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HYPER-CONNECTIVITY INDEX FOR FUZZY GRAPH WITH

APPLICATION

S. R. ISLAM1∗, M. PAL1, §

Abstract. Connectivity concept is one of the most important parameters in fuzzy
graphs (FGs). The stability of a FG is dependent on the strength of connectedness
between each pair of vertices. Depending on “strength of connectedness between each
pair of vertices” hyper-connectivity index for fuzzy graph (FHCI) is introduced and
studied this index for various FGs like partial fuzzy subgraph, fuzzy subgraph, complete
fuzzy graph, saturated cycle, isomorphic fuzzy graphs, etc. A relation of FHCI is estab-
lished between fuzzy graph and partial fuzzy subgraph. Also, a relation between FHCI
and connectivity index for fuzzy graph (FCI) is provided. In the end of the article, a
decision-making problem is presented and solved it by using FHCI. Also, a comparison is
provided among related indices on the result of application and shown that our method
gives better result.

Keyword: Fuzzy graph; Connectivity index; Hyper-connectivity index.

AMS Subject Classification: 05C40, 05C62.

1. Introduction

1.1. Research background. In [36], Zadeh first introduced fuzzy set theory in 1965. In
1975, Inspired by this, Rosenfeld [30] provided the concept of fuzzy graph (FG) and also
provided the fuzzy relation (FR), fuzzy bridge, fuzzy block and fuzzy distances of a FG.
In that time, Yeh et al. [35] also established FG separately and gave an application of
FG in clustering analysis. In [27, 29], Poulik et al. introduced empirical and Pragmatic
results on bipolar fuzzy graphs. Bipolar fuzzy graph, bipolar fuzzy soft hypergraph are
studied by Akram et al. in [1, 31]. Recently, in [14, 15, 16, 17, 18, 19], Mahapatra et
al. studied radio fuzzy graph, generalized neutrosophic planer graph, link prediction in
neutrosophic graph, edge coloring of a fuzzy graph, coloring of a fuzzy directed graph, etc.
In [2, 24, 25, 32, 33], one can see for more details and generalization for FG.
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Connectivity concept is one of the most important parameter in fuzzy graphs (FGs).
In 2014, Jicy and Mathew introduced some connectivity parameters for weighted graph
in [11]. In [21, 22], Mathew and Sunitha studied node connectivity, arc connectivity and
cycle connectivity of a FG. In [23], Mordeson studied various type of connectivity concepts
in fuzzy graphs. Different types of algorithm to determine the connectivity of a pair of
vertices in a FG is provided in [3, 4, 34]. The stability of a FG is dependent on the strength
of connectedness between each pair of vertices. Depending on “strength of connectedness
between each pair of vertices”, in 2019, Binu et al. [5] introduced connectivity index (FCI)
and average connectivity index (AFCI) of a FG. Motivated from this article, Recently,
Binu et al. [6] introduced Wiener index of a FG and Islam and Pal also studied Wiener
index for FG in [7]. Islam and Pal also introduced Hyper-Wiener index [10], First Zagreb
index [8] and F-index [9] for fuzzy graph in 2021. In [13], Mahapatra, Samanta and Pal
provided the RSM index in fuzzy graph. Poulik and Ghorai studied Cretain index and
Wiener absolute index for bipolar fuzzy graph in [26, 28]. In [12] Kalathian et al. also
introduced so many index for fuzzy graphs. Motivated from those articles, fuzzy hyper-
connectivity index (FHCI) is introduced and studied those indices for various FGs like
partial fuzzy subgraph, fuzzy subgraph, saturated cycle, isomorphic fuzzy graphs, etc.
A relation among fuzzy graphs, partial fuzzy subgraphs, fuzzy subgraphs are established
with respect to FHCI. Also a relation between fuzzy connectivity index (FCI) and FHCI
is provided. In the end of the article, a decision making problem is presented and solved
by using FHCI.

1.2. Significance of the article. Connectivity concept is one of the most important
parameters in FGs. The stability of a FG is dependent on the strength of connectedness
between each pair of vertices. Depending on “strength of connectedness between each pair
of vertices” FHCI and AFHCI are introduced and studied in this article. Also, depending
on AFHCI, vertices of a fuzzy graph are classified in the class HCEN, HCRN and HCNN.
A necessary and sufficient condition is provided to determine a vertex is either HCEN
or HCRN or HCNN. Value of FHCI is calculated and some bounds are presented for
various FGs like partial fuzzy subgraph, fuzzy subgraph, saturated cycle, isomorphic fuzzy
graphs, etc. A relation among fuzzy graphs, partial fuzzy subgraphs, fuzzy subgraphs are
established with respect to FHCI. Also, a relation between fuzzy connectivity index (FCI)
and FHCI is provided. In the end of the article, a decision-making problem is presented
and solved by using FHCI.

