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Abstract: The release of winery wastewater (WW) into the environment, without proper treatment,
can cause severe problems to freshwater quality and natural fauna and flora. Therefore, in this work
a treatment process was studied, combining adsorption and thermocatalytic oxidation processes.
In a more specific way, it optimized the combination of activated sodium bentonite (Na-Mt) and
potassium persulfate (KPS)/sodium percarbonate (SPC) as oxidant agents. With the combination
of best operational conditions of adsorption ([Na-Mt] = 5.0 g/L, pH = 3.0, V = 500 mL, agitation
350 rpm, T = 298 K, t = 24 h) and thermocatalytic oxidation processes (S2O2−

8 /H2O2 ratio = 1:0.25,
S2O2−

8 /H2O2 dosage = 0.1:0.025 (g/g), pH = 7.0, T = 343 K, agitation 350 rpm, t = 2 h), a total organic
carbon, chemical oxygen demand and total polyphenols removal of 76.7, 81.4 and >99% was achieved,
respectively. Finally, it was evaluated the effect of the treatment processes in the germination index
(GI) of different plant seeds. A GI > 80% was achieved, showing a low phytotoxicity effect of the
processes applied in the winery wastewater treatment.

Keywords: adsorption process; germination index; phenolic compounds; potassium persulfate;
sulfate radicals; sodium percarbonate

1. Introduction

Portugal is a Mediterranean wine producer, with an approximated vineyard area of
194,000 ha and a wine production of 6.4 MhL in 2020. It is considered the 11th largest producer
and exporter of wine worldwide [1]. To produce wine, wineries generate a significant load
of residues. It is estimated that for each liter of wine produced, between 1.3 and 1.5 kg of
wastes are produced. Among these, up to 75% are WW [2,3]. Most of these wastewaters
result from a various number of activities which includes cleaning of tanks, washing of
floors and equipment, rinsing of transfer lines, bottling facilities and filtration units [4,5].
The release of these winery wastewaters without proper treatment can cause pollution of
water, degradation of soil and damage to the vegetation by odors and air emissions [6]. In
addition, the discharge of the winery wastewater into the soil without treatment can alter
the physicochemical properties of the ground and surface waters, by affecting color, pH and
electrical conductivity from the leaching of organic and inorganic ions [7].

To avoid the negative impact of the winery wastewater in the environment, several
treatments have been performed, such as coagulation–flocculation–decantation [8], mi-
croalgae [9,10], Fenton and photo-Fenton processes [2,11], sulfate radicals [12] and wet
air oxidation [13]. In this work, the application of adsorption with clay was studied as a
treatment for winery wastewater. A similar treatment was performed by Jorge et al. [11],
who observed a high organic removal from winery wastewater by the bentonite clay. Clays
and clay minerals such as montmorillonite, vermiculite, illite, kaolinite and bentonite
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are widely used in petroleum industries, engineering and constructions, environmental
remediation, ceramics and refractories, pharmaceuticals and agricultural sectors [14,15].

Bentonite is a 2:1 expandable montmorillonite clay and its unit layer structure consists
of one Al3+ octahedral sheets. The modification reactions alter the surface and structural
characteristics of clay by replacing the interlayer cations (e.g., Na+, K+, Ca2+) with specific
species or sites [14]. Currently, bentonite is used worldwide to prevent the formation of
protein haze in wines before bottling, through a process of adsorption of proteins onto the
bentonite clay [16]. However, to our knowledge, the effects of adsorption with bentonite in
the phenolic composition and germination index of plants were never studied before in the
treatment of winery wastewater, therefore its effects are still unknown.

Sulfate radical-based advanced oxidation processes (SR-AOPs) are another process
type that can be applied for winery wastewater treatment. The SR-AOPs have attracted
increasing attention due to their advantages, which include: (1) high redox potential
(2.5–3.1 V), (2) working under a wide range of pH [17] and (3) a longer life time (30–40 µs
vs. 20 ns) than hydroxyl radicals [18,19]. The sulfate radicals can be activated by several dif-
ferent techniques such as: (1) alkali activation [20,21], (2) a metal catalyzed process [22–24],
(3) heat activation [25,26], (4) radiation activation [27,28], (5) activated carbon [29,30] and
(6) H2O2-based persulfate activation [31]. In this work, the activation of sulfate radicals
by addition of potassium persulfate (KPS), hydrogen peroxide (H2O2) and heat was used
for the first time in the treatment of winery wastewater. In addition, the application of
H2O2 in solid form as sodium percarbonate (SPC, Na2CO3•1.5H2O2) was tested for the
first time in WW treatment. The SPC has several advantages regarding liquid H2O2, such
as (1) exceptional storage capability, (2) safe to handle, (3) it is a sustained-release oxidizing
agent and (4) SPC and its decomposition products, such as carbon dioxide, water and a
small amount of sodium carbonate, are non-toxic to microorganisms in groundwater [32].

The aim of this work is (1) to evaluate the performance of activated sodium bentonite
in the adsorption process for the treatment of WW, (2) to study and optimize the thermocat-
alytic oxidation for the treatment of WW, (3) to evaluate the effect of combined treatment
adsorption–thermocatalytic oxidation processes in the germination index of plant seeds
and removal of phenolic compounds.

