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BOUNDARY VALUE PROBLEM OF CAPUTO FRACTIONAL

DIFFERENTIAL EQUATIONS OF VARIABLE ORDER

A. REFICE1, Ö. ÖZER2∗, M. S. SOUID3, §

Abstract. In this work, we investigate the existence, uniqueness and the stability of
solutions to the boundary value problem (BVP) of Caputo fractional differential equa-
tions of variable order by converting it into an equivalent standard Caputo BVP of the
fractional constant order with the help of the generalized intervals and piecewise con-
stant functions. The results obtained in this interesting study are novel and worthy
based on the Krasnoselskii fixed point theorem and the Banach contraction principle.
The Ulam-Hyers stability of the given variable-order Caputo fractional boundary value
problem is established. A numerical examples is given at the end to support and validate
the potentiality of our obtained results.

Keywords: Fractional differential equations of variable order, boundary value problem,
fixed point theorem, Ulam-Hyers stability.
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1. Introduction

The main idea of fractional calculus is to constitute the natural numbers in the order of
derivation operators with rational ones. Although it seems an elementary consideration,
it has an exciting correspondence explaining some physical phenomena. The fractional
calculus of variable fractional order is a generalization of constant order. While there are
many studies on the existence of solutions to fractional constant-order problems, there are
few research papers on the existence of solutions to the problems of fractional differential
equations of variable order. we point out some of them to later. Therefore, investigating
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this special research topic makes all our results novel and worthwhile. In [5], Jiahui
and Pengyu studied the uniqueness of solutions to initial value problem of Riemenn-
Liouville fractional differential equations of variable-order. Zhang and Hu [22] established
the existence of solutions and generalized Lyapunov-type inequalities of a variable-order
Riemenn-Liouville boundary value problems.

Recently, Hristova et al. [6] and Refice et al. [9] turned to investigation of the boundary
value problems of Hadamard fractional differential equations of variable order via Kura-
towski measure of noncompactness Technique. Bouazza et al. [4] studied a variable-order
multiterm boundary value problem and derived their results by two fixed point theorems.
In 2021, Benkerrouche et al. [3] presented the existence results and Ulam-Hyers stability
for implicit nonlinear fractional differential equations of variable order, for more studies
we refer to ([1], [13], [14], [15], [17], [18]).

Some existence and Ulam-Hyers-Rassias stability properties for fractional differential
equations are studied by many authors (see [6], [7], [9]).

Inspired by all previous studies, this work investigates the existence and the uniqueness
of solutions to the following proposed boundary value problem (BVP) for Caputo fractional
differential equations of variable order{

cD
ψ(t)
0+ y(t) = f1(t, y(t)), t ∈ J := [0, T ]

y(0) = 0, y(T ) = 0,
(1)

where 1 < ψ(t) ≤ 2, f1 : J × R → R is a continuous function and cD
ψ(t)
0+ is the Caputo

fractional derivative of variable-order ψ(t).

In this paper, we shall look for a solution of (1). Further, we study the stability of the
obtained solution of (1) in the sense of Ulam-Hyers (UH).

2. Preliminaries

This section introduces some important fundamental definitions that will be needed for
obtaining our results in the next sections.
The symbol C(J,R) represents the Banach space of continuous functions $ : J → R with
the norm

‖$‖ = Sup{|$(t)| : t ∈ J},
For −∞ < a1 < a2 < +∞, we consider the mappings ψ(t) : [a1, a2] → (0,+∞) and
v(t) : [a1, a2]→ (n− 1, n). Then, the left Riemenn-Liouville fractional integral (RLFI) of
variable-order ψ(t) for function f2(t) ([11], [12], [16]) is

I
ψ(t)

a+
1

f2(t) =

∫ t

a1

(t− s)ψ(t)−1

Γ(ψ(t))
f2(s)ds, t > a1, (2)

and the left Caputo fractional derivative (CFD) of variable-order v(t) for function f2(t)
([11], [12], [16]) is

cD
v(t)

a+
1

f2(t) =

∫ t

a1

(t− s)n−v(t)−1

Γ(n− v(t))
f

(n)
2 (s)ds, t > a1. (3)

As anticipated, in case of ψ(t) and v(t) are constant, then (RLFI) and (CFD) are
coincide with the standard Riemann-Liouville fractional integral and Caputo fractional
derivative, respectively see e.g. [8, 11, 12].

Recall the following pivotal observation.



