the task type (informational, navigational, or procedural [34]) with the
hypotheses to be proven. Lastly, the pre- and post-knowledge questionnaires must be well
chosen to capture the respective knowledge states given a topic, but not too easy to allow
for guessing the correct answers by the elimination method. The sum of these parameters
influence how well the gathered results generalize to other experiments and, thus, the
external validity of this kind of experiment.

Elaborate studies that record all types of interdisciplinary data, meaning knowledge
metrics as well as multimodal, gaze, resource, and behavioral features from such carefully
constructed studies have neither been published, nor automatically investigated, yet. In
summary, automatic multimodal analyses in SAL are still in their infancy in multiple parts
of the learning process, which brings up our second research question:

Research Question 2

To what extent can we extract textual, multimedia, and cross-modal features and
utilize them for knowledge gain prediction?

1.3.3 Computable Crossmodal Relations

Exploring how different modalities act together to convey an author’s intended message
might help to get an even better understanding of how information is conveyed from
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medium to learner. For the scope of this thesis, we take an in-depth look at the relationship
between visual and associated textual information purposely put in place together.

As Bateman states [16], at first glance, combining image and text to convey information of
any kind seems to be a natural and easy thing to do. People of all ages do it every day and
have done so for hundreds of years. On second thought, by asking how these two modes
work together to create an intended meaning, one quickly comes to realize that image
and text are very different tools whose interplay has many potential interpretations. This
difference in expressiveness between two linguistic representations, or modalities [84],
is called the semantic gap [102]. In computer science, Smeulders et al. [243] describe
it as the lack of coincidence between the information in visual data and their possible
interpretations. Due to the semantic gap, images and text are very rarely able to portray
the same information [103, 104]. Conversely, in most cases they are meant to complement
each other with one being dominant regarding the amount of information brought into
the joint message.

To get a basic understanding of these interplays, it is beneficial to define a set of inter-
pretable, comprehensive, and computable metrics that describe the relationship between
visual and textual content in detail. The approach of Henning and Ewerth [103, 104]
creates a foundation of such a metric-based distinction, but has not been aligned with
research from communication and media science. However, there are various taxonomies
and in-depth discussions about semantic image-text classes, which, as this thesis will
elaborate on, are based on underlying metrics [15, 166, 167, 264]. So far, a transfer of
linguistics knowledge into computer science approaches has only been attempted partially,
usually pruned to the problem at hand instead of generally applicable to arbitrary media.
Kruk et al. [143], for instance, tailor Marsh and White’s taxonomy [166] to measure the
author’s intent for Instagram posts in terms of two different relationship measures. Zhang
et al. [298], on the other hand, investigate only one relationship in the advertisements
domain, determining whether a equivalent or non-equivalent parallel information transfer
is present. Lastly, diverse, domain-independent, and sufficiently large datasets, which
contain a broad range of semantic image-text metrics, do not exist yet. These observations
pose our final research question:

Research Question 3

Based on insights from linguistics and visual communications, how can we derive
computational models that describe the relationship between image and text?
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1.4 Contributions

1.4.1 Improving Video Learning Platforms with Text-Based Features

Chapter 3 explores how, for instance, semantic word embeddings and keyphrase extraction
methods, next to others, can be used to improve web-based educational applications to
enhance the user experience. In particular, we conduct two user studies on the open-
access dataset provided by the TIB AV-Portal [259], comprised of scientific videos (e.g.,
lecture recordings) enriched with metadata composed of a speech transcript and keywords
derived from Optical Character Recognition (OCR) and Visual Concept Detection (VCD).
We demonstrate and evaluate how this data can be post-processed and extended to
provide two improvements to the educational video Web platforms. First, a novel video
recommendation tool (Section 3.1) is implemented that suggests related videos based
on video content rather than title similarity. Second, we present a visual summary
visualization that allows for a more efficient explorative search for learners that try to find
a fitting video for their query (Section 3.2).

1.4.2 Prediction of Knowledge Gain with Multimodal Features

Chapter 4 investigates how to assess multimedia educational content from two directions.
In a smaller study (Section 4.1) that focuses on MOOC videos, we propose a new feature
set comprised of acoustic and visual features but also their cross-modal combinations with
the shown textual content. A correlation analysis with the measured learning outcome will
indicate their usefulness for an eventual knowledge gain prediction. To further strengthen
this assumption, we extend this cross-modal dataset with a wide range of textual features
and compare their potential for knowledge gain in a large study.

In our second lab study, carried out by 114 participants, we implemented an informal
setting, meaning we extended our scope to unrestricted search on the internet (Section 4.2).
To align the chosen, highly diverse resources with the learning outcome, we recorded
a plethora of log data. In an attempt to capture the full range of stimuli, we record the
learner’s gaze, the visited websites in chronological order, the individual behavior (for
instance, mouse movements and actions), screen capture, and a wide range of knowledge
metrics. We propose an automatic framework that requires minimal manual labor but
can extract statistics about the design of the seen websites and classify their content. We
use these features in conjunction with a set of behavioral and resource features to achieve
state-of-the-art results in knowledge gain prediction.

1.4.3 Categorization of Semantic Image-Text Relations

In Chapter 5 of this thesis, we build upon recent work on image-text metrics and bridge
the gap between research in computer science and communication science. Based on
previous proposals [103, 15], we define three semantic image-text metrics to describe three
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dimensions of the semantic interplay of jointly placed visual and textual information.
Subsequently, we derive a categorization of eight semantic image-text classes that combines
research from communication science with these metrics and thus, provides a general
system to categorize image-text pairs. Next, we show how modern deep learning-based
methods, specifically multimodal embeddings, can be utilized to predict these metrics
(and classes). Therefore, we employ data augmentation methods to generate a dataset of
about 240 000 image-text pairs, which is available to the public (Chapter 5).

1.5 List of Publications

The following papers have been published in the context of this thesis. As in most
academic work, other authors have contributed to a certain extent to these publications.
Thus, the academic we is used throughout this thesis. Below the individual abstracts my
contributions to each respective paper are listed under My Contributions according to
the Contributor Roles Taxonomy (CRediT) [28].

Two papers have been published at conferences ranked A ([202, 201] and three at confer-
ences ranked B ([177, 304, 200] according to the Australian Computing Research & Education
(CORE1) Conference Portal (source: CORE2021). ”Understanding, Categorizing and Predicting
Semantic Image-Text Relations“ [200] received the Best Paper Award at the ACM International
Conference for Multimedia Retrieval 2019 and was subsequently invited as an extended
version called ”Characterization and classification of semantic image-text relations“ [199] in
the International Journal of Multimedia Information Retrieval (IJMIR). The paper entitled
”Investigating Correlations of Automatically Extracted Multimodal Features and Lecture Video
Quality“ [240] was presented at the International Workshop on Search as Learning with Mul-
timedia Information co-located with an A* conference (ACM International Conference on
Multimedia). In the following section, all publications are outlined and set into context
with their respective chapters.
Chapter 3 presents two approaches to improve the TIB AV-Portal [259], a scientific video
Web platform, with text-based features and is based on the publications ”Recommending
Scientific Videos Based on Metadata Enrichment Using Linked Open Data“ [177] and ”Visual
Summarization of Scholarly Videos Using Word Embeddings and Keyphrase Extraction“ [304].

[177] Justyna Medrek, Christian Otto, and Ralph Ewerth. “Recommending Scientific
Videos Based on Metadata Enrichment Using Linked Open Data”. In: Digital
Libraries for Open Knowledge, 22nd International Conference on Theory and Practice
of Digital Libraries, TPDL 2018, Porto, Portugal, September 10-13, 2018, Proceedings.
Vol. 11057. Lecture Notes in Computer Science. Springer, 2018, pp. 286–292. doi:
10.1007/978-3-030-00066-0_25

Abstract: The amount of available videos in the Web has significantly increased not
only for entertainment etc., but also to convey educational or scientific information

1http://portal.core.edu.au/conf-ranks/

https://doi.org/10.1007/978-3-030-00066-0_25
http://portal.core.edu.au/conf-ranks/
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in an effective way. There are several web portals that offer access to the latter kind
of video material. One of them is the TIB AV-Portal of the Leibniz Information
Centre for Science and Technology (TIB), which hosts scientific and educational
video content. In contrast to other video portals, automatic audiovisual analysis
(VCD, OCR, Automatic Speech Recognition (ASR)) is utilized to enhance metadata
information and semantic search. In this paper, we propose to further exploit
and enrich this automatically generated information by linking it to the Integrated
Authority File (GND) of the German National Library. This information is used to
derive a measure to compare the similarity of two videos which serves as a basis for
recommending semantically similar videos. A user study demonstrates the feasibility
of the proposed approach.

My Contributions: Conceptualization, Formal Analysis, Project administration,
Supervision, Validation, Visualization, Writing – original draft, Writing – review &
editing

[304] Hang Zhou, Christian Otto, and Ralph Ewerth. “Visual Summarization of Scholarly
Videos Using Word Embeddings and Keyphrase Extraction”. In: Digital Libraries for
Open Knowledge - 23rd International Conference on Theory and Practice of Digital Libraries,
TPDL 2019, Oslo, Norway, September 9-12, 2019, Proceedings. Vol. 11799. Lecture Notes
in Computer Science. Springer, 2019, pp. 327–335. doi: 10.1007/978-3-030-30760-

8_28

Abstract: Effective learning with audiovisual content depends on many factors. Be-
sides the quality of the learning resource’s content, it is essential to discover the most
relevant and suitable video in order to support the learning process most effectively.
Video summarization techniques facilitate this goal by providing a quick overview
over the content. It is especially useful for longer recordings such as conference
presentations or lectures. In this paper, we present a domain specific approach that
generates a visual summary of video content using solely textual information. For
this purpose, we exploit video annotations that are automatically generated by ASR
and video OCR. Textual information is represented by semantic word embeddings
and extracted keyphrases. We demonstrate the feasibility of the proposed approach
through its incorporation into the TIB AV-Portal (http://av.tib.eu/), which is a
platform for scientific videos. The accuracy and usefulness of the generated video
content visualizations is evaluated in a user study.

My Contributions: Conceptualization, Formal Analysis, Project administration,
Supervision, Validation, Visualization, Writing – original draft, Writing – review &
editing

The KG prediction methods in Chapter 4 are based on two user studies and a total of
four publications. Section 4.1 describes the contributions of the papers ”Investigating Corre-
lations of Automatically Extracted Multimodal Features and Lecture Video Quality“ [240] and

https://doi.org/10.1007/978-3-030-30760-8_28
https://doi.org/10.1007/978-3-030-30760-8_28
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”Predicting Knowledge Gain for MOOC Video Consumption“ [201]. In these two publications
we investigate learning in a formal setting (MOOC videos) by conducting a user study
and extensive, multimodal feature extraction procedure. Afterward, Section 4.2 explores
learning in an informal setting in a larger lab study, the creation of an extensive dataset,
and proposes a novel multimedia extraction framework for subsequent knowledge gain
prediction. This work is published in the ”SaL-Lightning Dataset: Search and Eye Gaze
Behavior, Resource Interactions and Knowledge Gain during Web Search“ [198] and ”Predicting
Knowledge Gain During Web Search Based on Multimedia Resource Consumption“ [202].

[240] Jianwei Shi, Christian Otto, Anett Hoppe, Peter Holtz, and Ralph Ewerth. “Inves-
tigating Correlations of Automatically Extracted Multimodal Features and Lecture
Video Quality”. In: Proceedings of the 1st International Workshop on Search as Learning
with Multimedia Information. SALMM ’19. Nice, France: Association for Computing
Machinery, 2019, pp. 11–19. isbn: 9781450369190. doi: 10.1145/3347451.3356731

Abstract: Ranking and recommendation of multimedia content such as videos is
usually realized with respect to the relevance to a user query. However, for lecture
videos and MOOC it is not only required to retrieve relevant videos, but particularly
to find lecture videos of high quality that facilitate learning, for instance, indepen-
dent of the video’s or speaker’s popularity. Thus, metadata about a lecture video’s
quality are crucial features for learning contexts, e.g., lecture video recommendation
in search as learning scenarios. In this paper, we investigate whether automatically
extracted features are correlated to quality aspects of a video. A set of scholarly
videos from a MOOC is analyzed regarding audio, linguistic, and visual features.
Furthermore, a set of cross-modal features is proposed which are derived by com-
bining transcripts, audio, video, and slide content. A user study is conducted to
investigate the correlations between the automatically collected features and human
ratings of quality aspects of a lecture video. Finally, the impact of our features on
the knowledge gain of the participants is discussed.

My Contributions: Conceptualization, Formal Analysis, Project administration,
Supervision, Validation, Visualization, Writing – original draft, Writing – review &
editing

[201] Christian Otto, Markos Stamatakis, Anett Hoppe, and Ralph Ewerth. “Predict-
ing Knowledge Gain for MOOC Video Consumption”. In: Artificial Intelligence in
Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and
Innovation Tracks, Practitioners’ and Doctoral Consortium - 23rd International Confer-
ence, AIED 2022, Durham, UK, July 27-31, 2022, Proceedings, Part II. ed. by Maria
Mercedes T. Rodrigo, Noburu Matsuda, Alexandra I. Cristea, and Vania Dimitrova.
Vol. 13356. Lecture Notes in Computer Science. Springer, 2022, pp. 458–462. doi:
10.1007/978-3-031-11647-6_92

https://doi.org/10.1145/3347451.3356731
https://doi.org/10.1007/978-3-031-11647-6_92
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Abstract: Informal learning on the Web using search engines as well as more
structured learning on MOOC platforms have become very popular. However,
the automatic assessment of this content with regard to the challenging task of
predicting (potential) knowledge gain has not been addressed by previous work
yet. In this paper, we investigate whether we can predict learning success after
watching a specific type of MOOC video using 1) multimodal features, and 2) a wide
range of text-based features describing the structure and content of the video. In a
comprehensive experimental setting, we test four different classifiers and various
feature subset combinations. We conduct a feature importance analysis to gain
insights in which modality benefits knowledge gain prediction the most.

Source Code: https://github.com/TIBHannover/mooc_knowledge_gain

My Contributions: Conceptualization, Formal Analysis, Project administration,
Supervision, Validation, Visualization, Writing – original draft, Writing – review &
editing

[198] Christian Otto, Markus Rokicki, Georg Pardi, Wolfgang Gritz, Daniel Hienert, Ran
Yu, Johannes von Hoyer, Anett Hoppe, Stefan Dietze, Peter Holtz, Yvonne Kammerer,
and Ralph Ewerth. “SaL-Lightning Dataset: Search and Eye Gaze Behavior, Resource
Interactions and Knowledge Gain during Web Search”. In: CHIIR ’22: ACM SIGIR
Conference on Human Information Interaction and Retrieval, Regensburg, Germany, March
14 - 18, 2022. Ed. by David Elsweiler. ACM, 2022, pp. 347–352. doi: 10.1145/34983

66.3505835

Abstract: The emerging research field SAL investigates how the Web facilitates
learning through modern information retrieval systems. SAL research requires
significant amounts of data that capture both search behavior of users and their
acquired knowledge in order to obtain conclusive insights or train supervised
machine learning models. However, the creation of such datasets is costly and
requires interdisciplinary efforts in order to design studies and capture a wide range
of features. In this paper, we address this issue and introduce an extensive dataset
based on a user study, in which 114 participants were asked to learn about the
formation of lightning and thunder. Participants’ knowledge states were measured
before and after Web search through multiple-choice questionnaires and essay-based
free recall tasks. To enable future research in SAL -related tasks we recorded a
plethora of features and person-related attributes. Besides the screen recordings,
visited Web pages, and detailed browsing histories, a large number of behavioral
features and resource features were monitored. We underline the usefulness of the
dataset by describing three, already published, use cases.

My Contributions: Conceptualization, Data curation, Project administration, Re-
sources, Software, Visualization, Writing – original draft, Writing – review & editing

https://github.com/TIBHannover/mooc_knowledge_gain
https://doi.org/10.1145/3498366.3505835
https://doi.org/10.1145/3498366.3505835
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[202] Christian Otto, Ran Yu, Georg Pardi, Johannes von Hoyer, Markus Rokicki, Anett
Hoppe, Peter Holtz, Yvonne Kammerer, Stefan Dietze, and Ralph Ewerth. “Predicting
Knowledge Gain During Web Search Based on Multimedia Resource Consumption”.
In: Artificial Intelligence in Education - 22nd International Conference, AIED 2021, Utrecht,
The Netherlands, June 14-18, 2021, Proceedings, Part I. vol. 12748. Lecture Notes in
Computer Science. Springer, 2021, pp. 318–330. doi: 10.1007/978-3-030-78292-4

_26

Abstract: In informal learning scenarios the popularity of multimedia content, such
as video tutorials or lectures, has significantly increased. Yet, the users’ interactions,
navigation behavior, and consequently learning outcome, have not been researched
extensively. Related work in this field, also called search as learning, has focused
on behavioral or text resource features to predict learning outcome and knowledge
gain. In this paper, we investigate whether we can exploit features representing
multimedia resource consumption to predict KG during Web search from in-session
data, that is without prior knowledge about the learner. For this purpose, we suggest
a set of multimedia features related to image and video consumption. Our feature
extraction is evaluated in a lab study with 113 participants where we collected
data for a given search as learning task on the formation of thunderstorms and
lightning. We automatically analyze the monitored log data and utilize state-of-
the-art computer vision methods to extract features about the seen multimedia
resources. Experimental results demonstrate that multimedia features can improve
KG prediction. Finally, we provide an analysis on feature importance (text and
multimedia) for KG prediction.

My Contributions: Conceptualization, Data curation, Formal Analysis, Investigation,
Methodology, Software, Validation, Visualization, Writing – original draft, Writing –
review & editing

Finally, the main contribution of Chapter 5 is based on the paper in ”Characterization and
classification of semantic image-text relations“ [199], which is an extended journal version of
”Understanding, Categorizing and Predicting Semantic Image-Text Relations“ [200]. In these
publications, we propose and define three semantic image-text metrics and a categorization
of eight semantic image-text classes. We create a large dataset and suggest a neural
network-based method for automatic classification.

[200] Christian Otto, Matthias Springstein, Avishek Anand, and Ralph Ewerth. “Under-
standing, Categorizing and Predicting Semantic Image-Text Relations”. In: Proceed-
ings of the 2019 on International Conference on Multimedia Retrieval, ICMR 2019, Ottawa,
ON, Canada, June 10-13, 2019. Ed. by Abdulmotaleb El-Saddik, Alberto Del Bimbo,
Zhongfei Zhang, Alexander G. Hauptmann, K. Selçuk Candan, Marco Bertini, Lexing
Xie, and Xiao-Yong Wei. ACM, 2019, pp. 168–176. doi: 10.1145/3323873.3325049

https://doi.org/10.1007/978-3-030-78292-4_26
https://doi.org/10.1007/978-3-030-78292-4_26
https://doi.org/10.1145/3323873.3325049
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[199] Christian Otto, Matthias Springstein, Avishek Anand, and Ralph Ewerth. “Character-
ization and classification of semantic image-text relations”. In: International Journal of
Multimedia Information Retrieval 9.1 (2020), pp. 31–45. doi: 10.1007/s13735-019-001

87-6

Abstract: The beneficial, complementary nature of visual and textual information to
convey information is widely known, for example, in entertainment, news, advertise-
ments, science, or education. While the complex interplay of image and text to form
semantic meaning has been thoroughly studied in linguistics and communication
sciences for several decades, computer vision and multimedia research remained
on the surface of the problem more or less. An exception is previous work that
introduced the two metrics Cross-Modal Mutual Information and Semantic Correlation in
order to model complex image-text relations. In this paper, we motivate the necessity
of an additional metric called Status in order to cover complex image-text relations
more completely. This set of metrics enables us to derive a novel categorization
of eight semantic image-text classes based on three dimensions. In addition, we
demonstrate how to automatically gather and augment a dataset for these classes
from the Web. Further, we present a deep learning system to automatically predict
either of the three metrics, as well as a system to directly predict the eight image-text
classes. Experimental results show the feasibility of the approach, whereby the
predict-all approach outperforms the cascaded approach of the metric classifiers.

My Contributions: Conceptualization, Data curation, Formal analysis, Investigation,
Methodology, Project administration, Software, Validation, Visualization, Writing –
original draft, Writing – review & editing

The following list shows additional publications, which are only partially related to the
topic, and will therefore not be covered in this thesis:

[197] Christian Otto, Sebastian Holzki, and Ralph Ewerth. “Is This an Example Image?
- Predicting the Relative Abstractness Level of Image and Text”. In: Advances in
Information Retrieval - 41st European Conference on IR Research, ECIR 2019, Cologne,
Germany, April 14-18, 2019, Proceedings, Part I. vol. 11437. Lecture Notes in Computer
Science. Springer, 2019, pp. 711–725. doi: 10.1007/978-3-030-15712-8_46

[117] Johannes von Hoyer, Anett Hoppe, Yvonne Kammerer, Christian Otto, Georg Pardi,
Markus Rokicki, Ran Yu, Stefan Dietze, Ralph Ewerth, and Peter Holtz. “The
Search as Learning Spaceship: Toward a Comprehensive Model of Psychological
and Technological Facets of Search as Learning”. In: Frontiers in Psychology 13 (Mar.
2022). doi: 10.3389/fpsyg.2022.827748

[70] Ralph Ewerth, Christian Otto, and Eric Müller-Budack. “Computational Approaches
for the Interpretation of Image-Text Relations”. In: Oct. 2021, pp. 109–138. isbn:
9783110725001. doi: 10.1515/9783110725001-005

https://doi.org/10.1007/s13735-019-00187-6
https://doi.org/10.1007/s13735-019-00187-6
https://doi.org/10.1007/978-3-030-15712-8_46
https://doi.org/10.3389/fpsyg.2022.827748
https://doi.org/10.1515/9783110725001-005
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[188] Markus Mühling, Nikolaus Korfhage, Eric Müller, Christian Otto, Matthias Spring-
stein, Thomas Langelage, Uli Veith, Ralph Ewerth, and Bernd Freisleben. “Deep
learning for content-based video retrieval in film and television production”. In:
vol. 76. 21. 2017, pp. 22169–22194. doi: 10.1007/s11042-017-4962-9

[189] Eric Müller, Christian Otto, and Ralph Ewerth. “Semi-supervised Identification of
Rarely Appearing Persons in Video by Correcting Weak Labels”. In: Proceedings of
the 2016 ACM on International Conference on Multimedia Retrieval, ICMR 2016, New
York, New York, USA, June 6-9, 2016. ACM, 2016, pp. 381–384. doi: 10.1145/2911996

.2912073

1.6 Organization of this Thesis

Chapter 1 introduces the aspects and challenges associated with multimedia learning
that are addressed in this thesis. It defines problems and states research questions that
we will answer. Chapter 2 covers the fundamentals of the key techniques utilized in our
methodologies. That entails neural network basics and their relevant applications for
uni- and multimodal representations and a selection of classifiers we utilized. Chapter 3
introduces multiple ways of exploiting textual features to improve educational search
engines based on previously extracted text-based metadata. Following up in Chapter 4,
we contribute two user studies that resemble learning in formal and informal settings
to reveal interesting connections between consumed learning resources and knowledge
gain. In particular, our workflow entails a comprehensive feature extraction process
covering individual methods for audio, visual, audio-visual, textual, and behavioral
features, followed by an extensive correlation analysis. Afterward, Chapter 5 assesses
this topic from a different angle. In reality, creators of multimodal content intend their
information to be understood in unison, meaning ”Which message does, for example,
image and text convey *together*? “, rather than individually. So, this final chapter
models the cross-modal interplay on a theoretical level to foster future research in the
automatic understanding of multimodal content. We propose a categorization of semantic
image-text classes derived from communication science and extend with recent proposals
of computable image-text metrics from computer science. Finally, we demonstrate the
utility of these metrics by evaluating their applicability on two unseen datasets. Finally,
Chapter 6 summarizes the various topics covered by this thesis and consolidates the
findings, outlines limitations, and derives avenues for future work.

333

The next Chapter introduces a the most important foundations of the methods and
algorithms covered in this thesis.

https://doi.org/10.1007/s11042-017-4962-9
https://doi.org/10.1145/2911996.2912073
https://doi.org/10.1145/2911996.2912073
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2 Foundations

2.1 Introduction

This chapter presents a number of approaches and techniques we will leverage in the
upcoming chapters. Understanding the foundations of these methods will complement
the motivations and design choices in the following methodologies. First, we take a close
look at neural networks in general before investigating the neural network-based methods
that we use in Chapters 3, 4, and 5, namely semantic word embeddings and autoencoders.
Second, this chapter introduces the classification approaches utilized for KG prediction
in Chapter 4, namely Random Forest (RF), Naive Bayes (NB), Support Vector Machines
(SVMs), and Multilayer Perceptrons (MLPs).

Finally, an introduction to research in the area of the visual-verbal divide as proposed by
researchers in communication and media science is given by means of four classification
systems that allow for the differentiation of different types of image-text pairs. We end
this chapter with a discussion about the limitations of these systems that make a direct
adoption from a computer science perspective difficult. In other words, we shed light on
the requirements for a categorization of image-text classes that allow us to detect these
intricate, semantic relations automatically.

2.2 Neural Networks

This section gives an introduction to artificial neural networks (Section 2.2.1), explains
their components and general mechanics and provides a superficial look at the underlying
calculus. Afterward, we give a more detailed description of the techniques used in
this thesis. This entails semantic word embeddings (Section 2.2.6) and autoencoders
(Section 2.2.5).

2.2.1 Foundations

As the name suggests, artificial neural networks (NN) consist of artificial neurons, which
are inspired by biological neurons, one of the fundamental units of the brain. On their
own, they are simple entities that receive inputs, process them, and, eventually, provide
an output. In machine learning, these networks can be utilized as universal function
approximators. That means they are able to approximate any problem that can be
represented by a function, regardless of its complexity. Moreover, the past decade of
research has proven that neural networks can be applied to a large variety of real-world
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problems, not rarely exceeding human performance [71]. Their ability to do so is mainly
attributed to a) their hierarchical structure that allows for the abstraction of tasks similar to
the human problem-solving process (”This object has four wheels, windows, and a steering
wheel. It must be a car! “) and b) their independence from manually crafting features for
each individual task, which was the dominant approach until the advent of Deep Learning.
The term Deep Learning comes from the flexible design of these networks that allows
intricate and, therefore, often deep (concerning the number of layers) architectures that
are tailored to the problem at hand.

Neurons

The integral building blocks of neural networks are, as stated before, neurons. In their
simplest form neurons resemble a linear function f (x) = w · x + b, where x is the input, w
a weight applied to x, and b a bias value, see Figure 2.1a.

x
m

b

f(x)

(a) The simple form of a neuron resembling a
linear function.

a(x)

x1

x2

w1

w2

b

y

(b) The advanced version of a neuron used in
neural networks.

Figure 2.1: Two versions of a neuron.

Since that is not very useful yet beyond linear problems, NNs extend this concept in
multiple ways, see Figure 2.1b. First, similar to the brain, a neuron is not limited to one
input. Instead the number of inputs X = x1, x2, ..., xn is variable, and each input comes
with its own weight W = w1, w2, ..., w3. The value of the resulting formula is computed by
the weighted sum of the inputs plus the bias, see Equation 2.1.

y = a(
|X|

∑
i=1

wi · xi + b) (2.1)

Second, an equally important difference is the choice of the non-linear activation
function a(x), which is wrapped around this computation. The activation function allows
the neural network to approximate non-linear functions. Linear algebra shows that,
regardless of the number of layers and neurons, a neural network with a linear activation
can be reduced to a 2-layer version of itself representing, again, a simple linear function
f (x) = w · x + b. Activation functions will be discussed in more detail in Section 2.2.3.
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2.2.2 Types of Networks

With some exceptions (e.g., Gated Recurrent Units (GRUs) [42]), a typical neural network
consists solely of neurons arranged into layers, hierarchical tiers starting from the input
layer, over a variable amount of hidden layers, to the output layer. The desired input data
determines the input layer’s shape. For example, a visual concept classifier expecting a
30x30 pixel, 4-channel image requires 30x30x4 = 3600 input neurons. The output, on the
other hand, is determined by the problem to solve. If we label two classes for our visual
concept classifier, the neural network would have two output neurons, one for each class,
as in Figure 2.2. So-called feedforward networks are then trained by feeding training samples
forward through the network, meaning ”from input to output without loops“. As neural
networks are generally supervised approaches, each sample has an associated label. At
the end of a forward step, the predicted outcome is compared to the expected output by
means of a cost function. This function, which again differs based on the given problem,
returns a value representing the difference between the ground truth and prediction value.
By propagating this loss backward through the neural network, adjusting weights and
biases of the neurons along the way, the potential error of the network is reduced the next
time it sees a similar sample. We go further into detail in Section 2.2.4.

cat

dog

30

30

Figure 2.2: Simplified example of a neural network for visual concept
classification. Recent versions, such as ResNext [287], are much more

complex.

Research of the past decade, however, heavily focuses on the intermediate part, the
hidden layers. Their design varies depending on the type of data a researcher is working
with. Image processing, for instance, makes use of convolutional layers, which can
be interpreted as a repeated application of a filter to regions of the original image to
receive a feature map of a lower dimension, see Figure 2.3. These filters aim to pick
up patterns of various complexities and take advantage of correlations in the image.
Hidden layers at the beginning of the network identify low-level features such as lines
and edges, while filters at the end detect complex structures such as eyes or entire faces.
The most important advantage of these approaches, as compared, for instance, to a Sobel
filter [132], is that these filters are automatically learned during training and do not need
to be designed manually. After applying the filter and adding the bias, the neural network
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passes the values of the feature map, again, through an activation function. Lastly, to
further summarize the information of the feature map, a pooling operation is applied.
Most commonly a MaxPooling operation, as shown in Figure 2.3. It only retains the
maximum element of a certain region of the feature map and thus, depending on the
size of the pooling kernel, reduces the dimensionality of the input even further. Current
state-of-the-art approaches are ConvNeXt [157], EfficientNet [256], MobileNetV2 [228],
and ResNeXt [287].

Figure 2.3: The general idea of convolutional layers for image encoding. A
filter is convolved with the input image to reduce its dimensionality. After
pooling the dimensions of the original image are reduced from 36 to 4
while the most important information, with regards to the filter kernel, are

preserved.

Sequential data, meaning data with an intrinsic order (e.g., video frames, sentences in
a text, temporal data), utilize Recurrent Neural Networks (RNN) which can store memory
about previously seen tokens of the current sample to make meaningful connections
between these tokens. To do this, they contain loops referencing previous parts of the
encoding procedure (e.g., the network), which means they are not feedforward networks as
discussed up until now. Or in other words, information from previous tokens of the input
sequence influence how the current token will be encoded. In practice, this may help give
ambiguous words context by allowing the network to consider the entire sentence when
encoding, for example, the word ”beat“ which has multiple meanings: e.g., overcoming a
high score, hitting someone, or the noun describing the basic unit of time in a song.

One building block for RNNs, which will also be utilized in Section 5.3.7, is the GRU [42].
They are a simpler version of Long-Short-Term-Memory Cells (LSTMs [111]) that is,
however, better able to deal with vanishing gradients during training (cf. Section 2.2.3).
Simpler because they have only two gates instead of three and, thus, fewer parameters.
Gates are the main difference between a GRU and a typical neuron, enabling the network
to memorize things it has seen before. In particular, GRUs have an Update gate Zt and
a Reset gate Rt, which, as their names imply, determine how the memory of the current
unit is altered given a certain input. Inputs for GRUs are, besides the current token of the
sequence of our input data Xt, the hidden state Ht−1 of the unit that encoded the previous
token in our data, see Figure 2.4. At time step t, both Xt and Ht−1 have to pass through
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the Reset Gate where the GRU decides whether to retain the information in Ht−1 or discard
it, In other words, it resets what the network has learned so far, see Equation 2.2. This
decision is influenced by the activation function a, the weight matrices Wxr, Whr, and the
bias br.

Figure 2.4: Workflow of a GRU. Weights and biases are omitted for clarity.

Rt = σ(Xt · Wxr + Ht−1Whr + br) (2.2)

2.1: This equation computes a value between [0,1] to determine whether the
current GRU will reset (i.e., forget) what has been learned by the network so

far.

Next, based on the input Xt and the amount of information from Ht−1 that passed
through the Reset gate, a candidate hidden state H̃t is computed, see Equation 2.3. Its
content can be interpreted as the amount of new information that is potentially added
to the memory of the network given our current sequence token. If Rt = 0, only Xt will
influence this candidate hidden state. Again, two trainable weight matrics (Wxh and Whh),
a bias bh, and a sigmoid function are part of the equation.

H̃t = a(Xt · Wxh + (Rt
⊙

Ht−1) · Whh + bh) (2.3)

2.2: This equation computes the candidate hidden state depending on the
input Xt and the information retained from Ht−1, which is decided by Rt.
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Finally, the Update gate Zt determines to what extent the candidate hidden state (or the
new information given by the current input Xt) influences the already existing memory
from all the previously seen tokens Ht−1. Similar to the Reset gate, due to the sigmoid
activation, a value between 0 and 1 is calculated, see Equation 2.4. This value enables the
computation of the output of the GRU, which is a weighted combination of the previous
memory Ht−1 and the candidate hidden state H̃t according to Equation 2.5.

Zt = σ(XtWxz + Ht−1Whz + bz) (2.4)

2.3: This equation computes the a value between [0,1] to determine to which
extent new information influences the already established memory of the

network.

Ht = Zt
⊙

Ht−1 + (1 − Zt)
⊙

H̃t (2.5)

2.4: This equation computes output of the GRU combining the previous
memory Ht−1 and the information from the current token H̃t according to

the value of the Update gate Zt.

In the experiments in Section 4 we utilize a bidirectional GRU to encode our textual
inputs forwards and backward at the same time and concatenate the outputs. Thus, giving
the network two perspectives on the sentence(s) to capture their semantics even better.
State-of-the-art approaches for sequential data-based tasks, such as machine translation,
image captioning, or question answering are, for instance, Sentence-BERT [220] and
MPNet [246].

2.2.3 Activation Functions

The sigmoid function σ was one of the first popular approaches for the activation function
for multiple reasons. It satisfies all requirements for an activation function, since it is

• monotonically increasing

• defined everywhere

• continuous

• and differentiable in R.

As a bonus, the derivative required for back-propagation (cf. Section 2.2.4) of σ is
simply σ′(x) = σ(x)(1 − σ(x)). It fell out of popularity because of the vanishing gradient
problem [110]. Neural networks learn by applying gradient descent [137] to the results of
their cost functions E after passing a training sample through the network. That means
they compute the derivative E′ and utilize it to adjust the weights and biases in the network.
However, sigmoid has a meaningful gradient only close to 0 or, in other words, very large
or tiny input values return a gradient close to 0 (the gradient ”vanished“). The impact
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these small values have on the training diminishes the further we go backward through
the hidden layers during back-propagation. This leads to the network getting stuck and
being unable to find a useful solution during training. The vanishing gradient problem also
occurs for the tanh activation function which is related to sigmoid by tanh(x) = 2σ(2x)− 1.

An even simpler function that does not suffer from vanishing gradients and is therefore
commonly used in Deep Learning is the Rectified Linear Unit (ReLU)[191] defined as
a(x) = max{0, x}. ReLUs are nearly linear. That means they preserve many properties
that make linear models easy to optimize with gradient-based methods. Even though
they are not continuous at x = 0, the gradient can still be defined as either 0 or 1 without
introducing too much error. While this original design works sufficiently well in general,
large derivatives during back-propagation can cause it to get stuck returning 0 forever,
also called the dying ReLU problem [159]. This happens especially during the beginning of
the training, where high learning rates cause significant weight swings. To circumvent
this problem variations such as LeakyReLU [162] or the ELU (exponential linear unit) [45]
have been introduced, that return negative values for inputs < 0, see Figure 2.5.

Figure 2.5: Different Types of Rectified Linear Units.

2.2.4 Back-propagation and Optimization

As briefly introduced in Section 2.2.2, back-propagation [225] is the first key component
of the process responsible for the network learning from its errors during training. It
stands for ”backward propagation of errors“, and with the second key component, an
optimization function like gradient descent optimizes the networks’ ability to solve a given
task. It does so by calculating a gradient of the cost function after each sample of the
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training dataset, or, if that is not feasible due to hardware restrictions, each sample of the
current batch (which equals a shuffled subset of the training data) has passed through
the network. The optimizer then decides, according to the chosen learning rate lr, to
which extent this gradient will influence the weights wk

i,j and biases bk
i of the network.

These weights and biases are commonly summarized as the parameters θ = {wk
i,j, bk

i } of
the network. Following the slope of the cost function step by step in the direction of this
computed gradient reduces the error produced by the dataset predictions P compared to
the ground-truth labels Ŷ. For this explanation, we consider a simple yet commonly used
cost function: the mean of the squared errors (MSE), see Equation 2.6.

MSE(P, Ŷ) =
1
n

n

∑
i=1

(Pi − Ŷi)
2 (2.6)

2.5: An example of the mean squared error cost function that averages the
squared differences between the predictions P and the ground-truth labels

Ŷ for each sample of the dataset (or batch).