2. Materials and Methods
2.1. Reagents and Winery Wastewater Sampling

Activated sodium Bentonite (Na-Mt) was purchased by Angelo Coimbra & Ca., Lda
(Maia, Portugal), sodium percarbonate (SPC, Na2CO3•1.5H2O2) by Alfa Aesar (Mas-
sachusetts, EUA) and persulfate or potassium peroxydisulfate (KPS, K2S2O8), by Scharlau
(Sentmenat, Barcelona, Spain). NaOH and H2SO4 (95%) were acquired by Analar Norma-
pur (Vila Nova de Gaia, Portugal). Deionized water was used to prepare the respective
solutions. The WW was collected from a private Portuguese cellar unity located in the
Douro region (Northeast of Portugal). The WW samples were stored at −40 ◦C, and the
work was performed at the University of Trás-os-Montes and Alto Douro, located in Vila
Real, Portugal, latitude 41◦17′9.18′′ N and longitude 7◦44′21.45′′ W.

2.2. Analytical Technics

Different physical–chemical parameters were measured in order to characterize the
WW, including the chemical oxygen demand (COD), the biological oxygen demand (BOD5),
the total organic carbon (TOC) and the total polyphenols (mg gallic acid/L). The main
chemical parameters measured are shown in Table 1. The COD and BOD5 were deter-
mined according to Standard Methods (5220D; 5210D, respectively) [33]. COD analysis
was carried out in a COD reactor from HACH Co. (Loveland, CO, USA) and a HACH
DR 2400 spectrophotometer (Loveland, CO, USA) was used for colorimetric measurement.
Biochemical oxygen demand (BOD5) was determined using a respirometric OxiTop® IS
12 system (WTW, Yellow Springs, OH, USA). The pH was measured by a 3510 pH meter
(Jenway, Cole-Parmer, UK). The TOC content (mg C/L) was measured by a Shimadzu
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TOC-L CSH analyzer (Shimadzu, Kyoto, Japan). Total polyphenols content was determined
following the Folin–Ciocalteau method [34]. Hydrogen peroxide concentration was fol-
lowed using titanium (IV) oxysulfate (DIN 38 402H15 method) at 410 nm, by a HACH DR
2400 spectrophotometer (Loveland, CO, USA).

Phytotoxicity tests were performed, by germination of onion, cucumber, lettuce and
corn seeds (standard species recommended by the US Environmental Protection Agency,
the US Food and Drug Administration and the Organization for Economic Cooperation
and Development [35]) and determined by Equation (1) in accordance to Varnero et al. [36]
and Tiquia and Tam [37], as follows:

GI(%) =
NSG,T

NSG,B
× LR,T

LR,B
× 100 (1)

where GI is the germination index, NSG,T is the arithmetic mean of the number of germi-
nated seeds in each extract (wastewater), NSG,B is the arithmetic mean of the number of
germinated seeds on standard solution (distilled water), LR,T is the mean root length in
each extract (wastewater) and LR,B is the mean root length in control (distilled water).

Table 1. Physical–chemical characterization of winery wastewater [38].

Parameter Value

pH 4.0
Conductivity (µS/cm) 385

Turbidity (NTU) 1205
Total Suspended Solids (mg/L) 3910

Chemical Oxygen Demand (mg O2/L) 9870
Biochemical Oxygen Demand (mg O2/L) 1250

Total Organic Carbon (mg C/L) 1497
Total Polyphenols (mg gallic acid/L) 87

Ferrous Iron (mg Fe/L) 0.05
Biodegradability Index—BOD5/COD 0.13

2.3. Phenolic and Chromatic (CIELab) Characterization

Color intensity (CI) and Hue were measured as described by the OIV method [39];
total polyphenol index (TPI) was measured using the Curvelo-Garcia method [40]; total
phenols, non-flavonoids and flavonoids were determined according to Kramling and Sin-
gleton [41]. Total anthocyanins (C) were analyzed by SO2 bleaching method, as reported by
Ribéreau-Gayon et al. [42]; colored anthocyanins (CA), total pigments (TP) and polymeric
pigments (PP) were determined by the method described by Somers and Evans [43] and
total tannins were determined by the leucoanthocyanin (LA) method [44]. All samples
were analyzed by a GENESYSTM 10 Series Spectrophotometer (Thermo Fisher Scientific,
Waltham, Massachusetts, USA). A Shimadzu UV-2101 spectrophotometer (Shimadzu, Ky-
oto, Japan) was used to record the absorption spectra of the WW samples, with a scan
from a range between 380 and 770 nm, with 5 nm distance, using 1 cm path length quartz
cells. Data were collected to determine a measure of L (lightness), a (redness) and b (yel-
lowness) coordinates using the CIELab 1976 method. This allows reliable quantification
of the overall color difference of a sample when compared to a reference sample (Blanc).
Color differences can be distinguished by the human eye when the difference between
∆Eab values are greater than two units, in accordance to Spagna et al. [45]. All analyses
were performed in duplicate. Table 2 resumes the formulas used in this work.
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Table 2. Equations for phenolic composition and chromatic (CIELab) determination [38].

Equations Parameters References

Color intensity (CI) A420—absorbance at 420 nm OIV, [39]
CI = A420 + A520 + A620 A520—absorbance at 520 nm

Hue A620—absorbance at 620 nm OIV, [39]
Hue =A420

A520
A280—absorbance at 280 nm

Total polyphenol index (TPI) DF-dilution factor Curvelo-Garcia, [40]
TPI = A280 × DF

Total phenols Kramling and Singleton, [41]

Total phenols (mg gallic acid/L) = AIPT
280+0.0243

0.0326 × DF
Non-flavonoids Kramling and Singleton, [41]

Non-flavonoids (mg gallic acid/L) = ANF
280+0.0243

0.0326 × DF
Flavonoids Kramling and Singleton, [41]

Flavonoids (mg gallic acid/L) = Total
phenols—Non-flavonoids

Total anthocyanins (C) A1—absorbance at 520 nm Ribéreau-Gayon et al. [42]
C (mg/L) = 875 × (A1 − A2) A2—absorbance at 520 nm
Colored anthocyanins (CA) Somers and Evans [43]