A. REFICE, Ö. ÖZER, M. S. SOUID: BOUNDARY VALUE PROBLEM OF CAPUTO ... 1055

Lemma 2.1. ([8]) (page 96, 73) Let α1 > 0, a1 > 0, f2 ∈ L1(a1, a2), cDα1

a+
1

f2 ∈ L1(a1, a2).

Then,

Iα1

a+
1

cDα1

a+
1

f2(t) = f2(t) + λ0 + λ1(t− a1) + λ2(t− a1)2 + ...+ λn−1(t− a1)n−1

with n− 1 < α1 ≤ n, λ ∈ R,  = 0, 1, ..., n− 1.
and

cDα1

a+
1

Iα1

a+
1

f2(t) = f2(t).

Furthermore, for α1, α2 > 0, a1 > 0, f2 ∈ L1(a1, a2) we have,

Iα1

a+
1

Iα2

a+
1

f2(t) = Iα2

a+
1

Iα1

a+
1

f2(t) = Iα1+α2

a+
1

f2(t).

Remark([19], [21], [23]) Note that the semigroup property is not fulfilled for general
functions β1(t), β2(t), i.e.,

I
β1(t)

a+
1

I
β2(t)

a+
1

f2(t) 6= I
β1(t)+β2(t)

a+
1

f2(t).

Exemple Let

β1(t) = t, t ∈ [0, 4], β2(t) =

{
2, t ∈ [0, 1]
3, t ∈ ]1, 4].

f2(t) = 2, t ∈ [0, 4]

I
β1(t)
0+ I

β2(t)
0+ f2(t) =

∫ t

0

(t− s)β1(t)−1

Γ(β1(t))

∫ s

0

(s− τ)β2(s)−1

Γ(β2(s))
f2(τ)dτds

=

∫ t

0

(t− s)t−1

Γ(t)
[

∫ 1

0

(s− τ)

Γ(2)
2dτ +

∫ s

1

(s− τ)2

Γ(3)
2dτ ]ds

=

∫ t

0

(t− s)t−1

Γ(t)
[2s− 1 +

(s− 1)3

3
]ds,

and

I
β1(t)+β2(t)
0+ f2(t) =

∫ t

0

(t− s)β1(t)+β2(t)−1

Γ(β1(t) + β2(t))
f2(s)ds.

So, we get

I
β1(t)
0+ I

β2(t)
0+ f2(t)|t=3 =

∫ 3

0

(3− s)2

Γ(3)
[2s− 1 +

(s− 1)3

3
]ds

=
21

10
,
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I
β1(t)+β2(t)
0+ f2(t)|t=3 =

∫ 3

0

(3− s)β1(t)+β2(t)−1

Γ(β1(t) + β2(t))
f2(s)ds

=

∫ 1

0

(3− s)4

Γ(5)
2ds+

∫ 3

1

(3− s)5

Γ(6)
2ds

=
1

12

∫ 1

0
(s4 − 12s3 + 54s2 − 108s+ 81)ds

+
1

60

∫ 3

1
(−s5 + 15s4 − 90s3 + 270s2 − 405s+ 243)ds

=
665

180
.

Therefore, we obtain

I
β1(t)
0+ I

β2(t)
0+ f2(t)|t=3 6= I

β1(t)+β2(t)
0+ f2(t)|t=3.

Lemma 2.2. ([24]) Let u : J → (1, 2] be a continuous function, then for
f2 ∈ Cδ(J,R) = {f2(t) ∈ C(J,R), tδf2(t) ∈ C(J,R), 0 ≤ δ ≤ 1},
the variable order fractional integral I

ψ(t)
0+ f2(t) exists for any points on J .

Lemma 2.3. ([24]) Let u : J → (1, 2] be a continuous function, then

I
ψ(t)
0+ f2(t) ∈ C(J,R) for f2 ∈ C(J,R).

Definition 2.1. ([5], [20], [22])
Let I ⊂ R, I is called a generalized interval if it is either an interval, or {a1} or ∅.
A finite set P is called a partition of I if each x in I lies in exactly one of the generalized
intervals E in P.
A function g : I → R is called piecewise constant with respect to partition P of I if for
any E ∈ P, g is constant on E.

Theorem 2.1. (Krasnoselskii Fixed Point Theorem)([8]) Let S be a closed, bounded and
convex subset of a real Banach space E and let W1 and W2 be operators on S satisfying
the following conditions:
(i) W1(S) +W2(S) ⊂ S,
(ii) W1 is continuous on S and W1(S) is a relatively compact subset of E,
(iii) W2 is a strict contraction on S, i.e., there exists k ∈ [0, 1), such that

‖W2(y)−W2(y)‖ ≤ k‖y − y‖

for every y, y ∈ S.
Then there exists y ∈ S such that W1(y) +W2(y) = y.