Mathematically, back-propagation determines the rate of change to our cost function
E given an adjustment of the parameters θ. With this, our neural network updates all
parameters according to the following Equation 2.7:

θnew = θold − learning_rate · ∂E
∂θ

(2.7)

2.6: Calculation of a parameter update (weights and biases) of a neural
network according to the learning rate and the computed gradient.

The old parameters θold are updated by subtracting (since we want to minimize the
cost function) the computed gradient times the learning rate, which is typically a value
< 1, e.g., 0.0001. This step is necessary since large gradients can cause the network’s
performance to drop, because it fails to converge towards a minimum, also known as
the exploding gradient problem. Computing the gradient in Equation 2.7 requires us to
determine and average the rate of change of the cost function considering each individual
weight and bias in the network. Luckily, this process can be significantly simplified due
to the chain rule in calculus. This chain rule describes how the gradient of a nested
function can be computed as the multiple of the derivatives of the nested functions, see
Equation 2.8. Calculating each derivative for each weight and bias is significantly sped up
by reusing the terms of these chains that form the derivatives.

∂

∂x
f (g(h(x))) = h′(x) · g′(h) · f ′(g) =

∂h
∂x

∂g
∂h

∂ f
∂g

(2.8)

2.7: Chain rule in calculus.

Computing the gradient of E follows a similar pattern for two reasons: First, the
output of a neuron itself is a nested function (cf. Equation 2.1) since the weighted sum
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zi = ∑|X|
i=1 wi · xi + b is input for the activation function a. Second, considering were are

not in the input layer, xi resembles the output of the activation functions of the neurons
in the previous layer, which can be substituted by their nested inputs again. In other
words, starting with the output layer, each layer is a function of the activations of its
predecessors. Therefore, the entire neural network resembles a nested function as well. In
a network with L layers that uses the mean squared error cost function (cf. Equation 2.6)
the derivative for a weight wl

jk between neuron k of layer l − 1 and neuron j of layer l, for
instance, is computed as follows:

∂E
∂wl

jk
= al−1

k · a′(zl
j) ·

∂E
∂al

j
(2.9)

EITHER: iteratively replace last term with next layer

∂E
∂wl

jk
= al−1

k · a′(zl
j) ·

nl+1−1

∑
j=0

wl+1
jk a′(zl+1

j ) · ∂E
∂al+1

j

(2.10)

OR: if last layer

∂E
∂wl

jk
= al−1

k · a′(zl
j) · 2 · (aL

j − ŷ) (2.11)

2.8: Computation of the influence weight wl
jk has on the cost function. The

result of this equation in conjunction with the learning rate is used to update
this particular weight.

Verbatim, these equations can be understood as: the influence weight wl
jk has on the

cost function E is determined by the outputs of neuron k in layer l − 1 called al−1
k , the

derivative of the activation function of the neuron it is connected to with respected to the
weighted sum, called a′(zj

l), and, the influence of that same activation function on the cost
function E. Afterward, this last term is then substituted for either the derivative of all
neurons of the next layer connected to our target neuron or, if we are already in the output
layer, simply the derivative of the cost function.

2.2.5 Autoencoders

Autoencoders are a special kind of neural network whose goal is to learn useful represen-
tations for any type of input in an unsupervised manner, meaning without the need for
labeled training samples. They achieve this by a symmetric architecture that consists of 1)
an encoding pipeline that reduces the dimensionality of the input down to the desired
level, 2) the hidden embedding layer in the ”middle“ that, optimally, retains only the most
salient information about the input sample, and 3) the decoding pipeline that attempts to
reconstruct the input sample as similar as possible based on this embedding. Figure 2.6
outlines these basic components.
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En
co
de

r Decoder
Figure 2.6: Simplistic structure of an autoencoder. Detailed architecture
of the encoder and decoder component depends on the modality to be

encoded.

This functionality has multiple practical applications, which will be briefly outlined
next. Early applications utilized autoencoder for denoising all types of imagery [41]. By
encoding noisy images and thus reducing them to their key information, the noise will be
dismissed, and the reconstruction returns a clean(er) image. Another field of applications
are compression algorithms. For most use cases, autoencoder-based compression methods
can have disadvantages when compared to traditional algorithms such as JPEG2000 [257]
or BPG [26] in terms of general applicability, the requirement for training samples, and
compression performance. However, recent state-of-the-art approaches [43, 87] showed
comparable performances for the error introduced by compression measure by the peak
signal-to-noise ratio (PSNR) as well as the more perceptual MS-SSIM [280] metric that
describes the structural similarity of the output image compared to the original. For the
purpose of neural network-based machine learning, autoencoders are mainly utilized in
two ways. Due to their capabilities of learning salient representations in a self-supervised
manner, the required number of labeled samples for an application can be reduced
significantly. For example, a classification network, as in Figure 2.2 has to learn how
to encode an image and how to predict the desired output. With an autoencoder, this
representation could be learned beforehand with a much larger number of samples. Then,
the decoder part of the network would be replaced with a set of fully-connected layers
for classification that will be trained with the labeled samples. Finally, by introducing a
probability distribution to the decoding component of the autoencoder, visually similar
variants of the input image can be generated as additional training samples. These types
of autoencoders are called variational autoencoders. Finally, a third, very common usecase
for autoencoder is shown in the next section.

2.2.6 Semantic Word Embeddings

Semantic word embeddings are an invaluable building block for modern natural language
applications. With them, computers are able to represent not only text representations but
also their semantic meaning. This ability enables algorithms to
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1. determine whether text passages (words, sentences, paragraphs) are semantically
similar or not

2. align visual and textual encodings to describe their relation to one another (cf.
Chapter 5)

3. detect antonyms or positive and negative connotations

4. model ties between certain word, e.g., capital - country (cf. Figure 2.7)

Figure 2.7: Example of the relationships semantic word embeddings are able to infer.
(Source: https://developers.google.com/machine-learning/crash-course/images/linear-relationships.svg)

The process of establishing a semantic word embedding relies on the assumption that
words that appear in similar contexts have similar meanings [95, 129]. Modern approaches
exploit this fact which allows them to convert words into high-dimensional vector rep-
resentations in a self-supervised manner. The variance and quality of the trained model
relies, besides the architecture of the neural network, solely on the chosen text corpora.
This is convenient to align a model to a given task or finetune a model without additional,
manual labeling. The trick in generating a semantic word embedding is to encode, in
addition to the so-called focus word, a certain amount of context, and thus, going beyond
simple representation encoding. In a pioneering work, Mikolov et al. [182] introduced two
approaches to embed contexts for their word2vec model called Continuous Bag of Words
(CBOW) and Skip-gram (SG).

The quick brown fox jumps right over the lazy dog.

Figure 2.8: CBOW and SG consider c=2 context words (blue) on each side of the focus word
(green).

As exemplary shown in Figure 2.8, given a context parameter c, CBOW and SG
consider a variable amount of context words for each focus word they encode. They differ
in the way they try to reconstruct texts: CBOW tries to estimate the focus word given
the context, and SG predicts the context words given the focus word. The algorithm is
self-supervised because the training process resembles an autoencoder with just one input,

https://developers.google.com/machine-learning/crash-course/images/linear-relationships.svg


28 Chapter 2. Foundations

hidden, and output layer. The input and output layer have the dimension of the desired
vocabulary, representing the word to be encoded in the input (one-hot encoded), while
the output is the probability of each word in the vocabulary appearing close to the input
word. The hidden layer has the dimensionality of the desired semantic word embedding.
After training, the output layer is dismissed, and the hidden layer is used for further
experiments since it returns the desired embeddings. Even though the number of layers is
small, the number of parameters is high due to the size of the input and output layers.
Moreover, given the nature of the problem, the sample size can exceed billions of samples,
see Figure 2.9.
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Figure 2.9: Word2vec architecture. Input is the one-hot encoded vector of the focus word and the
output vector the probabilities of each other word in the vocabulary appearing close to it. During
training, the expected label is one-hot encoded as well with a context word that appeared close to

the focus word in the underlying dataset.

That means, given a random initialization of the word embeddings, one training step
entails the relocation of all word vectors in a way that the input focus and context words
move closer to each other and the rest moves further away. This computationally heavy
process has been improved in the same paper by Mikolov et al. [182]. By subsampling
words, which means removing them from an input sentence with a probability proportional
to their frequency in the training data, the number of training samples is decreased
significantly. Words like the or a are removed, which a) improves the training time and
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b) improves the quality of the sentence embedding in the end since they are not adding
valuable context information.

A second method to drastically improve training time is negative sampling. As mentioned,
for each training step, the respective ground-truth label of a sample is a one-hot encoded
vector the length of the vocabulary, where only 1 is a context word to the current focus
word. That means all other bins of the vectors are 0, forcing the neural network to update
all weights of the model. For negative sampling, the authors suggest selecting only 5 − 20
bins that are 0 according to a unigram distribution, which chooses more frequent words
more often. Only updating the weights associated with this selection of negative words
reduces the number of weights to be changed tremendously, depending on the vocabulary
size.

In 2016, Bojanowski et al. [22] presented another semantic word embedding approach
called fastText. As it will be used in multiple sections of this thesis, we will go further into
detail about how it works. It extends word2vec by a key concept: it encodes each word as a
bag of n-grams, which allows the model to harness subword information. Consequently,
the model can return valuable encodings for rare words, or even words it has never seen
during training but whose parts are similar to other known words. This is especially
potent for languages with many compound words, like German. This is another reason
fastText is used in this thesis since the experiments in Chapter 3 are based on a german
dataset. Additionally, the authors utilize angular brackets to denote the start and end of a
word, see Figure 2.10. Lastly, they append the entire word to the bag of n-grams as well.
With this, shorter words like <her> can be distinguished from words they appear in, like
<gather>.

fastText(library) = <li, lib, ibr, bra, rar, ary, ry>, <library>

Figure 2.10: Representation of the word library in fastText using 3-grams. The angular brackets
denote the start and end of a word.

2.3 Classifiers

This section gives detailed descriptions of four machine learning classification approaches
that are utilized in Chapter 4 in the context of knowledge gain prediction based on a
set of input features. To make these explanations more coherent within this context, the
following definitions will use this terminology of features as input and knowledge gain as
output.

2.3.1 Random Forest

This classifier is a popular and reliable supervised learning algorithm. It is an ensemble ap-
proach combining multiple decision trees to partially mitigate their individual drawbacks
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and generate a better prediction result. Random Forests can be utilized for regression and
classification problems. To understand the prediction process, we first need a definition of
decision trees.

Similar to RFs, Decision Trees are also supervised and, in addition, non-parametric. Their
goal is to learn simple if-then-else rules to separate and classify a given dataset effectively.
How well a rule separates the data is measured as information gain, or in other words, the
reduction of impurity given by separating a dataset by this rule. How impure a dataset is,
is measured by its entropy H, see Equation 2.12.

H = −∑ p(x) log p(x) (2.12)

A simple example tailored to our use case would be a dataset that contains four learner
samples, with two achieving a high knowledge gain, while the others achieved a moderate
and low result. Also, one numerical feature timeedu was recorded that measures the time
spent on educational websites compared to the overall study time. In the beginning, the
entropy or impurity of the dataset is

Hinput = −(0.5 · log(0.5))− (0.25 · log(0.25))− (0.25 · log(0.25)) = 0.45 (2.13)

2.9: Entropy of the input dataset. Label high constitutes 50% of the samples while the other two
occur only 25% of the time.

Separating the four samples by a rule that divides the participants by, for instance,
whether they spent more than 15 minutes on educational websites would separate the
data labels into two subsets: high, high and moderate, low. The resulting information gain is
a result of the initial entropy minus the sum of the weighted entropies of the two subsets
S:

InformationGain = Hinput −
|S|

∑
i=1

(
|Si|

|input| · H(Si))

InformationGain = 0.45 − (
2
4
· 0 +

2
4
· 0.3) = 0.3

(2.14)

Whichever rule yields the highest information gain is set to be the first if-then branch
in the tree. In our case, for a second step, another rule could be established separating the
low and moderate class leading to an optimal result for this trivial example. Alternatively,
by defining a minimum requirement for the impurity of the tree, we could stop early,
saving computational time.

The simplicity of decision trees bears some disadvantages. They tend to overfit on data
with a large number of features, are sensitive to outliers, skew the results towards dominant
classes in biased datasets, and are not guaranteed to produce optimal results due to the
large potential number of possible rules. RFs mitigate some of these effects by creating
multiple decision trees for the same task, evaluating all of them for a given test sample,
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and returning the most voted one as the prediction. To be more robust toward outliers,
the classifier considers subsets of the original dataset to create its individual trees. Also,
based on the training process, the voting result could be weighted according to the error
rate of the respective tree. Additional parameters are the number of trees to be generated,
tree-depth, or the minimum number of samples per tree node to continue splitting.

2.3.2 Naive Bayes

NB is a classifier that is known for its easy implementation and inference time paired with
decent results for specific tasks such as sentiment analysis [261] and spam filters [210]. It is
based on Bayes’ theorem (Equation 2.15) that computes the probability of an event based
on prior knowledge about conditions related to the event. For our task, this translates
to: by observing the joint occurrences of a feature together with a high knowledge gain,
the classifier learns the probability of that event for each individual feature-knowledge
gain combination during training. With this and the given features of a test sample, the
classifier computes the probability of each output dimension, returning the highest one as
the prediction.

P(y|X) =
P(X|y)P(y)

P(X)
(2.15)

The reason for it being called Naive are two assumptions the classifier makes about the
input data: (1) all features are independent, meaning uncorrelated, and (2) all features
have an equal effect on the target variable. They are, however, rarely true for real-
world problems. Nonetheless, by ignoring these effects, the classifier predicts binary or
multivariate problems as follows: We consider y as our knowledge gain variable with
three dimensions (low, moderate, high) and X as a feature set with individual features
X = (x1, x2, ..., xn). By substituting this into Equation 2.15 we get:

P(y|x1, ..., xn) =
P(x1|y)P(x2|y)...P(xn|y)P(y)

P(x1)P(x2)...P(xn)
(2.16)

In Equation 2.16 the denominator is always static, and since we are not interested in
the actual probabilities, just an overall ranking of scores, we can remove it. This step turns
the equation into a proportionality. Consolidating the product in the numerator yields:

P(y|x1, ..., xn) ∝ P(y)
n

∏
i=1

P(xi|y) (2.17)

Here, P(y) describes the prior knowledge we have about the probability of the knowl-
edge gain dimensions. A common guess is the distribution of the classes in the training
data, but it is possible to replace this value with more educated guesses with the goal of
not skewing the final result. Lastly, to get a classification result for our input sample X we
compute all three probabilities (one for each knowledge gain dimension), and the highest
score is our guess.
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y = argmaxyP(y)
n

∏
i=1

P(xi|y) (2.18)

To summarize: the Naive Bayes classifier computes the probability of each knowledge
gain dimension by considering a priori knowledge about that dimension together with
the likelihood of each individual input feature being present given that dimension. As
stated above, training this classifier is fast. However, neither of the two assumptions
stated above are true for our task of knowledge gain prediction. First, in an ensemble
of, e.g., textual features, it is highly possible that two of them are correlated and, thus,
not independent. Second, the premise of the experiments conducted in Chapter 4 is
to determine the difference in importance of a given feature set with the knowledge
gain. And as the results of the feature importance analysis will show, the impact of the
individual features varies heavily.

2.3.3 Support Vector Machines

Another supervised learning technique are SVMs, suitable for linear and non-linear
regression and classification problems. The core idea is to separate n-dimensional data
into two classes with an (n-1)-dimensional hyperplane. For two-dimensional data, this
translates to finding a line that separates the given classes optimally, see Figure 2.11.
Optimal refers to the fact that even though there are infinite lines that separate linear
separable classes, SVMs aim to predict the one solution that maximizes the margin (the
”corridor“) between the classes. The margin is defined as the minimal distance between a
sample of the class and the found hyperplane (also called support vector), so a solution
where both classes are equidistant to the nearest sample of each class is considered
optimal. This approach is also called maximal margin classification, and it allows no
misclassification, which makes it impractical for noisy data and outliers.

SVMs, however, are not maximal margin classifiers. They utilize a soft margin that allows
misclassifications to find a better solution regarding margin size. For example, if the blue
sample x in Figure 2.11 was considered for a support vector, the classifier performance
would have increased only marginally while the margin’s size had been roughly divided
by four.

For data that is not linear separable, SVMs utilize the Kernel Trick. By purposefully
adding one or more dimensions to the samples, it is possible to find a hyperplane in
a higher dimension that allows for the separation of the data. Figure 2.12 gives an
example that shows two classes that are not linearly separable (left). Adding a temporary
third dimension z = x2 + y2 to each sample resembling the distance to the center of the
coordinate system returns the middle image. As we are now in 3-dimensional space, a
2-dimensional plane is able to separate the data. Transforming the intersection between
the plane and the 3-dimensional space returns the image on the right, again showing the
optimal hyperplane, margin, and support vectors.
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Figure 2.11: A hyperplane dividing two sets of two-dimensional points. Support vectors and
margin ”corridor“ are visualized as well.

Figure 2.12: Separation of non-linear data by utilizing the kernel trick.

In practice, the training and, therefore, estimation of an optimal solution is NP-
-complete, entailing a time complexity of O(N3), where N is the number of samples.
Consequently, it becomes inefficient for large datasets. One approach to solve this issue is
Sequential Minimal Optimization (SMO), proposed by Platt [214]. The core idea is to, instead
of trying to find a solution considering all data points at once, only consider two variables
simultaneously in an iterative manner, optimizing the solution step by step. Selecting
these variables can be done by various heuristics, starting from random choice. Their
explanation goes beyond the scope of this thesis, however.
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2.4 Image-Text Taxonomies

As outlined in Section 1.4, Chapter 5 proposes an interdisciplinary approach to model
semantic image-text relations. Interdisciplinary because we built the analysis upon research
from communication and media sciences. In particular, we consider multiple approaches
that categorize image-text pairs into meaningful taxonomies. This Section introduces,
largely based on Bateman [16], some of the most impactful works and briefly discusses
their advantages and limitations since we are just referring to parts of them later in the
thesis.

For the earlier parts of the 20th century, monomodality (as in text-only) was the predomi-
nant approach for the analysis of meaning-making in linguistics [269]. In a pioneering
work, Barthes [15] questioned this practice by arguing that, in order to deal with multi-
modal artifacts of everyday life such as advertisements and film, a mere textual view is
not sufficient to describe the respective message(s). For example, one effect he mentions
that had yet to be described is the ’floating’ or ’vague’ meaning of images. An image of,
for instance, a baby with puffy cheeks eating a snack titled ”my little sunshine enjoying
his food“ portrays an entirely different story when paired with the caption ”Child obesity
in country XY on an all-time high“. Fixing the intended interpretation of the image by
providing an appropriate caption is called Anchorage by Barthes, which is inherently
important in media such as news. As the text is a mere tool to fixate the image’s meaning,
it is, according to Barthes, subordinate to the image, which shows their unequal relation-
ship. Conversely, he also describes the (up to this point in time) traditional role of the
image, namely providing a visual aid to the dominant text modality, as Illustration. That
means the image realizes the text by showing a concrete instance of the entities or concepts
described in the text. In this function, the image plays a subordinate role. Finally, there are
also instances where image and text provide an equal amount of information to the overall
message by the author called Relay. This relationship is characterized by the modalities
complementing and subsequently depending on each other to make sense. The resulting
classification of image-text relations is shown in Figure 2.13.

Figure 2.13: Image-Text class distinction by Barthes [15].

This categorization discretizes the importance of both modalities in arbitrary constellations.
However, it only superficially talks about how information is conveyed. In 2005, Martinec
and Salway [167] constructed their own classification system with the goal of being
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able to assign each image-text pair to a distinct class. For this, the authors propose
to describe each image-text pair based on two already developed dimensions. First,
Barthes’ distinction regarding the relative importance (called Status) as explained above
and so-called logicosemantic relations, see Figure 2.14.

STATUS 

LOGICO- 
SEMANTIC 
RELATION 

equal 

unequal 

expansion 

elaboration 

projection 

Independent 

Complementary 

Illustration 

Anchorage 

extension 

enhancement 
locution 

idea 

Figure 2.14: The image-text classification by Martinec and Salway [167] describing image-text pairs
by means of the Status and Logicosemantic Relation.

First of all, Martinec and Salway extend Barthes’ Status relation by arguing that image
and text are also of equal importance when both modalities portray the same information
and are therefore independent. However, as Henning and Ewerth [103] pointed out, it
is debatable whether real independence occurs in practice since the two modalities are
two different to portray identical information. The logicosemantic relations are based on
work from Halliday and Matthiessen [94] who developed this system for relating clauses
in English grammar but adopted it to relate images and texts. It distinguishes between
whether the modalities expand each other or when the content that has been presented in
one modality is re-represented in the other modality by means of projection.

According to [167], Projection mainly appears in two contexts: comic strips and labeled
diagrams such as Venn diagrams or technical drawings. In other words, instances where
the image itself contains text. The differentiate then between Meaning, where the content
of one modality is given in a different form in the other modality, e.g., a diagram about the
amount of rain per month in Berlin and the associated text which explains and interprets
the diagram. Conversely, the Idea relationship is present when, according to Martinec and
Salway, the text reports an approximate meaning. For instance, in comic strips when a
character expresses a thought in form of a speech bubble about the current situation.

The different forms of expansion subsequently describe which type of information is added
by the other modality. Considering an image of a woman in a suit, an Elaboration text
would provide further details about this person, for example, her name and profession.
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On the other hand, an Extension would provide additional information about this woman’s
actions: ”The woman is leaving the building and walks to the nearest train station“.
Finally, Enhancement provides additional information about the situation’s circumstances
or environment, for example, ”After receiving news about the bad quarterly earnings, the
CEO leaves the building“. All three of these relations describe similar situations, namely
information being added by the opposite modality. As criticized by [16], due to a lack of
annotation studies, an inter-coder agreement was not established that would prove how
distinct these classes really are, and one could argue how it can be difficult to assign an
image-text class to only one of Martinec and Salway’s categories.

Unsworth [264] identified certain shortcomings of this approach with respect to educational
materials. He argues that since Martinec and Salway [167] focus their attention on
advertisements and online news, their systems lack the robustness required for a more
generalized application. They state, however, that their work is the subject of ongoing
work. Basically, as can be seen in Figure 2.15, Unsworth extends (and partially renames)
the subcategories of expansion in order to fill in identified gaps in [167]’s classification
system.

Figure 2.15: Unsworth’s extension of Martinec and Salway’s [167] system in blue dashed borders,
while underlined classes were renamed, but kept their meaning.

Unsworth makes some significant additions to the work of Martinec and Salway for the
context of this thesis. First, the divergence class under complementarity (former: extension),
which was first considered by [140]. It describes circumstances where image and text
’pull in different directions, i.e., appear to convey incoherent messages, according to
Bateman [16]. Inspired by [103] we talk in Section 5.3 about how these arrangements
(intended or unintended) can be described by means of an image-text relation. Further,
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Unsworth adds Exemplification to Martinec and Salway’s Elaboration, which he calls Concur-
rence. Lastly, the relationship called augmentation, which differentiates between examples
where an image adds new information to those given in the text and vice versa, will be
considered in Section 5.3.

Figure 2.16: Marsh and White’s classification system that consists of three subtrees distinguished
by how closely visual and textual information are connected.

The classification system presented by [167] and the extension by [264] already consider
a substantial amount of semantic image-text. Consequently, the process of assigning a label
to an image-text sample is tricky, especially for longer texts and similar class definitions
(e.g., extension, elaboration, enhancement). However, in 2003, Marsh and White [166] estab-
lished a system of 46 distinct image-text classes to describe even more intricate rhetorical
figures in print and digital media. Their system, see Figure 2.16, contains three categories
measuring how closely the image is related to the text in portraying the overall message.

Interestingly, this is a unidirectional version of what Henning and Ewerth [104] propose
with their finegrained semantic correlation (SC) metric. We discuss their work in Chapter 5.
Basically, little relation to text implies that the image has a subordinate role, for example, as
a form of decoration. Next, a close relation to text encapsulates forms of relations similar to
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Unsworth’s concurrence and complementarity subtrees describing different ways of reiterating
information in the opposite modality, clarifying details of examining whether the content
is, for example, of parallel or contrasting nature. The last category, going beyond text,
summarizes instances where the image goes beyond the information given in the text
by interpreting, developing, or transforming them. While the plethora of image-text classes
makes it seem as if a majority of possible combinations can be covered and the authors
themselves claim that their system is ”largely complete“, Bateman [16] points out that this
was not evaluated based on strict criteria but rather by applying the framework to random
websites and see whether the taxonomy covers all occurring visuals. Marsh and White
circumvent the aforementioned challenge of assigning an image-text pair to a distinct class
by describing them with multiple relations of their classification. This, however, makes the
process of determining a definitive set of labels even more subjective.

From a computer science perspective, the number of different classification systems, the
heterogeneity of approaches towards differentiating between the relations, and the ambi-
guity between classes within the individual systems make adopting research from media
and communication science challenging. From our perspective, an optimal taxonomy of
semantic image-text classes has the following attributes:

• not limited to a media domain

• allows every possible image-text pair to be assigned to exactly one class

• the assignment process by multiple people should achieve high inter-coder agreement

• image-text classes should be derived from measurable metrics and not from a
non-representative set of image-text pairs

In Chapter 5, we propose a novel categorization of semantic image-text classes based on
basic, interpretable metrics to establish an entry point to computable image-text relations
from a computer science perspective.

333

The next Chapter presents the first category of contributions surrounding research
question 1. We present two approaches to improve exploratory search in the TIB AV-Portal,
a learning-oriented video platform.
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3 Improving Video Learning Platforms with Text-Based Features

This Chapter presents two approaches that focus on improving an educational video
platform called the TIB AV-Portal [259]. Given the unique metadata provided, we introduce
methods to utilize this textual information to improve the exploratory search capabilities
of the platform. Our goal is to answer the first research question, namely:

Research Question 1

How can we utilize textual metadata associated with learning content to improve
exploratory search in video search portals?

Section 3.1 introduces a ranking algorithm for related videos based on semantic word
embeddings in conjunction with linked open data from the GND. Since educational
videos tend to be longer on average, we propose a method to give an overview of the
content independent of video length in Section 3.2. Section 3.3 concludes our findings and
discusses the implications of this Chapter.

3.1 Recommending Scientific Videos based on Metadata Enrich-
ment using Linked Open Data

3.1.1 Motivation

Videos hold a great potential to communicate educational and scientific information. The
growing influence of e-Learning platforms such as Udacity [263] or Coursera [53] reflects
that [169]. However, a growth in available content makes it more challenging for providers
of e-Learning websites to recommend relevant results. Optimally, retrieval algorithms have
to align search queries, which can be short and imprecise, with hours of video content
while ensuring that the retrieved documents are of good quality, recent and tailored
towards the learners’ assumed state of knowledge [117]. To narrow down the semantic
gap [17] between the query and the high-level semantics in, e.g., video content, can be
expensive and time-consuming.

Because of this, recommender systems in online shopping platforms or video portals
mainly rely on user-based information such as the viewing history [56], current trends [54],
or item similarity [100]. There is also another type of Web portals that offer exclusively
scholarly videos, one of them being the TIB AV-Portal [259] of the Leibniz Information
Centre for Science and Technology (TIB). Researchers can provide, search, and access
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scientific and educational audio-visual material, while benefiting from several advantages
compared to other portals. First, the TIB AV-Portal reviews submitted videos to check
whether they contain scientific or educational content. Second, videos are represented in a
persistent way using Digital Object Identifier (DOI), potentially even at the segment and
frame level, making it easy and reliable to reference them. Finally, they apply audio-visual
content analysis in order to allow the user to not only search for terms in descriptive
metadata (e.g., title, manually annotated keywords) but also in the audio-visual content,
i.e., in the speech transcript, in the recognized overlaid or scene text through video OCR,
and keywords derived from VCD.

In this section, we investigate how similar videos can be recommended based on their
metadata, particularly by using automatically extracted metadata from audio-visual
content analysis. This is relevant, for example, when users do not agree that their search
behavior is tracked or a sufficient amount of user data is not available. Particularly, we
propose to exploit and enrich the entire set of available metadata, be it created manually
or extracted automatically, to improve recommendations of semantically similar videos.
In the first step, we utilize a Word2Vec approach [130] to make the semantic content of
two videos comparable based on title, tags, and abstract. Then, we enrich automatically
extracted metadata about the audio-visual content by linking them to the Integrated
Authority File (in German: GND - Gemeinsame Normdatei) of the German National
Library (in German: DNB - Deutsche Nationalbibliothek). We use these two kinds of
information to derive a measure to compare the content of two videos which serves as a
basis for recommending similar videos. A user study demonstrates the feasibility of the
proposed approach.

First, we give a brief overview of related work in Section 3.1.2. The proposed approach to
generate video recommendations is presented in Section 3.1.3. Section 3.1.4 describes the
conducted user study to evaluate the proposed approach.

3.1.2 Related Work

Scientific Video Portals

Yovisto is a scientific video portal that allows the user to search for information via text-
based metadata [274, 275]. Learners can reduce the number of search results by refining
their query via additional criteria and grouping videos by language, organization, or
category. On the contrary, to increase the scope of possible results, a tool for exploratory
search reveals interrelations between different types of videos to present a broader spec-
trum of results to the user. Their approach is to exploit an ontology structure, which is
part of every video element and Linked Open Data (LOD) resources, namely DBpedia [57].
Marchionini [165] describes a similar portal that automatically feeds the uploaded content
into a data analysis chain. This process assigns semantic entities to each video segment
resulting in a storyboard comprising the video content. In contrast to the AV-Portal, their
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portal hides this information from the user. Marchionini’s approach focuses on providing
a good exploratory search tool, i.e., a user should find what s/he is looking for even when
unsure about the correct phrasing.

Recommendation Systems for Scientific Videos

Clustering semantically similar videos is a possible approach to providing video recom-
mendations based on a currently watched video. A fundamental problem of this research
is the semantic gap between low-level features and high-level semantics portrayed in visual
content [17]. One approach towards solving this problem is using textual cues in addition
to visual content. These can be manually added tags by the video author or automatically
extracted keywords by machine learning algorithms. Either way, they are often superficial,
noisy, incomplete, or ambiguous, making clustering a challenge. Vahdat et al. [265] enrich
the set of tags by modeling them from visual features and correcting the existing ones by
checking their agreement with the visual content. They show that this method outperforms
previous ones that use either modality and even the naive combination. Wang et al. [278]
discover that by incorporating hierarchical information – instead of considering a "flat"
tag taxonomy – the semantics of a video can be described even better. Despite only using
two levels of abstraction in their hierarchical multi-label random forest model, they find
strong correlations between ambiguous visual features and sparse, incomplete tags.

3.1.3 Framework

Next, we present our approach to enrich metadata with open data sources. First, we
describe the set of available metadata before the acquisition of additional information from
an open data source. Second, we derive a similarity measure to compare videos based
on a Word2Vec representation and enriched metadata. The overall workflow is displayed
in Figure 3.1. The input of our system consists of manually generated and automatically
extracted information, where the former comprises abstract and title. Additional inputs
are the following automatically extracted Tags (see Figure 3.1) derived from: 1) Transcript
based on speech recognition, 2) Results of video OCR, and 3) results of visual concept and
scene classification. They all have a representation in the German National Library, which
is the key requirement for the enrichment process.

Acquiring Additional Information from Open Data Source

Automatically generated tags usually contain a certain amount of errors and noise. Al-
though state-of-the-art algorithms can achieve human performance [239] in specific tasks
and settings, issues with audio quality in lecture rooms or hardly legible handwritings
can cause errors. We try to circumvent this problem by evaluating additional information
provided by the German National Library. Besides information such as synonyms and
related scientific publications, they provide the Dewey Decimal Classification (DDC) for
every tag. The DDC is a library classification system, which categorizes technical terms
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Figure 3.1: The general workflow of the approach combining the method without LOD (upper half)
with the features from the DDC notation (lower half).

into ten classes via three-digit Arabic numerals [221]. We further divide these main classes
into subcategories denoted by the decimals after these three digits, where additional
decimals depict a more specific subject. For instance, SPARQL is contained in 006.74 -
Markup Language, 005.74 - Data files and Databases and 005.133 - Individual Programming
Languages, which yields valuable contextual information.

Defining a Similarity Measure for Scientific Videos

Simply comparing two videos for mutual tags is not sufficient to determine semantic
similarity. Even if two sets of tags have little to no overlap, they might be highly correlated
when considering their context. We address this issue by utilizing fastText [130] to
generate word embeddings, which has several advantages for this task. First, they
represent semantically similar words mathematically closer to one another so that a
distance measure like cosine similarity indicates the correlation of two words. Second,
since fastText works on substrings rather than whole words, it can produce valuable
features even for misspelled or words unknown to the word embedding. Finally, a pre-
trained model is available for a large number of languages. Title, tags, and abstract are
taken from the metadata and processed via fastText. It generates a 300-dimensional feature
vector for every word in the metadata. The average of these vectors is our representation
for a particular video. This approach is our baseline and denoted as method without LOD
in the sequel. The improvement of this already powerful feature extraction method is
the main contribution of this section. We achieve this by incorporating the information
provided by the DDC notation in addition to the fastText embeddings. As a preprocessing
step, we need to create a vector ω, which consists of all DDC tags in our dataset and
will be assigned to every video entry v. Since the DDC notation encodes the upper-level
classes in the codes of the classes at lower levels, we divide them accordingly. Therefore,
the length of ω equals the total number of these tag fragments. For instance, if the
video corpus would only contain tags 005.74 and 005.133, we would split them into
51, 572, 512, 5743, 5133, 51334 (indices mark the level in the hierarchy), resulting in a vector
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ω of length 6. If a particular tag fragment occurs in a video, we set the corresponding
bin in ω to the term frequency-inverse document frequency (tf-IDF), or zero otherwise. This
strategy ensures that the more specific, and thus more informative, DDC classes have a
greater influence on the result. For example, if two tags share the main DDC class Science
and Mathematics, it does not mean that they are necessarily closely correlated, but if both
share the class Data Compression, they most likely cover a similar topic. For the "method
with LOD" the two vectors ωi and ωj of video vi and vj are compared via cosine similarity.
It is important to note that this method also uses the fastText features of the method without
LOD. In order to compute the overall similarity, we apply both methods and use their
average to calculate sLOD (see Figure 3.3).

3.1.4 Experiments and Results

We used videos crawled from the TIB AV-Portal in the experiment. The complete stock
of metadata that falls under the Creative Commons License CC0 1.0 Universal is made
available by the TIB as Resource Description Framework (RDF) triples. To extract the
necessary annotations, we utilized SPARQL. In a first step, it was necessary to keep only
videos that allowed derivate works in addition to the CC0 1.0 license, since content analysis
is applied. 2 066 samples satisfied these conditions1. Unfortunately, we can not directly
compare word embeddings of two different languages forcing us to use a subset of videos
with the same language (German, 1 430 videos). Annotations are represented in JSON
format to make them easily accessible for future tasks without rebuilding the RDF graph.
After gathering all tags of an entry, we employed another SPARQL query assigning a
GND (German: Gemeinsame Normdatei, English: Integrated Authority File) link to each tag,
which is the key part of linking it to the data of the German National Library (DNB) and
retrieving the corresponding DDC notations.

We evaluated the quality of our similarity measure by conducting a user study with eight
participants, five men, and three women. A random selection of 50 videos was presented
to every participant along with ten video recommendations, randomly either entirely
provided by the method without LOD or the method with LOD. We integrated the video
recommendations into the live system with a Greasemonkey script in the Firefox browser.
Every participant had to rate each of the ten recommendations from None to High, i.e.,
None: not relevant; Low: low relevance; Medium: medium relevance; High: highly relevant.
The results are displayed in Figure 3.2.

The results show that the method with LOD increases the number of video recommen-
dations with medium (4.56%) and low relevance (11.29%), while the effect is small (0.97%)
for the highly relevant recommendations. However, the method with LOD significantly
decreases the number of irrelevant recommendations (by 18.17%). A Chi-Square test
(Chi-Square=15.1471, p-value=0.001695) indicates that this method is significantly better
than the text-based method, most likely due to the hierarchical nature of the DDC notation.

1as of June 16, 2017
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Figure 3.2: Absolute number of votings for each relevance level in the user study.

We assume that the relatively slight improvement for the very relevant recommendations
results from the restrictions we had to oblige due to license and language, i.e., the relatively
small set of remaining videos (1 430) does not contain more highly relevant samples.