CA (mg/L) = (Ano bisulfite
520 × 10) − (Abisulfite

520 × 10)
Total pigments (TP) Somers and Evans [43]

TP (mg/L) = AHCl
520 × 10

Polymeric pigments (PP) Somers and Evans [43]
PP (mg/L) = Abisulfite

520 × 10
Total tannins (L.A.) Ribéreau-Gayon and Stonestreet [44]

L.A. (g/L) = 19.33 × (D2 − D1) D1/D2 absorbance at 550 nm
CIELab L—lightness Schanda [46]

∆L = L1 − L0 A—redness
∆a = a1 − a0 B—yellowness
∆b = b1 − b0

∆Eab =
[
∆(L)2 +∆(a)2 +∆(b)2

]

2.4. Characterization of Activated Sodium Bentonite

The structural composition of bentonite was studied by Fourier-transform infrared
spectroscopy (FTIR) spectra, which was obtained by mixing 2 mg of Na-Mt powder with
200 mg potassium bromide (KBr). The powder was introduced into molds and pressed at
10 ton/cm−2 to obtain the transparent pellets, which were analyzed by a Bruker Tensor
27 spectrometer, and the infrared spectra in transmission mode were recorded in the
4000–400 cm−1 frequency region. The microstructural characterization of the Na-Mt was
performed by scanning electron microscope (FEI QUANTA 400 SEM/ESEM, Fei Quanta,
Hillsboro, WA, USA) and the chemical composition of the bentonite was estimated (Table 3)
using the energy dispersive X-ray spectroscopy (EDS/EDAX, PAN’alytical X’Pert PRO,
Davis, CA, USA).

Table 3. Chemical composition of activated sodium bentonite (Na-Mt), by EDS/EDAX [38].

Element Mass Concentration (wt (%))

%Si 69.49
%Al 17.67
%Fe 2.95
%Mg 2.73
%Ca 2.00
%Na 2.76
%K 1.37
%S 1.03
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The textural parameters of the bentonite were obtained from N2 adsorption–desorption
isotherms at 77 K using a Micromeritics ASAP 2020 apparatus (TriStar II Plus, Micromeritics
Instrument Corporation, Norcross, GA, USA). The bentonite sample was degassed at 150 ◦C
up to 10−4 Torr before analysis. The specific surface area (SBET) was then measured by apply-
ing Gurevitsch’s rule at a relative pressure p/p0 = 0.30 and according to the Brunauer, Emmet,
Teller (BET) method from the linear part of the nitrogen adsorption isotherms. Different pore
volumes were determined by the Barrett, Joyner, Halenda model (BJH model).

From FTIR analysis (Figure 1) [38], Na-Mt exhibits the stretching vibration of structural
O–H groups at 3645 cm−1, structural Si–O groups at 1103, 999 and 789 cm−1, structural
Al–O–Al–OH groups at 902 cm−1, structural Al–O–Fe–OH groups at 883 cm−1, the free
and interlayer water in bond stretching vibration at 3396 cm−1 and adsorbed water yielded
bending at 1643 cm−1 [47–50].
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Figure 1. Fourier-transform infrared spectroscopy (FTIR) spectra of Na-Mt.

The results obtained by BET analysis showed that bentonite exhibited a mesoporous
structure with a specific surface area of 8.8 m2/g, a total pore volume of 0.045 cm3/g
and a particle size of 4.0 nm. The respective isotherms can be classified as type II, where
unrestricted monolayer–multilayer adsorption occurs, and the behavior of the hysteresis
loops can be associated with type H3, which usually corresponds to aggregates of plate-like
particles forming slit-like pores [51], which is in agreement with these material structures.

2.5. Adsorption Experimental Setup

The adsorption of organic matter from WW on Na-Mt material was studied in detail
(Figure 2), in order to predict the amount of organic carbon that was removed through
adsorption. The adsorption process was optimized as follows:

1. Variation of pH (2.0–11) under the following operational conditions: [Na-Mt] = 3.0 g/L,
V = 500 mL, agitation 350 rpm, T = 298 K, t = 24 h;

2. Variation of Na-Mt dosage (0.5–10 g/L) under the following operational conditions:
pH = 3.0, V = 500 mL, agitation 350 rpm, T = 298 K, t = 24 h.
After 24 h, samples were centrifuged and filtrated for analysis.
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2.6. Thermocatalytic Experimental Setup

The thermocatalytic oxidation process (Figure 2) was carried out by a refrigera-
tor/heater circulator reactor (Julabo F25, Seelbach, Germany). The heater is equipped
with a power of 2.2 kW and the refrigerator as a power of 0.170 kW. To achieve the maxi-
mum removal efficiency, thermocatalytic experiments were carried as follows:

1. Variation of S2O2−
8 /H2O2 ratio (1:0; 1:0.25; 1:0.50; 1:0.75; 1:1; 1:1.5) under the following

operational conditions: [S2O2−
8 ] = 1.0 g/L, pH = 11.0, T = 333 K, agitation 350 rpm,

t = 2 h;
2. Variation of S2O2−

8 /H2O2 dosage (0.1:0.025; 0.5:0.125; 1:0.25; 1.5:0.375; 2:0.5) under the
following operational conditions: S2O2−

8 /H2O2 ratio = 1:0.25, pH = 11.0, T = 333 K,
agitation 350 rpm, t = 2 h;

3. Variation of pH (3.0, 5.0, 7.0, 9.0, 11) under the following operational conditions:
S2O2−

8 /H2O2 ratio = 1:0.25, S2O2−
8 /H2O2 dosage = 0.1:0.025 (g/g), T = 333 K, agitation

350 rpm, t = 2 h;
4. Variation of temperature (303, 313, 323, 333 and 343 K) under the following opera-

tional conditions: S2O2−
8 /H2O2 ratio = 1:0.25, S2O2−

8 /H2O2 dosage = 0.1:0.025 (g/g),
pH = 7.0, agitation 350 rpm, t = 2 h.