Definition 2.2. ([2], [10]) The equation of (1) is (UH) stable if there exists cf1 > 0, such
that for any ε > 0 and for every solution z ∈ C(J,R) of the following inequality

|cDψ(t)
0+ z(t)− f1(t, z(t))| ≤ ε, t ∈ J (4)

there exists a solution y ∈ C(J,R) of equation (1) with

|z(t)− y(t)| ≤ cf1ε, t ∈ J

3. Existence and uniqueness of solutions

Let us introduce the following assumption:
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(H1): Let n ∈ N be an integer, P = {J1 := [0, T1], J2 := (T1, T2], J3 := (T2, T3], ...Jn :=
(Tn−1, T ]} be a partition of the interval J , and let ψ(t) : J → (1, 2] be a piecewise
constant function with respect to P, i.e.,

ψ(t) =
n∑
=1

ψI(t) =



ψ1, if t ∈ J1,
ψ2, if t ∈ J2,
.
.
.

ψn, if t ∈ Jn,
where 1 < ψ ≤ 2 are constants, and I is the indicator of the interval J := (T−1, T],  =
1, 2, ..., n, (with T0 = 0, Tn = T ) such that

I(t) =

{
1, for t ∈ J,
0, for elsewhere.

For each  ∈ {1, 2, ..., n}, the symbol E = C(J,R), indicated the Banach space of contin-
uous functions y : J → R equipped with the norm

‖y‖E = sup
t∈J
|y(t)|.

Then, for any t ∈ J,  = 1, 2, ..., n the left caputo fractional derivative of variable order
ψ(t) for function y(t) ∈ C(J,R), defined by (3), could be presented as a sum of left caputo
fractional derivatives of constant-orders ψ,  = 1, 2, ..., n

cD
ψ(t)
0+ y(t) =

∫ T1

0

(t− s)1−ψ1

Γ(2− ψ1)
y(2)(s)ds+ ...+

∫ t

T−1

(t− s)1−ψ

Γ(2− ψ)
y(2)(s)ds. (5)

Thus, according to (5), (BVP)(1) can be written for any t ∈ J,  = 1, 2, ..., n in the form∫ T1

0

(t− s)1−ψ1

Γ(2− ψ1)
y(2)(s)ds+ ...+

∫ t

T−1

(t− s)1−ψ

Γ(2− ψ)
y(2)(s)ds = f1(t, y(t)), t ∈ J. (6)

In what follows we shall introduce the solution to the BVP (1).

Definition 3.1. BVP (1) has a solution, if there are functions y,  = 1, 2, ..., n, so that,
y ∈ C([0, T],R) fulfilling equation (6) and y(0) = 0 = y(T).

Let the function y ∈ C(J,R) be such that y(t) ≡ 0 on t ∈ [0, T−1] and it solves integral
equation (6). Then (6) is reduced to

cD
ψ

T+
−1

y(t) = f1(t, y(t)), t ∈ J.

We shall deal with following BVP{
cD

ψ

T+
−1

y(t) = f1(t, y(t)), t ∈ J
y(T−1) = 0, y(T) = 0.

(7)

For our purpose, the upcoming lemma will be a corner stone of the solution of BVP (7).

Lemma 3.1. Let  ∈ {1, 2, ..., n} be a natural number, f1 ∈ C(J ×R,R) and there exists

a number δ ∈ (0, 1) such that tδf1 ∈ C(J × R,R).
Then, the function y ∈ E is a solution of BVP (7) if and only if x solves the integral
equation

y(t) = −(T − T−1)−1(t− T−1)I
ψ

T+
−1

f1(T, y(T)) + I
ψ

T+
−1

f1(t, y(t)). (8)
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Proof. We presume that y ∈ E is solution of BVP (7). Employing the operator I
ψ

T+
−1

to

both sides of (7) and regarding Lemma 2.1, we find

y(t) = λ1 + λ2(t− T−1) +
1

Γ(ψ)

∫ t

T−1

(t− s)ψ−1f1(s, y(s))ds, t ∈ J.

By y(T−1) = 0, we get λ1 = 0.
Let y(t) satisfy y(T) = 0. So, we observe that

λ2 = −(T − T−1)−1I
ψ

T+
−1

f1(T, y(T))

Then, we find

y(t) = −(T − T−1)−1(t− T−1)I
ψ

T+
−1

f1(T, y(T))

+I
ψ

T+
−1

f1(t, y(t)), t ∈ J.