3.1.5 Summary

In this section, we have proposed a method to generate recommendations for scientific
videos based on noisy, automatically extracted tags by utilizing linked open data to weave
in hierarchical semantic metadata. This enables users to find relevant information more
quickly improving their overall learning experience. Next, we explore how we can give the
learner a first quick impression of an unseen video’s content for them to decide whether
to watch it or move on to the next without having to scroll through the entire video.
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3.2 Visual Summarization of Scientific Video Content

3.2.1 Motivation

The massive growth of online video platforms underlines the role of audio-visual content
as one of the most commonly used sources of information for entertainment and learning-
related scenarios. Exploring an extensive collection of videos to find the most relevant
candidate for a specific learning intent can be overwhelming and, therefore, inefficient.
This is especially true for longer videos if the title alone cannot capture all parts and aspects
of the content. Approaches for video summarization address this problem by analyzing the
visual content and generating an overview by the combination of identified key sequences
and frames [8]. However, such approaches struggle with videos, where the visual content
lacks variance or is mainly comprised of concepts with low visualness [290], e.g., abstract
concepts. Scientific and educational videos often share this characteristic, for example,
tutorials or lecture recordings of the STEM subjects (Science, Technology, Engineering,
and Mathematics) like chemistry or computer science.

After discussing related work in the areas of video summarization and keyphrase extraction
in Section 3.2.2, we propose an interactive visualization approach to summarize the content
of scientific or educational videos in Section 3.2.3. The goal is to provide an approach
that facilitates the exploratory search capabilities of respective video portals, thus making
learning for the end-user more efficient and satisfying. Our approach uses automatically
extracted video annotations and entities, which significantly enrich the usually available,
conventional metadata. As described in Section 3.1, these entities are generated from
the 1) ASR, 2) VCD, and 3) text extracted using OCR. The TIB AV-Portal [259] makes
this type of metadata publically available. We choose the TIB AV-Portal as the primary
platform for these reasons and incorporate the proposed approach there. Our system
utilizes these data and generates a comprehensive, interactive visualization by combining
semantic word embeddings and keyphrase extraction methods. We demonstrate how to
display the visualization on the actual website with a GreaseMonkey script, which is also
a pre-requisite for our user study (Section 3.2.4) that investigates the usefulness of the
proposed approach for video content visualization.

3.2.2 Related Work

Video Summarization

The vast majority of video summarization algorithms rely on visual features and are very
domain-specific (e.g., movies, sports, news, documentary, surveillance), resulting in a
large number of different approaches. The focus of these approaches can be dominant
concepts [203], user preferences [160], query context [279] or user attention [161]. A typical
result of these approaches is a sequence of keyframes or a video excerpt comprising the
most important parts of a video [8]. More recent methods treat video summarization as
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an optimization problem [296, 86, 64] or they utilize recurrent neural networks [297, 301]
based on, for instance, long short-term memory cells (LSTMs), which can capture temporal
or sequential information very well. Another use case for LSTM is proposed by Mahasseni
et al. [163], who suggest a generative adversarial network (GAN) consisting of an LSTM-
based autoencoder and a discriminator. Some methods include textual information (e.g.,
tags [112] or full documents [149]), which result in a storyboard that provides short titles
for each key shot, which is particularly useful for news summarization. Scientific or
scholarly videos provide a more significant challenge in this respect since their visual
content often lacks visualness. Consequently, summarization techniques focus even more
on textual metadata. Chang et al. [38] combine image processing, text summarization, and
keyword extraction techniques resulting in a multimodal surrogate. They generate a word
cloud displaying more important words with a bigger font size together with a set of three
to four thumbnails with a short transcription.

In this work, we go one step further and show how to summarize the content solely based
on textual information. The core techniques to create a video summarization utilized
in this section are keyphrase extraction and measures for semantic text similarity. We
describe related work in these respective areas next.

Keyphrase Extraction

Hasan and Ng [96] describe that keyphrase extraction techniques generally consist of two
steps. First, they identify a list of possible candidate phrases, and then these candidates
are ranked according to their importance. They categorize these ranking approaches
into supervised and unsupervised methods. Early supervised algorithms rely on, for
instance, decision trees [262]. Hulth [120] extends this approach by adding linguistic
features to a bagged decision tree classifier while also extending previous work by filtering
incorrectly assigned keywords with different feature pairs. Another approach [68] utilizes
lexical chains based on a WordNet ontology, which is associated with features such as first
occurrence position, last occurrence position, and word frequency. Additionally, support
vector machines [276], maximum entropy classifiers [138, 154], conditional random field
models [295], logistic regression [88] and neural networks [277, 125] have been used to
solve the task of finding the most important phrases in a document.

The techniques mentioned above share a drawback: the training data requires manual
labeling, which generally introduces unrealistic experimental data and is time-consuming
and resource-intensive. Thus, unsupervised approaches moved into the focus of attention.
Their task is to automatically discover the underlying structure of a dataset without
human-labeled keyphrases. To summarize, the two most popular methods are graph-based
ranking and topic-based clustering. The idea behind graph-based algorithms is to construct
a graph of phrases connected with weighted edges that describe their relation derived
from the frequency of their co-occurrence [181]. Topic-based clustering methods use
statistical language models, which contain the probability of all possible sequences of
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words [20]. Recently, fusions of these two directions gain attention, namely TopicRank [25],
PositionRank [76] and MultiPartiteRank [24]. The latter one, which we also use in this
work, first builds a graph representation of the document and then ranks each keyphrase
with a relevance score. In addition, it adjusts the edge weights to capture information
about the word’s position in the document in an intermediate step.

3.2.3 Framework

In this section, we describe our approach for video content summarization solely based on
textual information. The necessary process to summarize a scientific video and display
this information in an efficient way 3.3 consists of four steps: 1) pre-processing, 2) semantic
embedding of content-related information to generate a bubble diagram, 3) creation of a
keyphrase table from the speech transcript, and 4) combining diagram and table to form
a visualization. The utilized video dataset from the TIB AV-Portal is available at [260],
including the associated metadata as RDF triples (under Creative Commons License CC0
1.0 Universal).

RDF Parsing

Word Embedding POS-Tagging

Keyphrase 
Extraction

Dimension 
Reduction

Building a 
visualization

Entities Speech-
transcript

Figure 3.3: Workflow diagram of the proposed visualization approach.

To build the RDF graph we use Python 3.6 and the rdflib library. Next, we use the query
language SPARQL to select videos that contain automatically extracted metadata (this
applies only for videos related to the six core subjects of the TIB2). An exemplary query
can be seen in Listing 3.1.

1 PREFIX dcterms : <http :// purl.org/dc/terms/>
2 PREFIX oa: <http :// w3.org/ns/oa#>
3 SELECT DISTINCT ?url
4 WHERE {
5 ? annotation oa: annotatedBy asr_link .
6 ? annotation oa: hasTarget ? videofragment .
7 ? videofragment dcterms : isPartOf ?url .}

Listing 3.1: SPARQL-query that returns all videos which contain automatically analyzed speech
transcripts ASR and recognized entities.

2engineering, architecture, chemistry, computer science, mathematics, physics
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This query yields a list of 1756 videos from multiple languages, which we then query
further for the embedded metadata, in particular the key entities which are the result of
VCD, OCR, and ASR. Additionally, we crawl the unfiltered speech transcript from the
website using the BeautifulSoup library. We use fastText to generate word embeddings
from the extracted key entities. fastText’s tri-gram technique embeds words by their
substrings instead of the whole word. For instance, it decomposes the word google into
the following tri-grams: <go, goo, oog, ogl, gle, le>. This decomposition is a valuable
feature for multiple reasons. First, it enables the system to encode misspelled or unknown
words. Secondly, the quality of embeddings of the generally longer or compound words
of the German language is improved, too. We use the pre-trained model for German
language [74], which contains the vocabulary of the German Wikipedia and encodes each
word w in a 300-dimensional vector fw.

The visualization of the embedded feature vectors requires dimension reduction to project
data onto a two-dimensional space. We apply a principal component analysis (PCA)
instead of a non-linear algorithm like t-distributed stochastic neighbor embedding (t-SNE)
since we intend to keep the semantic arrangement laid out by fastText and refrain from
clustering the keywords further. Input for the keyphrase extraction process is the unfiltered
speech transcript, which is already divided into time segments by the TIB AV portal. The
required format of the textual information is given by the pke toolkit [23] which is shown
in Listing 3.2. Requirements are tokenization and part-of-speech (POS) tagging, which
is the assignment of lexical categories such as nouns, verbs, adjectives, and adverbs. For
this process, we use the Python Natural Language Toolkit (NLTK), in particular, the Stanford
POS-Tagger, which also comes with a pre-trained model for the German language [248].

1 wenig/PRON Speicher /NOUN es/PRON kommen /VERB [...]

Listing 3.2: POS-Tagged speech transcript labeled with lexical categories.

Results of the POS tagging process are then passed to the Multipartite Rank [24] algorithm
of the pke library in order to perform keyphrase extraction. As stated in Section Related
Work, this technique models topics and phrases in a single graph, and their mutual
reinforcement together with a specific mechanism to select the most import keyphrases
are used to generate candidate rankings. We only consider nouns, adjectives, personal
pronouns, and verbs (’NOUN’, ’ADJ’, ’PROPN’, ’VERB’) and dismiss all words given by
NLTK’s collection of German stop words. The remaining parameters are alpha = 1, which
controls the weight adjustment mechanism, and the threshold = 0.4 for the minimum
similarity for clustering (default: 0.25). We decide to set this value to 0.4 due to the high
similarity of topics in a single video. The linkage method was set to average. Finally, we
choose to retrieve the 20 highest ranked keyphrases of every time stamp for our keyphrase
table that will become part of the visualization.

Finally, we display the recognized, embedded entities in an interactive graph with the
properties shown in Table 3.1 and combine it with the keyphrase table generated in the
last section.
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Components Meaning Approach
circle key topics recognized entities

the size of a circle importance of the topic the frequency of the entity
arrangement similarity between topics word embeddings

table
timestamp

summary of speech transcript
keyphrase extraction

Table 3.1: Overview over the properties of the visualization.

We choose a bubble diagram as opposed to Chang et al.’s [39] word cloud. This allows
us also to illustrate and emphasize the distance between related or unrelated keywords,
which reflects (dis)similarity. In addition, minor differences in area sizes are visually easier
to perceive than font sizes. We decided against other alternative implementations such as
TextArc [204] since we aimed for a more intuitive approach. The inclusion of the temporal
dimension using ThemeRiver [98] did not deliver consistent results for short videos or
contained only a few keywords. In addition, ThemeRiver is less suitable to represent the
similarity of several entities. The actual implementation is done in Javascript and the
Plot.ly API3. As displayed in Figures 3.4 and 3.5, the visualization entails circles of different
sizes, each representing a topic and its importance. An interactive toolbar is displayed on
the upper right allowing the user to explore the graph easily. At the bottom, a keyphrase
table indicates the main topic of each time segment.

3.2.4 Experiments and Results

We conducted a user study to evaluate the quality and usefulness of the proposed
visualization approach. Ten participants were recruited, of which eight were male and
two female. Their ages were between 21 and 30, and their educational levels were between
high school and master’s. Seven participants study computer science, one mechanical
engineering, and one mathematics. All of them are fluent in German, with four of
them being native speakers. Task I of the study investigates how precisely the visual
summary represents the video content. Therefore, we randomly assigned ten videos with
a duration of 5 to 30 minutes to each participant. Then, the user had to rate how well the
presented visualization matches the video content, based on the following options: "0" -
no correlation, "1" - slight match, "2" - good match, "3" - exact match. Task II aimed to
evaluate if the visualization is a valuable tool to provide a quick overview of the video
content or if it is no improvement over the current state of the website. The participants
could choose one of the following options to rate the usefulness: "0" - not helpful at all, "1"
- slightly helpful, "2" - moderately helpful, "3" - very helpful, "4" - extremely helpful, and
had to give a short statement about their reasoning. Figure 3.6a shows the distribution of
the 100 gathered ratings, while Figure 3.6b shows the results of Task II.

3https://plot.ly/api/

https://plot.ly/api/
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Figure 3.4: Visualization of video https://av.tib.eu/media/9557 titled "Bubblesort, Quicksort,
Runtime" incorporated via GreaseMonkey in the live website as portrayed during the user study
comprised of the visualization itself, a toolbar and the keyphrase table. Note: Translated for better

comprehensibility.

Discussion

Figure 3.6a shows that 68% of the visualizations were good or better, while 26% only
provided a slight match or did not correlate at all to the video content (6%). As shown
in Figure 2, positive examples successfully provide the user with a summarization of the
video content. The first example, video 9557, explains the runtime behavior of the sorting
algorithms Bubblesort and Quicksort. The largest circle in the visualization is Runtime
("Laufzeit") and represents the main topic well. Also, the visualization groups different
subtopics related to computer science that are present in the video. For instance, it groups
sorting methods ("Sortierverfahren"), algorithm ("Algorithmus"), and Quick-Sort itself
on the left, while related topics from mathematics like factorization ("Faktorisierung"),
asymptote ("Asymptote"), and statement ("Aussage <Mathematik>") are on the right.
Another positive example (video 10234), which talks about eigenvalues and eigenvectors,
is mainly represented by the entity matrix multiplication ("Matrizenmultiplikation") and
vector ("Vektor"), but also shows more detailed aspects of that topic, namely vector algebra
("Vektorrechnung"), inverse matrix, gradient and of course, eigenvector and eigenvalue.

The results of the keyphrase extraction, as can be seen in Figure 3.4, were less helpful. We

https://av.tib.eu/media/9557
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Figure 3.5: Visualization of video https://av.tib.eu/media/10234 titled "Eigenwerte, Eigenvek-
toren" (eng: "eigenvalues, eigenvectors"). Note: Entities were translated for better comprehensibility.
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(b) Results of Task II of the user study showing the
perceived helpfulness of the visualization. From
"0" - not helpful at all to "4" - extremely helpful.

assume the main reason for this effect is the nature of the automatic speech transcripts,
which usually differ from written text. They often consist of incomplete sentences,
misspelled words, missing punctuation, and falsely recognized words that can completely
change a sentence’s interpretations. Since standard keyphrase models are suited for proper

https://av.tib.eu/media/10234
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textual content, there is still room for improvement in our scenario.

Figure 3.7: Visualization of video https://av.tib.eu/media/9915. It demonstrates the effect of
very common entity "Geschwindigkeit" (eng: velocity), which was used frequently by the speaker
during an example scenario, but is misleading since the video talks about arc length computation.

Note: Entities were translated for better comprehensibility.

3.2.5 Summary

In this section, we have presented a system that summarizes and displays the content
of scholarly videos in order to support semantic search in video portals. Based on
entirely automatic video content analysis as conducted in the TIB AV Portal, we have
proposed an approach that leverages the resulting metadata and generates an interactive
visualization and a keyphrase table to outline the content of a video. Different techniques
like POS-Tagging, semantic word embeddings and keyphrase extractions were exploited
in our approach. The usefulness of the visualization was evaluated in a user study that
demonstrated the feasibility of the proposed visual summarization, but also indicated
areas for future work. For instance, we plan to implement reliable filters for keywords
that are not closely related to the content to provide a better user experience.

https://av.tib.eu/media/9915
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3.3 Summary

Research Question 1

How can we utilize textual metadata associated with learning content to improve
exploratory search in video search portals?

This section outlined two examples of how previously established textual information can
be enriched and post-processed to obtain rich(er) semantic features. We demonstrated
a video recommendation tool and a content visualization method that we tested by
overlaying the TIB AV-Portal website with a JavaScript plugin. The plugins’ usability has
been evaluated by one user study each, reporting moderate to good results regarding
accuracy and helpfulness. Thus, regarding Research Question 1, employing semantic word
embeddings to represent textual metadata of educational resources can help to improve
exploratory search. This effect is limited by the quality of the respective metadata as
revealed by Section 3.2.4.

333

The next chapter extends this topic in various directions. We consider more modalities
for our feature sets, utilize data of more extensive user studies and evaluate our methods
regarding the capability to predict the potential KG of a learning resource.
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4 Prediction of Knowledge Gain with Multimodal Features

As indicated by the results in Chapter 3, textual features can represent the content of
educational resources in a way that resembles a (more or less) human-like understanding.
That means being able to set them into context with each other to a certain degree. The
following chapter explores, with respect to research question 2, how well textual features
can be utilized for knowledge gain prediction and, thus, to assess the general capability of
a website to convey information. The word general in this context means for the average
learner since we are not factoring in individual preferences of the proband, which are,
however, a significant part of the human learning process as outlined by Hoyer et al. [117].

Research Question 2

To what extent can we extract textual, multimedia, and cross-modal features and
utilize them for knowledge gain prediction?

In a first study (Section 4.1), we establish a substantial list of textual features that capture
various aspects of the given texts. In addition, we extend our experiments to other modali-
ties. We consider visual, audio, audio-visual, and lecturer-specific, cross-modal features
and compare their impact on the measured knowledge gain. Second, for Section 4.2 we
gather a much larger dataset based on a user study. We add design- and content-specific
features to an ensemble of (textual) resource features by employing different CNN-based
approaches. We evaluate all features regarding their usefulness toward knowledge gain
prediction by considering different classification approaches. Section 4.3 summarizes our
findings.

4.1 Predicting Knowledge Gain for MOOC Video Consumption

4.1.1 Motivation

Today’s Web environment has become a valuable resource for human learning, with
content available to explore an abundance of knowledge – from sophisticated science
topics like particle physics to everyday tasks such as changing a bike’s tire. Especially
video platforms such as YouTube gain more and more momentum in this field – a study
states that about 50% of the daily views target some kind of learning resource [244].
However, with 500 hours of new content uploaded to YouTube alone every minute [44], it
is obvious that learners require effective search and recommendation tools to find fitting
content. However, the automatic assessment of this content with regard to predicting
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(potential) knowledge gain has not been addressed by previous work yet. That entails,
for example, objective features that assess the nature of the presenter’s voice or the
slides’ design. A human viewer evaluates the quality of a learning resource based on
all available information. In common lecture videos, this includes the textual, oral, and
visual modalities. The learning process is supported by 1) visual elements on the slide,
2) spoken words, and 3) the gestures of the lecturer. While some of these features have
been explored in isolation [49, 250], as we will discuss in Section 4.1.2, a comparison of
their impact on the task of knowledge gain prediction has not been conducted yet. This,
however, would presumably give a good indication on which video to recommend to a
learner that is faced with multiple options.

In this section, we go beyond previous work by 1) gathering the real-life data from a user
study that instructed learners to watch videos of a Mass Open Online Course website in
Section 4.1.3, 2) proposing a novel set of intuitive unimodal and cross-modal features that
do not rely on tracking the subject’s body, in Sections 4.1.4 - 4.1.5, and 3) conducting an
extensive set of experiments and evaluate different classification approaches as well as
combinations of these features to predict the potential KG of a video in Section 4.1.6. We
also consider that the user’s capabilities might play an essential role in this context.

4.1.2 Related Work

Previous work, like Guo et al. [84], investigated how the design of lecture videos impacts
viewers’ engagement and provided recommendations to optimize the content accordingly.
Chen et al. [40] used multimodal sensing to assess the quality of a presentation. They
extracted speech, body movement, and visual features from the slides shown. They
applied Principal Component Analysis to human ratings to address the two primary
modalities of the presentation: 1) recital skills, including, for instance, voice information
and body language, and 2) slide quality, with regards to grammar, readability, and visual
design. The authors used Pearson correlation to measure the relation between the different
features. Haider et al. [93] proposed a system for automatic video quality assessment,
which is the most similar to our approach, focusing on prosodic and visual features. They
extracted the complete set of audio features from the ComParE challenge [234] and a
total of 42 features related to hand movements of the speaker. The employed Multimodal
Learning Analytics (MLA) dataset [194] contains 416 oral presentations (in Spanish) and
the respective metadata regarding speech, facial expressions, skeletal data (acquired from
tracking the learner’s body) extracted from a Microsoft Kinect, as well as the shown slides.
The authors labeled each video with ten individual ratings and an overall score related to
the quality of the slides. A correlation study (discriminant analysis) was employed, which
found that prosodic features can predict self-confidence and enthusiasm (of the speaker) as
well as body language and pose, which is a quality measure their participants had to label.
Their visual features showed similar results but with less accuracy.
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Research on automatic assessment of learning resources has targeted several possible di-
mensions, such as predicting the user engagement towards a certain learning resource [37].
Another dimension for the assessment of educational resources is the learning success that
a user can achieve with them, often measured as the KG [49, 266, 79, 293, 131]. Research
on KG prediction largely focused on the analysis of user behavioral features [293, 79] and
the influence on textual contents [250].

4.1.3 User Study

We conducted a user study to estimate the expressiveness of our automatically extracted
features. Our goal was to get human ratings for different quality aspects of lecture videos
to later align them with the achieved learning outcome. In addition, we ask for an overall
rating of the seen videos. Furthermore, every participant was asked to fill in a knowledge
test before (pre-test) and after (post-test) watching the video, aiming to measure the
capability of a video to convey knowledge.

Data Acquisition

Our dataset consists of 22 videos (with associated slides and speech transcripts) from
edX [62]. The course materials are Copyright Delft University of Technology and are
licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional License [55]. edX provides the available course materials in the following formats:
videos as MP4, slides as PDF, and transcriptions as SRT. We chose this source since it does
not require any further pre-processing, it is open access and the speech transcript is of
high quality (presumably due to manual review).

Participants and Task

The subject of the 22 videos is software engineering. Each video has one presenter, while
the entire dataset has nine different presenters with varying slide designs. We employed
13 participants (ten men, three women) from our university with a computer science
background, an average age of 25.8 ± 2.4 years, and asked everyone to watch and assess
nine videos. With an average video length of 8 minutes and the required time to fill out the
evaluation forms, the experiment took 1.5 − 2 hours. We rewarded the participants with
13 e/Hour. We made sure that each set of videos contained as many different presenters
as possible and that each video was viewed at least by five different people. We chose to
gather multiple ratings for the same video instead of investigating a more extensive set of
videos to be more robust against outlier ratings.

Experimental Setting

A common way to estimate the KG of a participant during a learning session is to conduct
a knowledge test before and after a controlled learning session (e.g., Yu, Gadiraju, Holtz,
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Rokicki, Kemkes, and Dietze [293]). The difference between these scores indicates how
much the person learned. Even though the potential KG depends on the participant, we
try to circumvent this problem by choosing a subject that is most likely unfamiliar to a
majority of people. It is, however, important to ensure that the participants have a chance
to understand the content. Otherwise, the KG will be low again. Therefore, we selected
the topic Globally Distributed Software Engineering1. On the one hand, it is a computer
science topic related to the studies of our participants and a specific area that is not part
of their curriculum. Thus, everyone had a chance to understand the topic based on their
prior knowledge, therefore favoring a positive KG.

A negative effect of the pre-test is that it might influence the user behavior by providing
hints on what to focus on in a video because participants will try to get a good score on
the post-test. We gathered a set of relevant questions inspired by the intermediate quizzes
in the course material. However, we made sure to amend and change them since their
reuse is restricted. We ask two to four questions after each video with a similar amount of
unrelated questions from other videos. Also, we put the videos in random order, so it was
hard to guess which of the questions would be the relevant ones. In addition, the number
of possible answers was different every time. Exemplary, the knowledge test for video
6_2a can be seen in Figure 4.1.

After filling out the pre-test, we instructed the participant to watch the entire video without
pausing, rewinding, or taking notes. The reason for that is that we wanted the participants
to get a complete impression of the presentation instead of, again, just skipping to the
relevant parts for the knowledge test to get a good score. Similarly, we assumed that when
we allowed people to take notes, they would write reminders down about the pre-test
and focus solely on their appearance in the video. Admittedly, this is slightly different
from a realistic setting, but we applied it in favor of the KG measurement. After watching
the video, the person is asked to answer the same questions again and also to fill out an
evaluation form (see Figure 4.2) with questions that are related to different quality aspects,
see Table 4.1. We assess the items using a Likert scale from 1-5.

Knowledge Gain Scoring

This paragraph describes how we scored the knowledge test to treat each video equally,
independent of 1) the number of relevant questions per quiz and 2) the number of possible
answers per question. First, the score for an unanswered question will be treated as
zero since we gave the participants the option to skip a question to discourage random
guessing. If the participant answered the question, we would calculate the score for each
answer option by increasing (decreasing) the score by 1 for a correct (false) answer. Thus,
a question with five answer options can yield the following scores: −5,−3,−1, 0, 1, 3, 5.

1https://www.edx.org/course/globally-distributed-software-engineering-2
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Figure 4.1: The questionnaire for the pre- and post test of video 6_2a. Questions 1 and 3 are
relevant to this video.

We calculate the KG of participant’s after watching video v as the difference between the
pre-test score PBvs and post-test score PAvs. Let nv be the number of participants who
watched video v.

We start by computing the mean KG of participants for each video:

µ =
∑nv

j=1(PAvs − PBvs)

2nv
. (4.1)
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Figure 4.2: The full evaluation form the users had to fill out for each video.
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Automatic features Human-rated aspects

Audio
Clear language
Vocal diversity

Linguistic
Filler words
Speed of presentation

Visual
text/image/formula/table design
Structure of the presentation
Coverage of the slide content
Appropriate level of detail

Cross-modal Highlight of important content
Summary
Overall rating

Table 4.1: Automatically extracted features and corresponding items in the evaluation form of the
user study.

Next is the standard deviation of the KG:

σ =

√
1

2nv
[

nv

∑
s=1

(PBvs − µ)2 +
nv

∑
s=1

(PAvs − µ)2]. (4.2)

Based on the mean and standard deviation value, the scores are normalized. PB
′
vs is

the normalized score which is computed by subtracting the mean and dividing by the
standard deviation. The same applies for PA

′
vs:

PB
′
vs =

PBvs − µ

σ
. (4.3)

Consequently, the normalized KG of participant s for video v is:

KGvs = PA
′
vs − PB

′
vs. (4.4)

KGv, the overall KG for video v is finally calculated by the average of all participants’ KG :

KGv =
1
nv

nv

∑
s=1

KGvs. (4.5)

The next section outlines our approach for the extraction of in total 22 features from
lecture videos including audio, linguistic, as well as a set of chosen multimodal features.
An overview of our feature set is depicted in Figure 4.3. Since we are dealing with
educational videos, we assume that for each data sample a video file is available, together
with a PDF file of the shown presentation as well as a speech transcript.
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Figure 4.3: Overview over the feature sets extracted for the automatic assessment algorithm.

4.1.4 Multimedia Features

Audio Features

We utilize the openSMILE-toolkit [72] to extract the audio features, except for the pitch
variation information. We compute these according to Hincks [107]. We selected the feature
subset of the ComParE challenge (6.373 dimensions, around 70 low-level descriptors with
multiple features each) and reduced it to nine features and their arithmetic mean, see
Table 4.2. For our study, we selected those features that have either impacted the audio
quality before (Jitter, F0 Harmonics ratio) or are very likely to influence the perceived
quality of the audio (e.g., Energy, Loudness, Harmonics-to-Noise Ratio).

Eloquence Features

The extraction of eloquence features describes how the presenters articulate themselves
using syllable duration and speaking rate. De Jong and Wempe’s [128] Praat [21] script
was used to extract these features, namely speech rate, articulation rate, and average syllable
duration (ASD). We derive these features from the number of vowels or syllables per
time interval because they indicate if the speaker is talking too fast or too slow. The
video transcript also contains a lot of helpful information regarding speech quality. These
features are, together with the slide content, considered in Section 4.1.5.
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Feature Description
Loudness Sum of a simplified auditory

spectrum
Modulated loudness Sum of a simplified RASTA-filtered

auditory spectrum (RelAtive Spectral
TrAnsform, Hermansky et al. [105])

Root-Mean-Square energy Square root of mean of the discrete
values of the sound pressure

Jitter Deviation from true periodicity of a
presumably periodic signal

∆ Jitter Normalized average length deviation
from true periodicity of a presumably
periodic signal

Shimmer Amplitude variation of consecutive
voice signal periods

Harmonicity (spectral) Ratio between the minima and the
maxima in relation to the amplitude
of the maxima from a magnitude
spectrum

Logarithmic Harmonics-to-Noise
Ratio

Logarithmic scale of the ratio
harmonic to noise component in the
wave signal

Pitch Variant Quotient Standard deviation of the pitch,
which is divided by the mean of the
pitch (cf. Hincks [107])

Table 4.2: Automatically extracted audio features.

Visual Features

For the visual content, we examine the PDF files of the presentation slides with the
motivation to find whether a certain composition of visual and textual content amplifies
KG. With the bash command pdftotext we extract text layout information from the PDF
slides. The command extracts the position of each text element as well as the size of
the slide. The elements of a slide are stored hierarchically, starting with the biggest text
element, which contains multiple text lines, and each line consists of multiple words. We
convert this information into an XHTML file. Similarly, we use the pdftohtml command
to extract the image position and size of the slide, which we store in an XML file. The
generated files are then parsed to JavaScript Object Notation (JSON) since the format is
more convenient for data handling.

Based on this representation, we compute two features related to the design of the slides,
which are text ratio and image ratio. They describe, how much slide space is covered by
each of the modalities according to Formula 4.6.

TextRatio =
∑n

i=1 TextAreai

Areaslide
. (4.6)



64 Chapter 4. Prediction of Knowledge Gain with Multimodal Features

Also, for each file we store the mean and sample variance of the text ratio and image ratio
values of all slides.

Cross-modal Features

This section presents a set of cross-modal features that model specific quality aspects of a
presentation. We base them on criteria important to us humans, for instance, the way and
frequency the presenter highlights important aspects on the slides. If we can capture these
metrics, we can rank videos with similar content according to their presentation-quality,
providing an optimal recommendation.

Highlight of Important Statements: This feature indicates how often important statements are
emphasized per slide and over the complete slide set. To identify the text boxes most likely
containing the critical components of a slide, we use the information from the document
layout analysis, which we stored in JSON format earlier. In this procedure, we use the
following natural language processing functions, which were adapted from Bird et al. [19]:

• N(): return a list of nouns from a sentence

• LEM(): return a set of lemmas from a list of words

• SYN(): return a set of synonyms from a list of words

Our assumption for the identification of important text is that font size is often propor-
tional to importance. Since we do not have the font-size information for each slide, we
sort the text lines by the area they cover. However, simply choosing the n largest text areas
does not yield good results because there are often bullet points of similar importance that
cover text areas of different sizes. So we cluster the text areas according to the following
rule: For each text area starting from the biggest one, if the area difference to the next
biggest text area is smaller than n% of the slide size (in our experiments 1%), add it to the
cluster, otherwise create a new one. We consider all text areas in the two largest clusters
to contain important statements. The text area of the title and all headlines are usually
in these clusters of the highest category. For each selected text line, we first extract the
sentence(s) (Stimp) from the respective JSON file. Then, we extract the nouns and their
synonyms from the text. Finally, we lemmatize the nouns and their synonyms:

St = LEM(N(Stimp) ∪ SYN(N(Stimp))). (4.7)

Locating Emphasized Transcriptions: We designed this feature to capture the ability of the
presenter to consider important statements shown on the slides as well as their emphasis
through his or her voice. If so, there should be a corresponding local maximum in the
audio signal. To get this information, we need to align the speech transcript with the audio
signal in the time frame where the currently observed slide was covered. The segmentation
of the video according to single slides is done manually. An automatic cut detection was
not reliable enough as the difference in visual content is not high enough when changing
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Slide 1 Slide 2 Slide 3

a b c d e f g h i

relevant irrelelevantirrelelevant

Figure 4.4: Visualization of the overlap between the speech transcript blocks a, ..., i and the slides
1 − 3. We remove a certain percentage of words from each block based on their percental overlap

with the slide.

from slide to slide. For each slide and its associated time frame, we need to find the
corresponding segment of the speech transcript. The given transcript is segmented into
blocks of 10 seconds, which is a common interval in speech analysis (cf. Hincks [107]). A
slide segment of arbitrary length can contain multiple of these blocks, and it is essential to
find the correct one for each highlighted statement, see Figure 4.4. We do this by using
the audio signal. We encoded the audio information via three metrics: F0, loudness, and
energy. If all of these features have a maximum at around the same timestamp, we assume
the presenter emphasized the word said at that moment. Locating the exact words at
that moment is done by choosing the speech transcript block whose temporal center is
closest to the found maximum. We store the list of these presumed important statements
in EmphasizedTranscriptions, and we lemmatize them again:

Tr = LEM(EmphasizedTranscriptions). (4.8)

Finally, the fraction of highlighted statements is calculated as:

Highlight =
|St ∩ Tr|
|St| . (4.9)

Level of Detailing: Another possible measure of quality for the presentation is the overlap of
spoken text with the information on the slide. As literature from video learning suggests
[27], audio and visual contents should provide complementary information rather than
being overly redundant. Thus, we examine if the speaker only read the information already
on the slide or if the oral explanation provides further detail, giving an appropriate amount
of additional information. For this purpose, we calculate the ratio of said words to shown
words on the slide.

Again, we use the speech transcript blocks from the previous section to count the number
of words said during the time frame when the corresponding slide was visible. We
consider each speech transcript block overlapping with the duration of the slide. We cut
off blocks at the interval boundaries appropriately. If a transcript block overlapped 70%
at the end of a slide and contained ten words, we would consider the first seven words
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and dismiss the last three. Therefore, we store all found words in Wordssaid. We gather
the number of words on the slide Wordsslide from the process explained in section 4.1.4.
Subsequently, we calculate the level of detailing as the ratio of said words to words on
the slide, see Formula 4.10:

LevelO f Detailing =
|Wordssaid|
|Wordsslide|

. (4.10)

Also, we calculate the mean and sample variance of these values for later usage for each
video.

Coverage of Slide Contents: This metric encapsulates whether the speaker talks about all the
information shown on the slide or if he or she skipped some parts. Again, the motivation
is to capture if the presentation is well structured or if it appears rushed since the presenter
left out some of the shown information without explanation. We can reuse the Wordsslide

from the previous section. For the words said by the speaker, we reuse the already
established Wordssaid from the previous metric. We lemmatize the words in Wordsslide

and Wordssaid again, which enables an easier comparison. The Coverage of slide content
is then calculated by us as the ratio of the number of common words in Wordssaid and
Wordsslide to the total number of words on the slide:

Coverage =
|Wordssaid ∩ Wordsslide|

|Wordsslide|
. (4.11)

Similarly, we calculate the mean and sample variance of the values of all slides for later
usage. The complete list of manual and automatic features can be seen in Table 4.3.

4.1.5 Textual Features

This section describes an extensive feature extraction process per lecture video applied to
the slides (PDF) and transcript (SRT) of each video of the dataset yielding 387 features.
The set of textual features comprises five subcategories: syntax, lexical, structure, semantics,
and readability. The full feature list is in Appendix B.

Syntactic Features (308)

For the extraction of the syntactic features, we used the library Stanza2. It supports 66
languages, tokenization, lemmatization, and POS tagging. In addition, it provides an
interface for the Stanford CoreNLP library [164] that generates syntax trees to represent
the structure of a sentence. For our experiments, we consider the full list of word types
given by the Universal POS tags3, their average frequency per sentence in each video, once
for the PDF and for the SRT files, and the ratio compared to the total number of words in
the sentence per word type. Since nouns and pronouns are a majority in the given types,

2https://stanfordnlp.github.io/stanza/
3https://universaldependencies.org/u/pos/)

https://stanfordnlp.github.io/stanza/
https://universaldependencies.org/u/pos/
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Human-rated Quality Aspect Automatic Features
Clear Language Loudness avg.
Vocal Diversity mod. Loudness avg.
Filler Words RMS Energy avg.
Speed of Presentation f0 avg.
Coverage of the Content Jitter avg.
Level of Detail ∆ Jitter avg.
Highlight of imp. Content Shimmer avg.
Summary Harmonicity avg.
Text Design log. HNR avg.
Image Design PVQ avg.
Formula Design Speech Rate
Table Design Articulation Rate
Structure of Presentation avg. Syllable Duration
Entry Level Text Ratio avg.
Overall Rating Text Ratio var.

Image Ratio avg.
Image Ratio var.
Highlight of imp. Statements
Level of Detailing avg.
Level of Detailing var.
Coverage of Slide Content avg.
Coverage of Slide Content var.

Table 4.3: Overview of the recorded non-textual features.

we record their ratio as well. Words that can not be assigned to a class are denoted as X
in the Other class. This results in 110 calculated features. Next, we extract 88 temporal
features. As reported by Kurdi et al. [145], less complex texts prefer simpler tenses and
thus can be used to measure text complexity.