After 2 h, samples were centrifuged and filtrated for analysis. The percentage of
contaminant removed through adsorption and thermocatalytic oxidation was calculated in
accordance to Equation (2) [52], as follows:

Xi =
C0−Cf

C0
× 100 (2)

where (Xi) of water contamination represents turbidity, TSS, COD and total polyphenol; C0
and Cf are the initial and final concentrations, respectively.
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2.7. Statistical Analysis

All experiments were performed at least in duplicate and the observed standard
deviation was always less than 5% of the reported value. Statistical analysis was performed
using one-way analysis of variance (ANOVA) and differences were considered significant
when p < 0.05. Average values were compared using Tukey’s test. The statistical analyses
were performed using OriginLab 2019 software (Northampton, MA, USA). The data are
presented as mean and standard error (mean ± SE).

3. Results and Discussion
3.1. Adsorption Experiments with Bentonite
3.1.1. Effect of pH

The ability of activated sodium Bentonite (Na-Mt) to adsorb and remove the organic
content from the WW was accessed at different pH conditions (2.0–11.0), under the follow-
ing operational conditions: [Na-Mt] = 3.0 g/L, V = 500 mL, agitation 350 rpm, T = 298 K,
t = 24 h. It is known that the variable charge of montmorillonite is significantly affected
by pH, due to the ionization of its external hydroxyl groups [53]. At pH lower than pHpzc
(pH at the point of zero charge), the clay exhibits anionic exchange capacity, while at pH
greater than pHpzc, the clay displays high cation-exchange capacity. In the case of bentonite,
it renders negative charge on its surface due to its isomorphous substitution of Al3+ for
Si4+ in tetrahedral layer and Mg2+ for Al3+ in octahedral sheet and therefore can attract
positively charged pollutants [14,54]. However, as observed by several authors [55,56], the
mechanism of adsorption on clays is mainly controlled by the adsorption on its interlayer
region, since about 85–90% of the available sites for adsorption are located on its internal
surface. In this way, the permanent negative charge of montmorillonite is compensated
by the cation exchange process, where the initial Na+ ions may be replaced by positively
charged species. Therefore, the contaminant uptake will significantly depend on its charge
at given pH [53].

The results in Figure 3, showed a significant increase in TOC removal from pH 2.0
to 3.0 (48.0 and 54.9%, respectively), decreasing as the pH increased to 5.0, 7.0, 9.0 and
11.0 (52.2, 50.2, 49.9 and 41.2%, respectively). In this work, the higher adsorption capacity
obtained at pH 3.0, was probably related with the concentration of amphoteric flavylium
species present in the WW, making them potentially treated by adsorption. Thus, at pH 3.0
these species acquired positive charge and exchanged the Na+ ions initially adsorbed on
the interlayer region [53]. Increasing the pH > 3.0, the isoelectric point of bentonite was
reached (pH = 7) [57], decreasing the bentonite adsorption capacity. In a study performed
by Sharma et al. [58] it was observed that the adsorption capacity of methyl blue, anionic
dye, onto the clay was decreased with the increase in initial pH of the suspension to
alkaline pH. Therefore, considering these results, pH 3.0 was selected as the best pH for the
adsorption process.

3.1.2. Effect of Na-Mt Dosage

In the previous section, it was observed that the pH had a significant effect in the
adsorption process of WW by Na-Mt. However, the effect of Na-Mt dosage in adsorp-
tion process is still unknown; therefore, in this section it was varied the Na-Mt dosage
(0.5–10.0 g/L) under the following operational conditions: pH = 3.0, V = 500 mL, agitation
350 rpm, T = 298 K, t = 24 h.

In Figure 4, it was observed an increase in TOC removal, with the increase in Na-Mt
dosage from 0.5 to 5.0 g/L (39.5 to 61.1%, respectively). From 5.0 to 10.0 g/L Na-Mt, a small
decrease in TOC removal was observed from 61.1 to 56.3%, respectively. Therefore, the
application of Na-Mt dosages higher than 5.0 g/L were not considered viable, due to the
low TOC removal results, as well as from an economic point of view, due to high Na-Mt
application. In the work of Guimarães et al. [53] and Jorge et al. [11] it was also observed
that application of clay concentrations higher than 3.0 g/L were not suitable for adsorption
process of organic matter of WW.
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Therefore, based on these results, the Na-Mt dosage of 5.0 g/L was selected as the
most efficient dosage for the adsorption process.
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3.2. Thermocatalytic Oxidation with KPS and SPC
3.2.1. SPC Releasing Mechanism

In the previous section, it was observed that the adsorption process was efficient for
the removal of organic matter from WW. However, in order to achieve more substantial
values an additional process is required. Therefore, a thermocatalytic oxidation process
was performed in this work, in which potassium persulfate (KPS) was used in combination
with sodium percarbonate (SPC) as oxidant agents. To decrease the use of iron, high
temperatures were used for the activation of the oxidants. However, in order to perform
this treatment, it was first necessary to understand the dissociation of SPC in water as
observed in Equations (3) and (4) [59]. Table 4 shows an assay, in which SPC was applied
under different concentrations (0.1–1.0 g/L) in water. The results showed that the theoretical
H2O2 concentration was very similar to the measured H2O2 concentration, by titanium
(IV) oxysulfate. TOC results showed a significant decrease from 1.226 to 1.039 to 0.0 mg
C/L, respectively, for 0.1, 0.5 and 1.0 g/L of SPC. These results were in agreement to
Cui et al. [32], who observed the decomposition of SPC into CO2, water and small amounts
of sodium carbonate.