1.3. Structure of the study. Structure of the article is as follows: In sec. 2, some basic
definitions and useful results are provided which are essential to the development of our
content. In sec. 3, FHCI is introduced and discussed some results on it. In sec. 4, a
decision making problem is presented and solved by FHCI.

2. Preliminaries

Some basic definitions and useful results are provided in this section, most of them one
can be found in [25].

Definition 2.1. Let X( 6= φ) be a given finite set. Now a FG is G = (θ, ρ), where θ is
fuzzy subset(FSS) of X and ρ is FSS of X × X with ρ(x, y) ≤ ∧{θ(x), θ(y)}, where ∧
indicates the minimum.

It is noted that ρ is called a FR on θ. It is assumed that ρ is reflexive as well as
symmetric. We write G∗ = (θ∗, ρ∗), where θ∗ = {x ∈ X : θ(x) 6= 0} and ρ∗ = {(x, y) ∈



922 TWMS J. APP. AND ENG. MATH. V.13, N.3, 2023

X ×X : ρ(x, y) 6= 0}. Here θ∗ and ρ∗ is known as the vertex set and edge set of the FG,
respectively. The fuzzy graph G is trivial if G∗ is trivial.

Definition 2.2. Now H = (φ, ω) is called partial fuzzy subgraph(PFSG) of G if for all
x ∈ φ∗, φ(x) ≤ θ(x) and for all (x, y) ∈ ω∗, ω(x, y) ≤ ρ(x, y). If for all x ∈ φ∗, φ(x) = θ(x)
and for all (x, y) ∈ ω∗, ω(x, y) = ρ(x, y), then H is called FSG of G.

A FSG, H = (φ, ω) spans the FG G = (θ, ρ) if φ = θ. It is noted that Gxy is a FSG of
G with ω(x, y) = 0 and Gx is FSG of G where φ(x) = 0.

Definition 2.3. Let x0, x1, · · · , xn be distinct vertices in G. Then we call P = x0x1 · · ·xn
is path in G if ρ(xi, xi+1) 6= 0 for i = 0, 1, · · · , n− 1.

For this case, length of the path is n.

Definition 2.4. The path, P = x1x2 · · ·xn is called a cycle if ρ(x1, xn) > 0.

For this case, length of the cycle is n.

Definition 2.5. Let x0, x1, · · · , xn be the vertices of G. Then G = (x0, x1, x1 · · ·xn) is
called a star if ρ(x0, xi) 6= 0 for i = 0, 1, · · · , n.

Here x0 is called the center of the star.

Definition 2.6. G is called a complete FG (CPFG) if for all x, y ∈ θ∗, ρ(x, y) = θ(x)∧θ(y),
where ∧ denotes the minimum.

Definition 2.7. Let P = x0x1 · · ·xn be a path in G. Then strength of the path P , S(P )
is defined by S(P ) = ∧{ρ(xi, xi+1) : i = 0, 1, · · · , n− 1}.

Definition 2.8. Let x, y ∈ θ∗ be any two vertices of G. Then strength of connectedness
between x and y is denoted by CONFG(x, y) and defined by CONFG(x, y) = ∨{S(P ) :
P is any (x, y) path}, where ∨ denotes maximum.

Definition 2.9. Let x, y ∈ θ∗ be any two vertices of G. Then strong strength of connect-
edness between x and y is denoted by SCONFG(x, y) and defined by

SCONFG(x, y) =
1

2
[CONFG(x, y) + CONF 2

G(x, y)].

Definition 2.10. For a path P , if S(P ) is equal to CONFG(x, y), then P is (x, y)
strongest path.

Definition 2.11. G is called connected if for any x, y ∈ θ∗, CONFG(x, y) > 0.

Definition 2.12. G called tree if there exist a FSG S = (θ, ω) which is a tree and spans
G, such that for any a, b not in S, there exists a path P between a and b in S such that
ρ(a, b) < S(P ).

Also S is a unique maximum spanning tree (MST) of G. Strong edges and δ-edges in a
FG are defined in the next definition.