We utilize XPOS annotations (also generated by Stanza) and a list of rules, that we derived
from an English teaching website4. We determine and count the appearing tenses for every
word of a clause. We analyze clauses individually by splitting sentences at commas or
semicolons so their tenses do not interfere with each other. Lastly, we account for passive
and active forms individually and also their respective frequencies compared the entirety
of occurrences is considered as a feature. The next category are phrases, where we identify
86 different features. 14 different phrase types were considered, extracted by Stanza’s
constituency parser and defined by Penn Treebank [258]. ”Wh-words“ are interrogatives
like where, who, when, but also how. Similar to the previous feature types, we compute the
raw count, the ratio of each individual phrase type to the entirety of occurrences, and the
average frequency per sentence. Additionally, the average number of phrases per sentence
is determined. Also, 24 other syntactic features are extracted. According to Kurdi et
al. [145], who found that tri-grams and tetra-grams influence the textual complexity, we
count the average number of n-grams per sentence. Furthermore, the number of characters

4https://www.englisch-hilfen.de/grammar/englische_zeiten.htm

https://www.englisch-hilfen.de/grammar/englische_zeiten.htm
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Tense Active clause Passive clause
Simple Present VB/VBZ/VBP; do/does + VB am/is/are + VBN
Present Progressive am/is/are + VBG is + being + VBN
Present Perfect has/have + VBN has/have + been + VBN
Present Perfect Progressive has/have + been + VBG -
Simple Past VBD; did + VB was/were + VBN
Past Progressive was/were + VBG was/were + being + VBN
Past Perfect had + VBN had + been + VBN
Past Perfect Progressive had + been + VBG -
Will Future will/shall + VB will/shall + be + VBN
Future Progressive will/shall + be + VBG -
Future Perfect will/shall + have + VBN -
Future Perfect Progressive will/shall + have + been + VBG -
Conditional Simple would + VB would + be + VBN
Conditional Progressive would + be + VBG -
Conditional Perfect would + have + VBN would + have + been + VBN
Conditional Perfect Progressive would + have + been + VBG -
Present Participle VBG being + VBN
Perfect Participle having + VBN having + been + VBN
Present Infinitive to + VB to + be + VBN
Perfect Infinitive to + have + VBN to + have + been + VBN

Table 4.4: Used tenses and their rules for active and passive clauses

per video for slides and transcripts are computed, and in a similar fashion, the number
of words as well as the minimal, average, and maximal number of words per modality.
Finally, the number of expressions and questions as well as their ratio to the total number
of sentences is computed as a feature.

Readability (12)

Stajner et al. [247] and Brigo et al. [32] suggest readability indices to measure text complex-
ity. Accordingly, we implement Flesch-Reading-Ease [249], its successor the Flesch-Kincaid
and the Gunning-Fog Index [35], the SMOG [174], Coleman-Liau [48] as well as the
Automated Readability Index (ARI) [245].

The input parameters for these indices involve, besides the number of letters, words,
sentences, and syllables, the number of long (4+ syllables) and difficult words. Difficult
words have based on Brucker’s [35] definition, at least three syllables, not counting
common suffixes like es, ed, ing while not being a name or compound word. To identify
these two types of words we use the CompoundWordSplitter [66]).

Lexical Features (36)

The first two lexical features are related to word frequencies. Intending to determine
whether repetitions of important words influence the quality of a learning resource, we
compute word frequencies [145]. This is realized by checking if the resulting word can be
found in a list of 79 672 words given by the English Lexicon Project [13, 67], after filtering
stopwords (via CoreNLP) and lemmatization of plural forms. If the word exists, we gather
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additional metadata from this website, namely the number of syllables, the acquisition
age (cf. Section 4.1.5) of the word, and the POS tags for later usage. Lastly, we divide the
frequencies of each remaining word by the number of total words. Symbols and digits are
not considered in this list and receive the frequency 0. Composite words with a dash are
associated with the frequencies of their respective parts. Next, we identified six features
related to the age of aquisition (AoA). This feature denotes the average age a human
learns a certain word. This age can vary heavily for different words and, thus, indicate its
difficulty. For reference, Kuperman et al. [144] created a list of 30 000 nouns, verbs and
adjectives that we extended with a list of 50 000 articles, pronouns, and inflections [2]. If
an AoA rating is not present in either list, we assign the average value of 10.36 years. For
our classification, we collect the earliest, average, and latest reported AoA for each word.
Again, we ignore digits and symbols. For the average AoA per video, we divide the sum
of all average ages by the total number of words with an AoA.

Due to their important role in the context of readability, we choose to examine the
number of syllables even further. We focus on words with one, two, polysyllabic, and
the aforementioned difficult words (cf. Section 4.1.5). If possible, we get the number
of syllables from the English Lexicon Project (cf. Section 4.1.5), otherwise, the SyllaPy
library [252]. It contains a (smaller) word list that is referenced if possible but can also
compute the number of syllables for unknown ones. In theory, this method is still not
a 100% accurate since the pronunciation sometimes omits syllables, but it is sufficient
for our task. We compute the total number of syllables, the average number of syllables
per word, the number of words containing one, two, or 3+ syllables, and the number if
difficult words. The ratio of all these measures to the total number of words is computed to
normalize the features. Finally, we want to investigate word variations in the text. Stanza’s
lemmatization method allows us to analyze the variety in phrasing used by the author of
the video, thus indicating a less repetitive, more vivid textual content. For this purpose,
we create two sets, i.e., lists without duplicates. The first list contains all word occurrences
in the text that a POS tag can be assigned to, while the second one represents the result of
lemmatizing all words in the first one. The resulting features for speech transcripts and
slides, respectively, are the lengths of both lists and the ratio comparing their lengths to
the total number of words in the respective file type.

Structural Features (24)

We extract structural features from the two input file types: presentation slides and the
SRT transcript files. Naturally, we have to apply different measures for the two file types
since they vary strongly in their layout.

Slides PDF For the presentation slides, we count the total number of lines in the entire
presentation and the minimum, average, and maximum for (a) the number of lines per
slide, (b) the number of words per slide, (c) the number of words per line, and (d) the
number of letters per line. Furthermore, we count the total number of slides. We utilize
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the PyMuPDF library to access the textual components of PDF documents. It is important
to extract the content in natural reading order, see Algorithm 1.

Algorithm 1: Sort text in reading direction
Data: Slides
Result: Lines per slide sorted in the natural reading direction

1 Load slides of a presentation;
2 while not all slides processed do
3 Read next unprocessed slide with all words objects;
4 Sort objects by block_no, line_no and word_no;
5 Combine objects into one that have the same block_no and only a maximum

difference of 2 between y0 and y1 coordinates;
6 Sort by y1 and x0;
7 Remove all word objects with one character;
8 while first word object of word objects list not reached do
9 Take last non checked word object of list;

10 Check the correctness of the position by examining previous word objects
with a y0 value smaller by a maximum of 5. If the x0 is greater then the
value of the current word object, position the current one beforehand;

11 Store list of lines as part of a bigger list;

Speech transcript SRT Lines in an SRT file are enumerated sections of the subtitles
with individual start and end timestamps. We extract the number of subtitles, number
of sentences, and their collective display time. We also compare the display time with
Ziefle’s [305] reading speed of 180 words per minute to gain insight into whether it is
possible to read the subtitles within the given time frame. We further record information
about the subtitles by computing the minimum, average and maximum number of letters
and words per sentence. We read the SRT files via Python 3’s SRT library and concatenate
the individual subtitles before reassembling the underlying sentences with the Stanza
library.

Semantic Features (6)

Earlier approaches, as, for example, suggested by Stajner et al. [247], counted the number
of possible interpretations of a word to get an idea of its complexity. Nowadays, semantic
word embeddings are the state of the art to represent words numerically. We choose
sentence transformers [220, 219] to semantically represent various parts of our textual
features. From the large set of pre-trained, multilingual models we revert to the roberta-
large-nli-stsb-mean-tokens model [235], which achieved the highest score in the ”Semantic
Textual Similarity“ benchmark. It returns embeddings with a dimension of 1024, ignores
punctuation but reacts more sensitive to changes in tenses, replacement of core nouns
of a sentence, or position changes of words in a sentence. To compute the embedding
representing an entire video’s speech transcript as well as slide content, we first encode
each sentence separately and average the results afterward, entailing three features:
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embed_srt and embed_slide and their distance in the embedding space. To reflect the
semantic distance between the individual sentences, we record each pair’s average distance
for both modalities. Also, we compare these two distances by capturing their difference.

User-specific Features (1)

By design, all our extracted features are independent of the user, since they are based on
the educational resource alone. However, our goal of KG prediction is also influenced
by the learner’s cognitive capabilities as well. For instance, some users might generally
obtain better learning results after watching the video. In order to investigate the influence
of user identity in our experiments, we add another feature subset, the person ID (USER
from here on). To prevent linear dependencies between these IDs, we represent them as
one-hot-encoded vectors (13 dimensions).

4.1.6 Experiments and Results

This section describes the two KG prediction experiments that we conducted on all
combinations of our feature categories. Figure 4.5 gives an overview over the setup. Shi
et al’s user study [240] yielded 111 individual learning sessions based on 13 participants
that watched eight to nine videos each. The extraction of features from these sessions
yields, however, only 22 unique (feature vector) samples, that is one for each video
vi, i ∈ 1, .., 22. They differ only in their target variable, the KG score KGi. However, we
follow Yu et al. [293] and do not predict KG scores directly, but rather assign one of three
classes. We normalize the scores by transforming them into Z-scores with X=0 and σ=1.
The KG classes are defined as follows: 1.) Low KG, if X < X − σ

2 ; 2.) Moderate KG, if
X − σ

2 < X < X + σ
2 ; and 3.) High KG, if X > X + σ

2 . This results in a dataset composition
of 6 low, 10 moderate and 6 high for V22 and 40 low, 40 moderate and 31 high KG samples
for V111. For the first set of experiments (V22), we try to predict the average achieved
KG class per participant that saw video vi. We establish a challenging KG baseline V22 by
estimating the performance of participant pk on video vi. Therefore, we average the KG
scores of all other participants pl with l ̸= k who saw vi and convert it to the appropriate
class afterwards, but only on videos v ̸= vi. Thus, this baseline has strong hints about
the learning outcome of different participants that are not available to our classifiers. It
achieves an accuracy of 45.45%. In our second set of experiments (V111) we add the
person ID as a one-hot encoded vector to the respective video feature vectors to make
them unique again, giving us the original 111 samples. Target variable is the recorded
KG class of the learning session. Again, we derive another challenging KG baseline V111.
To estimate the KG class that user u achieved on video i we average his/her score on
the n − 1 other videos seen by him/her and, again, convert it to the appropriate class.
This baseline is also challenging (accuracy = 43.24%) because the information about the
user-specific learning performance is not available to our classifiers; as mentioned above,
our user-specific feature is simply the encoded person-ID.
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Figure 4.5: The workflow of our approach detailing the composition of our datasets for experiments
V22 and V111 (best viewed in color).

Data Preprocessing

The correlation analysis of Shi et al. [240] (note: they did not attempt KG prediction)
investigates the relationship of their multimodal features and KG. We want to examine
if their features (MM from here on) allow for KG prediction, and how our suggested
features (TXT + EMBED + USER) are suitable for this task, as separate feature sets and in
combination. Consequently, we have seven feature combinations as inputs for experiments
V22 and V111: TXT, EMBED, MM, TXT+EMBED, TXT+MM, MM+EMBED, and all of
them together TXT+MM+EMBED. For V111 all of these categories also contain the one-
hot-encoded person id (USER) of the respective learner. We translate and scale all features
with sklearn’s MixMaxScaler such that it is in the range between 0 and 1.

Dimension Reduction for Sentence Embeddings: Since the majority of features are
(single) scalars, the high-dimensional sentence embeddings (1024) most likely outweigh
the rest. Thus, we conduct a PCA (scikit-learn) with target dimensions of 3, 8, 16, 32. We
decide to use 16 dimensions for the sentence embeddings since they yield 93.73% explained
variance for slide text, as compared to 38.26% (3 dim.), 69.29% (8 dim.) and 99.99% (32
dim.). The results for the transcripts were similar. For the final decision, whether to use 16
or 32 dimensions, we investigated the trade-off between loss of information and accuracy
in the following classification. Preliminary results showed that 16 dimensions retained
better results, even though they contain around 7% less information.

Data Filtering: As a last pre-processing step we remove 47 features that are zero for every
sample and thus, contain no information towards the classification. The reason is that not
all occurrence-based information, e.g., tenses and word types, appear in the text.
Finally, for both experiments the samples are randomly split into approximately 80%
training and 20% test. For experiment V111 we made sure that no video seen in training
was used in test.
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Feature Selection

Breiman [31] discusses the two categories of feature importance computations. The first
category examines model parameters to identify what is most important towards the
result, while the other one treats the model as a black box and compares simply how
changing the input impacts the output. Recent work on KG prediction [293] utilizes
Pearson correlation to estimate the most influential features, which falls into the first
category. However, Breiman describes the issues related to such measures as follows:
1) analyzing what the model does assumes that the model is the right fit for the problem,
2) the amount of trust regarding these results is tied to the performance of the model, and
3) this feature analysis does not tell whether the model is biased.

Therefore, we decide to resort to a feature importance technique of the second category,
namely Drop-Column Importance, a more computational expensive type of Permutation
Feature Importance. The idea is that, for every feature f, to train one model from scratch
by dropping f. Then, the decrease (or increase) in performance, compared to a baseline
model that contains all features, shows how important f is for the process. This technique
makes the approach model-agnostic, which is useful since we are investigating multiple
classifiers. The implementation we used can be found on GitHub5. Negative importance
values imply that the performance increases when the feature is not considered. Thus,
we only keep features that have values ≥ 0 (V22: 40, V111: 191) and do our final run of
both experiments afterwards. We keep the 13-dimensional person id vector for the feature
selection process, since each bin represents one person and we want to investigate whether
the models utilize information about the individual performances of the participants. We
omit the PCA-transformed sentence embeddings for the importance analysis, since they
are hard to interpret. The results of the feature importance analysis are discussed in
Section 4.2.6.

Results and Discussion

We use four classifiers in our experiments, NB, SMO, RF, and MLP implemented by the
Weka machine learning software. For each classifier (set to default hyperparameters), each
feature category, and both experiments we conduct a 5-fold cross-validation and average
the results per fold in terms of precision, recall, F1-score, and accuracy. Also, for each fold,
a separate feature importance analysis and feature selection is conducted to avoid bias.
The following two Tables 4.5 and 4.6 show the best performing combinations of classifier
and feature category for the experiments V22 and V111. The overall scores are macro
recall, precision, and F1.

In V22, all models clearly outperform random guessing, but only one feature combi-
nation outperforms the challenging baseline of 45.45% regarding overall accuracy: the
combination of our textual features and Shi et al’s multimedia features [240] with a Ran-
dom Forest approach. It was able to distinguish between all three classes. In second place,

5https://github.com/parrt/random-forest-importances/blob/master/src/rfpimp.py

https://github.com/parrt/random-forest-importances/blob/master/src/rfpimp.py
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Low Moderate High Overall
Feature Category Class. Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Acc. in %
Random Guess Baseline - - - - - - - - - - - - - 33.33
KG Baseline V22 - 0.00 0.00 0.00 0.45 1.00 0.62 0.00 0.00 0.00 0.15 0.33 0.21 45.45
EMBED (slide) SMO 0.10 0.20 0.13 0.45 0.80 0.57 0.00 0.00 0.00 0.18 0.33 0.23 42.0
EMBED (srt) MLP 0.10 0.20 0.13 0.47 0.50 0.48 0.30 0.60 0.40 0.29 0.43 0.34 42.0
MM RF 0.20 0.20 0.20 0.50 0.60 0.55 0.30 0.30 0.30 0.33 0.37 0.35 43.0
TXT NB 0.00 0.00 0.00 0.60 0.70 0.65 0.17 0.40 0.24 0.26 0.37 0.30 41.0
MM+EMBED (slides) RF 0.20 0.20 0.20 0.58 0.70 0.63 0.07 0.20 0.10 0.28 0.37 0.31 42.0
TXT+EMBED (both) NB 0.00 0.00 0.00 0.58 0.80 0.67 0.17 0.40 0.24 0.25 0.40 0.30 45.0
TXT+EMBED (slide) NB 0.00 0.00 0.00 0.60 0.80 0.69 0.17 0.40 0.24 0.26 0.40 0.31 45.0
MM+TXT RF 0.10 0.20 0.13 0.55 0.60 0.57 0.23 0.60 0.34 0.29 0.47 0.35 46.0
MM+TXT+EMBED (both) NB 0.07 0.20 0.10 0.65 0.70 0.67 0.10 0.20 0.13 0.27 0.37 0.30 42.0
MM+TXT+EMBED (slide) NB 0.07 0.20 0.10 0.65 0.70 0.67 0.10 0.20 0.13 0.27 0.37 0.30 42.0

Table 4.5: Best results for each classifier in the V22 experiment on the respective feature category.

our set of textual features together with the semantic sentence embeddings achieved 45%
accuracy with a Naive Bayes classifier. However, they failed to detect the Low KG samples
entirely. Even though the other results do not outperform the strong KG baseline, they are
noticeably better than random guessing. In summary, V22 indicates that a multimodal
approach with a Random Forest classifier is a good approach for this problem.

Low Moderate High Overall
Feature Category Classifier Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Acc. in %
Random Guess Baseline - - - - - - - - - - - - - 33.33
KG Baseline V111 - 0.50 0.18 0.26 0.39 0.85 0.54 0.70 0.23 0.34 0.53 0.42 0.38 43.24
EMBED (srt)+USER MLP 0.35 0.33 0.34 0.48 0.47 0.47 0.39 0.56 0.46 0.41 0.45 0.42 44.74
MM+USER NB 0.35 0.39 0.37 0.44 0.34 0.39 0.35 0.50 0.41 0.38 0.41 0.39 39.03
TXT+USER MLP 0.36 0.29 0.32 0.31 0.34 0.32 0.36 0.35 0.35 0.34 0.33 0.33 34.66
MM+EMBED (srt)+USER NB 0.37 0.33 0.35 0.45 0.42 0.44 0.35 0.47 0.40 0.39 0.41 0.40 39.00
TXT+EMBED (slide) + USER MLP 0.45 0.35 0.40 0.46 0.49 0.47 0.39 0.33 0.36 0.43 0.39 0.33 40.83
MM+TXT+USER MLP 0.24 0.26 0.25 0.48 0.45 0.47 0.30 0.39 0.34 0.34 0.37 0.35 36.06
MM+TXT+EMBED (srt)+USER SMO 0.35 0.31 0.33 0.43 0.48 0.46 0.27 0.32 0.29 0.35 0.37 0.36 36.15

Table 4.6: Best results for each classifier in the V111 experiment on the respective feature category.
Each experiment considered the one-hot-encoded person id USER as an additional feature.

For V111, the best result of 44.74% has been achieved by the sentence embeddings
generated from the speech transcript (EMBED (srt)) fed into an MLP. The model clearly
outperforms random guessing, and is slightly better than the KG baseline. Second best
performance was achieved by our textual features combined with the sentence embeddings
extracted from the slide content (TXT+EMBED (slide)). These results indicate that focusing
on textual features, in a syntactic as well as semantic manner, is beneficial for KG prediction
when the individual is represented as a variable. Also, neural network based approaches
scored the highest in four of the seven feature categories, perhaps due to the large number
of features. The other categories fell below 40.00% accuracy. However, they remained
above random guessing by means of accuracy. Additionally, as the feature importance
analysis will highlight, the sentence embeddings generated by the speech transcript and
slides were of high importance, so neither should be neglected for this task.

In summary, experiment V111 suggests that semantic text features that describe the
content of a MOOC video, are a better choice for this task than syntactic features that
objectively describe the video. In comparison with V22 that had a slightly stronger focus
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on multimedia features that describe the objective quality of the video, this finding could
be explained by the following: On one hand, to predict the user-independent (average)
learning outcome of a MOOC video (as in V22) it is beneficial to consider multimodal
features describing general quality aspects. On the other hand, the prediction of the
individual KG (V111) depends on a combination of content-features and the preferences
of the person itself. We tried to capture this personal influence with our one-hot-encoded
person id feature. The results of the feature importance analysis will underline its impact
on the classification result.

Feature Importance Analysis

Tables 4.7 and 4.8 show the average of the five drop-column feature importances (generated
by the 5-fold cross-validation) conducted on the feature categories MM+TXT+EMBED for
V22, and MM+TXT+EMBED+USER for V111.

Type Feature FI
MM img_ratio_var 0,09
MM log_HNR_avg 0,05
MM average_syllable_duration 0,05
MM coverage_of_slide_content_avg 0,05
MM f0_avg 0,05
MM PVQ_avg 0,05
MM harmonicity_avg 0,05
MM highlight 0,05
MM jitter_avg 0,05
MM rms_energy_avg 0,05
MM shimmer_avg 0,05
MM level_of_detailing_avg 0,05
MM level_of_detailing_var 0,05
MM delta_jitter_avg 0,05
MM articulation_rate 0,05

Table 4.7: Importance of the top-10 fea-
tures of the V22 experiment.

Type Feature FI
TXT ratio_VP_sli 0,05
TXT VP_sli 0,05

USER Person_ID_5 0,04
TXT PP_sli 0,04
TXT amount_main_verb_sli 0,04
TXT sum_tok_len_tra 0,04
TXT avg_adj_sli 0,04
TXT amount_adj_sli 0,04
TXT ratio_adj_sli 0,04
TXT amount_adpos_sli 0,04
TXT avg_VP_sli 0,04
TXT amount_one_syl_tra 0,04
TXT avg_adpos_sli 0,03
TXT WHNP_sli 0,03
TXT ratio_sim_pres_sli 0,03

Table 4.8: Importance of the top-10 fea-
tures of the V111 experiment.

The feature importance analyses of the two experiments show significant differences. In
the experiment V22, the important features are dominated by the multimedia features [240].
From the 40 features yielding a feature importance ≥ 0 only 14 were of the textual category.
This is reflected in Table 4.5, where MM+TXT achieved the best performance. In experiment
V111 the textual features from our approach obtain the highest importance scores, with a
slightly stronger focus on the slide content (”_sli“ suffix). Out of the 191 most important
features with a value ≥ 0 the first multimedia feature has rank 50. Rank 3 is of type USER
highlighting the importance of this bin in the 13-dimensional one-hot-encoded vector. This
suggests that our models identified that this learner’s individual performance gave hints
about the eventual learning outcome in the other videos he or she saw.
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In summary, the results of the feature importance analyses do not favor a certain modality.
This suggests that it is beneficial to follow a workflow of our approach, that is to initially
consider a broad range of features and assess their importance for the classification.
Focusing on a single modality from the start may not yield optimal results as the impact
of the selected features may vary heavily depending on the target scenario.

4.1.7 Summary

In this section, we have investigated whether we can predict KG for MOOC videos based
on their content. For this, we have presented an exhaustive multimodal feature analysis
and analyzed the individual and combined impact of these modalities for the task of KG
prediction. However, as the sample size is relatively small, the implications of these results
are limited. In the next section, we utilize data of a significantly larger user study which is
conducted in an informal learning setting.
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4.2 Predicting Knowledge Gain During Web Search

4.2.1 Motivation

Investigating the learning process in informal settings is important because it helps us
understand how people learn in contexts that are outside of traditional formal educational
institutions, such as schools and universities. These processes are ubiquitous, since
people engage in informal learning activities throughout their entire lives. As pointed
out by Johnson and Majewska [127], informal learning can have an holistic impact on
learners, influencing affective, cognitive, and social aspects [10]. Also, this learning type
adapts to the needs and interests of individual students, especially to the work pace.
This allows, for example, learners with a lower pace to not feel rushed in contrast to a
more rigid, time-pressured formal curriculum [178]. Finally, with the rising popularity
of multimedia content, such as video tutorials or lectures, comes the need for a better
understanding of informal learning. Yet, as we will highlight in Section 4.2.2, the users’
interactions, navigation behavior, and consequently learning outcome, have not been
researched extensively.

Previous work has studied the relationship between learning progress and text content
or behavioral features collected from search sessions. For instance, Collins-Thompson
et al. [49] studied the influence of distinct query types on knowledge gain, and found
that intrinsically diverse queries are correlated with knowledge gain. On the other hand,
Syed and Collins-Thompson [250] explored a range of text and resource-based features
and their impact on short-term and long-term learning outcome, but did not investigate
multimedia content. Closing this research gap, however, is challenging due to the fact that
available datasets are scarce and usually do not cover the entire range of modalities.

In this section, we contribute to this research field by first gathering an extensive dataset
based on an study conducted in an informal learning setting (Section 4.2.3). This study,
again, recorded the pre- and post-knowledge states of the participants through multiple-
choice questionnaires. Also, participants’ Web search sessions were recorded, including
query and navigation logs. Afterward, Section 4.2.4 outlines the implementation of a
data processing pipeline. We analyzed all visited Web pages to gather a set of features
regarding consumed multimedia content, e.g., document layout, image size and type. This
novel feature set allows us to investigate the role of multimedia features for knowledge
gain prediction in Section 4.2.5. Therefore, we train a supervised learning model (random
forest) to predict knowledge gain based on text and multimedia features. Experimental
results demonstrate the feasibility of the approach.
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4.2.2 Related Work

Educational Material Datasets

Research on Search as Learning relies on study-based data that has to capture (a) search
behavior of various nature and (b) knowledge metrics of users (through pre- and posttests).
As they have to be conducted in controlled environments, their design and execution is
costly. First, they have to reflect realistic scenarios in order to be indicative for real-life
applications, i.e., omit a restriction of web pages or intrusive recording equipment. Second,
assembling meaningful questionnaires for pre- and post-tests, for instance, is a challenging
task, as topic domain and item difficulty have to be well calibrated. Lastly, the logging
process itself is non-trivial since available software, to our knowledge, usually only covers
part of the features of interest. Therefore handcrafted, non-intrusive logging mechanisms
need to be implemented manually.

To the best of our knowledge, there are currently only two SAL-focused datasets available:
Proaño-Ríos and González-Ibáñez[216] provide a set of 83 expert-generated learning
paths on a diversity of topics. Each expert assembles a set of three web resources
useful towards a certain learning goal, including a justification of their choice. However,
data on real-world user behavior is not included. Gadijaru et al. [78] present a dataset
comprised of 420 crowdsourced learning sessions, investigating the information needs
on the search behavior and KG of users. Our dataset improves their contribution by
presenting data gathered in a controlled lab study and it captures behavioral, resource,
and gaze data. Other resources focus on either search or learning: (1) Search Focus –
Datasets for the conception and optimization of search systems provide the basis for
improved automatic analysis of queries [90, 89], identification of user tasks [273, 92], the
influence of found resources on the user’s viewpoints [136], and novel interaction methods
such as conversational search [211]; (2) Learning focus – Datasets from the educational
domain often explore recommendation tasks [272], provide data on user behavior in
restricted learning environments [83] or specific instructional practices [281]. Finally, there
is an active area of research on predicting the memorability of visual resources [122, 46]
and the impact of resource modality on learning success [108]. The scope of these datasets
is usually limited to a single feature type; none of them collects user behavior information
in a realistic and open, learning-related Web search scenario.

Prediction of Knowledge Gain

Previous work has studied the relationship between learning progress and observable
features in a search session. By matching the learning tasks into different learning
stages of Anderson and Krathwohl’s taxonomy [6], Jansen et al. studied the correlation
between search behaviors of 72 participants and their learning stage [123]. They showed
that information searching is a learning process with unique searching characteristics
corresponding to particular learning levels. Zhang et al. [299] explored using search
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behavior as an indicator for the domain knowledge level of a user. Through a small
study (n = 35), they identified features such as the average query length or the rank of
documents consumed from the search results as being predictive. Karanam et al. [133]
conduct a study that gave insight into query reformulation techniques utilized by different
age groups, revealing that older participants have more trouble narrowing down the search
path towards the intended information. Cole et al. [47] observed that behavioral patterns
provide reliable indicators about the domain knowledge of a user, even if the actual
content or topics of queries and documents are disregarded entirely. Eickhoff et al. [63]
investigated the correlation between a number of features of the search session as well as
the Search Engine Result Pages (SERPs) with learning needs related to either procedural
or declarative knowledge. Collins-Thompson et al. [49] studied the influence of distinct
query types on KG, finding that intrinsically diverse queries lead to increased KG. Moraes
et al.’s [187] work compared the learning outcome of instructor-designed learning videos
against three instances of search ("single-user", "search as support tool", "collaborative
search") in order to find the most efficient approach for their learning scenario. Hagen
et al. [91] revealed that query terms can be learned while searching and reading through
investigating the relation between the writing behavior and the exploratory search pattern
of writers. Vakkari [266] provided a structured survey of features indicating learning
needs as well as user knowledge and KG throughout the search process.Syed and Collins-

Thompson [251] explored the possibility of using regression models and features extracted
from user accessed document content to predict user knowledge change on vocabulary
learning tasks [250]. Gwizdka et al. [85] proposed to assess learning outcomes in search
environments by correlating individual search behaviors with corresponding eye-tracking
measures. Gadiraju et al. [78] described the use of knowledge tests to calibrate the
knowledge of users before and after their search sessions, quantifying their KG, and
investigated the impact of search intent and search behavior on KG of users. In a follow-
up work, Yu et al. [293] proposed to use user interaction features to build classification
models to predict user knowledge state and KG in search sessions. Bhattacharya et al. [18]
investigated the relationship between users’ search and eye gaze behaviors and their
learning performance. In a recent work, Roy et al. [224] investigated at which time during
a search session learning occurred, and found that the learning curve is largely influenced
by a user’s prior knowledge on the searched topic. Kalyani et al. [131] explored this
direction further by designing search tasks that fit into the different learning stages of the
revised Bloom’s taxonomy. Through knowledge tests before and after each search session,
they found significant impact of the learning stage on a user’s search behavior and KG.
Liu et al. [155] adopted mind maps to capture user’s knowledge change process and hence
identified four types of knowledge change styles.

The aforementioned works consider a limited set of features. Just recently, the attention
shifted towards the analysis of multimedia features, such as images and videos embedded
in Web documents and the user’s interactions with them. Yuan et al. [294] conducted a
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study on realistic Web pages to train a neural network that predicts how easy it is for a
user to find a specific multimedia object. Martinez-Maldonado et al. [168] investigated
in their work how multimodal data convey information by organizing it into meaningful
layers. They claim it is naive to expect that simply rendering information visually, a
learner can make sense of them. The framework shown in this chapter provides a way of
exploring the influence of multimodal content design and content directly to the learning
outcome.

4.2.3 User Study

Participants and Task

The participants (N=114, 95 female, µage=22.88, σage=2.93), German speaking university
students from different majors were asked to solve a realistic learning task to understand
the principles of thunderstorms and lightning. This topic has been used before to study
multimedia learning (e.g., [171, 230]) and has been chosen since it requires learners to
gain knowledge about different physical and meteorological concepts and their interplay,
i.e., they need to learn about causal chains of events and acquire declarative as well
as procedural knowledge [6].The acquisition of information about such task a can be
accomplished through studying different representation formats, such as text, pictures,
videos, or combinations of those. This circumstance is beneficial for our goal to get
a general idea about optimal multimedia learning resource design, especially in SAL
scenarios.

Procedure and Measurements

The experiment consisted of an online and a laboratory part. In the online part, which
had to be completed around one week before the lab appointment, participants had to
respond for the first time to the 10-item multiple-choice and 4-item transfer knowledge test
based on previous work [230]. Further, participants worked on questionnaires regarding
their achievement motivation [65] and their Web-specific epistemic justification beliefs
[29]. At the lab appointment, participants first completed tests assessing their reading
comprehension [231] and working memory capacity [51]. The participants were asked to
write a first essay (t1) about the topic of the formation of thunderstorms and lightning.
Afterward, they were instructed to learn about this specific topic by searching the Web in a
self-regulated manner. Participants were informed about the time limit of max. 30 minutes
for their web search, and that they could also end the task early. They were encouraged to
use every kind of Web resource they would like. After the learning phase, they were asked
to write again everything what they now knew about the topic in a free essay (t2) format.
Lastly, they were asked to answer the multiple-choice questionnaires (t2) again followed
by a questionnaire assessing task engagement [170] and cognitive reflection tasks [77].
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Technical environment

All search and learning activities of participants were conducted within a tracking frame-
work consisting of two layers. The first layer was the SMI (SensoMotoric Instruments)
ExperimentCenter (3.7) software environment that enabled us to track participants’ eye
movements as well as their activities during Web search in the formats of screen recordings
and navigation log files. ExperimentCenter offered a default version of Mozilla FireFox
(ESR 45.6.0) for tracking Web activities, which was started within the ExperimentCenter
environment. In addition, by utilizing browser plugins we gathered resources of all
visited HTML files as well as tracking of navigation and interaction data (e.g., mouse
movements) that we adapted from [255]. For the second layer we utilized browser plugins
to gather resources of all visited HTML files and adapted Talibi et al’s method [255] to
track navigation and interaction data (e.g., mouse movements). For more details we refer
to [202].

Data Logging Challenges

As mentioned above, we aimed to collect as much data as possible during the user study
to ensure that we would be able to reconstruct the exact information a participant has
seen. This objective poses several challenges: First, due to the ever changing nature of
online content it is necessary to save a snapshot of every visited website at the time of
the actual experiment. Solely saving URLs in order to later revisit the page could lead
to different results. It is therefore necessary to save the respective HTML and CSS files
for every seen website during the experiment. Second, the given hardware and software
determines the way a given website is displayed for the participant, e.g., monitor size
and orientation, screen resolution, browser. Therefore, simply reloading the Web page in
post-processing will most likely show a different fraction of the website as seen by the
participant. To make sure we have the same viewpoint as the participant we created a
screen recording over the full duration of the learning session that can be analyzed later.
Third, a naive way of logging the browser history will not suffice, since clicking a link
does not necessarily mean the respective website is visited from this moment on. Contrary,
it is common that learners open multiple links from a SERP via Open link in new tab and
go through them later, rather than navigating back and forth between browser tabs (SERP
and individual websites). This behavior can be tracked by additionally logging detailed
information of mouse movements and browser signals (e.g., new tab got in focus). Finally,
all these problems must be addressed while providing a “natural” search environment
that does not distract the users with restrictions regarding their usual browsing behavior
or heavy computational load on the browser or computer in general.

4.2.4 Dataset Description

The following section describes the information per user provided by the individual
data subsets. Apart from the screen recordings and HTML data, which we cannot



82 Chapter 4. Prediction of Knowledge Gain with Multimodal Features

make publicly available due to licensing restriction, all dataset parts are available under
https://doi.org/10.25835/0062363.

Resource Data - Screen Recordings

The screen recordings show the entire search process of the participants over the duration
of the study and are aligned with the provided logs (Section 4.2.4) and HTML data
(Section 4.2.4). The screen recording’s video format is MP4, and they have been recorded
with a resolution of 1280x720 at 30 frames per second. The audio track is not included.
They are not longer than 30 minutes and start at the point in time the learning session
starts. We manually cut the start of the video that showed the participants entering their
session IDs.

Resource Data - HTML

Since online content is not persistent, to achieve our goal to enable research on the actual
data seen by the participants, we decided to record the content of each visited website,
including but not limited to *html, *css, *js, and image files. Due to technical difficulties
this process was not entirely successful, forcing us to fill in the gaps at later points in
time. In detail, we managed to capture 87.9% of the data at the time of the study, another
4% in March 2020 and finally, another 2.5% in September 2021. For the remaining 5.6%
(181 URL) we were not able to record any data. With very few exceptions (a few websites
that are not available anymore) these were search engine result pages from Google and
YouTube that do not contain any learning relevant information, and when crawled at a
later point in time, differ strongly from the original. For these two reasons we decided to
exclude them from the dataset. For full transparency we disclosed the date of acquisition
in the provided timeline.

Behavioral Data - Browsing Timeline

Each participant’s browsing log is represented by one tab separated value (TSV) file as
outlined by Table 4.9, chronologically displaying the visited websites with a timestamp
in seconds passed since the start of the session. Additionally, we disclose the path to the
respective HTML files and their acquisition date as mentioned in Section 4.2.4.

p_id timestamp url html_files date_of_acquisition

Table 4.9: The fields (columns) in the timeline file associating each displayed web
resource with a directory of HTML files and its date of acquisition.

Behavioral Data - Gaze

As mentioned in Section 4.2.3, we used an eye-tracker to record the learner’s eye move-
ments over the course of the Web search session. We exported the gaze information from
the eye-tracking software as raw data and separated the fixations and saccades with an

https://doi.org/10.25835/0062363
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I-DT algorithm [227] by marking the entries via the f ixation ∈ {0, 1} flag. Please note
that the y-coordinates are relative to the entire website and not the viewport, i.e., values
larger than 1080 are possible. Further, the data can contain incorrect entries originating
from tracking errors (e.g., negative values). Similar to the data subsets introduced in the
sections before, this data subset contains one TSV file for each participant, chronologically
listing the coordinates of the left and right pupil with millisecond precision. Additionally,
the URL visible at that point in time is displayed (Table 4.10). This data subset allows for
further experiments on website examination behavior and their influence on the learning
process.

p_id timestamp left_x left_y right_x right_y url fixation

Table 4.10: The fields (columns) in the gaze data files, chronologically displaying the
gaze coordinates for each eye.

Behavioral Data - Browsing Events

The investigation of the Web search behavior requires detailed logs about the learners’
interactions with a website, going beyond logging what type of resources they visited. We
recorded over 1 million user interaction events of 11 different types. The focus, blur, and
beforeunload describe whether a website has come into focus, lost focus, or is about to be
closed. The resize event tracks if a participant chose to resize the current browser window
and captures the resulting window size in the value column encoded as pixel sizes x|y.
Similarly, if a learner scrolled on a website, a scroll event is triggered and we log the scroll
distance in vertical and horizontal direction in the value column as vertical|horizontal. The
mousemove event tracks the learners’ mouse movements by logging x and y coordinates
in the respective columns. Mouse clicks were captured in the click event, tracking their
location (x and y columns) and the clicked HTML element in the target column as XPath.
We recorded keypresses in the keypressed event, but omitted recording the key values
due to privacy reasons in case the learner chose to login somewhere during the session.
However, the chosen queries are available in the URLs of the respective search engines.
Lastly, we captured copy and paste events and, if available, the intended target elements.
The structure of the data record per event is displayed in Table 4.11.

p_id timestamp track_id type value x y target url

Table 4.11: The columns in the event data files for each participant chronologically
displaying the browsing interaction events.