Na2CO3 + 1.5H2O2 → Na2CO3 + 1.5H2O2 (3)

1.5H2O2 → 1.5H2O + 0.75O2 (4)

Table 4. Sodium percarbonate release mechanism.

[SPC] [H2O2] Theoretical [H2O2] Measured TOC

g/L mg/L mg/L mg C/L

0.1 32.5 22.7 0.000
0.5 162.4 140.3 0.000
1.0 324.8 354.5 0.000

3.2.2. Effect of S2O8
2−/H2O2 Ratio

In the works of Rodríguez-Chueca et al. [60,61], the WW was treated by SR-AOPs, in
which sulfate radicals were activated by metallic catalysts, UV radiation and heat. Although
persulfate reagent can act alone as an oxidant, its effectiveness is limited for oxidation of
WW [62]. The generation of sulfate radicals during the persulfate oxidation process can be
significantly investigated using different applications, such as UV radiation, heat and iron
ions, as observed in Equations (5)–(7) [63], as follows:

S2O2−
8 + hv → 2SO•−4 (5)

S2O2−
8 + Thermal Activation → 2SO•−4 (30 ◦C < T < 90 ◦C) (6)

S2O2−
8 + Fe3+ → 2SO•−4 + Fe2+ (7)

The SO•−4 may initiate the production of other intermediate highly reactive oxygen
species (ROS), such as hydroxyl radicals (HO•), as observed in Equation (8) [64], as follows:

SO•−4 + H2O → HSO−4 +HO• (8)

However, the use of metallic catalysts for the activation of sulfate radicals have the
disadvantage of leaching, becoming toxic for the environment [65]; therefore, this work
tested the activation of persulfate radicals by heat without addition of metallic catalyst. In
addition, H2O2 reagent was used to activate persulfate and initiate sulfate radicals during
the oxidation of the WW. To evaluate the performance of H2O2 in enhancing persulfate
oxidation, the ratio S2O2−

8 /H2O2 (1:0; 1:0.25; 1:0.50; 1:0.75; 1:1; 1:1.5) was initially studied
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under the following operational conditions: [S2O2−
8 ] = 1.0 g/L, pH = 11.0, T = 333 K,

agitation 350 rpm, t = 2 h.
In observation of Figure 5, without oxidant addition, thermal oxidation achieved

20.6% TOC removal after 2 h of reaction, possibly, due to the evaporation of alcohol or
the degradation of some phenolic compounds present in the WW. However, the WW
has recalcitrant compounds in its composition, which were not degraded by heat. With
application of the oxidant agents, it was observed a TOC removal of 62.6, 63.4, 61.3, 63.3,
54.0 and 55.1%, respectively. The highest TOC removal was observed with application
of S2O2−

8 /H2O2 ratio of 1:0.25 (g/g). With the increase in this ratio, the sulfate radicals
initiated scavenging reactions for HO• radicals, thus decreasing the reactions efficiency, as
observed by Equation (9) [62,66], as follows:

SO2−
4 + HO• → SO•−4 + HO− (9)Processes 2022, 10, x FOR PEER REVIEW 11 of 22 
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8 /H2O2 ratio (1:0–1:1.5) in thermocat-

alytic oxidation, under the following operational conditions: [S2O2−
8 ] = 1.0 g/L, pH = 11.0, T = 333 K,

agitation 350 rpm, t = 2 h. A blank experiment under the following operational conditions is also
shown as reference: pH = 11.0, T = 333 K, agitation 350 rpm, t = 2 h. Means in bars with different
letters represent significant differences (p < 0.05) between each ratio.

Therefore, based in these results, the ratio 1:0.25 (g/g) S2O2−
8 /H2O2 was selected as

the best ratio.

3.2.3. Effect of S2O8
2−/H2O2 Dosage

In the previous section it was observed that the ratio of S2O2−
8 /H2O2 had a high

influence in the TOC removal of WW. In this section the dosage of S2O2−
8 /H2O2 was varied

(0.1:0.025; 0.5:0.125; 1:0.25; 1.5:0.375; 2:0.5) under the following operational conditions:
S2O2−

8 /H2O2 ratio = 1:0.25, pH = 11.0, T = 333 K, agitation 350 rpm, t = 2 h. By observation
of Figure 6, there was a TOC removal of 63.4, 59.2, 63.4, 56.4 and 59.0%, respectively, for
0.1:0.025; 0.5:0.125; 1:0.25; 1.5:0.375; 2:0.5. These results showed that by decreasing the
oxidant concentrations from 1:0.25 to 0.1:0.025 g/g, the TOC removal was similar. However,
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by increasing S2O2−
8 /H2O2 dosage to 2:0.5 g/g, the TOC removal had a higher decrease.

These results were different than those observed in the work of Hilles et al. [63], who
required an increase in S2O2−

8 /H2O2 dosage to achieve higher COD removal for landfill
leachate treatment. One explanation for these results could be the reduction of scavenging
reactions by sulfate and hydroxyl radicals, as previously observed Hilles et al. [66].
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Therefore, based in these results, S2O2−
8 /H2O2 dosage 0.1:0.025 g/g was selected as

the best dosage.