Definition 2.13. Let (x, y) be an edge of G. Then the edge (x, y) is called α-strong or
α-strong edge (α-st) if ρ(x, y) > CONFGxy(x, y). The edge (x, y) is called β-strong or
β-strong edge (β-st) if ρ(x, y) = CONFGxy(x, y). The edge (x, y) is said to be δ-edge if it
is neither α-st nor α-st. (x, y) is called strong edge if it is not a δ-edge.

A strong path is a path which does not contain any δ-edge.
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Definition 2.14. A FG G is called α-saturated (α-sat) if each vertex contains at least
one α-st edge in G. and β-saturated (β-sat) if each vertex contains at least one β-st edge
in G. If it is both α-sat and β-sat then G is called saturated FG (sat-FG).

The vertices and edges for a saturated cycle are characterized in the next two theorems.

Theorem 2.1. [5] Let G = (θ, ρ) be a saturated cycle with n vertex. Then
(i) n is an even number.
(ii) α-st edge and β-st edge alternatively appear in G.

Theorem 2.2. [5] Let G = (θ, ρ) be a saturated cycle. Then each β-st edge has constant
strength.

Isomorphism between two FGs is defined below.

Definition 2.15. [25] Two FGs G1 = (θ1, ρ1) and G2 = (θ2, ρ2) are called isomorphic if
there exist a bijective map h : θ∗1 → θ∗2 with any x, y ∈ θ∗1, ρ2(h(x), h(y)) = ρ1(x, y).

3. Hyper-connectivity index for fuzzy graph

In [5] Binu et al. defined the connectivity index for a FG as:

Definition 3.1. [5] Let G = (θ, ρ) be a FG. Then connectivity index of G is denoted by
FCI(G) and defined by

FCI(G) =
∑
x,y∈θ∗

θ(x)θ(y)CONFG(x, y).

In this section, FHCI is introduced which is more generalization of FCI and studied for
various FG like as complete fuzzy graph, saturated cycles, isomorphic fuzzy graphs, etc.
A relation among fuzzy graphs, partial fuzzy subgraph, fuzzy subgraph are established
with respect to FHCI. Also a relation between connectivity index and hyper-connectivity
index for fuzzy graphs is established and this index is calculated for saturated cycles.

Definition 3.2. Let G = (θ, ρ) be a CNFG. The FHCI of the FG, G is defined by:

FHCI(G) =
∑
a,b∈θ∗

θ(a)θ(b)SCONFG(a, b)

=
1

2

∑
a,b∈θ∗

θ(a)θ(b)
[
CONFG(a, b) + CONF 2

G(a, b)
]
.

In the next example, the FHCI of a FG depicted in Fig. 1 is calculated.

Example 3.1. In Fig. 1, G = (θ, ρ) be a FG where θ∗ = {u, · · · , z}ρ(uv) = 0.1, ρ(ux) =
0.2, ρ(vw) = 0.3, ρ(wx) = 0.4, ρ(wy) = 0.5, ρ(xy) = 0.3, ρ(yz) = 0.2 and θ(a) = 1 for
all a ∈ θ∗. Clearly, CONFG(u, v) = CONFG(u,w) = CONFG(u, x) = CONFG(u, y) =
CONFG(u, z) = CONFG(v, z) = CONFG(w, z) = CONFG(x, z) = CONFG(y, z) =
0.2, CONFG(v, w) = CONFG(v, x) = CONFG(v, y) = 0.3, CONFG(x,w) =
CONFG(x, y) = 0.4 and CONFG(w, y) = 0.5. Therefore, FHCI(G) = 2.6.

In [5] Binu et al. defined AFCI, CRN, CEN and CNN as:

Definition 3.3. [5] Let G = (θ, ρ) be a n-vertex FG. Then AFCI of G is denoted by
AFCI(G) and defined by

AFCI(G) =
1(
n
2

) ∑
x,y∈θ∗

θ(x)θ(y)CONFG(x, y).
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Figure 1. A FG G with FHCI(G) = 2.6.

Definition 3.4. [5] Let G = (θ, ρ) be a FG. Let x ∈ θ∗. x is called CEN of G if AFCI(G−
x) > AFCI(G). x is called CRN of G if AFCI(G− x) < AFCI(G). x is called CNN of
G if AFCI(G− x) = AFCI(G).