Behavioral Data - Browsing Tracks

The browser tracking tool associates events to websites by means of tracks. Upon navigating
to a website, a track is created and exists until the user navigates somewhere else within
the same browser tab or closes it. This setup is geared towards realistic search sessions
with multiple concurrent tabs. For each track, our dataset contains the time of creating the
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track, URL, and title of the website, as well as the viewport dimensions. Additionally, the
data contains the lifetime of the track, as well as the time the track was active, i.e., it was
displayed to the user in the active browser tab.

p_id timestamp track_id url title
viewport width viewport height time stay time active

Table 4.12: The columns in the track data files, capturing information such as URL and
active time for a visited website.

Knowledge Data and Questionnaires

As mentioned in Section 4.2.3, we measured the knowledge state of learners at multiple
points in time. Additionally, through questionnaires and tests, we captured cognitive
abilities and assessments of participants across the study. Thereby, several sub datasets
were generated for which we provide the documentations with explanations of mea-
sured variables and, if possible, the original German items. This section will give brief
explanations of these files, while detailed documentation can be found in the dataset.
demo_knowledge_sum.csv: This file contains demographic information of participants
and the summary of the knowledge-related scores (multiple-choice, essay) and cogni-
tive abilities (working memory capacity, reading comprehension, cognitive reflection)
(Table 4.13). Reading comprehension was measured through a standardized German
screening instrument for adolescents and young adults. Working memory capacity was
measured through a reading span task. More detailed information on this topic is provided
by Pardi et al. [208].

Feature Description
p_id Participant ID
d_sex 1= female; 2 male
d_age Age of participant
d_field Field of study
d_no_sem Number of semesters
d_lang Mother tongue
k_mc_sum_t1 # of correct mc questions before search
k_mc_sum_t2 # of correct mc questions after search
kg_mc Knowledge gain multiple choice questions
essay_C1 # of correct concepts before search
essay_C2 # of correct concepts after search
kg_essay Knowledge gain essays
LGVT_speed # of words read
LGVT_core Points for correctly solved sentences
WMC_Recalls # of correctly recalled sets
WMC_Sentence # of correctly solved sentences
CRT_sum # of correctly solved cognitive reflection tasks

Table 4.13: The columns in the demo_knowledge_sum data files. One participant per
row.
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mc_data.csv: This file contains the scores for all multiple-choice questions answered by
participants before the lab session (t1) and after the search in the lab (t2). Includes also the
confidence rating of participants for each question and the information if the answer was
guessed.
essay_data.csv: This file contains the raw essays written by the participants before (t1) and
after the search (t2).
internet_specific_epistemic_justification.csv: This file contains the Web-specific epistemic
justification measurements based on a translated version of [29].
selfassessment_data.csv: To measure participant’s self-assessed performance on the knowl-
edge tests, we used both global self-assessment (estimated numbers of items answered
correctly, estimated placement as compared to others and perceived ability to explain the
concepts of the learning topic) as well as local on-item confidence rating, indicating how
confident participants were that their given answer was correct.
CRT_data.csv: To measure an individual’s tendency for cognitive reflection, participants
worked on five items of the cognitive reflection task (CRT [77] translated into German.
Within the dual-process model of reasoning, there is a distinction between faster responses
with little deliberation and slower and more reflective responses. Solving more of the CRT
items shows a higher disposition for the latter one, i.e., reflective cognition.
achievement_data.csv: We used the German version of the achievement motives scale
[65] to measure hope of success (HS) and fear of failure (FF). This scale contains 10 items
that are rated on a scale from 1 to 4, assessing those two dimensions. The achievement
motive of an individual describes the general tendency to approach or avoid success in an
evaluative situation. The HS score is associated with a range of variables beneficial for
learning success, such as, performance in reasoning, persistence, or task enjoyment.
dssq_data.csv: The Dundee Stress State Questionnaire [170] measures subjective states in a
performance context. Participants had to indicate their agreement to 7 items with labeled
endpoints immediately after the learning phase. The mean score of those items indicates
an individual’s self-reported task engagement during the learning phase. Differences in
task engagement can act as a moderator for task performance.

4.2.5 Framework

In this next section, we describe our Multimedia Feature Extraction Framework that works
with (parts of) the data described above. Its purpose is to identify the part of the
accumulated data that the user actually saw and that is used for learning rather than for
navigational or exploratory reasons. This way we ensure that the correlation analysis only
considers features that actually may have influenced the participants’ KG. We describe
two sets of features, namely visual features and textual features. We also explain the
challenges related to the acquisition of (potentially) meaningful features as well as the
applied feature extraction methods. The output per user of the data logging according to
section 4.2.3 is as follows:
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1. screen recording (MPEG-4 video format (*.mp4))

2. timeline of visited websites

3. HTML and CSS files of every visited website

To reconstruct the visited websites we decided against utilizing the crawled multimedia
information (images and videos) by filtering for the respective extensions, since we found
this method is not sufficiently accurate. Instead, we exploit the screen recordings and
segment them according to the corrected timeline of the visited Web pages. An overview
of the framework is displayed in Figure 4.6.
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Figure 4.6: The overview of the Multimedia Feature Extraction Framework illustrates
the process of result generation for Document Layout Analysis and Image Type Classification.
The only manual input is the list of blacklisted websites and the set of image classes. The
results per session (red boxes) are the input for our correlation analysis and knowledge

state prediction (section 4.2.6).

The correction of the timeline of visited websites consists of sorting them by the order they
got in focus, rather than sorting the events by the time a browser tab was opened. In this
way, we circumvent the problem of participants opening multiple links from the search
result page at once in a new tab, described in section 4.2.3. As shown in Figure 4.6, the
next step separates the total number of F video frames into L learning relevant and N
navigation related frames, with N + L = F. We extract a frame every second of the video
(|F| = 173 787), but only kept those where the participant spent time on websites related
to learning. We are aware that the distinction between relevant and irrelevant is not trivial
and hard to generalize, therefore we excluded only three websites. First, we excluded
Google search page, since it was the only search engine used in all sessions and even
though it occasionally provides preview information, we did not want to skew our results
towards the design of the Google result page. The second excluded website is TripAdvisor,
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which was used by one participant to browse for free time activities at the end of his/her
session. Third, we blacklisted URLs containing adblock, which usually appear when a
website asks the user to disable their Adblocker in order to access their content. Very few
participants struggled with Adblocker settings in their attempt to access website contents.
Obviously, this set of excluded websites differs for other use cases, since websites like
TripAdvisor might provide learning relevant information for other topics. This procedure
resulted in a total of 119 164 (average: 1268 frames per session) learning relevant frames,
that have to be segmented into visual, textual, and background information as described
in the next section.

Document Layout Analysis

The goal of this step is to automatically divide each (learning relevant) frame l ∈ L into
coherent regions in order to describe the structure of the page in form of percentages
(e.g., 15% images, 25% text, 5% and 55% background). Additionally, the regions should be
classified according their content, e.g., image, text, menu etc. This procedure is crucial
for the content analysis later but also challenging, since the layout and design of the
websites varies heavily. To address this challenge, we rely on a state of the art deep
learning approach to segment each frame. We utilize the Mask R-CNN [1] network
architecture, originally implemented for instance (object) segmentation, and fine-tune
pre-trained weights. Mask R-CNNs have excellent capabilities to adapt the given weights
in order to solve related segmentation tasks (for example, color splash or segmentation
of aerial images or microscopy imagery). Therefore, we annotated 300 randomly chosen
frames extracted in our user study. Our selected tool is the browser-based ”VGG Image
Annotator“, which we fed with a set of six classes, defined as follows:

1. Images/Frames: All types of still images without size constraints, from small
thumbnails to fullscreen video frames;

2. Text: Any continuous text paragraph or block that is not part of a headline or button
label;

3. Content list: Enumerations that contain content related information, like table of
contents or bullet point lists;

4. Heading: Any headlines or titles that divide the page into sections;

5. Menu bar: Buttons or lists of buttons displayed on the page for navigational purposes;

6. Background: Everything that does not fit into the five other classes described above.

These classes are supposed to reflect the core parts of a website. The JSON style
output of the manual annotations was then split into 90% training and 10% test data,
which we used to fine-tune the fully-connected layers after the pre-trained bounding box
detection (i.e., network heads) for 30 epochs with a learning rate of lr = 0.001. This option
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is predefined by creating the model with parameter layers = ”heads“ and subsequently
only retrains the region proposal network (RPN), the classifier and the mask heads. The
resulting network is able to segment our screen recording frames appropriately. An
example output is depicted in Figure 4.7a.

(a) Example result of the document layout analysis. (b) Another example showing the image-in-image ef-
fect.

Figure 4.7: Two example outputs of the Document Layout Analysis.

Occasionally, the neural network detects overlapping bounding boxes, which we filter out,
if their Intersection over Union (IoU) is larger than 80%, see Figure 4.7b. The performance
of the classifier is shown in Table 4.14. The first column denotes the confidence threshold
that we assigned to the detector, forcing it to only keep boxes above this value. Thus, a
lower value lead to a higher recall of the boxes while decreasing the precision, and vice
versa. For the following experiments we considered the implementation with the highest
threshold (0.9) to prevent an abundance of false positive bounding boxes.

Confidence mean AP mean Prec. mean Rec. f1-Score
0.4 0.905 0.874 0.937 0.905
0.5 0.905 0.878 0.937 0.907
0.6 0.903 0.894 0.935 0.914
0.7 0.882 0.907 0.920 0.914
0.8 0.866 0.930 0.904 0.917
0.9 0.836 0.945 0.875 0.909

Table 4.14: Performance of the CNN-based Document Layout Analysis model comparing
different confidence thresholds of the detector.

With this document layout detector, we can collect all the components that comprise the
learning content seen by all participants. However, we derive one more feature from the
layout analysis: the average size (in pixels) of the seen image imgsize, see Formulas 4.12
and 4.13. This information is not encoded in the document layout information dlai, i ∈ L
itself. A website consisting of 10% images might contain five small images or a single large
one. Another merit of this feature is its ability to also indirectly measure the watch time
of videos, since it is difficult to measure this (simple) feature directly with satisfactory
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accuracy. It neglects, for instance, embedded videos on websites other than YouTube and
navigational time used on the platform before a video has been found. However, for
completeness’ sake, we investigate watchtime in our experiments as well.

imgsizei =
dlai[‘Images/Frames‘]

n
, n = num of images in i, i ∈ L (4.12)

Then, these results per frame were added up and divided by the number of learning
frames |L| to get results per participant.

dlap = {
|L|

∑
i=1

imgsizei
|L| ,

|L|

∑
i=1

dlai

|L| } (4.13)

We identified a total of 755 756 bounding boxes that belonged to the class ”Im-
ages/Frames“, which has around five samples per frame on average. This appears
to be a lot at first, but has a simple explanation. Every (website) frame that is recorded
when watching a (non-maximized) YouTube video contains ten thumbnails of other rec-
ommended videos. In order to not skew the results heavily towards this large number
of irrelevant images, we filtered them out. A threshold of 100x100 pixels (full image
resolution was 1280x800) was applied and the remaining samples will be further examined
regarding their shown content.

Image Type Classification

In this section, we demonstrate how the results of document layout analysis can be
leveraged to analyze which kind of web page content was seen by the participants. The
identification of the displayed content enables us to set the type of information in relation
to the knowledge states and KG. In detail, we are interested in the displayed image type.
To the best of our knowledge, there is no comprehensive and non task-specific taxonomy
of image types to be directly applicable here. We focused on covering all topic-relevant
types of images in order to learn which type of imagery a learner saw, when searching for
the formation of thunderstorms (e.g., weather maps, infographics, real life imagery). As a
result, our set of image type classes consisted of: Infographics, Indoor, Maps, Outdoor,
Technical Drawings, and Information Visualization.

The definitions of the classes, the related queries to acquire training data through Web
images search, and the class distributions are presented in Table 4.15. As shown in Fig.
4.6, this set of classes was the second manual input in our framework. They were fed into
our automatic Web crawler via Python’s Selenium library that gathered training samples
from a Google image search. While this does not always guarantee strong, correct labels,
we tried to exploit the fact that image search engines can provide a large diversity of
images, which is useful for the training of deep learning classifiers. For this purpose,
we added random time intervals to our queries (e.g., for Google "president of the USA
after:2008-01-01 before:2015-01-01"), allowing us to gather samples from over 20 years
of imagery. By creating a database of image hashes we ensured to not download any
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queries image class content #samples

Infographic Infographic
Workflows or procedures visualized
in a single, vivid image. Usually contains arrows.

1 316

Indoor Photography
Interior Photography -car

Indoor
Indoor shots, sometimes containing persons that
moderate educational content,
but also in advertisements.

2 877

Map
Weather Map

Map Normal maps or weather maps. 2 878

Outdoor Photography
Nature Photography
Outdoor Photography Night
Nature Photography Night

Outdoor
Imagery

Real life outdoor shots depicting
realistic circumstances.

5 913

Technical Drawing
Schematic Drawing

Technical
Drawing

Information depicted in form of drawings.
Related to Infographics, but simpler.

3 060

Diagram Excel
Chart Tex

Information
Visualization

Any type of visual
information that does not really fit any specific type
or is a composite of multiple types.

2 729

Table 4.15: The automatically crawled training dataset for our image type classifier with
a total size of 18 773 samples. Left column shows the set of queries used to crawl them.

duplicates. This however, led to a certain bias in the data since some types of images are
less represented in the Web, for instance "Infographic" compared to "Outdoor Images".

The implementation was done in Keras, using a MobileNet [116] architecture. We used
Stochastic Gradient Decent optimizer with default settings, categorical cross-entropy loss
and trained for 100 epochs. Since we assured that our crawler did not produce duplicates,
we omitted data augmentation techniques. The reason is that the dataset already contained
visually very diverse samples and also weakly labelled data. Keeping the original class
distribution we divided the above mentioned dataset into 90% training and 10% test. The
latter one has a size of 1 876 samples.

To evaluate the performance of our automatic web crawler and ensure that we can rely on
the outputs of the image type classification we instructed three people (two co-authors
and one student assistant) to manually annotate this test set. They were tasked to either
assign one of the six image types to a sample or, if an assignment was not possible, label it
as a bad example. Afterwards, a majority vote decided on the final label for the respective
image, or, if two bad annotations were given, to remove the image from the test set. This
lead to 133 samples being removed resulting in a final test set size of 1 743. The full dataset
including training and inference scripts are publicly available at (removed due do double
blind submission).

The inter-coder agreement has been evaluated using Krippendorff’s alpha [141] and
yielded a value of α = 0.85 (across all annotators, samples, and classes). Table 4.16 reports
recall, precision, and f1 score of the (automatically assigned) labels according to our Web
search compared to our ground truth labels based on the human annotations. It stands out
that Information Visualization scored lowest on precision, which is reasonable considering
the fact that it is comprised of visually diverse samples which might also share similarities
with the other classes. Similarly, Infographic had a low recall which we assume is due
to its visual versatility and similarities to the Information Visualization class. Finally, the
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Class
Information
Visualization

Indoor Infographic Map
Outdoor
Imagery

Technical
Drawing

Precision 75.6% 95.6% 96.5% 97.9% 97.5% 96.5%
Recall 94.4% 93.6% 73.5% 97.9% 97.5% 96.5%
f1-Score 84.0% 94.6% 83.5% 97.9% 98.2% 94.7%
#Samples 161 280 151 285 607 259

Table 4.16: Comparison of the automatically generated labels with the annotations of the
three volunteers, which were used to derive ground-truth data in the experiments, and
the resulting number of samples per class in the test set. Results are given in precision,

recall, and f1 score.

Class
Information
Visualization

Indoor Infographic Map
Outdoor
Imagery

Technical
Drawing

Precision 71.9% 86.9% 80.9% 96.1% 91.3% 82.9%
Recall 79.5% 80.4% 75.5% 86.0% 94.6% 90.0%
f1-Score 75.5% 78.1% 83.5% 90.7% 92.9% 86.3%
#Samples 161 280 151 285 607 259

Table 4.17: Performance of the image type classifier according to precision, recall and f1
score. The shown values correspond to an accuracy of 87.15%.

performance of our image type classifier was tested on these images and the classification
results are shown in Table 4.17.

The results show that the neural network achieves a very good accuracy on the test
set. The classes that achieve the lowest performance are Infographic and our fallback
class, Information Visualization, with a respective precision of 71.9% and 80.9%. This is
explainable, since they are the most visually diverse. The accuracy of 87.15% is considered
to be sufficiently good as a basis for the correlation analysis. The classification of the
images found by the Document Layout Analysis provides us with detailed information
which image types were seen during a learning session. Specifically, for each image i
found in a frame, we report the image type features typesi as the pseudo probabilities
provided by the softmax layer of the classifier. This is reasonable, since some images are
composites of the different types. It should be noted that the results do not report the
number of images seen per class, because a consequence of our frame-wise extraction is
that the same image gets extracted multiple times. Instead we analyse the image in every
frame again and report the distribution of the image types as a percentage. The idea is to
weight the content according to the duration the images have been seen by the learner.
The feature vector vp representing the image types seen per session s is defined as follows:

vs = (
|L|

∑
l=0

Nl

∑
n=0

p(In f o. − Vis.), ... ,
|L|

∑
l=0

Nl

∑
n=0

p(Techn. Draw.)) (4.14)

Feature vector for the six image types seen per participant. p(< class >) is the pseudo-
probability given by the softmax layer. Nl is the number of images detected in frame

l.
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Textual Information

We introduce 110 features extracted from textual information, taking into consideration
the document complexity, the HTML structure and linguistic characteristics. A detailed
list of all features can be found in Appendix A.

Document Complexity Features. Based on the assumption that document complexity is
correlated with the user’s knowledge state on a topic, we have extracted several document
complexity-related features. Motivated by previous work [63] and our investigation on the
data, we extracted the number of words (c_word), length of words (c_char), and length of
sentences (c_sentence) as features. Related work [101] suggests that the syntactic structure
of a document, which can be represented by the ratio of the number of nouns, verbs,
adjectives, or other words (i.e., words that are not verb, noun or adjective) to the total words
(c_{noun, verb, adj, oth}), is likely to imply the intention and complexity of its content.

There are several widely used metrics for assessing the readability or complexity of
a textual document, which have been studied to be correlated with user’s knowledge
level [115]. We use Gunning Fog Grade6 (c_gi), SMOG [174] (c_smog) and Flesch-Kincaid
Grade [139] (c_fk) as features. Furthermore, the AoA dictionary proposed by Kuperman et
al. [144] contains a listing of more than 30,000 English words along with the age at which
native speakers typically learn the term , we compute the age-of-acquisition across all
words on Web pages (c_aoa), which provides another indicator of document complexity.

HTML Structural Features. A possible explanation of the finding that there is a negative
association between the number of hyperlinks embedded in a Web page and the user’s
KG [59] is that people may not focus on the content in the presence of too many embedded
links. Hence we extract the feature h_link by quantifying the number of outbound links
(i.e., the <a> elements in our case). Furthermore, we extracted more features that might
indicate the readability of a webpage based on HTML tags, namely, the average length of
each paragraph (h_p), the <ul> elements embedded (h_oth_ul), and the number of scripts
(h_script).

Linguistic Features. Related work [115] suggests that the amount of words on Web pages
that are correlated with different psychological processes and basic sentiment can influence
a learner’s cognitive state. The writing style could also affect the readability of a learning
resource and the engagement of readers. Motivated by the above observations, we use
the 2015 Linguistic Inquiry and Word Count (LIWC) dictionaries7 to compute linguistic
features that reflect the psychological processes, sentiment and the writing style of a Web
page content. The features of this category are denoted with the prefix l_ in the remainder
of this work.

6http://gunning-fog-index.com/
7http://liwc.wpengine.com/compare-dictionaries/

http://gunning-fog-index.com/
http://liwc.wpengine.com/compare-dictionaries/
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4.2.6 Experiments and Results

In this section, we report and discuss analysis results for the features described in Section
4.2.5 on our experimental dataset, which contains 113 search sessions. Users have issued
11.1 queries, and browsed 25.4 webpages on average in each session. On average there
was a significant increase in learners’ knowledge (KG = 2.15 ± 1.84 for full score of 10)
after the learning phase. The effect size for KG was large according to Cohen’s d = 1.29.
Average pre-knowledge score was 5.22 ± 1.76 and post-knowledge was 7.37 ± 1.6.

Textual Information

We computed the Pearson correlation coefficient (denoted as R) between all the features
introduced in Sections 4.2.5 and the three knowledge indicators (pre-KS, post-KS, and
KG) respectively. We extract resource-content based features and conduct analysis using
data collected from these 113 sessions. The high diversity of sessions led to a relatively
high p-value of the correlation scores. Due to space limitations, out of the 110 features, we
only report features showing meaningful correlations in Table 4.18, that is, the features
having correlation > 0.1 or < −0.1 with p < 0.05 for at least one of the three knowledge
indicators. We observe in Table 4.18 that, in total, 9 features fulfill the aforementioned
conditions. Among the nine features, seven are linguistic features extracted based on
LIWC dictionaries8 [212] (notations with prefix l_). The linguistic feature number of body
words (lbody) is moderately correlated (R > 0.2, p < 0.05) with KG. A potential reason could
be that lbody is representative of the domain knowledge corresponding to the learning task
in our study.

HTML based features number of <object> elements (hobj) and number of <img> elements
(himg) are weakly correlated with KG (R > 0.16, p < 0.1). The <object> element is used to
embed external resources in a webpage, which is often used for embedding video objects
in practice. Although we find positive linear relationship with number of objects and
users’ KG, we can not draw any conclusion without knowing its relation to the users’ prior
knowledge state. The impact of video watching behavior on KG is discussed further in
the next section. The himg features analyzed in this section provide a meaningful signal
for understanding the relationship between images in a webpage and users’ knowledge
changes. It is worth noting that it is different from the image features analyzed in Section
4.2.6, where the features are calculated based on screen recordings and focused on the
visual content that has been seen by the users and includes screenshots of videos. We did
not find any document complexity based feature that is linearly correlated with KG in our
dataset with p < 0.1.

8https://liwc.wpengine.com/

https://liwc.wpengine.com/
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pre-KS p-val post-KS p-val KG p-val
l_body -0.125 0.189 0.098 0.300 0.205 0.030
l_certain 0.023 0.809 0.244 0.009 0.190 0.044
h_img -0.067 0.481 0.145 0.126 0.190 0.044
h_obj 0.009 0.927 0.198 0.036 0.163 0.084
l_informal 0.103 0.275 0.261 0.005 0.128 0.176
l_netspeak 0.088 0.353 0.242 0.010 0.126 0.184
l_feel 0.148 0.117 0.188 0.046 0.022 0.819
l_prep 0.197 0.037 0.203 0.031 -0.011 0.906
l_work -0.053 0.574 -0.257 0.006 -0.172 0.068

Table 4.18: Results of the resource content features correlation. Findings with |R| > 0.1
and p < 0.05 are highlighted.

pre-KS p-val post-KS p-val KG p-val
imgsize -0.174 0.065 (1) 0.006 0.953 0.171 0.070 (2)
watch time in s -0.177 0.061 (1) -0.023 0.806 0.149 0.115
Background 0.117 0.217 0.025 0.792 -0.090 0.344
Images/Frames 0.142 0.134 0.041 0.668 -0.100 0.292
Text -0.164 0.083 (3) -0.029 0.760 0.131 0.166
Content list 0.072 0.450 0.003 0.973 -0.066 0.489
Heading -0.060 0.531 -0.114 0.230 -0.042 0.658
Menu bar 0.039 0.682 -0.103 0.277 -0.127 0.180

Table 4.19: Results of the document layout analysis. Findings with |R| > 0.1 and p < 0.1
are underlined. Labels (1) to (3) correspond to the referenced findings in the text.

Document Layout Analysis

Table 4.19 shows how the results of the document layout analysis correlate with the learning
performance of the participants. We discuss all findings within the 90% confidence interval,
since they might give hints for future research. The findings are numbered from (1) to (6)
and can be found in the Tables 4.19 and 4.20.

First, the pre-knowledge state shows a negative correlation with the imgsize seen by the
user as well as the video watch time in seconds. As mentioned before, these two features
describe similar characteristics of a document and correlate positively (corrpearson = 0.56).
Thus, our first finding (1) suggests, that people who knew more about the lightning
topic from the beginning searched less for audiovisual content. They presumably search
directly for details in more conventional websites to close the gaps of their knowledge
instead of watching a video that explains the whole procedure. Finding (2) regards that
KG has a positive correlation with imgsize. It can be explained by the fact that prior
knowledge and KG are strongly negatively correlated (corr=−0.61, p<0.001). In other
words, high KG usually correlates with a low pre-knowledge. In this sense, finding (2) is
consistent with finding (1) and suggests that users with a low pre-knowledge consumed
more audiovisual material and learned something. To understand finding (3), the negative
correlation of text shown on the website with higher pre-knowledge state, we have to take
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pre-KS p-val post-KS p-val KG p-val
Information
Visualisation

0.011 0.911 0.079 0.408 0.058 0.541

Infographic 0.020 0.831 0.120 0.207 0.085 0.372
Indoor 0.107 0.261 0.002 0.987 -0.100 0.290
Map 0.114 0.231 0.182 0.053 (4) 0.050 0.598
Outdoor 0.202 0.032 (5) 0.199 0.035 (6) -0.020 0.835
Technical Drawing 0.099 0.295 0.095 0.314 -0.012 0.900

Table 4.20: Results of the image type correlation analysis. Findings with |R| > 0.1 and
p < 0.1 are underlined and p < 0.05 marked as bold. Labels (4) to (6) correspond to the

references in the text.

into account another weak correlation (Images/Frames). Our results suggest that websites
visited by participants with higher pre-knowledge have the following characteristics: they
were comprised of more images (85% confidence interval) (as for low knowledge users) ,
but following finding (1), these images were smaller than the average. Thus, users with
high pre-knowledge viewed less videos, but web pages with some image content. Now,
finding (3) indicates that from these websites, people preferred those that had a lower
share of textual information and thus, more visual information. Or, in other words, larger
images that were directly embedded into the text rather than simple, optional thumbnails.

Image Type Classification

The second set of results, as shown in Table 4.20, presents the results of our content analysis.
We discuss the correlations within the 95% confidence interval. The finding (4) indicates
that (weather-)maps and post-knowledge are positively correlated. Content-wise, especially
weather maps may help understand the conditions necessary to form thunderclouds (areas
of high and low pressure) and lead to lightning. Findings (5) and (6) are related to the
correlation between Outdoor Images and pre- as well as post-knowledge state, that is the
more knowledgeable the participants were the more outdoor images they saw. It has to
be further investigated whether these were outdoor images that also had a explaining
function beyond simple decorations.

The results presented in the previous two subsections give some hints how the different
strategies of learners with different knowledge states can be related to search session
behavior.

Classification-Based Feature Analysis

Since one of the most important applications for our work is to allow search engines
to predict users’ knowledge states (and subsequently gain) depending on a set of given
learning resources automatically, we follow the classification approach for KG prediction
to further investigate the relation between user KG and the features extracted from
multimedia resources. We aim for a fair comparison with the state of the art in users’ KG
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prediction in Web search. Thus, we follow the same experimental setup as used by Yu,
Gadiraju, Holtz, Rokicki, Kemkes, and Dietze [293], in particular for the assignment of
labels, the applied classifier, and its parameter tuning, unless other settings are denoted.

Ground Truth. We group search sessions in their experimental dataset into three classes
based on the Standard Deviation Classification approach. We used statistically defined
intervals (X < −0.5 SD + X = low;−0.5 SD + X < X < 0.5 SD + X = moderate; 0.5 SD +

X < X = high) for the classification of the sessions with low, moderate, or high KG. By
following the same approach, we label the 113 sessions in our dataset which we can extract
both category of features based on the amount of KG exhibited in the session and result
in 44 low, 42 moderate and 27 high KG sessions.

Classifier. Random forest has shown to be the most effective classifier for KG prediction by
Yu et al. [293] and it assesses feature importance. Hence, in our study, we adopt a random
forest classifier, and tune the hyperparameters (max_depth, max_ f eatures, n_estimators) for
accuracy using grid search with the scoring metric accuracy and 10-fold cross-validation.
For our experiments, we used the scikit-learn library for Python 9.

Metrics. After tuning the hyper-parameters of each classifier, we run 10 repetitions of
10-folds cross-validation and evaluate the classification results of each classifier according
to the following metrics:

• Accuracy (Accu) across all classes: percentage of search sessions that were classified
with the correct class label.

• Precision (P), Recall (R), F1 (F1) score of class i: the standard precision, recall and
F1 score on the prediction result of each class i.

• Macro average of precision (P), recall (R), and F1 (F1): the average of the corre-
sponding score across three classes.

Classification Results

The average performance of 10 repetitions of the tuned random forest classifier is shown
in Table 4.21. Compared to the classifiers reported in related work [293], we have achieved
comparable performance with less training data (113 sessions versus 468 sessions) and
more unbalanced classes. We also present the performance of the random forest classifier
using behavior features (BE, i.e., the approach used in [293]) on our ground truth dataset in
the last row of Table 6 for reference. When comparing between model performances on our
dataset (Table 4.21), the feature combination visual information (VI) & textual information
(TI) outperforms using behavior features at 85% confidence level in terms of accuracy.
However, it is worth noting that, we did not manage to extract all the behavior features
introduced in the related work, in particular, the features relevant to the clicking on SERPs,
as the necessary data is not available in our dataset. Since we focus on understanding
the influence of textual and multimedia resource content on users’ KG during search, the

9https://scikit-learn.org/

https://scikit-learn.org/
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classification model and the analysis of user behavior features are out of the scope of this
work. We list the results of the classifier trained on user behavior features as evidence that
our classification has reached satisfying performance and can provide evidence for the
following analysis.

The classifier using features from both categories (VI&TI) has achieved the best perfor-
mance with respect to overall accuracy. This indicates that by analyzing the textual content
and multimedia features of user viewed Web resource, we could collect evidence for
predicting users’ KG. Compared between different classes, when using features from both
categories, the classifier performs better on low and moderate KG classes, a potential
reason is that the high KG class has the lease amount of training data in our ground truth
dataset.

Low Moderate High Macro Avg All
Feature P R F1 P R F1 P R F1 P R F1 Accu
VI&TI 41.5 52.0 46.1 39.1 40.0 39.5 28.4 14.8 19.1 36.4 35.6 34.9 38.7
TI 39.9 52.0 45.0 36.6 33.8 35.0 28.9 17.4 21.5 35.1 34.4 33.8 37.0
VI 38.0 38.0 37.9 38.0 38.1 38.0 30.8 31.1 30.8 35.6 35.7 35.6 36.4
BE [293] 39.7 47.0 43.0 37.4 39.5 38.4 34.9 21.1 26.0 37.3 35.9 35.8 38.1

Table 4.21: Result of KG classification showing our results regarding multimedia (VI),
textual (TI) features, and their combination and comparing them with the state-of-the-art

based on BE.

Feature Importance

To analyze the usefulness of individual features, we make use of the Mean Decrease in
Impurity (MDI) metric computed based on the Random Forest model. MDI is defined as
the total decrease in node impurity (weighted by the probability of reaching that node)
averaged over all trees of the ensemble [30]. We list and discuss the 20 features (Table 4.22)
with the highest and lowest MDI values.

We observe that 6 out of 10 features with highest importance are textual features, which
is intuitive as 1) there are more textual content features (110) than multimedia features
(13), and 2) with recent advances of natural language processing techniques, we were
able to design more sophisticated textual features such as the complexity of language
and emotions behind words, while it is still challenging to analyze the semantics behind
multimedia data. Nevertheless, results indicate that the 13 multimedia features have shown
promising importance for the classification, with Heading, imgsize, Menu Bar, Infographic,
Technical Drawing and Outdoor rank at 4, 5, 8, 9, 13, 15, respectively, among the 123 features
in total. None of the multimedia features falls into the 10 least important features according
to MDI. Among the six textual features with highest importance, five are linguistic based
features extracted based LIWC text analysis, and the rest one is document complexity
feature computed based on the SMOG Readability Formula.
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Highest Lowest
Rank feature MDI feature MDI
1 l_home 0.039 l_affect 0.004
2 l_relig 0.030 l_Tone 0.004
3 l_certain 0.018 l_power 0.004
4 Heading 0.018 l_AllPunc 0.003
5 imgsize 0.016 h_vid 0.003
6 c_smog 0.015 l_filler 0.003
7 l_focuspresent 0.015 l_sad 0.003
8 Menubar 0.015 h_aud 0.003
9 Infographic 0.014 l_Authentic 0.002
10 l_netspeak 0.014 h_obj 0.001

Table 4.22: Features having highest and lowest feature importance according to MDI
values.

4.2.7 Summary

In this section, we have investigated whether features describing multimedia resource
content can help predict users’ KG in a SAL task. Our results are based on a large lab study
with N=113 participants, where we recorded the individuals’ behavior and the accessed
Web resources. We extracted the textual and multimedia features to classify the KG of
the participants. Finally, we provided a comprehensive analysis of feature importance.
It was shown that the combination of our feature categories can serve for KG prediction
based on viewed resource content, which potentially can help improve a learning-oriented
search result ranking (if content features are used accordingly). Although the classification
accuracy is on a moderate level in terms of recall and precision, they suggest that KG
is predictable. Particularly image and video features improved the classification notably
when used jointly with text-based features.
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4.3 Summary

Research Question 2

To what extent can we extract textual, multimedia, and cross-modal features and
utilize them for knowledge gain prediction?

In this chapter we investigated how different uni- and cross-modal modalities influence
the success of knowledge gain prediction. The results showed that it is challenging to
determine a best type of feature for this task in general. As discussed in Section 1.3.2, results
in this research area depend on several circumstances, such as the learner’s cognitive
abilities, their pre-knowledge state, the topic, and the presentation itself. Results in
Section 4.1.6 indicated a slight advantage for text-based features, generated from semantic
sentence embeddings. Conversely, Section 4.2.6 showed that a combination of multimedia
and resource features leads to the best prediction accuracy.

This inconclusiveness suggests that we have not yet reached a level of automatic under-
standing that allows us to reliably forecast the knowledge gain for educational resources
of the variety we have analyzed in Chapter 3 and 4.

333

To better understand how information, in general, is perceived, Chapter 5 investigates
semantic image-text relations that describe the process of meaning-making between content
and learner.
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5 Semantic Image-Text Relations

Chapters 3 and 4 suggest that we have not yet reached a sufficient understanding of
the influence of multimodal information on the learning outcome. In this chapter, we
investigate multimodal meaning-making from a more general perspective. For this, we
explore possible combinations of visual and textual information backed up by research
from communication science with the goal of establishing a neural network-based classifi-
cation model, that is applicable to arbitrary content in the image-text domain. This goal is
summarized in the third and final research question:

Research Question 3

Based on insights from linguistics and visual communications, how can we derive
computational models that describe the relationship between image and text?

Sections 5.1–5.3.8 outline how we approach this research question, and Section 5.4
examines the applicability of the proposed system to other cross-modal domains.

5.1 Motivation

In our digitized world, we face multimodal information on a daily basis in various sit-
uations: consumption of news, entertainment, everyday learning or learning in formal
education, social media, advertisements, etc. Different modalities help to convey informa-
tion in an optimal manner that is facilitating effective and efficient communication. For
instance, imagine to describe the exact shape of a leaf in textual form or, on the contrary,
a specific date such as a birthday in solely visual form [103, 104]. Neither of them is
possible in a straightforward and comprehensible way, and in general, it is not possible
to translate every kind of information from one modality to another. Although a quote
says that “a picture is worth a thousand words”, it is normally very difficult or even
impossible to denote these words. Thus, to appropriately make use of a single modality
or two modalities is a key element for effective and efficient communication.

In a similar context, bridging the semantic gap has been identified as one of the key
challenges in image retrieval (and multimedia) research, defined as “the lack of coincidence
between the information that one can extract from the visual data and the interpretation
that the same data have for a user in a given situation” by Smeulders et al. [243]. One
challenge at this point in time was that information extraction from images was limited to
low-level features. As a consequence, most multimedia and computer vision approaches
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Figure 5.1: An example of a complex message portrayed by an image-text pair elucidating
the gap between the textual information and the image content.