Conversely, let y ∈ E be solution of integral equation (8). Regarding the continuity of

function tδf1 and Lemma 2.1, we deduce that y is the solution of BVP (7).
�

We will prove the existence and uniqueness of solutions for the BVP (7). This result is
based on Theorem 2.1 and the Banach contraction principle.

Theorem 3.1. Let the conditions of Lemma 3.1 be satisfied and there exist a constant
K > 0, such that,
tδ|f1(t, x1)− f1(t, x2)| ≤ K|x1 − x2|, for any x1, x2 ∈ R, t ∈ J. and the inequality

2K(T − T−1)ψ−1(T 1−δ
 − T 1−δ

−1 )

(1− δ)Γ(ψ)
< 1. (9)

holds. Then, BVP (7) has a unique solution in E.

Proof. We construct the operators

W1,W2 : E → E

as follow:

W1y(t) = −(T − T−1)−1(t− T−1)I
ψ

T+
−1

f1(T, y(T)), t ∈ J. (10)

W2y(t) = I
ψ

T+
−1

f1(T, y(T)), t ∈ J. (11)

It follows from the properties of fractional integrals and from the continuity of function
tδf1 that the operators W1,W2 : E → E defined in (10), (11) are well defined.
Let

R ≥
2f?(T−T−1)ψ

Γ(ψ)

1−
2K(T−T−1)ψ−1(T1−δ

 −T1−δ
−1 )

(1−δ)Γ(ψ)

,

with

f? = sup
t∈J
|f1(t, 0)|.

We consider the set

BR = {y ∈ E, ‖y‖E ≤ R}.
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Clearly BR is nonempty, closed, convex and bounded. Now, we demonstrate that W1,W2

satisfies the assumption of the Theorem 2.1. We shall prove it in four phases.
STEP 1: Claim: W1(BR) +W2(BR) ⊆ (BR).
For y ∈ BR and by (H2), we get

|W1y(t) +W2y(t)| ≤ (T−T−1)−1(t−T−1)
Γ(ψ)

∫ T
T−1

(T − s)ψ−1|f1(s, y(s))|ds
+ 1

Γ(ψ)

∫ t
T−1

(t− s)ψ−1|f1(s, y(s))|ds
≤ 2

Γ(ψ)

∫ T
T−1

(T − s)ψ−1|f1(s, y(s))|ds
≤ 2

Γ(ψ)

∫ T
T−1

(T − s)ψ−1|f1(s, y(s))− f1(s, 0)|ds
+ 2

Γ(ψ)

∫ T
T−1

(T − s)ψ−1|f1(s, 0)|ds

≤ 2
Γ(ψ)

∫ T
T−1

(T − s)ψ−1s−δ(K|y(s)|)ds+
2f?(T−T−1)ψ

Γ(ψ)

≤ 2K(T−T−1)ψ−1(T 1−δ
 −T 1−δ

−1 )

(1−δ)Γ(ψ)
R +

2f?(T−T−1)ψ

Γ(ψ)

≤ R,

which means that W1(BR) +W2(BR) ⊆ (BR).

STEP 2: Claim: W1 is continuous.
We presume that the sequence (yn) converges to y in E and t ∈ J. Then,

|(W1yn)(t)− (W1y)(t)| ≤ (T−T−1)−1(t−T−1)
Γ(ψ)

∫ T
T−1

(T − s)ψ−1|f1(s, yn(s))

−f1(s, y(s))|ds
≤ 1

Γ(ψ)

∫ T
T−1

(T − s)ψ−1|f1(s, yn(s))− f1(s, y(s))|ds
≤ 1

Γ(ψ)

∫ T
T−1

s−δ(T − s)ψ−1(K|yn(s)− y(s)|)ds
≤ K

Γ(ψ)
‖yn − y‖E

∫ T
T−1

s−δ(T − s)ψ−1ds

≤ K(T−T−1)ψ−1(T1−δ−T−1
1−δ)

(1−δ)Γ(ψ)
‖yn − y‖E

i.e., we obtain

‖(W1yn)− (W1y)‖E → 0 as n→∞.