3.2.4. Effect of pH

After the determination of the best dosage of S2O2−
8 /H2O2 for thermocatalytic oxida-

tion treatment of WW, it was necessary to optimize the pH of the reaction. In the work of
Candia-Onfray et al. [67], the SR-AOPs were performed at pH 5.6. However, in the work
of Rodríguez-Chueca et al. [61], the SR-AOPs were performed at pH 6.5 for the treatment
of winery wastewater. Due to the large pH spectrum of SR-AOP action, in this section
different pH values (3.0, 5.0, 7.0, 9.0, 11.0) were tested under the following operational
conditions: S2O2−

8 /H2O2 ratio = 1:0.25, S2O2−
8 /H2O2 dosage = 0.1:0.025 (g/g), T = 333 K,

agitation 350 rpm, t = 2 h. Figure 7, shows a TOC removal of 59.4, 60.7, 60.4, 52.8 and
63.4%, respectively, after 2 h of reaction, for pH 3.0, 5.0, 7.0, 9.0 and 11.0. With the increase
in pH from 3.0 to 11.0 an increase in TOC removal was observed, which was expected,
because in the work of Hilles et al. [63], the increase in pH in the S2O2−

8 /H2O2 system
lead to higher COD removal in the treatment of landfill leachate. At high pH conditions
(pH 11.0), the alkaline activation was very productive in generating sulfate ions and hy-
droxyl radicals, which have high oxidation potential (Eo

HO• = 2.80 V and Eo
SO−4

= 2.70 V) [19].
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Furman et al. [68] also observed that persulfate’s efficiency in oxidation processes increased
in alkaline conditions. For base activation of persulfate, a nucleophilic attack on the O–O
bond is considered as the main mechanism as observed in Equations (10) and (11) [19]. The
perhydroxyl radicals (HO•2) plays a key role in the production of sulfate radicals. At acidic
pH, the superoxide radicals tend to react with hydrogen ions to form perhydroxyl radicals,
while at alkaline pH, perhydroxyl radicals tends to decompose into superoxide radicals.
Due to alkaline conditions, the sulfate radicals are transformed into hydroxyl radicals as
observed in Equation (12) [69], as follows:

S2O2−
8 + H2O2 → 2SO2−

4 + HO−2 + H+ (10)

S2O2−
8 + HO−2 → SO2−

4 + SO•−4 + O•−2 + H+ (11)

SO•−4 + HO− → SO2−
4 + HO• (12)
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following operational conditions: S2O2−

8 /H2O2 ratio = 1:0.25, S2O2−
8 /H2O2 dosage = 0.1:0.025 (g/g),

T = 333 K, agitation 350 rpm, t = 2 h. A blank experiment under the following operational conditions
is also shown as reference: pH = 11.0, T = 333 K, agitation 350 rpm, t = 2 h. Means in bars with
different letters represent significant differences (p < 0.05) between each pH.

Despite the high TOC removal at pH 11.0, there were several associated disadvan-
tages, such as (1) the high cost in reagents to achieve pH 11.0 and (2) the Portuguese law
No. 236/98 for residual water discharge for the pH of the treated wastewater is 6.0 to 9.0.
Considering the similar TOC removal between pH 7.0 (60.4%) and pH 11 (63.4%), pH 7.0
was selected as the best pH.

3.2.5. Effect of Temperature

The bond energy of O–O of persulfate is estimated to be in the range of 140–213.3 kJ/mol.
The essential mechanism of persulfate activation is the fission of O–O bond in the structure of
persulfate. For heat activation, the energy input by the high temperature (>50 ◦C) can cause
the fission of O–O bond to form the sulfate radicals, as observed by Equation (7) [19]. The
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hydroxyl radicals are the main radicals produced during the heat activation of persulfate,
indicating that sulfate radicals are quickly transformed into hydroxyl radicals, as observed in
Equation (13) [70], as follows:

SO•−4 + H2O → SO2−
4 + HO•+H+ (13)

Therefore, in this section the effect of temperature variation (303, 313, 323, 333 and
343 K) was studied under the following operational conditions: S2O2−

8 /H2O2 ratio = 1:0.25,
S2O2−

8 /H2O2 dosage = 0.1:0.025 (g/g), pH = 7.0, agitation 350 rpm, t = 2 h. Initial blank
experiments were performed without addition of oxidant (Figure 8) and a TOC removal of
39.7, 48.0, 59.2, 20.6 and 63.4%, respectively, was observed. With the increase in temperature, an
increase in TOC removal was observed, which indicated that there were organic compounds
susceptible to heat. When oxidant agents (S2O2−

8 /H2O2) were added, an increase in TOC
removal to 52.9, 53.0, 60.2, 60.4 and 65.6%, respectively, was observed. These results were
similar to the work of Rodríguez-Chueca et al. [61], who observed that when increasing the
temperature, the efficiency of oxidation reaction of sulfate radicals increased in COD removal
of WW. In the work of Zrinyi and Pham [71], it was observed that phenol degradation by
sulfate radicals was more efficient at 343 K, which is in agreement with this work.
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idation, under the following operational conditions: S2O2−

8 /H2O2 ratio = 1:0.25, S2O2−
8 /H2O2

dosage = 0.1:0.025 (g/g), pH = 7.0, agitation 350 rpm, t = 2 h. Blank experiments at different tempera-
tures (303–343 K) are also shown as reference, under the following operational conditions: pH = 7.0,
agitation 350 rpm, t = 2 h. Means in bars with different letters represent significant differences
(p < 0.05) between each process (Blank and thermocatalytic oxidation) by comparing temperatures.

Therefore, based in these results, 343 K was selected as the best temperature for sulfate
radical activation.