(p by https://pixabay.com/service/license/)

aim to solve the (perceptual) problem of object and scene recognition, considering visual
concepts as semantic, high-level features. In fact, impressive progress has been reported for
tasks such as object and visual concept recognition [99, 142], or image captioning [135, 7]
in recent years. However, these approaches mostly address only one possible interpretation of
visual content focusing on, for instance, objects and persons, but lack capabilities of human
scene interpretation going beyond the visible scene content, i.e., interpreting symbols, gestures,
and other contextual information. The complexity increases when we consider multimodal
information or cross-modal references instead of solely visual information. The semantic gap is
often caused (or enlarged) by a modality gap, since there is no direct translation between
different modalities in general, as outlined above. In this chapter, we focus on the interplay
of visual and textual information. An example is depicted in Fig. 5.1, which illustrates
the interplay of interdependent textual and visual information. Today’s state-of-the-art
approaches normally do not contribute to answer intricate questions like “How much
context or meaning is shared between text and image independent of the amount of
shared concepts?” or “Does the type of information (or image-text class) match the current
user query or retrieval scenario?”. A deeper understanding of the multimodal interplay
of image and text and the resulting message is necessary to answer such questions. A
challenge is that textual and related visual information are often not directly aligned.
Moreover, their interplay is typically complex, and there is a large number of roles
image and text can take on. In communication sciences and linguistics, this fact is often
denoted as the “visual/verbal divide”, which, for example, is well observable in comics or
audiovisual data and examined in detail by Bateman [16].

Recently, this research topic has gained some attention from some computer science
researchers, who, either intentionally or unintentionally, assimilated ideas from communi-
cation sciences. Zhang et al. [298] investigate image-text relations in advertisements and
distinguish between equivalent and non-equivalent parallel information transfer. They
propose a method that automatically detects if the ad’s slogan and pictorial component
convey the same message independently or if there is a bigger, mutual message. While

https://pixabay.com/service/license/
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this distinction is useful, it has been actually proposed before but was termed differently
(e.g., additive and parallel [140], independent and complementary [167], and in a more general
manner in own previous work [103, 104]). Kruk et al. [143] tailor Marsh and White’s taxon-
omy [166] to measure the author’s intent of Instagram posts and two kinds of image-text
relations, namely the contextual relation between the literal meanings of the image and
caption, and the semiotic relationship between the meanings of the image and caption. To
address Instagram posts, they suggest additions to established definitions, thus making
their system less able to generalize to other domains. Henning and Ewerth [103, 104]
presented a more general approach by introducing two metrics to describe image-text
relations: cross-modal mutual information (CMI) and semantic correlation (SC). The metrics
are based on the assumptions that visual and textual information can relate to each other
a) based on their depicted or mentioned content or b) based on their semantic context.

In this chapter, we follow this paradigm and present the following contributions: After
presenting related work in the fields of Multimedia Retrieval and computable image-text
relations (Section 5.2), we first extend this set of two metrics by introducing a third
metric called “Status” based on insights from linguistics and communication sciences in
Section 5.3.1. Second, in Section 5.3.3, we show how this set of metrics can be used to
derive a set of eight semantic image-text classes, which are also coherent with studies
and taxonomies from linguistics and communication science. Third, we demonstrate how
to automatically gather samples from various Web resources in order to create a large
(training) dataset in Section 5.3.5, which we make publicly available. Finally, we present
two baselines in the form of deep learning systems to predict either the three metrics or
the eight image-text classes directly in Section 5.3.6. We evaluate them in Section 5.3.7.
Lastly, in Section 5.4, we investigate how well these models are able to generalize the
learned concepts by applying them to unseen content.

5.2 Related Work

Multimedia Retrieval

Numerous publications in recent years deal with multimodal information in retrieval
tasks. The general problem of reducing or bridging the semantic gap [243] between
images and text is the main issue in cross-media retrieval [217, 12, 185, 184, 289]. Fan et
al. [73] tackle this problem by modeling humans’ visual senses with a multi-sensory fusion
network. They handle the cognitive and semantic gap by improving the comparability of
heterogeneous media features and obtain good results for image-to-text and text-to-image
retrieval. Liang et al. [150] propose a self-paced cross-modal subspace matching method by
constructing a multimodal graph that preserves both the intra-modality and inter-modality
similarity. Another application is targeted by Mazloom et al. [173], who extract a set
of engagement parameters to predict the popularity of social media posts. While the
confidence in predicting basic emotions like happiness or sadness can be improved by
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multimodal features [288], even more, complex semantic concepts like sarcasm [229] or
metaphors [241] can be predicted. This is enabled by evaluating the textual cues in the
context of the image, providing a new level of semantic richness. The attention-based
text embeddings introduced by Bahdanau et al. [11] analyze textual information under
the consideration of previously generated image embeddings and improve tasks like
document classification [291] and image caption generation [126, 7, 147].

A prerequisite to using heterogeneous modalities is the encoding in a joint feature space,
which depends on the type of modality to encode, the number of training samples avail-
able, the type of classification to perform and the desired interpretability of the models [14].
One type of algorithms utilizes Multiple Kernel Learning [36, 81]. Application areas are
multimodal affect recognition [215, 124], event detection [292], and Alzheimer’s disease
classification [153]. Deep neural networks can also be utilized to model multimodal
embeddings. For instance, these systems can be used for the generation of image cap-
tions [135]; Ramanishka et al. [218] exploit audiovisual data and metadata, i.e., a video’s
domain, to generate coherent video descriptions “in the wild”, using a Convolutional
Neural Networks (CNN) [99]) to encode visual data. Alternative network architectures are
GoogleNet [253] or DenseNet [118].

STATUS 
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Figure 5.2: Part of Martinec and Salway’s taxonomy [167] that distinguishes image-text
relation based on status (simplified).

Image-Text Relations

The interpretation of multimodal information and the “visual/verbal divide” have been in-
vestigated in the field of visual communication and applied linguistics for many years [16].
One research direction in recent decades has dealt with assigning image-text pairs to
distinct image-text classes. In a pioneering work, Barthes [15] discusses the respective
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roles and functions of text and images. He proposes a first taxonomy, which introduces
different types of (hierarchical) status relations between the modalities. If status is unequal,
the classes Illustration and Anchorage are distinguished, otherwise their relation is denoted
as Relay.

Martinec and Salway [167] extend Barthes’ taxonomy and further divide the image-text
pairs of equal rank into a Complementary and Independent class, indicating that the informa-
tion content is either intertwined or equivalent in both modalities. They combine it with
Halliday’s [94] logicosemantics relations, originally developed to distinguish text clauses.
Martinec and Salway revised these grammatical categories to capture the specific logical
relationships between text and image regardless of their status. McCloud [176] focuses on
comic books, whose characteristic is that image and text typically do not share information
by means of depicted or mentioned concepts, albeit they have a strong semantic connection.
McCloud denotes this category as Interdependent and argues that “pictures and words go
hand in hand to convey an idea that neither could convey alone”. Other authors mention
the case of negative correlations between the mentioned or visually depicted concepts
(for instance, Nöth [192] or van Leeuwen [268]), denoting them Contradiction or Contrast,
respectively. Van Leeuwen also states that they can be used intentionally, e.g., in magazine
advertisements by choosing opposite colors or other formal features to draw attention to
certain objects.

Computable Image-Text Relations

Henning and Ewerth [103, 104] propose two metrics to characterize image-text relations
in a general manner: cross-modal mutual information and semantic correlation. They suggest
an autoencoder with multimodal embeddings to learn these relations while minimizing
the need for annotated training data. Zhang et al. [298] investigate image-text relations
in advertisements and distinguish, for instance, between equivalent parallel and non-
equivalent parallel information transfer. However, they disregard previous work, e.g., in
the field of communication science, and instead of utilizing previous definitions, define
their own set of relations. Kruk et al. [143] utilize Marsh and White’s taxonomy [166]
to model the author’s intent of Instagram posts. Two kinds of image-text relations are
suggested: the contextual relation between the literal meanings of the image and caption
and the semiotic relationship between the image and the caption.

More recently, Vempala and Preotiuc-Pietro [271] collected a dataset of tweets and labeled
them according to two rules: 1) does the image add information to the semantics of the
tweet or not, and 2) whether the literal information given in the text can be found in the
image or not. While this work helps describe the nature of tweet-based information, it is
not based on previous research and is also not comprehensive to all possible ways image
and text can interact. Next, Sharma et al. [238] extend the simple relations present in
typical image captioning datasets (e.g., MS COCO [151]) by, after applying an intricate
filtering mechanism, automatically pairing each image with their alt-texts from the Web.
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Figure 5.3: Overview of the proposed image-text classes and their potential use cases.

This provides a greater variety in image-text pairs and results, due to a large number of
samples, to better results on popular cross-modal retrieval benchmarks. However, specific
metrics are again not labeled and, thus, not comprehensively present.

Alikhani et al. [3] take another research direction and describe the joint message of both
modalities according to the discourse coherence theory by Hobbs [109] and Phillips [213].
According to [103], these coherences assume a positive semantic correlation and classify
the type of coherence in more detail. For example Subjective describes that the text gives
the author’s reaction of evaluation of what can be seen in the image. Alternatively, Action,
which entails that the text describes an extended process with the image being a snapshot
of that process. Yet, this coherence describes only one aspect of how image and text relate
to each other and is not holistic. Image-Text pairs that do not fit a category are labeled
Irrelevant. A more general approach is needed if we want to answer research question 4.

5.3 Characterization and Classification of Semantic Image-Text
Relations

5.3.1 Analysis and Discussion of Related Work

The discussion of related work reveals that the complex cross-modal interplay of image
and text has not been systematically modeled and investigated yet from a computer science
perspective. In this section, we derive a categorization of classes of semantic image-text
relations which can be used for multimedia information retrieval and Web search. This
categorization is based on previous work in the fields of visual communication (sciences)
and information retrieval. However, one drawback of taxonomies in communication
sciences is that their level of detail makes it sometimes difficult to assign image-text pairs
to a particular class, as criticized by Bateman [16].

First, we evaluate the image-text classes described in communication science literature. As
a point of departure, we consider Martinec and Salway’s taxonomy (Fig. 5.2), which yields
the classes Illustration, Anchorage, Complementary, and Independent. We disregard the class
Independent since it is very uncommon that both modalities describe exactly the same in-
formation. Next, we introduce the class Interdependent suggested by McCloud [176], which
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in contrast to Complementary consists of image-text pairs where the intended meaning
cannot be gathered from either of them exclusively. While a number of categorizations
does not consider negative semantic correlations at all, Nöth [192], van Leeuwen [268],
and Henning and Ewerth [103] consider this aspect. We believe that it is important for
information retrieval tasks to consider negative correlations as well, for instance, in order
to identify less useful multimodal information, contradictions, mistakes, etc. Consequently,
we introduce the classes Contrasting, Bad Illustration, and Bad Anchorage, which are the
negative counterparts for Complementary, Illustration, and Anchorage. Finally, we consider
the case when text and image are uncorrelated.

While one objective of our work is to derive meaningful, distinctive, and comprehensible
image-text classes, another contribution is their systematic characterization. For this
purpose, we leverage the metrics cross-modal mutual information (CMI) and SC [103].
However, these two metrics are not sufficient to model a wide range of image-text classes.
It is apparent that the status relation, originally introduced by Barthes [15], is adopted by
the majority of taxonomies established in the last four decades (e.g., [167, 264]), implying
that this relation is essential to describe an image-text pair. It portrays how two modalities
can relate to one another in a hierarchical way reflecting their relative importance. Either
the text supports the image (Anchorage), or the image supports the text (Illustration), or
both modalities contribute equally to the overall meaning (e.g., Complementary. This
encourages us to extend the two-dimensional feature space of CMI and SC with the status
dimension (status (STAT) ). In the next section, we provide definitions for the three metrics
and subsequently infer a categorization of semantic image-text classes from them. Our
goal is to reformulate and clarify the interrelations between visual and textual content in
order to make them applicable for multimodal indexing and retrieval. An overview of the
image-text classes and their mapping to the metrics, as well as possible use cases is given
in Figure 5.3.

5.3.2 Deduction of Semantic Image-Text Metrics

Concepts and entities

The following definitions are related to concepts and entities in images and text. Generally,
plenty of concepts and entities can be found in images ranging from the main focus of
interest (e.g., a person, a certain object, an event, a diagram) to barely visible or background
details (e.g., a leaf of grass, a bird in the sky). Normally, the meaning of an image is related
to the main objects in the foreground. When assessing relevant information in images, it
is reasonable to regard these concepts and entities, which, however, adds a certain level
of subjectivity in some cases. But most of the time the important entities can be easily
determined.



108 Chapter 5. Semantic Image-Text Relations

Cross-modal mutual information (CMI)

Depending on the (fraction of) mutual presence of concepts and entities in both image
and text, the cross-modal mutual information ranges from 0 (no overlap of depicted
concepts) to 1 (concepts in image and text overlap entirely). It is important to point
out that CMI ignores a deeper semantic meaning, in contrast to semantic correlation. If,
for example, a small man with a blue shirt is shown in the image, while the text talks
about a tall man with a red sweater, the CMI would still be positive due to the mutual
concept “man”. But since the description is confusing and hinders interpretation of the
multimodal information, SC of this image-text pair would be negative. Image-text pairs
with high CMI can be found in image captioning datasets, for instance. The images and
their corresponding captions have a descriptive nature, which is why they have explicit
representations in both modalities. In contrast, news articles or advertisements often have
a loose connection to their associated images by means of mutual entities or concepts. The
range of CMI is [0, 1].

Semantic correlation (SC)

The (intended) meaning of image and text can range from coherent (SC=1), over un-
correlated (SC=0) to contradictory (SC=−1). This refers to concepts, descriptions and
interpretation of symbols, metaphors, as well as to their relations to one another. Typi-
cally, an interpretation requires contextual information, knowledge, or experience and
it cannot be derived exclusively from the entities in the text and the objects depicted in
the image. The range of possible values is [−1, 1], where a negative value indicates that
the co-occurrence of an image and a text is contradicting and disturbs the comprehension
of the multimodal content. This is the case if a text refers to an object in an image and
cannot be found there, or has different attributes as described in the text. An observer
might notice a contradiction and ask herself “Do image and text belong together at all, or
were they placed jointly by mistake?”. A positive score on the contrary suggests that both
modalities share a semantic context or meaning. The third possible option is that there is
no semantic correlation between entities in the image and the text, yielding SC = 0.

Status (STAT)

Status describes the hierarchical relation between an image and text with respect to their
relative importance. Either the image is “subordinate to the text” (stat = T), implying
an exchangeable image which plays the minor role in conveying the overall message
of the image-text pair, or the text is “subordinate to the image” (stat = I), usually
characterizing text with additional information (e.g., a caption) for an image that is the
center of attention. An equal status (stat = 0) describes the situation where image and text
are equally important to convey the overall message.
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Images which are “subordinate to text” (class Illustration) ’elucidate’ or ’realize’ the
text. This is the case, if a text describes a general concept and the associated image
shows a concrete example of that concept. Examples for the class Illustration can be
found in textbooks and encyclopedias. On the contrary, in the class Anchorage the text is
“subordinate to the image”. This is the case, if the text answers the question “What can be
seen in this image?”. It is common that direct references to objects in the image can be
found and the readers are informed what they are looking at. This type of image-text pair
can be found in newspapers or scientific documents, but also in image captioning data
sets. The third possible state of a status relation is “equal”, which describes an image-text
pair where both modalities contribute individually to the conveyed information. Also,
either part contains details that the other one does not. According to Barthes [15], this
class describes the situation where the information depicted in either modality is part of
a more general message and together they elucidate information on a higher level that
neither could do alone.

5.3.3 Categorization of Image-Text Classes

In this section, we show how the combination of our three metrics can be naturally mapped
to distinctive image-text classes (see also Fig. 5.3). For this purpose, we simplify the data
value space for each dimension. The level of semantic correlation can be represented by
the interval [−1, 1]. Henning and Ewerth [103, 104] distinguish five levels of CMI and SC.
We, however, omit these intermediate levels since the general idea of positive, negative,
and uncorrelated pairs is sufficient for the task of assigning image-text pairs to distinct
classes. Therefore, the possible states of SC are: sc ∈ {−1, 0, 1}. For a similar reason,
finer levels for CMI are omitted, resulting in two possible states for cmi ∈ {0, 1}, which
correspond to no overlap and overlap. Possible states of status are stat ∈ {T, 0, I}: image
subordinate to text (stat = T), equal status (stat = 0), and text subordinate to image (stat = I).

If approached naively, there are 2 × 3 × 3 = 18 possible combinations of SC, CMI , and
STAT . A closer inspection reveals that (only) eight of these classes match with taxonomies
in communication science, confirming the coherence of our analysis. The remaining ten
classes can be discarded since they cannot occur in practice or do not make sense. The
reasoning is given after we have defined the eight classes that form the categorization.

Uncorrelated (cmi = 0, sc = 0, stat = 0)
This class contains image-text pairs that do not belong together in an obvious way. They
neither share entities and concepts nor there is an interpretation for a semantic correlation
(e.g., see Fig. 5.5, left).

Complementary (cmi = 1, sc = 1, stat = 0)
The class Complementary comprises the classic interplay between visual and textual infor-
mation, i.e., both modalities share information but also provide information that the other
one does not. Neither of them is dependent on the other one and their status is equal. It



110 Chapter 5. Semantic Image-Text Relations

ILLUSTRATION

COMPLEMENTARY

ANCHORAGE

UNCORRELATED

INTERDEPENDENT

CONTRASTING

BAD ANCHORAGE

BAD ILLUSTRATION

positive

uncorrelated

o
ve

rl
ap

n
o

o
ve

rl
ap

equal

image sub. to text

text sub. to image

equal

image sub. to text

text sub. to image

positive

uncorrelated

negative

negative

equal

image sub. to text

text sub. to image

equal

image sub. to text

text sub. to image

CMI

SC

SC

STATUS

STATUS

STATUS

STATUS

Figure 5.4: Our categorization of image-text relations. Discarded subtrees or leaves are
marked by an X for clarity. Please note that there are no hierarchical relations implied.

is important to note that the amount of information is not necessarily the same in both
modalities. The most significant factor is that an observer is still able to understand the
key information provided by either of the modalities alone (Fig. 5.5, right). The definitions
of the next two classes will clarify that further.

Interdependent (cmi = 0, sc = 1, stat = 0)
This class includes image-text pairs that do not share entities or concepts by means of
mutual information, but are related by a semantic context. As a result, their combination
conveys a new meaning or interpretation which neither of the modalities could have
achieved on its own. Such image-text pairs are prevalent in advertisements where compa-
nies combine eye-catching images with funny slogans supported by metaphors or puns,
without actually naming their product (Fig. 5.5, middle). Another genre that relies heavily
on these interdependent examples are comics or graphic novels, where speech bubbles
and accompanying drawings are used to tell a story. Interdependent information is also
prevalent in movies and TV material in the auditory and visual modalities.
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Figure 5.5: Examples for the Uncorrelated (left), Interdependent (middle) and Complementary
(right) classes. (p by https://pixabay.com/service/license/)

Figure 5.6: Examples for the Anchorage (left) and Illustration (right) classes. (pby
https://pixabay.com/service/license/)

Anchorage (cmi = 1, sc = 1, stat = I)
On the contrary, the Anchorage class is an image description and acts as a supplement for
an image. Barthes states that the role of the text in this class is to fix the interpretation of
the visual information as intended by the author of the image-text pair [15]. It answers
the question “What is it?” in a more or less detailed manner. This is often necessary since
the possible meaning or interpretation of an image can noticeably vary and the caption
is provided to pinpoint the author’s intention. Therefore, an Anchorage can be a simple
image caption, but also a longer text that elucidates the hidden meaning of a painting. It
is similar to Complementary, but the main difference is that the text is subordinate to image
in Anchorage (see Fig. 5.6).

Illustration (cmi = 1, sc = 1, stat = T)
The class Illustration contains image-text pairs where the visual information is subordinate
to the text and has therefore a lower status. An instance of this class could be, for example,

https://pixabay.com/service/license/
https://pixabay.com/service/license/


112 Chapter 5. Semantic Image-Text Relations

a text that describes a general concept and the accompanying image depicts a specific
example (Fig. 5.6). A distinctive feature of this class is that the image is replaceable by a
very different image without rendering the constellation invalid. If the text is a definition
of the term “mammal”, it does not matter if the image shows an elephant, a mouse, or a
dolphin. Each of these examples would be valid in this scenario. In general, the text is not
dependent on the image to provide the intended information.

Contrasting (cmi = 1, sc = −1, stat = 0)
Bad Illustration (cmi = 1, sc = −1, stat = T)
Bad Anchorage (cmi = 1, sc = −1, stat = I)
These three classes are the counterparts to Complementary, Illustration, and Anchorage: they
share their primary features, but have a negative SC (see Fig. 5.7). In other words, the
transfer of knowledge is impaired due to inconsistencies or contradictions when jointly
viewing image and text [103]. In contrast to uncorrelated image-text pairs, these classes
share information and obviously they belong together in a certain way, but particular
details or characteristics are contradicting. For instance, a Bad Illustration pair could consist
of a textual description of a bird, whose most prominent feature is its colorful plumage,
but the bird in the image is actually a grey pigeon. This can be confusing and an observer
might be unsure if she is looking at the right image. Similarly, contradicting textual
counterparts exist for each of these classes. In section 5.3.5, we describe how we generate
training samples for these classes.

Figure 5.7: Examples for the Contrasting (left), Bad Illustration (middle), and Bad Anchorage
(right) classes. (p by https://pixabay.com/service/license/)

Contradictory Image-Text Relations

The eight classes described above form the categorization as shown in Figure 5.4. The
following ten combinations of metrics were discarded, since they do not yield meaningful
image-text pairs.

Cases A: cmi = 0, sc = −1, stat = T, 0, I

https://pixabay.com/service/license/
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These three classes cannot exist: If the shared information is zero, then there is nothing
that can contradict one another. As soon as a textual description relates to a visual concept
in the image, there is cross-modal mutual information and CMI > 0.

Cases B: cmi = 0, sc = 0, stat = T, I
The metric combination cmi = 0, sc = 0, stat = 0 describes the class Uncorrelated of image-
text pairs which are neither in contextual nor visual relation to one another. Since it is
not intuitive that a text is subordinate to an uncorrelated image or vice versa, these two
classes are discarded.

Cases C: cmi = 0, sc = 1, stat = T, I
Image-text pairs in the class Interdependent (cmi = 0, sc = 1, stat = 0) are characterized
by the fact, that even though they do not share any information they still complement
each other by conveying additional or new meaning. Due to the nature of this class a
subordination of one modality to the other one is not plausible: Neither of the conditions
for the states image subordinate to text and text subordinate to image is fulfilled due to lack of
shared concepts and entities. Therefore, these two classes are discarded.

Cases D: cmi = 1, sc = 0, stat = T, 0, I
As soon as there is an overlap of essential depicted concepts there has to be a minimum
of semantic overlap. We consider entities as essential, if they contribute to the overall
information or meaning of the image-text pair. This excludes trivial background informa-
tion such as the type of hat a person wears in an audience behind a politician giving a
speech. The semantic correlation can be minor, but it would still correspond to SC = 1
according to the definition above. Therefore, the combination cmi = 1, sc = 0 and the
involved possible combinations of STAT are discarded.

5.3.4 Automatic Prediction of Semantic Image-Text Classes

In this section, we present our approach to automatically predict the introduced image-text
metrics and classes. We propose a deep learning architecture that realizes a multimodal
embedding for textual and pictorial data. Deep neural networks achieve better results,
when they are trained with a large amount of data. However, for the addressed task no
such dataset exists. Crowdsourcing is an alternative to avoid the time-consuming task of
manually annotating training data on our own, but requires significant efforts to maintain
the quality of annotations obtained in this way. Therefore, we follow two strategies to
create a sufficiently large training set. First, we automatically collect image-text pairs
from different open access Web sources. Second, we suggest a method for training data
augmentation (Section 5.3.5) that allows us to also generate samples for the image-text
classes that rarely occur on the Web, for instance, Bad Illustration. We suggest two classifiers,
a “classic” approach, which simply outputs the most likely image-text class, as well as a
cascaded approach based on classifiers for the three metrics. The motivation for the latter
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is to divide the problem into three easier classification tasks. Their subsequent “cascaded”
execution will still lead us to the desired output of image-text classes according to Fig. 5.4.
The deep learning architecture is explained in section 5.3.4.

5.3.5 Training Data Augmentation

The objective is to acquire a large training dataset of high quality image-text pairs with a
minimum effort in manual labor. On the one hand, there are classes like Complementary or
Anchorage available from a multitude of sources and can therefore be easily crawled. Other
classes like Uncorrelated do not naturally occur in the Web, but can be generated with little
effort. On the other hand, there are rare classes like Contrasting or Bad Anchorage. While
they do exist and it is desirable to detect these image-text pairs as well (see Fig. 5.3), there
is no abundant source of such examples that could be used to train a robust classifier.

Only few datasets are publicly available that contain images and corresponding textual
information, which are not simply based on tags and keywords but also use cohesive
sentences. Two examples are the image captioning dataset MSCOCO [151] as well as the
Visual Storytelling dataset VIST [119]. A large number of examples can be easily taken
from these datasets, namely for the classes Uncorrelated, Complementary, and Anchorage.
Specifically, the underlying hierarchy of MSCOCO is exploited to ensure that two randomly
picked examples are not semantically related to one another, and then join the caption of
one sample with the image of the other one to form Uncorrelated samples. In this way, we
gathered 60 000 uncorrelated training samples.

The VIST dataset has three types of captions for their five-image-stories. The first one “Desc-
in-Isolation” resembles the generic image-caption dataset and can be used to generate
examples for the class Anchorage. These short descriptions are similar to MSCOCO
captions, but slightly longer, so we decided to use them. Around 62 000 examples have
been generated this way. The pairs represent this class well, since they include textual
descriptions of the visually depicted concepts without any low-level visual concepts or
added interpretations. More examples could have been generated similarly, but we have to
restrict the level of class imbalance. The second type of VIST captions “Story-in-Sequence”
is used to create Complementary samples by concatenating the five captions of a story and
pairing them randomly with one of the images of the same story. Using this procedure,
we generated 33 088 examples.

While there are certainly much more possible constellations of complementary content from
a variety of sources, the various types of stories of this dataset give a solid basis. The same
argumentation holds for the Interdependent class. Admittedly, we had to manually label
a set of about 1 007 entries of Hussain et al.’s Internet Advertisements data set [121] to
generate these image-text pairs. While they exhibit the right type of image-text relations,
the accompanied slogans (in the image) are not annotated separately and optical character
recognition did not achieve high accuracy due to ornate fonts etc. Furthermore, some
image-text pairs had to be removed, since some slogans specifically mention the product
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Class Num. of Samples
Uncorrelated 60 000
Interdependent 1 007
Complementary 33 088
Illustration 5 447
Anchorage 62 637
Contrasting 31 368
Bad Illustration 4 099
Bad Anchorage 27 210

Table 5.1: Distribution of class labels in the
generated dataset.

Class Num. of Samples
STAT 0 125 463
STAT T 9 546
STAT I 89 847
SC -1 62 677
SC 0 60 000
SC 1 102 179
CMI 0 61 007
CMI 1 163 849

Table 5.2: Distribution of metric labels in
the generated dataset.

name. This contradicts the condition that there is no overlap between depicted concepts
and textual description, i.e., cmi= 0.

The Illustration class is established by combining one random image for each concept of
the ImageNet dataset [226] with the summary of the corresponding article of the English
Wikipedia, in case it exists. This nicely fits the nature of the class since the Wikipedia
summary often provides a definition including a short overview of a concept. An image
of the ImageNet class with the same name as the article should be a replaceable example
image of that concept.

The three remaining classes Contrasting, Bad Illustration and Bad Anchorage occur rarely
and are hard to detect automatically. Therefore, it is not possible to automatically crawl a
sufficient amount of samples. To circumvent this problem, we suggest to transform the
respective positive counterparts by replacing 530 keywords [152] (adjectives, directional
words, colors) by antonyms and opposites in the textual description of the positive
examples to make them less comprehensible. For instance, “tall man standing in front of a
green car” is transformed into a “small woman standing behind a red car”. While this does
not absolutely break the semantic connection between image and text, it surely describes
certain attributes incorrectly which impairs the accurate understanding and subsequently
justifies the label of sc= −1. This strategy allows us to transform a substantial amount
of the “positive” image-text pairs into their negative counterparts. Finally, for all classes
we truncated the text if it exceeded 10 sentences. In total the dataset consists of 224 856
image-text pairs. Table 5.1 and 5.2 give an overview about the data distribution, first
sorted by class and the second one according to the distribution of the three metrics, which
were also used in our experiments.

5.3.6 Design of Multimodal Deep Classifiers

As mentioned above, we introduce two classification approaches: “classic” and “cascade”.
The advantage of the latter is that it is easier to maintain a better class balance of samples,
while it is also the easier classification problem. For instance, example data of the classes
Contrasting, Bad Illustration, and Bad Anchorage are used to train the neural network how
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negative semantic correlation looks like. This should make the training process more
robust against overfitting and underfitting, but naturally also increases the training and
evaluation time by a factor of three.

Both methods follow the architecture shown in Figure 5.8, but for “cascade” three networks
have to be trained and subsequently applied to predict an image-text class. To encode
the input image, the deep residual network “Inception-ResNet-v2” [253] is used, which
is pre-trained on the dataset of the ImageNet challenge [226]. To embed this model in
our system, we remove all fully-connected layers and extract the feature maps with an
embedding size of 2048 from the last convolutional layer.

The text is encoded by a pre-trained model of the word2vec [183] successor fastText [130],
which has the remarkable ability to produce semantically rich feature vectors even for
unknown words. This is due to its skip-gram technique, which does not observe words as
a whole but as n-grams, that is a sum of word parts. For instance, the word library would
be decomposed into the following tri-grams: <li, lib, ibr, bra, rar, ary, ry>. Thus, it enables
the system to recognize a word or derived phrasings despite of typing errors. FastText
utilizes an embedding size of 300 for each word and we feed them into a bidirectional
GRU inspired by Yang et al. [291], which reads the sentence(s) forwards and backwards
before subsequently concatenating the resulting feature vectors. In addition, an attention
mechanism is incorporated through another convolutional layer, which reduces the image
encoding to 300 dimensions, matching the dimensionality of the word representation set
by fastText. In this way it is ensured that the neural network reads the textual information
under the consideration of the visual features, which enforces it to interpret the features
in unison. The final text embedding has a dimension of 1024. After concatenating image
(to get a global feature representation from the image, we apply average pooling to the
aforementioned last convolutional layer) and text features, four consecutive fully connected
layers (dimensions: 1024, 512, 256, 128) comprise the classification layer. This layer has two
outputs for CMI, three outputs for SC and STAT, or eight outputs for the “classic” classifier,
respectively. For the actual classification process in the cascade approach, the resulting
three models have to be applied sequentially in an arbitrary order. We select the order
CMI ⇒ SC ⇒ STAT, the evaluations of the three classifiers yield the final assignment to
one of the eight image-text classes (Fig. 5.4).

5.3.7 Experiments and Results

The dataset was split into a training set and a manually verified test set to ensure high
quality labels. It initially contained 800 image-text pairs, where for each of the eight
classes 100 examples were taken out of the automatically crawled and augmented data.
The remaining 239 307 examples were used to train the four different models (three for
the “cascade” classifier and one for the “classic” approach) for 100 000 iterations each with
the TensorFlow framework. The Adam optimizer was used with its standard learning rate
and a dropout rate of 0.3 for the image embedding layer and 0.4 for the text embedding
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Figure 5.8: General structure of the deep learning system with multimodal embedding.
The last fully connected layer (FC) has 2, 3, or 8 outputs depending on whether CMI
(two levels), SC/STAT (three levels), or all eight image-text classes (“classic” approach)

are classified.

layer. Also a softmax cross entropy loss was used and a batch size of 12 on a NVIDIA
Titan X. All images were rescaled to a size of 299 × 299 and Szegedy et al.’s [254] image
preprocessing techniques were applied. This includes random cropping of the image as
well as random brightness, saturation, hue and contrast distortion to avoid overfitting. In
addition, we limit the length of the textual information to 50 words per sentence and 30
sentences per image-text pair. All “Inception-ResNet-v2” layers were pre-trained with
the ILSVRC (ImageNet Large Scale Visual Recognition Competition) 2010 [226] dataset
to reduce the training effort. The training and test datasets are publicly available at
https://doi.org/10.25835/0010577.

To assure highly accurate ground-truth data for our test set, we asked three persons of our
group (one of them is a co-author) to manually annotate the 800 image-text pairs.

Class Uncorr. Interdep. Compl. Illustration Anchorage Contrasting Bad Illu. Bad Anch.
Recall 69.2% 97.6% 83.8% 83.7% 90.3% 89.0% 98.6% 91.9%
Precision 98.7% 96.3% 88.0% 80.7% 87.3% 78.3% 69.0% 87.0%
#Samples 149 100 106 95 95 87 71 95

Table 5.3: Comparison of the automatically generated labels with the annotations of the
three volunteers (i.e., ground-truth data) and the resulting number of samples per class

in the test set.

Each annotator received an instruction document that contained short definitions of the
three metrics (Section 5.3.2), the categorization in Fig. 5.4, and one example per image-text
class (similar to Figures 5.5-5.7). The inter-coder agreement has been evaluated using
Krippendorff’s alpha [141] and yielded a value of α = 0.847 (across all annotators, samples,
and classes). A class label was assigned, if the majority of annotators agreed on it for a
sample. Besides the eight image-text classes, the annotators could also mark a sample as
Unsure which denotes that an assignment was not possible. If Unsure was the majority

https://doi.org/10.25835/0010577
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Class Undef. Uncorrelated Interdep. Compl. Illustration Anchorage Contrasting Bad Illust. Bad Anch. Sum
Undefined 0 0 0 0 0 0 0 0 0 0
Uncorrelated 2 96 4 7 21 1 4 13 1 149
Interdependent 3 3 92 1 0 1 0 0 0 100
Complementary 1 0 1 93 0 2 9 0 0 106
Illustration 1 0 0 0 82 0 0 12 0 95
Anchorage 11 4 5 25 1 41 2 1 5 95
Contrasting 0 0 0 2 0 0 85 0 0 87
Bad Illustration 0 0 0 0 8 0 0 63 0 71
Bad Anchorage 9 2 0 4 0 6 33 0 41 95
Precision - 91.4% 90.2% 70.5% 73.2% 80.4% 63.9% 70.8% 87.2% -
Recall - 64.4% 92.00% 87.7% 86.3% 43.2% 97.7% 88.7% 43.1% -

Table 5.4: Confusion matrix for the “cascade” classifier on the testset of 798 image-text
pairs. The rows depict true positives (bold) and false negatives, i.e., the distribution of
the ground-truth samples over the eight classes (+ Undefined). The columns show the
true positives (bold) and false positives and thus, the samples that the model actually

identified as the respective class.

Class Undef. Uncorrelated Interdep. Compl. Illustration Anchorage Contrasting Bad Illust. Bad Anch. Sum
Uncorrelated - 67 3 5 23 34 5 11 1 149
Interdependent - 0 94 0 0 5 0 0 1 100
Complementary - 0 0 93 0 4 9 0 0 106
Illustration - 0 0 0 84 0 0 11 0 95
Anchorage - 2 2 0 2 83 0 0 6 95
Contrasting - 0 0 3 0 0 84 0 0 87
Bad Illustration - 0 0 0 2 0 0 69 0 71
Bad Anchorage - 2 0 0 0 21 1 0 71 95
Precision - 94.4% 94.9% 92.1% 75.7% 56.5% 84.8% 75.8% 89.9% -
Recall - 45.0% 94.0% 87.7% 88.4% 87.4% 96.5% 97.2% 74.7% -

Table 5.5: Confusion matrix for the “classic” classifier on the testset of 798 image-text
pairs. The rows depict true positives (bold) and false negatives, i.e., the distribution of
the ground-truth samples over the eight classes. The columns show the true positives
(bold) and false positives and thus, the samples that the model actually identified as the
respective class. (Undefined column was added for better comparability with Table 5.4.)

of votes, the sample was not considered for the test set. This only applied for two pairs,
which reduced the size of the final test set to 798.

Comparing the human labels with the automatically generated labels allowed us to
evaluate the quality of the data acquisition process. Therefore we computed how good
the automatic labels matched with the human ground truth labels (Table 5.3). The low
recall for the class Uncorrelated indicates that there were uncorrelated samples in the other
data sources that we exploited. The Bad Illustration class has the lowest precision and was
mostly confused with Illustration and Uncorrelated, that is the human annotators considered
the automatically “augmented” samples either as still valid or uncorrelated.

- CMI 0 CMI 1 SC 0 SC 1 SC -1 STAT 0 STAT T STAT I
Precision 87.7% 91.4% 81.8% 84.2% 86.6% 82.5% 82.2% 92.8%
Recall 80.3% 94.9% 90.5% 64.4% 88.4% 90.5% 100.0% 54.2%

Table 5.6: Performance of the single metric classifiers.

The results for predicting image-text classes using both the “classic” (Table 5.5) and
“cascade” approach (Table 5.4) are presented in confusion matrices by means of precision
and recall. For a better comparison, Fig. 5.9 shows the individual performance for each
image-text class. The overall results for our classifiers in predicting CMI, SC, STAT as
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Classifier CMI SC STAT Cascade Classic
Ours 90.3% 84.6% 83.8% 74.3% 80.8%
Henning & Ewerth [103] 68.8% 49.6% - - -

Table 5.7: Test set accuracy of the metric-specific classifiers and the two final classifiers
after 75 000 iterations.

well as the image-text classes are presented in Table 5.7. The accuracy of the classifiers for
CMI , SC and STAT ranges from 83.8% to 90.3%, while the two classification variations
for the image-text classes achieved an accuracy of 74.3% (cascade) and 80.8% (classic).
We also compared our method with our previous approach [103, 104] by mapping their
intermediate steps for CMI =0, 1, 2 to 0, CMI =3,4 to 1, and SC=±0.5 to ±1.