In this section, average fuzzy hyper-connectivity index, hyper-connectivity reducing
node, hyper-connectivity enhancing node, hyper-connectivity neutral node are introduced.

Definition 3.5. Let G = (θ, ρ) be a CNFG. The AFHCI of the FG, G is defined by:

AFHCI(G) =
1

2×
(
n
2

) ∑
a,b∈θ∗

θ(a)θ(b)
[
CONFG(a, b) + CONF 2

G(a, b)
]
.

Definition 3.6. [5] Let G = (θ, ρ) be a FG. Let x ∈ θ∗. x is called HCEN of G if
AFHCI(G−x) > AFHCI(G). x is called HCRN of G if AFHCI(G−x) < AFHCI(G).
x is called HCNN of G if AFHCI(G− x) = AFHCI(G).

Theorem 3.1. Let G be a n−vertex FG and x ∈ θ∗. Let us define rx = FHCI(G)
FHCI(G−x) . The

necessary and sufficient condition for x be HCNN of G is rx = n
n−2 .

Proof. Suppose x be HCNN of G. then,

AFHCI(G− x) = AFHCI(G)

⇔FHCI(G− x)(
n−1
2

) =
FHCI(G)(

n
2

)
⇔FHCI(G− x)

FHCI(G)
=

(
n−1
2

)(
n
2

)
⇔rx =

n

n− 2
.

�

Corollary 3.1. Let G be a n−vertex FG and x ∈ θ∗. The necessary and sufficient
condition for x be HCEN of G is rx <

n
n−2 .

Corollary 3.2. Let G be a n−vertex FG and x ∈ θ∗. The necessary and sufficient
condition for x be HCRN of G is rx >

n
n−2 .

In the next example, the FHCI of the PFSG is calculated and compared with the original
FG in Fig. 1.
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Figure 2. A FSG H of G (shown in Figure 1), with FHCI(G) > FHCI(H).

Example 3.2. Let H = (π, ω) be the PFSG shown in Fig 2 of the FG G = (θ, ρ) in Fig.
1 with π∗ = {u, · · · , y};ω(uv) = 0.1, ω(ux) = 0.2, ω(vw) = 0.3, ω(wx) = 0.4, ω(wy) =
0.5, ω(xy) = 0.3 and π(a) = 1 for all a ∈ π∗. Therefore, FHCI(H) = 2.

From the Examples 3.1 and 3.2, FHCI(H) ≤ FHCI(G) for PFSG of the FG. In the
next proposition, the fact is proved in general.

Proposition 3.1. Let H = (π, ω) be a PFSG of the FG, G = (θ, ρ), then FHCI(H) ≤
FHCI(G).

Proof. Let a, b ∈ π∗. As H = (π, ω) be a PFSG of the FG G = (θ, ρ) then π(u) ≤ θ(u)
and CONFH(a, b) ≤ CONFG(a, b) for all u ∈ π∗. Hence,

2FHCI(H) =
∑
a,b∈π∗

π(a)π(b)[CONFH(a, b) + CONF 2
H(a, b)]

≤
∑
a,b∈θ∗

θ(a)θ(b)[CONFG(a, b) + CONF 2
G(a, b)]

= 2FHCI(G).

Therefore FHCI(H) ≤ FHCI(G). �

A fuzzy subgraph is also PFSG, so the above proposition is true for fuzzy subgraph
which is stated in the next corollary.

Corollary 3.3. Let H = (π, ω) be a fuzzy subgraph of the FG, G = (θ, ρ), then FHCI(H) ≤
FHCI(G).

In the next theorem, a bound for FHCI of a FG is provided.

Theorem 3.2. Let G = (θ, ρ) be a FG such that |θ∗| = n and G1 = (θ1, ρ1) be CPFG
spanned by θ. Then 0 ≤ FHCI(G) ≤ FHCI(G1).

Proof. Let G = (θ, ρ) is a FG. For |ρ∗| = 0, implies FHCI(G) = 0 ≤ FHCI(G1). Now
for G1, |θ∗| = n and θ1 = θ. Then ρ(ab) ≤ ρ1(ab). Hence CONFG(a, b) ≤ CONFG1(a, b)
and CONF 2

G(a, b) ≤ CONF 2
G1

(a, b). Therefore, 0 ≤ FHCI(G) ≤ FHCI(G1). �

In the next theorem, the value FHCI of a CPFG is provided.
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Theorem 3.3. Let G = (θ, ρ) be a CPFG such that θ∗ = {a1, a2, · · · , an} such that
p1 ≤ p2 ≤ · · · ≤ pn, where pi = θ(ai) for 1 ≤ i ≤ n. Then

FHCI(G) =
1

2

n−1∑
i=1

(p2i + p3i )
n∑

j=i+1

pj .