Ergo, the operator W1 is a continuous on E.
Step 3: Claim: W1 is compact
Now, we will show that W1(BR) is relatively compact, meaning that W1 is compact.
Clearly W1(BR) is uniformly bounded because by Step 1, we have W1(BR) = {W1(y) :
y ∈ BR} ⊂W1(BR) +W2(BR) ⊆ (BR) thus for each y ∈ BR we have ‖W1(y)‖E ≤ R
which means that W1(BR)is bounded. It remains to indicate that W1(BR) is equicon-
tinuous.
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For t1, t2 ∈ J, t1 < t2 and y ∈ BR , we have

∣∣∣(W1y)(t2)− (W1y)(t1)
∣∣∣

=
∣∣∣− (T − T−1)−1(t2 − T−1)

Γ(ψ)

∫ T

T−1

(T − s)ψ−1f1(s, y(s))ds

+
1

Γ(ψ)

∫ t2

T−1

(t2 − s)ψ−1f1(s, y(s))ds+
(T − T−1)−1(t1 − T−1)

Γ(ψ)∫ T

T−1

(T − s)ψ−1f1(s, y(s))ds− 1

Γ(ψ)

∫ t1

T−1

(t1 − s)ψ−1f1(s, y(s))ds
∣∣∣

≤ (T − T−1)−1

Γ(ψ)

(
(t2 − T−1)− (t1 − T−1)

)∫ T

T−1

(T − s)ψ−1|f1(s, y(s))|ds

+
1

Γ(ψ)

∫ t1

T−1

(
(t2 − s)ψ−1 − (t1 − s)ψ−1

)
|f1(s, y(s))|ds

+
1

Γ(ψ)

∫ t2

t1

(t2 − s)ψ−1|f1(s, y(s))|ds

≤ (T − T−1)−1

Γ(ψ)

(
(t2 − T−1)− (t1 − T−1)

)∫ T

T−1

(T − s)ψ−1|f1(s, y(s))− f1(s, 0)|ds

+
(T − T−1)−1

Γ(ψ)

(
(t2 − T−1)− (t1 − T−1)

)∫ T

T−1

(T − s)ψ−1|f1(s, 0)|ds

+
1

Γ(ψ)

∫ t1

T−1

(
(t2 − s)ψ−1 − (t1 − s)ψ−1

)
|f1(s, y(s))− f1(s, 0)|ds

+
1

Γ(ψ)

∫ t1

T−1

(
(t2 − s)ψ−1 − (t1 − s)ψ−1

)
|f1(s, 0)|ds

+
1

Γ(ψ)

∫ t2

t1

(t2 − s)ψ−1|f1(s, y(s))− f1(s, 0)|ds+
1

Γ(ψ)

∫ t2

t1

(t2 − s)ψ−1|f1(s, 0)|ds

≤ (T − T−1)−1

Γ(ψ)

(
(t2 − T−1)− (t1 − T−1)

)∫ T

T−1

(T − s)ψ−1s−δ(K|y(s)|)ds

+
f?(T − T−1)−1

Γ(ψ)

(
(t2 − T−1)− (t1 − T−1)

)∫ T

T−1

(T − s)ψ−1ds

+
1

Γ(ψ)

∫ t1

T−1

s−δ
(

(t2 − s)ψ−1 − (t1 − s)ψ−1
)

(K|y(s)|)ds

+
f?

Γ(ψ)

∫ t1

T−1

(
(t2 − s)ψ−1 − (t1 − s)ψ−1

)
ds

+
1

Γ(ψ)

∫ t2

t1

s−δ(t2 − s)ψ−1(K|y(s)|)ds+
f?

Γ(ψ)

∫ t2

t1

(t2 − s)ψ−1ds

≤ (T − T−1)ψ−2

Γ(ψ)

(
(t2 − T−1)− (t1 − T−1)

)
(K‖y‖E)

∫ T

T−1

s−δds
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+
f?(T − T−1)ψ−1

Γ(ψ + 1)

(
(t2 − T−1)− (t1 − T−1)

)
+

1

Γ(ψ)
(K‖y‖E)

∫ t1

T−1

s−δ((t2 − t1)ψ−1)ds

+
f?

Γ(ψ)

((t2 − T−1)ψ

ψ
− (t2 − t1)ψ

ψ
− (t1 − T−1)ψ

ψ

)
+

(t2 − t1)ψ−1

Γ(ψ)
(K‖y‖E)

∫ t2

t1

s−δds+
f?

Γ(ψ)

(t2 − t1)ψ

ψ

≤ K(T − T−1)ψ−2(T
1−δ − T−1

1−δ)

(1− δ)Γ(ψ)
‖y‖E

(
(t2 − T−1)− (t1 − T−1)

)
+
f?(T − T−1)ψ−1

Γ(ψ + 1)

(
(t2 − T−1)− (t1 − T−1)

)
+
(K(t1

1−δ − T−1
1−δ)(t2 − t1)ψ−1

(1− δ)Γ(ψ)

)
‖y‖E

+
f?