Figure 5.9: Results for both classifiers.

5.3.8 Discussion

As shown by Tables 5.4 and 5.5, the classic approach outperformed the cascade method
by about 6% in terms of accuracy, indicating that a direct prediction of the image-text
class is to be preferred over a combination of three separate classifiers. A reason might
be that an overall judgment of the connection between image and text is probably more
accurate than combining the independent ones, because all aspects of the multimodal
message are regarded. This is also pleasant since an application would only need to
train one classifier instead of three. Nonetheless, as can be seen in Table 5.7, results of
the single metric classifiers suggest that they are still useful for applications that require
just a single dimension, e.g., CMI for image captioning tasks. Regarding the image-
text classes Uncorrelated achieved the lowest recall indicating that both classifiers often
detected a connection (either in the SC dimension or CMI ), even though there was none.
This might be due to the concept detector contained in InceptionResnetV2 focusing on
negligible background elements that a human would not consider to be of importance
(cf. Section 5.3.2). However, the high precision indicates that if it was detected it was
almost always correct, in particular for the cascade classifier. The classes with positive
SC are mainly confused with their negative counterparts, which is understandable since



120 Chapter 5. Semantic Image-Text Relations

the difference between a positive and a negative SC is often caused by a few keywords
in the text. But the performance is still impressive when considering that positive and
negative instances differ only in a few keywords, while image content, sentence length
and structure are identical.

The “cascaded” classifier struggled the most with both Anchorage classes, confusing them
with Complementary and Contrasting. This is an indicator indicates that the Status classifier
failed to identify that the text is subordinate and as can be seen in Table 5.6, it has indeed
the lowest recall of the three dimensions. Another interesting observation can be reported
regarding the cascade approach: the rejection class Undefined, which is predicted if an
invalid leaf of the categorization (the crosses in Fig. 5.4) is reached, can be used to judge
the quality of our categorization. In total, 10 out of 18 leaves represent such an invalid
case, but only 27 image-text pairs (3.4%) of all test samples were assigned to it. Thus, the
distinction seems to be of high quality which is due to the good results of the classifiers
for the individual metrics (Table 5.7).

Figure 5.10: Example predictions of the “classic” classifier. Green box: correct prediction;
Red box: false prediction.

Fig. 5.10 shows some examples for correctly and incorrectly predicted image-text
pairs. The third column in this Figure shows a false prediction of an uncorrelated pair
as anchorage. There were some errors of false positives for anchorage (or illustrations),
which seem to be partially caused by the typically corresponding shorter (or longer) text
length. But the overall results indicate that the system does not solely rely on this feature,
of course, otherwise a distinction of eight classes of this quality would not have been
achievable. This is supported also by the correctly predicted example in Fig. 5.10, left,
where despite the short text the image-text pair is classified as uncorrelated (and not as
anchor).
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5.4 Applicability of the proposed Image-Text Metrics

5.4.1 Motivation

In the following section we assess the applicability of the proposed image-text relations and
classes in other cross-modal domains. We choose two recent works that provide datasets
for their cross-modal applications and assess how the trained models from Section 5.3.7 are
able to predict semantic image-text relations on unseen data. This task can be considered
zero-shot since we do not fine-tune our models on the new data and directly predict our
image-text metrics and classes on data from two domains unknown to these models.

The first dataset, Conceptual Captions by Sharma et al. [238], goes beyond simple image
captioning (cf., MS COCO [151]). It processes billions of images and their associated
alt-texts from the Web. Their framework makes a specific effort only to consider alt-texts of
high value. The authors ensure to check for a high unique word ratio that covers various
word types, low token repetition, capitalization, and the application of pornography and
profanity filters. It also scans for common sequences (e.g., ”click to enlarge“, ”stock
photo“), and thus allows only 3% of candidates to pass their system. They also filter
out candidates for which none of the text tokens can be mapped to parts of the image.
Thus, all image-text classes with CMI = 0 are dismissed depending on the chosen concept
classification algorithm. Nonetheless, we hope that our predicted image-text combinations
go beyond the Anchorage class and present a certain variety in semantic image-text classes.
There are no further annotations provided.

Second, Vempala and Preotiuc-Pietro [271] published a Tweet-based dataset (Twitter
Dataset from here on). Their goal is to determine the cross-modal relationship in terms of
image-text classes similar to our the approach in Section 5.3. The main difference between
our categorization and theirs is that we attempt a general approach, while they focus
solely on the prediction of possible image-text relations with positive SC that appear in
Twitter posts, see Figure 5.11.

Figure 5.11: Examples of the four classes presented in Vempala and Preotiuc-Pietro’s
work. According to the categorization in Section 5.3 example (a) is Anchorage, (c) is

Complementary, (b) and (d) are Interdependent. Source: [271].



122 Chapter 5. Semantic Image-Text Relations

We are not able to use the labels provided by the authors directly since their definitions
differ from the metrics discussed in Section 5.3. As shown in Figure 5.11, Vempala and
Preotiuc-Pietro [271] distinguish between different relations with regards to 1) whether
the text is represented in the image (similar to our CMI metric) and 2) the image adds to
the meaning of the text or not. The second metric is inspired by whether image and text
convey their information in parallel, meaning they generally portray similar information
and are thus, independent or not (cf. equal Status in Figure 2.14). If not, they either
complement each other (Complementary) or their meaning is multiplied (Interdependent).
However, even though the first metric captures the difference between CMI = 0 and
CMI = 1, the different combinations associated with the other metric combinations can
not be expressed. Conversely, examples (b) and (d) in Figure 5.11 are of the Interdependent
class by our definition, but the authors again distinguish between whether the image adds
to the text meaning or not. This distinction is, however, only uni-directional (”image adds
to text“) and subjective to an extent. For example, Figure 5.11 (d) is labeled as ”image
does not add to the text“, while one could argue that the emotions on the person’s face
convey the author’s emotion about the finalization of their bachelor’s studies.

Consequently, we manually label 1000 samples of the Twitter Dataset and the Conceptual
Caption dataset to evaluate the performance of our proposed classifiers. Our goal is to
assess how well the proposed deep neural networks are able to generalize the intricate
cross-modal relations. Since the following experiments took place two years after the
publication of the work in Section 5.3, we decided to replace some of the components of
the multimodal embedding with newer or other components. Specifically, we replaced
the image encoder with a ResNet-101 [99] and the text encoder with Bert_base [60]. The
improvements are documented in Table 5.8. We achieve an overall better performance in
all three metrics, from 3.31% for CMI, 3.5% for SC, and 10.56% for STAT. Surprisingly, the
approach without the attention mechanism achieved the best overall score.

Image-Encoder Text-Encoder Attention CMI SC Stat IT Class
ResNet-101 BERT-base no 93.61% 88.1% 94.36% 87.59%
ResNet-101 BERT-base yes 93.23% 87.47% 93.86% 86.97%
InceptionResnetV2 fastText yes 90.3% 84.6% 83.8% 80.8%

Table 5.8: Performance of the improved versions of the multimodal embedding approach
proposed in Section 5.3.7. The last line is the old model for comparison. The highlighted

model in line one was used for the following experiments.

5.4.2 Experiments

The following Table 5.9 shows the distribution of image-text classes in the two manually
annotated subsets.

The annotation shows that Conceptual Captions, as expected, consists of around 60%
Anchorage samples, but also a fair amount of Interdependent (16.9%) and Complementary
(16.7%) image-text pairs in addition to samples with negative semantic correlation. As
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Class Conceptual Captions Twitter dataset
Uncorrelated 8 5
Interdependent 169 737
Complementary 167 162
Illustration 11 14
Anchorage 597 74
Contrasting 3 2
Bad Illustration 26 0
Bad Anchorage 19 6
Sum 1000 1000

Table 5.9: The distribution of semantic image-text classes after manual annotation of
1000 samples of the Twitter dataset and Conceptual Captions dataset.

for the Twitter Dataset, the majority (73.7%) of samples represent the Interdependent class,
presumably due to the way information is portrayed in social media in the form of memes
and loose references to the visual content (compare again Figure 5.11. The remainder of
the Twitter Dataset is comprised of Complementary and Anchorage samples, and also a few
Illustrations. Following Section 5.3 we conduct the classification once directly (”classic“)
and in a cascaded manner.

Twitter Dataset Discussion

Class Uncorr. Interdep. Compl. Illustr. Anchorage Contr. Bad Illustr. Bad Anch. Sum
Uncorrelated 0 1 3 0 1 0 0 0 5
Interdependent 16 173 140 1 407 0 0 0 737
Complementary 4 24 36 0 97 0 0 1 162
Illustration 0 3 3 0 8 0 0 0 14
Anchorage 2 9 15 0 48 0 0 0 74
Contrasting 0 0 0 0 2 0 0 0 2
Bad Illustration 0 0 0 0 0 0 0 0 0
Bad Anchorage 0 1 0 0 5 0 0 0 6
Precision 0.0% 81.99% 18.27% 0.0% 8.45% - - 0.0% 1000
Recall 0.0% 23.47% 22.22% 0.0% 64.86% - - 0.0% 1000
Section 5.3.7
Precision 0.00% 79.17% 0.00% 2.23% 5.71% 0.00% 0.00% 0.00% 1000
Recall 0.00% 43.83% 0.00% 85.71% 2.70% 0.00% 0.00% 0.00% 1000

Table 5.10: The results of the Twitter dataset examination using the direct classic approach.
It achieved an accuracy of 25.70% while the model from Section 5.3.7 achieved 33.70%.
The rows depict true positives (bold) and false negatives, i.e., the distribution of the
ground-truth samples over the eight classes. The columns show the true positives
(bold) and false positives and thus, the samples that the model actually identified as the

respective class.

As can be seen in Table 5.10 the classifier achieved an overall accuracy of 25.7%,
which is lower than the performance of the model from Section 5.3.7 as it achieved
an approximately 20% higher recall on the majority class Interdependent. Still, we can
consider both a mild success because 73.7% of the dataset consists of this intricate class,
whereas the underlying dataset gathered in Section 5.3.5, provides merely 1007 samples
for the training process. Further, their positive semantic correlation is often based on
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humor, irony, or sarcasm, which is difficult to detect. The model was able to identify 173
samples (23.47%) and mistook the rest for the Complementary and Anchorage class, which is,
however, still the correct guess for the semantic correlation metric. It is also positive that
only 16 image-text pairs were labeled as Uncorrelated, even though there was no overlap
in visual/textual concepts and entities in the 737 Interdependent samples. Also, only a
few classes were falsely labeled as Interdependent as the class achieved a high precision of
81.99%. Besides the Anchorage class, which yielded the highest recall of 64.86%, possibly
due to the high number of samples in the training data, the other results are (as expected
for a full domain transfer) unsatisfactory. The model detected the second most common
class, Complementary, only 36 out of 162 times and falsely assigned it to Anchorage 97
times. However, the distinction between these two classes is difficult as the model has to
identify whether one modality provides additional information to the overall message or
the caption is just a description of the shown visual content. Eight qualitative examples of
correct and incorrect classified samples can be seen in Figure 5.12.

Figure 5.12: Four correctly classified and four misclassified examples of the Twitter
dataset predicted by the the ”classic“ approach.

As can be seen, starting in the top row, our model correctly identified two non-trivial
Interdependent samples with no visual overlap. Again, this is especially surprising since
samples of this kind were not present in the training data. As a reminder, all training
examples of this class are based on advertisements. Sample three and four depict correctly
identified, non-trivial Anchorage and Complementary pairs.

The analysis of the second sample row reveals possible future extensions of the proposed
categorization. Our model identified the first example as Anchorage, perhaps due to the
referencing nature of the caption that denotes the image content as ”sweet“. However,
there is no overlap in shown concepts or entities, which is why this image falls into the
Interdependent category. Nonetheless, maybe the Status relation is not always equal for
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Interdependent samples. We can further strengthen this argument by examining the second
pair that, again, has no content overlap. The part of the caption saying ”[..]Here’s one [..]“,
however, implies that the author references the image and adds additional information to
it, but without actually naming what can be seen. The two image-text pairs on the bottom
were, presumably, misclassified due to missing context information, e.g., how the inside of
an avocado looks like.

Class Undef. Uncorr. Interdep. Compl. Illustr. Anchorage Contr. Bad Illustr. Bad Anch. Sum
Undefined 0 0 0 0 0 0 0 0 0 0
Uncorrelated 0 0 1 4 0 0 0 0 0 5
Interdependent 12 5 165 507 14 31 2 0 1 737
Complementary 0 0 31 108 4 15 3 0 1 162
Illustration 0 0 0 10 2 2 0 0 0 14
Anchorage 3 1 12 45 3 10 0 0 0 74
Contrasting 0 0 1 1 0 0 0 0 0 2
Bad Anchorage 1 0 2 3 0 0 0 0 0 6
Bad Illustration 0 0 0 0 0 0 0 0 0 0
Precision - 0.0% 77.83% 15.93% 8.70% 17.24% 0.0% 0.0% 0.0% 1000
Recall - 0.0% 22.39% 66.67% 14.29% 13.51% 0.0% 0.0% 0.0% 1000
Section 5.3.7
Precision 0.00% 0.52% 81.30% 15.65% 4.88% 6.17% 0.00% 0.00% 0.00% 1000
Recall 0.00% 20.00% 42.47% 11.11% 14.29% 6.76% 0.00% 0.00% 0.00% 1000

Table 5.11: The results of the Twitter dataset examination predicted by the cascaded
approach where invalid combinations of the three metrics CMI, SC, and STAT are denoted
as Undefined. It achieved an accuracy of 28.5% while the model from Section 5.3.7 achived
33.90%. The rows depict true positives (bold) and false negatives, i.e., the distribution of
the ground-truth samples over the eight classes (+ Undefined). The columns show the
true positives (bold) and false positives and thus, the samples that the model actually

identified as the respective class.

For comparison, Table 5.11 shows the results of the cascaded approach that achieved
a slightly higher accuracy of 28.5%, similar to the model from Section 5.3.7. The most
noticeable difference between the two methods is that the majority of the Interdependent
samples were confused with Complementary rather than Anchorage. While this is closer
to the right decision since the Status metric is identified as equal, the CMI model falsely
picked up an overlap for the majority of pairs. Again though, this method was able to
achieve a high precision (77.83%) for the identified Interdependent samples and confuse
only five of them with Uncorrelated.

Conceptual Captions Dataset Discussion

The classification of the image-text pairs from the Conceptual Captions dataset yielded an
overall better result when compared to the Twitter Dataset by means of accuracy (54.3%
for classic, 55.9% for cascaded). Presumably, the less challenging Anchorage class, which
constitutes 59.7% of the samples, is the reason for that. However, the original model
from Section 5.3.7 performed significantly worse than that, with accuracies of 12.80% for
classic and 10.80% for cascaded. It classified the majority of Anchorage samples as either
Uncorrelated (305) or Interdependent (179). It is challenging to determine the cause for this
performance drop with certainty. An educated guess would be that the original model
overfitted on a certain structural feature of the Anchorage samples, for example, text length.
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Since this feature was most likely different in the Conceptual Captions dataset, it could
not identify this class correctly. We will discuss these and other limitations in more detail
in Section 6.2.

Class Uncorr. Interdep. Compl. Illustr. Anchorage Contr. Bad Illustr. Bad Anch. Sum
Uncorrelated 0 1 1 0 6 0 0 0 8
Interdependent 10 22 4 0 132 0 0 1 169
Complementary 14 9 5 2 136 0 0 1 167
Illustration 1 2 0 1 7 0 0 0 0
Anchorage 55 11 4 0 514 0 0 13 597
Contrasting 0 0 0 0 3 0 0 0 0
Bad Illustration 2 0 2 0 21 0 0 1 0
Bad Anchorage 2 0 0 0 16 0 0 1 19
Precision 0.0% 48.89% 31.25% 33.33% 61.56% - - 5.88% 1000
Recall 0.0% 13.02% 2.99% 9.09% 86.10% - - 5.26% 1000
Section 5.3.7
Precision 0.00% 19.56% 0.00% 1.73% 75.00% 0.00% 0.00% 0.00% 1000
Recall 0.00% 57.99% 0.00% 72.73% 3.52% 0.00% 0.00% 0.00% 1000

Table 5.12: The results of the Conceptual Captions examination predicted by the classic
approach. It achieved an accuracy of 54.3% while the model from Section 5.3.7 achived
12.70%. The rows depict true positives (bold) and false negatives, i.e., the distribution of
the ground-truth samples over the eight classes. The columns show the true positives
(bold) and false positives and thus, the samples that the model actually identified as the

respective class.

For the newer implementation, as can be seen in Tables 5.12 and 5.13, both models were
able to identify a promising number of Anchorage pairs with recalls of 86.1% for classic and
79.23% for cascaded. The corresponding precision values are 61.56% and 71.99%. Besides
that, both approaches also achieved moderate precision scores (48.89% for classic and
41.12% for cascade) for the 169 Interdependent samples but paired with low recall (13.02%
and 26.04%). For this discussion, we want to take a closer look at the more intricate
image-text classes found in the dataset.
Figure 5.13 shows four correct and four incorrectly classified samples. They start with
two Interdependent pairs that successfully picked up the semantic connection between the
shown visual and textual information. This is followed up by a Bad Anchorage where the
model was able to identify that the shown animal is not a crane but a stork. The fourth
sample shows a typical Complementary sample whose text provides additional information
to the image. The second row of results shows instances where the model failed. On
the left, it can be assumed that the model associated the word ”photography“ with the
camera and therefore concluded on Complementary rather than Interdependent. Similarly,
the second example shows no overlap of entities and concepts. It also provides another
example of an Interdependent image-text pair with a reference. The third example shows
another possible drawback of the underlying dataset: objects are only represented in a
realistic setting. As a result, the skyscrapers in this digital image were not detected, and
the model decided on the wrong class. However, it is common to find imagery from
drawings, comics, video games, or virtual reality in modern media. The final example
was a mix-up between Anchorage and Bad Anchorage. We can not see a tour boat in the
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Figure 5.13: Four correctly classified and four misclassified examples of the Conceptual
Captions dataset predicted by the ”classic“ approach.

image, just a light trail. Again, this type of negative semantic correlation was not present
in the training data.

Class Undefined Uncorr. Interdep. Compl. Illustr. Anchorage Contr. Bad Illustr. Bad Anch. Sum
Undefined 0 0 0 0 0 0 0 0 0 0
Uncorrelated 2 0 3 1 0 2 0 0 0 8
Interdependent 12 5 44 34 1 72 0 1 0 169
Complementary 10 7 27 40 4 75 1 0 3 167
Illustration 0 0 3 3 1 4 0 0 0 0
Anchorage 34 31 23 23 0 437 1 0 12 597
Contrasting 0 0 0 0 0 3 0 0 0 0
Bad Illustration 2 2 3 2 0 17 0 0 0 0
Bad Anchorage 1 0 4 2 0 11 0 0 1 19
Precision - 0.0% 41.12% 38.10% 16.67% 71.99% 0.0% 0.0% 6.25% 1000
Recall - 0.0% 26.04% 23.95% 9.09% 79.23% 0.0% 0.0% 5.26% 1000
Section 5.3.7
Precision 0.00% 0.42% 21.70% 18.31% 0.00% 52.17% 0.00% 0.00% 0.00% 1000
Recall 0.00% 25.00% 40.83% 7.78% 0.00% 4.02% 0.00% 0.00% 0.00% 1000

Table 5.13: The results of the Conceptual Captions examination predicted by the cascaded
approach where invalid combinations of the three metrics CMI, SC, and STAT are denoted
as Undefined. It achieved an accuracy of 55.9% while the model from Section 5.3.7 achived
10.80%. The rows depict true positives (bold) and false negatives, i.e., the distribution of
the ground-truth samples over the eight classes (+ Undefined). The columns show the
true positives (bold) and false positives and thus, the samples that the model actually

identified as the respective class.
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5.4.3 Conclusion

This section investigated whether the samples in the dataset curated in Section 5.3.5 suffice
to model the proposed image-text relations in a way that allows the trained models to
detect them reliably in unseen data as well. The results give us confidence that the model
somewhat generalized the task. However, the achieved performance is not yet satisfactory.
We can assume that the reasons for this are the lack of diversity of the underlying data
sources, the class imbalance, and the basic approach to model the shared multimodal
embeddings. More recent works in related tasks such as fake news detection [242]
incorporate real-world information with the help of, e.g., knowledge graphs [302], and put
more effort into modeling the inter- and intramodal relationship and the feature fusion
process [222]. However, this goes beyond the scope of this thesis and is topic for future
work.
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5.5 Summary

Research Question 3

Based on insights from linguistics and visual communications, how can we derive
computational models that describe the relationship between image and text?

In this chapter, we made an effort to understand the fundamentals of meaning-making
in the domain of visual and textual information. With regards to research question 3, we
showed how we can transfer image-text relations from linguistics to computer science. In
particular, we proposed definitions for three image-text metrics (CMI, SC, STAT), explained
their origins and showcased examples. We derived eight semantic image-text classes based
on these metrics and consolidated them in a categorization. Afterward, multiple data
augmentation techniques were utilized to gather a dataset of image-text pairs from various
Web sources and cross-modal datasets. With this, we trained two CNN-based classifiers to
predict 1) our metrics individually and 2) the image-text classes directly.

Finally, to determine our models’ applicability and ability to generalize to unseen
content, we evaluated them on two unseen datasets. The experiments revealed that our
models can predict image-text classes ”in-the-wild“ with an accuracy of 54.4% for classic
and 55.9% for cascaded. Regarding generalizability, the results indicate that the model is
able to distinguish between uncorrelated content and samples that appear uncorrelated
(Interdependent) because they share no concepts or entities (CMI = 0), but convey their
message through, for instance, irony, humor, or metaphors.

333

The next chapter summarizes the thesis, outlines the findings and contributions,
discusses their limitations, and details areas for future work.
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6 Conclusions

This chapter summarizes the thesis, gives an overview of the contributions (Section 6.1),
and relates the findings to the research questions described in Chapter 1. In Section 6.2
we discuss the limitations of the proposed methods, while Section 6.3 outlines possible
avenues for future work on the respective research tasks.

6.1 Summary and Contributions

Research Question 1

How can we utilize textual metadata associated with learning content to improve
exploratory search in video search portals?

The experiments in this thesis shed light on various parts of the Web-based learning
process, starting in Chapter 3. Concerning Research Question 1, we investigated how the
TIB AV-Portal, a scientific video Web platform, can be improved by means of machine
learning methods, specifically NLP-based methods. We proposed two algorithmic solu-
tions to improve the explorative search capabilities. First, we implemented a recommender
system that considers content similarities derived via semantic word embeddings from tex-
tual metadata. We showed how to supplement the video metadata with external resources
to strengthen these recommendations. A usability test revealed that this approach can
return satisfactory results and that we can utilize external resources to improve the quality
of the rather superficial keywords (automatically generated by the AV-Portal system).
Second, we implemented a visualization technique to summarize the content of the longer
videos in the learning domain. With the help of semantic word embeddings we could
consolidate the topics of a video in an interactive, explorable visualization. Evaluation
of the correctness of the visualizations with the help of a user study showed that our
approach produced accurate representations of the video content.

Research Question 2

To what extent can we extract textual, multimedia, and cross-modal features and
utilize them for knowledge gain prediction?

Chapter 4 has gone beyond considering only text-based information. Our goal was
to obtain a richer representation of the modalities present in a learning resource, that
is visual and auditory features. Considering Research Question 2, we estimate how
useful the individual modalities are with respect to the task of KG prediction. This
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assessment entailed design aspects that describe the individual compositions of slide
content, visual content features like the image type, acoustic features that describe the
lecturer’s presentation, and cross-modal features that combine some of these aspects.
Also, we extended the list of textual features by adding syntactic, structural, lexical,
and readability metrics. In Section 4.1.6, we have presented a broad set of experiments
that evaluate the performance of four different classifiers on all possible combinations of
multimedia, text, and sentence embedding feature-sets. The results suggest that depending
on the two tasks, namely 1) KG prediction for a specific video for an arbitrary learner or
2) predicting the individual KG of a learner on a given video, different feature sets have to
be applied for better results. We have found indications that multimodal and cross-modal
features that describe the visual layout of the content and the auditory presentation quality
are a better indicator for predicting the user-independent KG for an individual video.
Conversely, textural features that describe, for instance, the readability, complexity, and
structure of the content are more suited to predict the KG for a video when the learner’s
personal performance is considered. In summary, these results hint at which modality to
focus on, depending on the task. They also imply that the consideration of multimodal
features, besides features representing text content, might be beneficial, and dismissing
cues could be suboptimal. As shown in Section 4.1.6, a feature importance analysis can
help identify the optimal subset for the task at hand.

Next, our work in Section 4.2 has considered another set of multimedia features in
conjunction with textual features. Therefore, we utilized a dataset of log data from a
larger user study. We proposed an almost automatic Multimedia Extraction Framework to
gather statistics about the Web-based content each learner saw. These statistics contained
information about the document layout and image content. Our correlation analysis
in Section 4.2.6 indicated that (1) learners with low pre-knowledge preferred audio-
visual content more than textual. Presumably, video content is more suited to give a
first impression of a topic, while learners can explore textual content more efficiently to
close gaps in existing knowledge. Finding (2) showed that a low pre-knowledge state
correlated with a larger observed image size (i.e., video frames), which supports this
hypothesis. Nonetheless, finding (3) showed that if learners with higher pre-knowledge
utilized websites with images, a large and embedded layout is favorable compared to
thumbnail-type images. Further, we showed that pre- and post-knowledge states correlate
with some of the observed image types.

Research Question 3

Based on insights from linguistics and visual communications, how can we derive
computational models that describe the relationship between image and text?

In Chapter 5, we have explored the subareas of linguistics and visual communications
that have studied the fundamentals of meaning-making through different modalities for
decades. Our goal, as outlined by Research Question 3, was to exploit interdisciplinary
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knowledge regarding interpretable, computable metrics that describe the relationship
between images and their associated text. We have considered research from computer
science and communication science and suggested to extend a set of two image-text metrics
(CMI and SC), as introduced by previous work, by a third metric (STAT). From there
we derived a categorization of eight semantic image-text classes. These metrics describe
fundamentally the different ways how information in visual and textual information
are connected in order to convey an intended message. We have collected an extensive
dataset with image-text pairs by augmenting and combining multimedia datasets and
other Web resources. Further, we have proposed a multimodal neural network architecture
for classification that predicts the individual metrics as well as image-text classes with
satisfactory accuracy. Finally, we have investigated how well these models generalize
this task by applying the trained models to challenging, unseen data in form of 1) a
Tweet-based dataset and 2) a dataset of images from the Web and their alt-texts. On the
one hand, the experiments achieved mediocre results (54.4% and 55.9% accuracy) for
the task of image-text class prediction, which requires all three underlying metrics to
be correct (cf. Section 5.4.3). However, the models’ ability to detect a positive semantic
correlation for unseen samples of the Interdependent class was surprisingly good. These
results indicate that, by increasing the variance and sample size of the underlying dataset,
the models can detect the proposed metrics and classes in ”in-the-wild“-scenarios.

6.2 Limitations

This section outlines the limitations to consider when interpreting our findings of Chap-
ters 3, 4, and 5.

6.2.1 Chapter 3: Improving Video Learning Platforms with Text-Based Features

The method presented in Section 3.1 is limited by the fact, that its implementation requires
a preceding extraction of the semantic keywords. Furthermore, the scale of the conducted
user study in the evaluation was small considering the fact that we employed non-experts
of the respective video topics. Presumably, an expert review of the recommendations
would have provided more reliable results. These two limitations also apply to the work
in Section 3.2, however, the usefulness questionnaire we conducted in this experiment
also revealed another limitation. In order to find out what led participants to give
the rating ”uncorrelated“, we reviewed these six videos and found that their content
revolved around the subject of engineering and had very application-specific content,
which might be a limitation of the system. One video, for instance, discusses the cause,
consequences, and solutions of driftwood accumulation on bridges leading to overflowing
rivers (https://av.tib.eu/media/11442). A lot of technical terms, switching contexts
from the real world to model testing to technical considerations, paired with topic-specific
phrases yielded a visualization that was only marginally helpful. Finally, more results

https://av.tib.eu/media/11442
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present a ”good match“ instead of an exact match due to the nature of the entities extracted
from the speech transcript. For example, videos and tutorials from the field of mathematics
contain many important terms when explaining a concept that are rather general and not
closely related to the topic itself. That includes words like ”square“, ”point“ and ”integral“.
Yet, these words are captured by the automatic annotation tool of the TIB AV-Portal and
are present in the dataset, but they contribute only marginally to the comprehension of
the video even though they appear very frequently. A respective less useful summary
result is exemplarily presented in Figure 3.7. This limitation of our proposed model is
also reflected in the results of Task II, where our participants agreed that the visualization
would be more helpful if we omitted the redundant keywords.

6.2.2 Chapter 4: Prediction of Knowledge Gain with Multimodal Features

The main limitation for Section 4.1 is the size of the user study that was set in the MOOC
learning evironment (13 participants). Larger studies with more users and a variety
of videos have a better chance to produce reliable results. Regarding Section 4.2, one
limitation of our approach is the generalizability to other learning scenarios since we
focused on just one task. Our approach was to conduct one extensive, well-structured
learning task rather than multiple small ones. As we have seen in the experiment, the
Internet provides learning resources of various layouts for this particular topic. However,
we are aware that the characteristics of a task influence the appearance and quantity of
the respective results (e.g., text, pictures, videos) and their characteristics (e.g., quality,
complexity, visualizability). Especially the underlying knowledge type of a task could in-
fluence the distribution of findable and suitable multimedia content for learning. However,
considering the findings by Gadiraju et al. [78], who found relationships between learners’
prior topic familiarity and their navigation and query behavior across different topics,
we think that our findings could be generalized to other SAL tasks that are comparable
in complexity and structure. One example would be the topic ”photosynthesis“, since
it is classified as learning about causal concepts [267], similar to our topic about the
formation of thunderstorms and lightning. Learning about causal concepts requires the
understanding of 1) different concepts (e.g. cloud, electricity, lightning) and 2) causalities
(e.g., why is the cloud getting charged through particles). This knowledge is obtainable
through text, videos, and images considered in our experiments.

6.2.3 Chapter 5: Semantic Image-Text Relations

The categorization proposed in Section 5.3 is built upon work from computer science
and linguistics. Bateman [16] critically discusses the advantages and disadvantages of
the most popular image-text taxonomies and highlights that the interpretation of content
represented in the visual and textual modality can be subjective. We aimed at alleviating
this effect: first, we have examined different approaches to model image-text relations and
focused on their similarities rather than dissimilarities under the assumption that they
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would agree on the most fundamental metrics. Second, we have represented our semantic
image-text classes with simple samples from Web sources as described in Section 5.3.5.
As the inter-coder agreement highlighted (cf. Figure 5.3), this resulted in a dataset with
low subjectivity. However, still some of the assigned labels in the dataset presented in
Section 5.3 might be subject to discussion. Also, for broad classes like Complementary and
Interdependent, it has to be stated that they are not representative in their current state, as
was also shown in Section 5.4. As the mediocre results in this section have shown, this
limits their ability to generalize to unseen content.

6.3 Future Work

While this thesis has presented multiple insights in the research field Web-based Learning,
various interesting research questions remain open. The sample applications in Chapter 3,
that are built upon textual features to improve the TIB AV-Portal, could be adapted
for different video domains, considering more or other metrics and utilizing additional
modalities. Also, their impact should be evaluated more thoroughly by implementing
them into a productive system. The examination of a real learner’s search behavior and
success might give more realistic results than the independent evaluation of, for instance,
the visualization in Section 3.2.

The user studies in Chapter 4, concerning the knowledge gain prediction in informal
learning settings, should be repeated on additional topics, more diverse participant groups,
and learning tasks to see whether the findings can be generalized. Also, the set of content-
related features, textual and visual, used in these approaches can be extended by, for
example, transformer-based deep features.

Finally, the ideas to describe the interplay of images and text to convey meaning pre-
sented in Chapter 5 offer further opportunities for future work. First, additional metrics
might need to be considered for a holistic view derived from either previous research
or real-world image-text pairs whose relationship can not be expressed properly, yet.
Second, following Henning and Ewerth [104], the proposed metrics could be subdivided
into multiple levels to get a precise description of, for instance, the overlap of mutual
information between image and text. Third, to improve the ”in-the-wild“ performance
of the trained models, as shown in Section 5.4, it might be beneficial to infuse real-world
knowledge into the models. This might empower these models to improve the results of
applications like Fake News detection because they could detect inaccuracies on person,
event and location level similar to Müller-Budack et al. [190]. Fourth, better automatic
solutions for dataset generation, as proposed in Section 5.3.5 would support all of the
above topics. This entails more diverse data sources to get a more unbiased representation
of what, for example, positive SC might look like. Also, digital-born images need to be
considered and not only photos. The most important relationships this refers to are 1)
negative semantic correlation because there are more types of contradictions between
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image and text than shown in this thesis. For example, recent work by Parcalabescu [206]
shows a handful of methods to falsify image captions automatically. Moreover 2), the
definition of the Interdependent class goes way beyond the currently available advertise-
ment category in our dataset. As the qualitative examples in Section 5.4 highlighted, the
multimodal expression on audiovisual platforms like Twitter or in movies presents diverse
combinations of Interdependent image-text pairs that are not advertisements.
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A Resource Features

The following table contains the entire list of resource features extracted in [202].

notation description
complexity c_adj Ratio of adjectives to total number of words

c_char Average number of characters per term
c_fk Flesh-Kincaid Grad Readability Index
c_gi Gunning Fog Grade Readability Index
c_noun Ratio nouns to total number of words
c_oth Ratio other words to total number of words
c_sentence Average number of words per sentence
c_smog SMOG Readability Index
c_uniq_word Ratio of unique words to total number of words
c_verb Ratio of verbs to total number of words
c_word Number of words in each web page

HTML structure h_aud Number of <audio>element
h_img Number of <img>elements
h_obj Number of <object>element
h_nav_ul Number of <ul>elements in<nav>elements
h_oth_ul Number of <ul>elements not in <nav>elements
h_p Avg. length of paragraphs in <p>elements
h_script Number of <script>elements \hline
h_vid Number of <video>elements

Linguistic l_achieve Number of achievement words
l_adj Number of adjectives
l_adverb Number of common adverbs
l_affect number of affect words
l_affiliation Number of affiliation words
l_AllPunc Number of punctuation
l_Analytic Number of analytic words
l_anger Number of anger words
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notation description
Linguistic l_anx Number of anxiety words

l_Apostro Number of apostrophes
l_article Number of articles
l_assent Number of assent words
l_Authentic Number of authentic words
l_auxverb Number of auxiliary verbs
l_bio Number of biological process words
l_body Number of body words
l_cause Number of causal words
l_certain Number of certainty words
l_Clout Number of clout words
l_cogproc Number of cognitive process words
l_Colon Number of colons
l_Comma Number of commas
l_compare Number of comparatives
l_conj Number of conjunctions
l_Dash Number of dashes
l_death Number of death words
l_Dic Number of dictionary words
l_differ Number of differentiation words
l_discrep Number of discrepancy words
l_drives Number of core drives and needs
l_Exclam Number of exclamation marks
l_family Number of family words
l_feel Number of feeling words
l_female Number of female referents
l_filler Number of filters
l_focusfuture Number of future focus words
l_focuspast Number of past focus words
l_focuspresent Number of present focus words
l_friend Number of friend words
l_function Number of function words
l_health Number of health words
l_hear Number of hearing words
l_home Number of home words
l_i Number of I pronouns
l_informal Number of informal speech words
l_ingest Number of ingesting words
l_insight Number of insightful words
l_interrog Number of interrogatives
l_ipron Number of impersonal pronouns
l_leisure Number of leisure words
l_male Number of male referents
l_money Number of money words
l_motion Number of motion words
l_negate Number of negations
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notation description
Linguistic l_negemo number of negative emotional words

l_netspeak Number of netspeak words
l_nonflu Number of nonfluencies
l_number Number of numbers
l_OtherP Number of other punctuation
l_Parenth Number of parentheses (pairs)
l_percept Number of perceptual processes
l_Period Number of periods
l_posemo Number of positive emotion words
l_power Number of power words
l_ppron Number of personal pronouns
l_prep Number of prepositions
l_pronoun Number of total pronouns
l_QMark Number of question marks
l_quant Number of quantifiers
l_Quote Number of quotation marks
l_relativ Number of relativity words
l_relig Number of religion words
l_reward Number of reward focus words
l_risk Number of risk words
l_sad Number of sadness words
l_see Number of seeing words
l_SemiC Number of semicolons
l_sexual Number of sexual words
l_shehe Number of she or he pronouns
l_Sixltr Number of words with more then 6 letters
l_social Number of social words
l_space Number of space words
l_swear Number of swear words
l_tentat Number of tentative words
l_they Number of they pronouns
l_time Number of time words
l_Tone number of emotional tone words
l_verb Number of regular verbs
l_we Number of we pronouns
l_work Number of work words
l_you Number of you pronouns
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B Full Textual Feature List

The following table contains the entire list of textual features extracted in [201].