3.3. Combination of Adsorption with Thermocatalytic Oxidation

In previous sections, it was observed that application of Na-Mt in the adsorption
process had high efficiency in the removal of organic carbon from WW. This work also
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tested the application of a thermocatalytic process, in which high temperatures and H2O2
in the form of SPC were used to activate persulfate radicals, to degrade organic carbon
from the WW. The results also showed a high efficiency from this treatment; however, there
were some limitations such as high levels of turbidity, TSS and total polyphenols (Table 1),
which could have decreased the thermocatalytic oxidation efficiencies. Given the results
obtained individually, it will be interesting to study the combination of the two previous
processes. In this context, the combination of adsorption process with bentonite was tested
in the optimal conditions obtained previously, as follows: [Na-Mt] = 5.0 g/L, pH = 3.0,
V = 500 mL, agitation 350 rpm, T = 298 K, t = 24 h, with thermocatalytic oxidation best
conditions, as follows: S2O2−

8 /H2O2 ratio = 1:0.25, S2O2−
8 /H2O2 dosage = 0.1:0.025 (g/g),

pH = 7.0, T = 343 K, agitation 350 rpm, t = 2 h). In observation of Figure 9a, the adsorption
process had a TOC, COD and a BOD5 removal of 61.1, 68.4 and 40.7%, respectively. With
application of thermocatalytic process, the removals increased to 76.7, 81.4 and 81.7%,
respectively. Clearly, the combination of adsorption and thermocatalytic oxidation achieved
higher removals than both processes alone. One possible reason for the increased efficiency
could be the reduction of interferents present in the WW, such as the turbidity, TSS and
total polyphenols. In Figure 9b, turbidity, TSS and total polyphenols reduction of 81.4, 94.3
and 99.4% were observed, respectively. After the thermocatalytic oxidation the removals
increased to 92.6, 98.1 and 99.9%, respectively. These results were in agreement with the
work of Jaafarzadeh et al. [72], who observed an increase in sulfate radicals efficiency in
COD removal of pulp and paper wastewater after reduction of TSS and color reduction.
In accordance with Amor et al. [73], the high turbidity, TSS and total polyphenols are
considered to be hydroxyl radical scavengers.
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Figure 9. Overall results after adsorption process and thermocatalytic oxidation processes in (a) TOC,
COD and BOD5 removal and (b) turbidity, TSS and total polyphenols. Adsorption operational
conditions, as follows: [Na-Mt] = 5.0 g/L, pH = 3.0, V = 500 mL, agitation 350 rpm, T = 298 K,
t = 24 h. Thermocatalytic oxidation conditions, as follows: S2O2−

8 /H2O2 ratio = 1:0.25, S2O2−
8 /H2O2

dosage = 0.1:0.025 (g/g), pH = 7.0, T = 343 K, agitation 350 rpm, t = 2 h. Means in bars with different
letters represent significant differences (p < 0.05) between each parameter (TOC, COD, BOD5, turbidity,
TSS and total polyphenols) by comparing wastewaters.

3.4. Phytotoxicity Tests

It was observed that the combination of adsorption process with Na-Mt and thermo-
catalytic oxidation with S2O2−

8 /H2O2 was beneficial for the reduction of organic carbon
present in the WW. However, its effect in the germination of plants is still unknown. There-
fore, the phytotoxic effect of raw WW, adsorption and combined adsorption–thermocatalytic
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oxidation on germination of seeds from two Dicotyledonae (lettuce and cucumber) and two
Monocotyledonae (corn and onion) were evaluated, similar to the works of Casa et al. [74]
and Mosse et al. [75]. For the determination of the germination index, the seed germination
and root elongation (Equation (1)) were considered, which explains results above 100%.

In Figure 10, it was observed that raw WW posed a phytotoxicity effect to onion and
lettuce seeds (GI = 58 and 0%), regarding cucumber and corn seeds (106 and 178%, respec-
tively). With application of combined adsorption–thermocatalytic oxidation, an increase in
the GI to 176, 134, 250 and 269 %, respectively, was observed for onion, cucumber, lettuce
and corn seeds (GI > 80%), which showed that these treatments had a low phytotoxic effect
for germination of plants. In the work of Rizzo et al. [76], it was observed that application
of an adsorption process for the removal of contaminants increased the germination index
of plant seeds, thus decreasing the phytotoxicity of the wastewater, similar to the results ob-
tained in this work. These results evidence the suitability of the combination of adsorption
and thermocatalytic oxidation for the reduction of phytotoxicity in seed germination.
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Figure 10. Analysis of seed phytotoxicity after wastewater treatment, by evaluation of germination
index (GI). Adsorption operational conditions, as follows: [Na-Mt] = 5.0 g/L, pH = 3.0, V = 500 mL,
agitation 350 rpm, T = 298 K, t = 24 h. Thermocatalytic oxidation conditions, as follows: S2O2−

8 /H2O2

ratio = 1:0.25, S2O2−
8 /H2O2 dosage = 0.1:0.025 (g/g), pH = 7.0, T = 343 K, agitation 350 rpm, t = 2 h.

GI ≤ 50% (high concentration of phytotoxic substances), 80% < GI > 50% (moderated presence of
phytotoxic substances), GI ≥ 80% (there are no phytotoxic substances, or they exist in very small
dosages). Means in bars with different letters represent significant differences (p < 0.05) between each
process (blank, adsorption and thermocatalytic oxidation) by comparing different plant seeds.