Γ(ψ + 1)

(
(t2 − T−1)ψ − (t2 − t1)ψ − (t1 − T−1)ψ

)
+
K(t2

1−δ − t11−δ)(t2 − t1)ψ−1

(1− δ)Γ(ψ)
‖y‖E +

f?(t2 − t1)ψ

Γ(ψ + 1)

≤
(K(T − T−1)ψ−2(T

1−δ − T−1
1−δ)

(1− δ)Γ(ψ)
‖y‖E +

f?(T − T−1)ψ−1

Γ(ψ + 1)

)
(

(t2 − T−1)− (t1 − T−1)
)

+
(K(t2

1−δ − T−1
1−δ)

(1− δ)Γ(ψ)
‖y‖E

)
(t2 − t1)ψ−1

+
f?

Γ(ψ + 1)

(
(t2 − T−1)ψ − (t1 − T−1)ψ

)

Hence ‖(W1y)(t2) − (W1y)(t1)‖E → 0 as |t2 − t1| → 0. It implies that W1(BR) is
equicontinuous.
STEP 4: Claim: W2 is a strict contraction on BR .
For y(t), y(t) ∈ E, we obtain that

|(W2y)(t)− (W2y)(t)| ≤ 1

Γ(ψ)

∫ t

T−1

(t− s)ψ−1|f1(s, y(s))− f1(s, y(s))|ds

≤ 1

Γ(ψ)

∫ T

T−1

(T − s)ψ−1|f1(s, y(s))− f1(s, y(s))|ds

≤ 1

Γ(ψ)

∫ T

T−1

(T − s)ψ−1s−δ(K|y(s)− y(s)|)ds

≤ K

Γ(ψ)
‖y − y‖E

∫ T

T−1

s−δ(T − s)ψ−1ds
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≤ K(T
1−δ − T−1

1−δ)(T − T−1)ψ−1

(1− δ)Γ(ψ)
‖y − y‖E

Consequently by (9), the operator W2 is strict contraction.
Therefore, all conditions of Theorem 2.1 are fulfilled and thus, there exists ỹ ∈ BR , such
that W1ỹ +W2ỹ = ỹ, which is a solution of the BVP (7). Since BR ⊂ E, then ỹ ∈ E.

Now, we shall show the uniqueness of solutions for the BVP (7) based on the Banach
contraction principle. Consider the operator

W : E → E

defined by :

(Wy)(t) = (W1y)(t) + (W2y)(t), for y(t) ∈ E.

STEP 5: Claim: W is a contraction.
For y(t), y(t) ∈ E, we obtain that

|(Wy)(t)− (Wy)(t)| ≤ (T−T−1)−1(t−T−1)
Γ(ψ)

∫ T
T−1

(T − s)ψ−1|f1(s, y(s))− f1(s, y(s))|ds
+ 1

Γ(ψ)

∫ t
T−1

(t− s)ψ−1|f1(s, y(s))− f1(s, y(s))|ds
≤ 2

Γ(ψ)

∫ T
T−1

(T − s)ψ−1|f1(s, y(s))− f1(s, y(s))|ds
≤ 2

Γ(ψ)

∫ T
T−1

(T − s)ψ−1s−δ(K|y(s)− y(s)|)ds

≤ 2K(T−T−1)ψ−1(T 1−δ
 −T 1−δ

−1 )

(1−δ)Γ(ψ)
‖y − y‖E

Ergo, by (9), we deduce that the operator W forms a contraction. Hence, by the Banach’s
contraction principal, W has a unique fixed point ỹ ∈ E, which is a unique solution of
the BVP (7). the claim of Theorem 3.1 is proved. �

Now, we will prove the existence result for BVP (1). Introduce the following assumption:

(H2): Let f1 ∈ C(J × R,R) and there exists a number δ ∈ (0, 1) such that tδf1 ∈
C(J × R,R) and there exist a constant K > 0, such that,
tδ|f1(t, x1)− f1(t, x2)| ≤ K|x1 − x2|, for any x1, x2 ∈ R and t ∈ J .

Theorem 3.2. Let the conditions (H1), (H2) and inequality (9) be satisfied for all  ∈
{1, 2, ..., n}.
Then, the problem (1) possesses a unique solution in C(J,R).

Proof. For any  ∈ {1, 2, ..., n} according to Theorem 3.1 the BVP (7) possesses a unique
solution ỹ ∈ E.
For any  ∈ {1, 2, ..., n} we define the function

y =

{
0, t ∈ [0, T−1],
ỹ, t ∈ J,

Thus, the function y ∈ C([0, T],R) solves the integral equation (6) for t ∈ J with
y(0) = 0, y(T) = ỹ(T) = 0.
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Then, the function

y(t) =



y1(t), t ∈ J1,

y2(t) =

{
0, t ∈ J1,
ỹ2, t ∈ J2

.