Feature Description Category
amount_adj_sli Num. of adjectives in the slides Syntactic (word types)
avg_adj_sli Average Num. of adjectives per line in the

slides
Syntactic (word types)

ratio_adj_sli Relation of the Num. of adjectives to unfil-
tered tokens in the slides

Syntactic (word types)

amount_adpos_sli Num. of adpositions in the slides Syntactic (word types)
avg_adpos_sli Average Num. of adpositions per line in the

slides
Syntactic (word types)

ratio_adpos_sli Relation of the Num. of adpositions to un-
filtered tokens in the slides

Syntactic (word types)

amount_noun_sli Num. of nouns in the slides Syntactic (word types)
avg_noun_sli Average Num. of nouns per line in the

slides
Syntactic (word types)

ratio_noun_sli Relation of the Num. of nouns to unfiltered
tokens in the slides

Syntactic (word types)

amount_pronoun_sli Num. of pronouns in the slides Syntactic (word types)
avg_pronoun_sli Average Num. of pronouns per line in the

slides
Syntactic (word types)

ratio_pronoun_sli Relation of the Num. of pronouns to unfil-
tered tokens in the slides

Syntactic (word types)

ratio_pronoun_noun_sli Relation of the Num. of pronouns to nouns
in the slides

Syntactic (word types)

amount_verb_sli Num. of verbs in the slides Syntactic (word types)
avg_verb_sli Average Num. of verbs per line in the slides Syntactic (word types)
ratio_verb_sli Relation of the Num. of verbs to unfiltered

tokens in the slides
Syntactic (word types)

amount_main_verb_sli Num. of main verbs in the slides Syntactic (word types)
avg_main_verb_sli Average Num. of main verbs per line in the

slides
Syntactic (word types)

ratio_main_verb_sli Relation of the Num. of main verbs to unfil-
tered tokens in the slides

Syntactic (word types)

amount_aux_sli Num. of auxiliaries in the slides Syntactic (word types)
avg_aux_sli Average Num. of auxiliaries per line in the

slides
Syntactic (word types)

ratio_aux_sli Relation of the Num. of auxiliaries to unfil-
tered tokens in the slides

Syntactic (word types)

amount_adverb_sli Num. of adverbs in the slides Syntactic (word types)
avg_adverb_sli Average Num. of adverbs per line in the

slides
Syntactic (word types)

Continuation on the next page
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Table B.1 – Continuation

Feature Description Category
ratio_adverb_sli Relation of the Num. of adverbs to unfil-

tered tokens in the slides
Syntactic (word types)

amount_coord_conj_sli Num. of coordinate conjunctions in the
slides

Syntactic (word types)

avg_coord_conj_sli Average Num. of coordinate conjunctions
per line in the slides

Syntactic (word types)

ratio_coord_conj_sli Relation of the Num. of coordinate conjunc-
tions to unfiltered tokens in the slides

Syntactic (word types)

amount_determiner_sli Num. of determiner in the slides Syntactic (word types)
avg_determiner_sli Average Num. of determiner per line in the

slides
Syntactic (word types)

ratio_determiner_sli Relation of the Num. of determiner to unfil-
tered tokens in the slides

Syntactic (word types)

amount_interj_sli Num. of interjections in the slides Syntactic (word types)
avg_interj_sli Average Num. of interjections per line in

the slides
Syntactic (word types)

ratio_interj_sli Relation of the Num. of interjections to
unfiltered tokens in the slides

Syntactic (word types)

amount_num_sli Num. of Num.s in the slides Syntactic (word types)
avg_num_sli Average Num. of Num.s per line in the

slides
Syntactic (word types)

ratio_num_sli Relation of the Num. of Num.s to unfiltered
tokens in the slides

Syntactic (word types)

amount_particle_sli Num. of particles in the slides Syntactic (word types)
avg_particle_sli Average Num. of particles per line in the

slides
Syntactic (word types)

ratio_particle_sli Relation of the Num. of particles to unfil-
tered tokens in the slides

Syntactic (word types)

amount_subord_conj_sli Num. of particles in the slides Syntactic (word types)
avg_subord_conj_sli Average Num. of particles per line in the

slides
Syntactic (word types)

ratio_subord_conj_sli Relation of the Num. of particles to unfil-
tered tokens in the slides

Syntactic (word types)

amount_foreign_sli Num. of foreign words in the slides Syntactic (word types)
avg_foreign_sli Average Num. of foreign words per line in

the slides
Syntactic (word types)

ratio_foreign_sli Relation of the Num. of foreign words to
unfiltered tokens in the slides

Syntactic (word types)

amount_content_word_sli Num. of content words in the slides Syntactic (word types)
avg_content_word_sli Average Num. of content words per line in

the slides
Syntactic (word types)

ratio_content_word_sli Relation of the Num. of content words to
unfiltered tokens in the slides

Syntactic (word types)

amount_function_word_sli Num. of function words in the slides Syntactic (word types)
avg_function_word_sli Average Num. of function words per line in

the slides
Syntactic (word types)

Continuation on the next page
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Table B.1 – Continuation

Feature Description Category
ratio_function_word_sli Relation of the Num. of function words to

unfiltered tokens in the slides
Syntactic (word types)

amount_filtered_sli Num. of filtered words in the slides Syntactic (word types)
avg_filtered_sli Average Num. of filtered words per line in

the slides
Syntactic (word types)

ratio_filtered_sli Relation of the Num. of filtered words to
unfiltered tokens in the slides

Syntactic (word types)

amount_adj_tra Num. of adjectives in the srt Syntactic (word types)
avg_adj_tra Average Num. of adjectives per sentence in

the srt
Syntactic (word types)

ratio_adj_tra Relation of the Num. of adjectives to unfil-
tered tokens in the srt

Syntactic (word types)

amount_adpos_tra Num. of adpositions in the srt Syntactic (word types)
avg_adpos_tra Average Num. of adpositions per sentence

in the srt
Syntactic (word types)

ratio_adpos_tra Relation of the Num. of adpositions to un-
filtered tokens in the srt

Syntactic (word types)

amount_noun_tra Num. of nouns in the srt Syntactic (word types)
avg_noun_tra Average Num. of nouns per sentence in the

srt
Syntactic (word types)

ratio_noun_tra Relation of the Num. of nouns to unfiltered
tokens in the srt

Syntactic (word types)

amount_pronoun_tra Num. of pronouns in the srt Syntactic (word types)
avg_pronoun_tra Average Num. of pronouns per sentence in

the srt
Syntactic (word types)

ratio_pronoun_tra Relation of the Num. of pronouns to unfil-
tered tokens in the srt

Syntactic (word types)

ratio_pronoun_noun_tra Relation of the Num. of pronouns to nouns
in the srt

Syntactic (word types)

amount_verb_tra Num. of verbs in the srt Syntactic (word types)
avg_verb_tra Average Num. of verbs per sentence in the

srt
Syntactic (word types)

ratio_verb_tra Relation of the Num. of verbs to unfiltered
tokens in the srt

Syntactic (word types)

amount_main_verb_tra Num. of main verbs in the srt Syntactic (word types)
avg_main_verb_tra Average Num. of main verbs per sentence

in the srt
Syntactic (word types)

ratio_main_verb_tra Relation of the Num. of main verbs to unfil-
tered tokens in the srt

Syntactic (word types)

amount_aux_tra Num. of auxiliaries in the srt Syntactic (word types)
avg_aux_tra Average Num. of auxiliaries per sentence in

the srt
Syntactic (word types)

ratio_aux_tra Relation of the Num. of auxiliaries to unfil-
tered tokens in the srt

Syntactic (word types)

amount_adverb_tra Num. of adverbs in the srt Syntactic (word types)
avg_adverb_tra Average Num. of adverbs per sentence in

the srt
Syntactic (word types)

Continuation on the next page



146 Appendix B. Full Textual Feature List

Table B.1 – Continuation

Feature Description Category
ratio_adverb_tra Relation of the Num. of adverbs to unfil-

tered tokens in the srt
Syntactic (word types)

amount_coord_conj_tra Num. of coordinate conjunctions in the srt Syntactic (word types)
avg_coord_conj_tra Average Num. of coordinate conjunctions

per sentence in the srt
Syntactic (word types)

ratio_coord_conj_tra Relation of the Num. of coordinate conjunc-
tions to unfiltered tokens in the srt

Syntactic (word types)

amount_determiner_tra Num. of determiner in the srt Syntactic (word types)
avg_determiner_tra Average Num. of determiner per sentence

in the srt
Syntactic (word types)

ratio_determiner_tra Relation of the Num. of determiner to unfil-
tered tokens in the srt

Syntactic (word types)

amount_interj_tra Num. of interjections in the srt Syntactic (word types)
avg_interj_tra Average Num. of interjections per sentence

in the srt
Syntactic (word types)

ratio_interj_tra Relation of the Num. of interjections to
unfiltered tokens in the srt

Syntactic (word types)

amount_num_tra Num. of Num.s in the srt Syntactic (word types)
avg_num_tra Average Num. of Num.s per sentence in the

srt
Syntactic (word types)

ratio_num_tra Relation of the Num. of Num.s to unfiltered
tokens in the srt

Syntactic (word types)

amount_particle_tra Num. of particles in the srt Syntactic (word types)
avg_particle_tra Average Num. of particles per sentence in

the srt
Syntactic (word types)

ratio_particle_tra Relation of the Num. of particles to unfil-
tered tokens in the srt

Syntactic (word types)

amount_subord_conj_tra Num. of particles in the srt Syntactic (word types)
avg_subord_conj_tra Average Num. of particles per sentence in

the srt
Syntactic (word types)

ratio_subord_conj_tra Relation of the Num. of particles to unfil-
tered tokens in the srt

Syntactic (word types)

amount_foreign_tra Num. of foreign words in the srt Syntactic (word types)
avg_foreign_tra Average Num. of foreign words per sen-

tence in the srt
Syntactic (word types)

ratio_foreign_tra Relation of the Num. of foreign words to
unfiltered tokens in the srt

Syntactic (word types)

amount_content_word_tra Num. of content words in the srt Syntactic (word types)
avg_content_word_tra Average Num. of content words per sen-

tence in the srt
Syntactic (word types)

ratio_content_word_tra Relation of the Num. of content words to
unfiltered tokens in the srt

Syntactic (word types)

amount_function_word_tra Num. of function words in the srt Syntactic (word types)
avg_function_word_tra Average Num. of function words per sen-

tence in the srt
Syntactic (word types)

ratio_function_word_tra Relation of the Num. of function words to
unfiltered tokens in the srt

Syntactic (word types)

Continuation on the next page
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Table B.1 – Continuation

Feature Description Category
amount_filtered_tra Num. of filtered words in the srt Syntactic (word types)
avg_filtered_tra Average Num. of filtered words per sen-

tence in the srt
Syntactic (word types)

ratio_filtered_tra Relation of the Num. of filtered words to
unfiltered tokens in the srt

Syntactic (word types)

sim_pres_sli Num. of Simple Present tenses in the slides Syntactic (temporal)
ratio_sim_pres_sli Relation of Num. of Simple Present tenses

to all phrases in the slides
Syntactic (temporal)

pres_prog_sli Num. of Present Progressive tenses in the
slides

Syntactic (temporal)

ratio_pres_prog_sli Relation of Num. of Present Progressive
tenses to all phrases in the slides

Syntactic (temporal)

pres_perf_sli Num. of Present Perfect tenses in the slides Syntactic (temporal)
ratio_pres_perf_sli Relation of Num. of Present Perfect tenses

to all phrases in the slides
Syntactic (temporal)

pres_perf_prog_sli Num. of Present Perfect Progressive tenses
in the slides

Syntactic (temporal)

ratio_pres_perf_prog_sli Relation of Num. of Present Perfect Progres-
sive tenses to all phrases in the slides

Syntactic (temporal)

sim_pas_sli Num. of Simple Past tenses in the slides Syntactic (temporal)
ratio_sim_pas_sli Relation of Num. of Simple Past tenses to

all phrases in the slides
Syntactic (temporal)

pas_prog_sli Num. of Past Progressive tenses in the slides Syntactic (temporal)
ratio_pas_prog_sli Relation of Num. of Past Progressive tenses

to all phrases in the slides
Syntactic (temporal)

pas_perf_sli Num. of Past Perfect tenses in the slides Syntactic (temporal)
ratio_pas_perf_sli Relation of Num. of Past Perfect tenses to

all phrases in the slides
Syntactic (temporal)

pas_perf_prog_sli Num. of Past Perfect Progressive tenses in
the slides

Syntactic (temporal)

ratio_pas_perf_prog_sli Relation of Num. of Past Perfect Progressive
tenses to all phrases in the slides

Syntactic (temporal)

will_sli Num. of Will-Future tenses in the slides Syntactic (temporal)
ratio_will_sli Relation of Num. of Will-Future tenses to

all phrases in the slides
Syntactic (temporal)

fu_prog_sli Num. of Future Progressive tenses in the
slides

Syntactic (temporal)

ratio_fu_prog_sli Relation of Num. of Future Progressive
tenses to all phrases in the slides

Syntactic (temporal)

fu_perf_sli Num. of Future Perfect tenses in the slides Syntactic (temporal)
ratio_fu_perf_sli Relation of Num. of Future Perfect tenses

to all phrases in the slides
Syntactic (temporal)

fu_perf_prog_sli Num. of Future Perfect Progressive tenses
in the slides

Syntactic (temporal)

ratio_fu_perf_prog_sli Relation of Num. of Future Perfect Progres-
sive tenses to all phrases in the slides

Syntactic (temporal)
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cond_sim_sli Num. of Conditional Simple tenses in the

slides
Syntactic (temporal)

ratio_cond_sim_sli Relation of Num. of Conditional Simple
tenses to all phrases in the slides

Syntactic (temporal)

cond_prog_sli Num. of Conditional Progressive tenses in
the slides

Syntactic (temporal)

ratio_cond_prog_sli Relation of Num. of Conditional Progres-
sive tenses to all phrases in the slides

Syntactic (temporal)

cond_perf_sli Num. of Conditional Perfect tenses in the
slides

Syntactic (temporal)

ratio_cond_perf_sli Relation of Num. of Conditional Perfect
tenses to all phrases in the slides

Syntactic (temporal)

cond_perf_prog_sli Num. of Conditional Perfect Progressive
tenses in the slides

Syntactic (temporal)

ratio_cond_perf_prog_sli Relation of Num. of Conditional Perfect
Progressive tenses to all phrases in the slides

Syntactic (temporal)

gerund_sli Num. of Gerund/Present Participle tenses
in the slides

Syntactic (temporal)

ratio_gerund_sli Relation of Num. of Gerund/Present Par-
ticiple tenses to all phrases in the slides

Syntactic (temporal)

perf_part_sli Num. of Perfect Participle tenses in the
slides

Syntactic (temporal)

ratio_perf_part_sli Relation of Num. of Perfect Participle tenses
to all phrases in the slides

Syntactic (temporal)

inf_sli Num. of Present Infinitive tenses in the
slides

Syntactic (temporal)

ratio_inf_sli Relation of Num. of Present Infinitive tenses
to all phrases in the slides

Syntactic (temporal)

perf_inf_sli Num. of Perfect Infinitive tenses in the
slides

Syntactic (temporal)

ratio_perf_inf_sli Relation of Num. of Perfect Infinitive tenses
to all phrases in the slides

Syntactic (temporal)

active_sli Num. of active verb forms in the slides Syntactic (temporal)
ratio_active_sli Relation of Num. of active verb forms to all

phrases in the slides
Syntactic (temporal)

passive_sli Num. of passive verb forms in the slides Syntactic (temporal)
ratio_passive_sli Relation of Num. of passive verb forms to

all phrases in the slides
Syntactic (temporal)

sim_pres_tra Num. of Simple Present tenses in the srt Syntactic (temporal)
ratio_sim_pres_tra Relation of Num. of Simple Present tenses

to all phrases in the srt
Syntactic (temporal)

pres_prog_tra Num. of Present Progressive tenses in the
srt

Syntactic (temporal)

ratio_pres_prog_tra Relation of Num. of Present Progressive
tenses to all phrases in the srt

Syntactic (temporal)

pres_perf_tra Num. of Present Perfect tenses in the srt Syntactic (temporal)
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Feature Description Category
ratio_pres_perf_tra Relation of Num. of Present Perfect tenses

to all phrases in the srt
Syntactic (temporal)

pres_perf_prog_tra Num. of Present Perfect Progressive tenses
in the srt

Syntactic (temporal)

ratio_pres_perf_prog_tra Relation of Num. of Present Perfect Progres-
sive tenses to all phrases in the srt

Syntactic (temporal)

sim_pas_tra Num. of Simple Past tenses in the srt Syntactic (temporal)
ratio_sim_pas_tra Relation of Num. of Simple Past tenses to

all phrases in the srt
Syntactic (temporal)

pas_prog_tra Num. of Past Progressive tenses in the srt Syntactic (temporal)
ratio_pas_prog_tra Relation of Num. of Past Progressive tenses

to all phrases in the srt
Syntactic (temporal)

pas_perf_tra Num. of Past Perfect tenses in the srt Syntactic (temporal)
ratio_pas_perf_tra Relation of Num. of Past Perfect tenses to

all phrases in the srt
Syntactic (temporal)

pas_perf_prog_tra Num. of Past Perfect Progressive tenses in
the srt

Syntactic (temporal)

ratio_pas_perf_prog_tra Relation of Num. of Past Perfect Progressive
tenses to all phrases in the srt

Syntactic (temporal)

will_tra Num. of Will-Future tenses in the srt Syntactic (temporal)
ratio_will_tra Relation of Num. of Will-Future tenses to

all phrases in the srt
Syntactic (temporal)

fu_prog_tra Num. of Future Progressive tenses in the srt Syntactic (temporal)
ratio_fu_prog_tra Relation of Num. of Future Progressive

tenses to all phrases in the srt
Syntactic (temporal)

fu_perf_tra Num. of Future Perfect tenses in the srt Syntactic (temporal)
ratio_fu_perf_tra Relation of Num. of Future Perfect tenses

to all phrases in the srt
Syntactic (temporal)

fu_perf_prog_tra Num. of Future Perfect Progressive tenses
in the srt

Syntactic (temporal)

ratio_fu_perf_prog_tra Relation of Num. of Future Perfect Progres-
sive tenses to all phrases in the srt

Syntactic (temporal)

cond_sim_tra Num. of Conditional Simple tenses in the
srt

Syntactic (temporal)

ratio_cond_sim_tra Relation of Num. of Conditional Simple
tenses to all phrases in the srt

Syntactic (temporal)

cond_prog_tra Num. of Conditional Progressive tenses in
the srt

Syntactic (temporal)

ratio_cond_prog_tra Relation of Num. of Conditional Progres-
sive tenses to all phrases in the srt

Syntactic (temporal)

cond_perf_tra Num. of Conditional Perfect tenses in the
srt

Syntactic (temporal)

ratio_cond_perf_tra Relation of Num. of Conditional Perfect
tenses to all phrases in the srt

Syntactic (temporal)

cond_perf_prog_tra Num. of Conditional Perfect Progressive
tenses in the srt

Syntactic (temporal)
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ratio_cond_perf_prog_tra Relation of Num. of Conditional Perfect

Progressive tenses to all phrases in the srt
Syntactic (temporal)

gerund_tra Num. of Gerund/Present Participle tenses
in the srt

Syntactic (temporal)

ratio_gerund_tra Relation of Num. of Gerund/Present Par-
ticiple tenses to all phrases in the srt

Syntactic (temporal)

perf_part_tra Num. of Perfect Participle tenses in the srt Syntactic (temporal)
ratio_perf_part_tra Relation of Num. of Perfect Participle tenses

to all phrases in the srt
Syntactic (temporal)

inf_tra Num. of Present Infinitive tenses in the srt Syntactic (temporal)
ratio_inf_tra Relation of Num. of Present Infinitive tenses

to all phrases in the srt
Syntactic (temporal)

perf_inf_tra Num. of Perfect Infinitive tenses in the srt Syntactic (temporal)
ratio_perf_inf_tra Relation of Num. of Perfect Infinitive tenses

to all phrases in the srt
Syntactic (temporal)

active_tra Num. of active verb forms in the srt Syntactic (temporal)
ratio_active_tra Relation of Num. of active verb forms to all

phrases in the srt
Syntactic (temporal)

passive_tra Num. of passive verb forms in the srt Syntactic (temporal)
ratio_passive_tra Relation of Num. of passive verb forms to

all phrases in the srt
Syntactic (temporal)

ADJP_sli Num. of adjective phrases in the slides Syntactic (phrases)
ratio_ADJP_sli Relation of Num. of adjective phrases to all

phrases in the slides
Syntactic (phrases)

avg_ADJP_sli Average Num. of adjective phrases per line
in the slides

Syntactic (phrases)

ADVP_sli Num. of adverb phrases in the slides Syntactic (phrases)
ratio_ADVP_sli Relation of Num. of adverb phrases to all

phrases in the slides
Syntactic (phrases)

avg_ADVP_sli Average Num. of adverb phrases per line in
the slides

Syntactic (phrases)

NP_sli Num. of noun phrases in the slides Syntactic (phrases)
ratio_NP_sli Relation of Num. of noun phrases to all

phrases in the slides
Syntactic (phrases)

avg_NP_sli Average Num. of noun phrases per line in
the slides

Syntactic (phrases)

PP_sli Num. of prepositional phrases in the slides Syntactic (phrases)
ratio_PP_sli Relation of Num. of prepositional phrases

to all phrases in the slides
Syntactic (phrases)

avg_PP_sli Average Num. of prepositional phrases per
line in the slides

Syntactic (phrases)

S_sli Num. of simple declarative clauses in the
slides

Syntactic (phrases)

ratio_S_sli Relation of Num. of simple declarative
clauses to all phrases in the slides

Syntactic (phrases)

avg_S_sli Average Num. of simple declarative clauses
per line in the slides

Syntactic (phrases)
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Feature Description Category
FRAG_sli Num. of fragments in the slides Syntactic (phrases)
ratio_FRAG_sli Relation of Num. of fragments to all phrases

in the slides
Syntactic (phrases)

avg_FRAG_sli Average Num. of fragments per line in the
slides

Syntactic (phrases)

SBAR_sli Num. of subordinate clauses in the slides Syntactic (phrases)
ratio_SBAR_sli Relation of Num. of subordinate clauses to

all phrases in the slides
Syntactic (phrases)

avg_SBAR_sli Average Num. of subordinate clauses per
line in the slides

Syntactic (phrases)

SBARQ_sli Num. of direct questions with wh-element
in the slides

Syntactic (phrases)

ratio_SBARQ_sli Relation of Num. of direct questions with
wh-element to all phrases in the slides

Syntactic (phrases)

avg_SBARQ_sli Average Num. of direct questions with wh-
element per line in the slides

Syntactic (phrases)

SINV_sli Num. of declarative sentence with subject-
aux inversion in the slides

Syntactic (phrases)

ratio_SINV_sli Relation of Num. of declarative sentence
with subject-aux inversion to all phrases in
the slides

Syntactic (phrases)

avg_SINV_sli Average Num. of declarative sentence with
subject-aux inversion per line in the slides

Syntactic (phrases)

SQ_sli Num. of yes/no questions and subcon-
stituent of SBARQ excluding wh-element
in the slides

Syntactic (phrases)

ratio_SQ_sli Relation of Num. of yes/no questions and
subconstituent of SBARQ excluding wh-
element to all phrases in the slides

Syntactic (phrases)

avg_SQ_sli Average Num. of yes/no questions and
subconstituent of SBARQ excluding wh-
element per line in the slides

Syntactic (phrases)

VP_sli Num. of verb phrases in the slides Syntactic (phrases)
ratio_VP_sli Relation of Num. of verb phrases to all

phrases in the slides
Syntactic (phrases)

avg_VP_sli Average Num. of verb phrases per line in
the slides

Syntactic (phrases)

WHADVP_sli Num. of wh-adverb phrases in the slides Syntactic (phrases)
ratio_WHADVP_sli Relation of Num. of wh-adverb phrases to

all phrases in the slides
Syntactic (phrases)

avg_WHADVP_sli Average Num. of wh-adverb phrases per
line in the slides

Syntactic (phrases)

WHNP_sli Num. of wh-noun phrases in the slides Syntactic (phrases)
ratio_WHNP_sli Relation of Num. of wh-noun phrases to all

phrases in the slides
Syntactic (phrases)

avg_WHNP_sli Average Num. of wh-noun phrases per line
in the slides

Syntactic (phrases)
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Feature Description Category
WHPP_sli Num. of wh-prepositional phrases in the

slides
Syntactic (phrases)

ratio_WHPP_sli Relation of Num. of wh-prepositional
phrases to all phrases in the slides

Syntactic (phrases)

avg_WHPP_sli Average Num. of wh-prepositional phrases
per line in the slides

Syntactic (phrases)

avg_phrases_sli Average Num. of phrases per line in the
slides

Syntactic (phrases)

ADJP_tra Num. of adjective phrases in the srt Syntactic (phrases)
ratio_ADJP_tra Relation of Num. of adjective phrases to all

phrases in the srt
Syntactic (phrases)

avg_ADJP_tra Average Num. of adjective phrases per sen-
tence in the srt

Syntactic (phrases)

ADVP_tra Num. of adverb phrases in the srt Syntactic (phrases)
ratio_ADVP_tra Relation of Num. of adverb phrases to all

phrases in the srt
Syntactic (phrases)

avg_ADVP_tra Average Num. of adverb phrases per sen-
tence in the srt

Syntactic (phrases)

NP_tra Num. of noun phrases in the srt Syntactic (phrases)
ratio_NP_tra Relation of Num. of noun phrases to all

phrases in the srt
Syntactic (phrases)

avg_NP_tra Average Num. of noun phrases per sentence
in the srt

Syntactic (phrases)

PP_tra Num. of prepositional phrases in the srt Syntactic (phrases)
ratio_PP_tra Relation of Num. of prepositional phrases

to all phrases in the srt
Syntactic (phrases)

avg_PP_tra Average Num. of prepositional phrases per
sentence in the srt

Syntactic (phrases)

S_tra Num. of simple declarative clauses in the
srt

Syntactic (phrases)

ratio_S_tra Relation of Num. of simple declarative
clauses to all phrases in the srt

Syntactic (phrases)

avg_S_tra Average Num. of simple declarative clauses
per sentence in the srt

Syntactic (phrases)

FRAG_tra Num. of fragments in the srt Syntactic (phrases)
ratio_FRAG_tra Relation of Num. of fragments to all phrases

in the srt
Syntactic (phrases)

avg_FRAG_tra, SBAR_tra Average Num. of fragments per sentence in
the srt

Syntactic (phrases)

SBAR_tra Num. of subordinate clauses in the srt Syntactic (phrases)
ratio_SBAR_tra Relation of Num. of subordinate clauses to

all phrases in the srt
Syntactic (phrases)

avg_SBAR_tra Average Num. of subordinate clauses per
sentence in the srt

Syntactic (phrases)

SBARQ_tra Num. of direct questions with wh-element
in the srt

Syntactic (phrases)
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ratio_SBARQ_tra Relation of Num. of direct questions with

wh-element to all phrases in the srt
Syntactic (phrases)

avg_SBARQ_tra Average Num. of direct questions with wh-
element per sentence in the srt

Syntactic (phrases)

SINV_tra Num. of declarative sentence with subject-
aux inversion in the srt

Syntactic (phrases)

ratio_SINV_tra Relation of Num. of declarative sentence
with subject-aux inversion to all phrases in
the srt

Syntactic (phrases)

avg_SINV_tra Average Num. of declarative sentence with
subject-aux inversion per sentence in the srt

Syntactic (phrases)

SQ_tra Num. of yes/no questions and subcon-
stituent of SBARQ excluding wh-element
in the srt

Syntactic (phrases)

ratio_SQ_tra Relation of Num. of yes/no questions and
subconstituent of SBARQ excluding wh-
element to all phrases in the srt

Syntactic (phrases)

avg_SQ_tra Average Num. of yes/no questions and
subconstituent of SBARQ excluding wh-
element per sentence in the srt

Syntactic (phrases)

VP_tra Num. of verb phrases in the srt Syntactic (phrases)
ratio_VP_tra Relation of Num. of verb phrases to all

phrases in the srt
Syntactic (phrases)

avg_VP_tra Average Num. of verb phrases per sentence
in the srt

Syntactic (phrases)

WHADVP_tra Num. of wh-adverb phrases in the srt Syntactic (phrases)
ratio_WHADVP_tra Relation of Num. of wh-adverb phrases to

all phrases in the srt
Syntactic (phrases)

avg_WHADVP_tra Average Num. of wh-adverb phrases per
sentence in the srt

Syntactic (phrases)

WHNP_tra Num. of wh-noun phrases in the srt Syntactic (phrases)
ratio_WHNP_tra Relation of Num. of wh-noun phrases to all

phrases in the srt
Syntactic (phrases)

avg_WHNP_tra Average Num. of wh-noun phrases per sen-
tence in the srt

Syntactic (phrases)

WHPP_tra Num. of wh-prepositional phrases in the srt Syntactic (phrases)
ratio_WHPP_tra Relation of Num. of wh-prepositional

phrases to all phrases in the srt
Syntactic (phrases)

avg_WHPP_tra Average Num. of wh-prepositional phrases
per sentence in the srt

Syntactic (phrases)

avg_phrases_tra Average Num. of phrases per sentence in
the srt

Syntactic (phrases)

avg_trigram_sli Average Num. of trigrams per line in the
slides

Syntactic (other)

avg_tetragram_sli Average Num. of tetragrams per line in the
slides

Syntactic (other)

amount_statement_sli Num. of statements in the slides Syntactic (other)
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ratio_statement_sli Relation of Num. of statements to all lines

in the slides
Syntactic (other)

amount_question_sli Num. of questions in the slides Syntactic (other)
ratio_question_sli Relation of Num. of statements to all lines

in the slides
Syntactic (other)

amount_tok_sli Num. of words in the slides Syntactic (other)
sum_tok_len_sli Num. of characters in the slides Syntactic (other)
min_tok_len_sli Size of the shortest word in the slides Syntactic (other)
avg_tok_len_sli Average size of the words in the slides Syntactic (other)
max_tok_len_sli Size of the longest word in the slides Syntactic (other)
avg_trigram_tra Average Num. of trigrams per sentence in

the srt
Syntactic (other)

avg_tetragram_tra Average Num. of tetragrams per sentence
in the srt

Syntactic (other)

amount_statement_tra Num. of statements in the srt Syntactic (other)
ratio_statement_tra Relation of Num. of statements to all sen-

tences in the srt
Syntactic (other)

amount_question_tra Num. of questions in the srt Syntactic (other)
ratio_question_tra Relation of Num. of statements to all sen-

tences in the srt
Syntactic (other)

amount_tok_tra Num. of words in the srt Syntactic (other)
sum_tok_len_tra Num. of characters in the srt Syntactic (other)
min_tok_len_tra Size of the shortest word in the srt Syntactic (other)
avg_tok_len_tra Average size of the words in the srt Syntactic (other)
max_tok_len_tra Size of the longest word in the srt Syntactic (other)
flesch_ease_sli Flesch-Reading-Ease result of the slides Readability
flesch_kin_sli Flesch-Kincaid result of the slides Readability
gunning_fog_sli Gunning-Fog Index result of the slides Readability
smog_sli SMOG result of the slides Readability
ari_sli Automated Readability Index result of the

slides
Readability

coleman_sli Coleman-Liau Index result of the slides Readability
read_time_sli Reading time of the text of the slides Readability
flesch_ease_tra Flesch-Reading-Ease result of the srt Readability
flesch_kin_tra Flesch-Kincaid result of the srt Readability
gunning_fog_tra Gunning-Fog Index result of the srt Readability
smog_tra SMOG result of the srt Readability
ari_tra Automated Readability Index result of the

srt
Readability

coleman_tra Coleman-Liau Index result of the srt Readability
read_time_tra Reading time of the text of the srt Readability
avg_freq_tok_sli Average frequency of a word in the slides Lexical
min_age_sli Minimum age of acquisition of a word in

the slides
Lexical

avg_age_sli Average age of acquisition of a word in the
slides

Lexical
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max_age_sli Maximum age of acquisition of a word in

the slides
Lexical

amount_syl_sli Num. of syllables in the slides Lexical
amount_one_syl_sli Num. of syllables in the slides Lexical
amount_two_syl_sli Num. of syllables in the slides Lexical
amount_psyl_sli Num. of syllables in the slides Lexical
amount_hard_sli Num. of syllables in the slides Lexical
avg_syl_sli Average Num. of syllables per word in the

slides
Lexical

ratio_one_syl_sli Relation of Num. of monosyllabic words to
all unfiltered tokens in the slides

Lexical

ratio_two_syl_sli Relation of Num. of two-syllable words to
all unfiltered tokens in the slides

Lexical

ratio_psyl_sli Relation of Num. of polysyllabic words to
all unfiltered tokens in the slides

Lexical

ratio_hard_sli Relation of Num. of hard words to all unfil-
tered tokens in the slides

Lexical

amount_uni_tok_sli Num. of unique words in the slides Lexical
ratio_uni_tok_sli Relation of Num. of unique words to all

words in the slides
Lexical

amount_uni_lemma_sli Num. of unique lemmas of the words in the
slides

Lexical

ratio_uni_lemma_sli Relation of Num. of unique lemmas of the
words to all words in the slides

Lexical

avg_freq_tok_tra Average frequency of a word in the srt Lexical
min_age_tra Minimum age of acquisition of a word in

the srt
Lexical

avg_age_tra Average age of acquisition of a word in the
srt

Lexical

max_age_tra Maximum age of acquisition of a word in
the srt

Lexical

amount_syl_tra Num. of syllables in the srt Lexical
amount_one_syl_tra Num. of syllables in the srt Lexical
amount_two_syl_tra Num. of syllables in the srt Lexical
amount_psyl_tra Num. of syllables in the srt Lexical
amount_hard_tra Num. of syllables in the srt Lexical
avg_syl_tra Average Num. of syllables per word in the

srt
Lexical

ratio_one_syl_tra Relation of Num. of monosyllabic words to
all unfiltered tokens in the srt

Lexical

ratio_two_syl_tra Relation of Num. of two-syllable words to
all unfiltered tokens in the srt

Lexical

ratio_psyl_tra Relation of Num. of polysyllabic words to
all unfiltered tokens in the srt

Lexical

ratio_hard_tra Relation of Num. of hard words to all unfil-
tered tokens in the srt

Lexical

amount_uni_tok_tra Num. of unique words in the srt Lexical
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ratio_uni_tok_tra Relation of Num. of unique words to all

words in the srt
Lexical

amount_uni_lemma_tra Num. of unique lemmas of the words in the
srt

Lexical

ratio_uni_lemma_tra Relation of Num. of unique lemmas of the
words to all words in the srt

Lexical

sum_lines Num. of lines in the slides Structural (slides)
min_line_len Minimum Num. of words per line in the

slides
Structural (slides)

avg_line_len Average Num. of words per line in the
slides

Structural (slides)

max_line_len Maximum Num. of words per line in the
slides

Structural (slides)

min_lines Minimum Num. of lines per slide Structural (slides)
avg_lines Average Num. of lines per slide Structural (slides)
max_lines Maximum Num. of lines per slide Structural (slides)
min_words_slide Minimum Num. of words per slide Structural (slides)
avg_words_slide Average Num. of words per slide Structural (slides)
max_words_slide Maximum Num. of words per slide Structural (slides)
min_line_chars Minimum Num. of characters per line in

the slides
Structural (slides)

avg_line_chars Average Num. of characters per line in the
slides

Structural (slides)

max_line_chars Maximum Num. of characters per line in
the slides

Structural (slides)

amount_slides Amount of slides of a presentation Structural (slides)
amount_subtitles Num. of subtitles in the srt Structural (srt)
amount_sentences Num. of sentences in the srt Structural (srt)
speak_time Subtitle display time in the srt Structural (srt)
speak_difference Difference between display time and read-

ing time (180 WPM)
Structural (srt)

min_sen_len Minimum Num. of words per sentence in
the srt

Structural (srt)

avg_sen_len Average Num. of words per sentence in the
srt

Structural (srt)

max_sen_len Maximum Num. of words per sentence in
the srt

Structural (srt)

min_sen_chars Minimum Num. of characters per sentence
in the srt

Structural (srt)

avg_sen_chars Average Num. of characters per sentence in
the srt

Structural (srt)

max_sen_chars Maximum Num. of characters per sentence
in the srt

Structural (srt)

embed_slide Average sentence embedding of the slides Semantic
similarity_sli Average similarity between the lines in the

slides
Semantic

embed_srt Average sentence embedding of the srt Semantic
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similarity_tra Average similarity between the sentences in

the srt
Semantic

diff_similarity Average similarity between the sentences in
the srt

Semantic

similarity_vectors similarity of the two embeddings Semantic
Person_ID The ID of a user User specific
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