As previously observed by Santos et al. [77], polyphenols are responsible for the
toxicity of the WW, and their removal by both treatments could have potentiated the
increase in the germination index; therefore, the phenolic content of the WW was evaluated
(Figure 11), as well as the efficiency of both treatments in its removal. In Figure 11, a high
content of total phenols, non-flavonoids and flavonoids (192, 112 and 80 mg gallic acid/L,
respectively) was observed, which is in agreement to the work of Li and Sun [78], who
observed the presence of these compounds in grapes and red wine.
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In Figure 11, the presence of total anthocyanins (11 mg/L) was observed, which was
responsible for the red color of the WW [42]. In accordance with Cheynier et al. [79] the
red color is not only derived from anthocyanins, but also from the conversion of grape
anthocyanins into other pigments in a process called copigmentation. This was also in
agreement with the data from this work, since a certain amount of polymeric and total
pigments was also detected (0.81 and 1.62 mg/L respectively).

Another factor which could have an influence on the red color of the WW was the
presence of tannins in a large concentration (97 mg/L) which formed tannin–anthocyanin
adducts with intense red color [79].

Considering that there are no studies regarding the effect of adsorption and combined
adsorption–thermocatalytic oxidation processes in the removal of phenolic compounds
of WW, it was evaluated the removal of total phenols, non-flavonoids, flavonoids, total
anthocyanins, colored anthocyanins, total pigments and total tannins.

In Figure 11, a removal of 12.5, 2.7, 26.3, 63.6, 0.0, 34.6 and 70.0%, respectively, by ad-
sorption process was observed. With application of combined adsorption–thermocatalytic
oxidation process, it was observed a removal of 22.4, 4.5, 47.5, 72.7, 45.5, 37.7 and 100%,
respectively. The reduction of these phenolic compounds had an effect on the removal of
color from the WW, which was evaluated by a CIELab analysis (Table 5), similar to the
work of Jorge et al. [38].
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Table 5. Analysis of chromatic characteristics (CIELab) after adsorption process and combined
adsorption–thermocatalytic oxidation processes. Adsorption operational conditions, as follows:
[Na-Mt] = 5.0 g/L, pH = 3.0, V = 500 mL, agitation 350 rpm, T = 298 K, t = 24 h. Thermocatalytic
oxidation conditions, as follows: S2O2−

8 /H2O2 ratio = 1:0.25, S2O2−
8 /H2O2 dosage = 0.1:0.025 (g/g),

pH = 7.0, T = 343 K, agitation 350 rpm, t = 2 h. Means in the same column with different letters
represent significant differences (p < 0.05) within each parameter by comparing the different processes.

Processes Time L a b ∆L ∆a ∆b ∆Eab

(hours) (%)

Blank 0 5.9 ± 1.7 a 3.26 ± 1.3 a 3.60 ± 1.5 a
Adsorption 24 90.5 ± 0.4 b 0.93 ± 0.5 b 2.86 ± 1.9 b 84.5 ± 0.8 a −2.33 ± 1.0 a −0.74 ± 1.2 a 84.58 ± 0.3 a

Thermocatalytic
oxidation 26 95.5 ± 0.2 c 1.02 ± 1.4 b 8.34 ± 1.5 c 89.6 ± 0.4 b −2.24 ± 1.6 b 4.74 ± 3.5 b 89.71 ± 0.9 b

With application of adsorption and combined adsorption–thermocatalytic oxidation
processes it were observed negative values for ∆a (−2.33 and −2.24, respectively), which
indicated a reduction of the red color. An increase in the luminosity of the raw WW from
5.9% to 90.5 and 95.5%, respectively was also observed after adsorption and combined
adsorption–thermocatalytic processes, which meant that the phenolic compounds were
directly linked to the dark red color of the wastewater. The color removal, given by
the Euclidean distance was 84.6 and 89.7 after adsorption and combined adsorption–
thermocatalytic oxidation processes, meaning that color removal was perceptible to the
human eye in accordance with Spagna et al. [45].

4. Conclusions

In this work, two processes were applied for the treatment of WW: adsorption and
thermocatalytic oxidation processes. For the adsorption process activated sodium bentonite
(Na-Mt) was used, which showed great swelling properties and a high capacity for COD
removal from the WW. For the thermocatalytic oxidation process, the sulfate radicals were
activated by high temperatures, without metal catalyst, to avoid the production of metal
sludge. In addition, to increase the activation of sulfate radicals, H2O2 was applied in solid
form, by addition of sodium percarbonate (SPC). Considering the objectives defined for
this work, the main conclusions are:

1. The adsorption process in bentonite is a very efficient process for organic carbon
reduction. Under the best operational conditions: [Na-Mt] = 5.0 g/L, pH = 3.0,
V = 500 mL, agitation 350 rpm, T = 298 K, t = 24 h, there is a TOC removal of 61.1%;

2. The sodium percarbonate (SPC) is able to release H2O2 into water and the carbonate
is evaporated as CO2;

3. The sulfate radicals can be activated at high temperatures (T = 343 K). Under the best op-
erational conditions: S2O2−

8 /H2O2 ratio = 1:0.25, S2O2−
8 /H2O2 dosage = 0.1:0.025 (g/g),

pH = 7.0, T = 343 K, agitation 350 rpm, t = 2 h achieving 65.6% TOC removal;
4. The combination of adsorption–thermocatalytic oxidation processes allows efficient

WW treatment with a TOC, COD and BOD5 removal of 76.7, 81.4 and 81.7%, re-
spectively; It is also concluded that the combination of these two processes poses no
phytotoxic effect in the germination of seeds due to high germination index (GI > 80%)
observed in germination of onion, cucumber, lettuce and corn seeds;

5. The combination of adsorption–thermocatalytic oxidation processes proved to be very
efficient in the removal of phenolic compounds present in the WW and the dark red
color of the wastewater due to the negative value of ∆a (−2.24) and high luminosity
(L = 95.5%).

These results showed that the combination of adsorption with bentonite and thermo-
catalytic processes are very promising to decrease the large content of organic carbon and
phytotoxicity present in the WW.
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