.

.

.

yn(t) =

{
0, t ∈ [0, T−1],
ỹ, t ∈ J

(12)

is a unique solution of the BVP (1) in C(J,R). �

4. Ulam-Hyers stability

Theorem 4.1. Let the conditions (H1), (H2) and inequality (9) be satisfied. Then, BVP
(1) is (UH) stable.

Proof. Let ε > 0 an arbitrary number and the function z(t) from z ∈ C(J,R) satisfy
inequality (4). For any  ∈ {1, 2, ..., n} we define the functions z1(t) ≡ z(t), t ∈ [1, T1] and
for  = 2, 3, ..., n :

z(t) =

{
0, t ∈ [0, T−1],
z(t), t ∈ J,

For any  ∈ {1, 2, ..., n} according to equality (5) for t ∈ J we get

cD
ψ(t)

T−1
+z(t) =

∫ t

T−1

(t− s)1−ψ

Γ(2− ψ)
z(2)(s)ds.

Taking the (RLFI) I
ψ

T+
−1

of both sides of the inequality (4), we obtain∣∣∣z(t) +
(T − T−1)−1(t− T−1)

Γ(ψ)

∫ T

T−1

(T − s)ψ−1f1(s, z(s))ds

− 1

Γ(ψ)

∫ t

T−1

(t− s)ψ−1f1(s, z(s))ds
∣∣∣

≤ ε

∫ t

T−1

(t− s)ψ−1

Γ(ψ)
ds

≤ ε
(T − T−1)ψ

Γ(ψ + 1)

According to Theorem 3.2, BVP (1) has a unique solution y ∈ C(J,R) defined by y(t) =
y(t) for t ∈ J,  = 1, 2, ..., n, where

y =

{
0, t ∈ [0, T−1],
ỹ, t ∈ J,

(13)

and ỹ ∈ E is a solution of BVP (7). According to Lemma 3.1 the integral equation

ỹ(t) = −(T − T−1)−1(t− T−1)

Γ(ψ)

∫ T

T−1

(T − s)ψ−1f1(s, ỹ(s))ds

+
1

Γ(ψ)

∫ t

T−1

(t− s)ψ−1f1(s, ỹ(s))ds (14)

holds.
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Let t ∈ J,  = 1, 2, ..., n. Then by Eq (13) and (14) we get

|z(t)− y(t)| = |z(t)− y(t)| = |z(t)− ỹ(t)|

=
∣∣∣z(t) +

(T − T−1)−1(t− T−1)

Γ(ψ)

∫ T

T−1

(T − s)ψ−1f1(s, ỹ(s))ds

− 1

Γ(ψ)

∫ t

T−1

(t− s)ψ−1f1(s, ỹ(s))ds
∣∣∣

=
∣∣∣z(t) +

(T − T−1)−1(t− T−1)

Γ(ψ)

∫ T

T−1

(T − s)ψ−1f1(s, z(s))ds

− 1

Γ(ψ)

∫ t

T−1

(t− s)ψ−1f1(s, z(s))ds
∣∣∣

+
(T − T−1)−1(t− T−1)

Γ(ψ)

∫ T

T−1

(T − s)ψ−1|f1(s, z(s))− f1(s, ỹ(s))|ds

+
1

Γ(ψ)

∫ t

T−1

(t− s)ψ−1|f1(s, z(s))− f1(s, ỹ(s))|ds

≤ ε
(T − T−1)ψ

Γ(ψ + 1)
+

(T − T−1)−1(t− T−1)

Γ(ψ)

∫ T

T−1

(T − s)ψ−1s−δ(K|z(s)− ỹ(s)|)ds

+
1

Γ(ψ)

∫ t

T−1

(t− s)ψ−1s−δ(K|z(s)− ỹ(s)|)ds

≤ ε
(T − T−1)ψ

Γ(ψ + 1)
+

(T − T−1)ψ−1

Γ(ψ)
(K‖z − ỹ‖E)

∫ T

T−1

s−δds

+
(T − T−1)ψ−1

Γ(ψ)
(K‖z − ỹ‖E)

∫ t

T−1

s−δds

≤ ε
(T − T−1)ψ

Γ(ψ + 1)
+

(T − T−1)ψ−1(T
1−δ − T−1

1−δ)

(1− δ)Γ(ψ)
(K‖z − ỹ‖E)

+
(T − T−1)ψ−1(t1−δ − T−1

1−δ)

(1− δ)Γ(ψ)
(K‖z − ỹ‖E)

≤ ε
(T − T−1)ψ

Γ(ψ + 1)
+

2K(T − T−1)ψ−1(T
1−δ − T−1

1−δ)

(1− δ)Γ(ψ)
‖z − ỹ‖E

≤ ε
(T − T−1)ψ

Γ(ψ + 1)
+ µ‖z − y‖,

where

µ = max
=1,2,...,n

2K(T − T−1)ψ−1(T
1−δ − T−1

1−δ)

(1− δ)Γ(ψ)
.

Then,

‖z − y‖(1− µ) ≤ (T − T−1)ψ

Γ(ψ + 1)
ε.
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We obtain, for each t ∈ J

|z(t)− y(t)| ≤ ‖z − y‖ ≤ (T − T−1)ψ

(1− µ)Γ(ψ + 1)
ε := cf1ε.

Therefore, the BVP (1) is (UH) stable. �

5. Example

Let us consider the following fractional boundary value problem,
cD

ψ(t)
0+ y(t) = t−

1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|)
, t ∈ J := [0, 2],

y(0) = 0, y(2) = 0.

(15)

Let

f1(t, x) =
t−

1
3 e−t

(ee
t2

1+t + 4e2t + 1)(1 + x)

, (t, x) ∈ [0, 2]× [0,+∞).

ψ(t) =

{
3
2 , t ∈ J1 := [0, 1],
9
5 , t ∈ J2 :=]1, 2].

(16)

Then, we have

t
1
3 |f1(t, x1)− f1(t, x2)| =

∣∣∣∣∣∣ e−t

(ee
t2

1+t + 4e2t + 1)

(
1

1 + x1
− 1

1 + x2

)∣∣∣∣∣∣
≤ e−t|x1 − x2|

(ee
t2

1+t + 4e2t + 1)(1 + x1)(1 + x2)

≤ e−t

(ee
t2

1+t + 4e2t + 1)

|x1 − x2|

≤ 1

(e+ 5)
|x1 − x2|.

Hence the condition (H2) holds with δ = 1
3 and K = 1

e+5 .

By (16), according to BVP (7) we consider two auxiliary BVP for Caputo fractional
differential equations of constant order

cD
3
2

0+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|)
, t ∈ J1,

y(0) = 0, y(1) = 0.

(17)

and 
cD

9
5

1+y(t) = t−
1
3 e−t

(ee
t2

1+t +4e2t+1)(1+|y(t)|)
, t ∈ J2,

y(1) = 0, y(2) = 0.

(18)

Next, we prove that the condition (9) is fulfilled for  = 1. Indeed,

2K(T1
1−δ − T0

1−δ)(T1 − T0)ψ1−1

(1− δ)Γ(ψ1)
=

2
2
3(e+ 5)Γ(3

2)
' 0.4435 < 1
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Accordingly the condition (9) is achieved. By Theorem 3.1, BVP (17) has a unique solution
ỹ1 ∈ E1.
We prove that the condition (9) is fulfilled for  = 2. Indeed,

2K(T2
1−δ − T1

1−δ)(T2 − T1)ψ2−1

(1− δ)Γ(ψ2)
=

2

e+ 5

2
2
3 − 1

2
3Γ(9

5)
' 0.2447 < 1

Thus, the condition (9) is satisfied.
According to Theorem 3.1, the BVP (18) possesses a unique solution ỹ2 ∈ E2.
Then, by Theorem 3.2, the BVP (15) has a unique solution

y(t) =

{
ỹ1(t), t ∈ J1,
y2(t), t ∈ J2.

where

y2(t) =

{
0, t ∈ J1,
ỹ2(t), t ∈ J2.

According to Theorem 4.1, BVP (15) is (UH) stable.

6. Conclusions

In this paper, we proposed the boundary value problem for fractional differential equa-
tions of variable order involving Caputo derivative of variable order, which is a piecewise
constant function. Based the essential difference about the variable order fractional cal-
culus (derivative and integral) and the integer order and the constant fractional order
calculus (derivative and integral), we carry on essential analysis to (BVP) (1). According
to our analysis, we give the definition of solution to the (BVP) (1), using the Krasnosel-
skii fixed point theorem and the Banach contraction principle, we examined the existence
and uniqueness of the solutions to our problem (Theorem 3.2) and we studied the (UH)
stability of the solutions (Theorem 4.1), Finally, as applications, an example is presented
to illustrate our result
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