Proof. Here the vertex a1 has the least MV p1. For a CPFG, it is clear that, CONFG(a, b) =
ρ(ab) for all a, b ∈ θ∗. Thus ρ(a1ai) = p1 for 2 ≤ i ≤ n, hence θ(a1)θ(ai)CONFG(a1, ai) =
p21pi and θ(a1)θ(ai)CONF

2
G(a1, ai) = p31pi for 2 ≤ i ≤ n. Then

n∑
i=2

θ(a1)θ(ai)[CONFG(a1, ai) + CONF 2
G(a1, ai)] =

n∑
i=2

p21pi +

n∑
i=2

p31pi.

Therefore,

FHCI(G) =
1

2

( n−1∑
i=1

p2i

n∑
j=i+1

pj +
n−1∑
i=1

p3i

n∑
j=i+1

pj

)

=
1

2

n−1∑
i=1

(p2i + p3i )

n∑
j=i+1

pj .

�

Figure 3. A CPFG G1 with FHCI(G1) = 0.14515.

In the next example, FHCI of the CPFG in Fig. 3 is calculated by using Theorem 3.3.

Example 3.3. Let G1 = (θ, ρ) is the CPFG in Fig. 3 with θ∗ = {a, · · · , e} where θ(a) =
0.1, θ(b) = 0.2, θ(c) = 0.3, θ(d) = 0.4, θ(e) = 0.5. Then ρ(ab) = 0.1, ρ(ac) = 0.1, ρ(ad) =
0.1, ρ(ae) = 0.1, ρ(bc) = 0.2, ρ(bd) = 0.2, ρ(be) = 0.2, ρ(cd) = 0.3, ρ(ce) = 0.3, ρ(de) = 0.4.
Then by using Theorem 3.3, 2FHCI(G1) = (0.12 + 0.13)(0.2 + 0.3 + 0.4 + 0.5) + (0.22 +
0.23)(0.3 + 0.4 + 0.5) + (0.32 + 0.33)(0.4 + 0.5) + (0.42 + 0.43)(0.5) = 0.2903. Hence
FHCI(G1) = 0.14515.

In the next example, FCI and FHCI of the FG G2 depicted in Fig. 4 is calculated and
compares FCI and FHCI for the FG G2.
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Figure 4. A FG G2 with FCI(G2) > FHCI(G2).

Example 3.4. Let G2 = (θ, ρ) be the FG in Fig. 4 with θ∗ = {a, · · · , f}; ρ(ab) =
0.1, ρ(ae) = 0.2, ρ(bc) = 0.3, ρ(cd) = 0.5, ρ(de) = 0.4, ρ(bf) = 0.3, ρ(cf) = 0.2 and θ(v) = 1
for all v ∈ θ∗. Then, FCI(G2) = 4.4 and FHCI(G2) = 2.9. So FCI(G2) > FHCI(G2).

But for the FG G2, let θ(v) = 1 ∀ v ∈ θ∗ and ρ(e) = 1 ∀ e ∈ ρ∗. Then FCI(G2) =
FHCI(G2).

From the Example 3.4, FCI(G) ≥ FHCI(G) for a FG. In the next theorem the fact is
proved in general.

Theorem 3.4. Let G = (θ, ρ) be a CNFG. Then FCI(G) ≥ FHCI(G), equality holds if
ρ(e) = 1 for all e ∈ ρ∗.

Proof. As 0 < ρ(e) ≤ 1 for all e ∈ ρ∗ then CONFG(a, b) ≥ CONF 2
G(a, b), ∀ a, b ∈ θ∗.

Now

FCI(G) =
∑
a,b∈θ∗

θ(a)θ(b)CONFG(a, b)

=
1

2

∑
a,b∈θ∗

θ(a)θ(b)
[
CONFG(a, b) + CONFG(a, b)

]
≥1

2

∑
a,b∈θ∗

θ(a)θ(b)
[
CONFG(a, b) + CONF 2

G(a, b)
]

=FHCI(G).

Equality holds if ρ(e) = 1 for all e ∈ ρ∗. �

In the next theorem, the value CI and FHCI of a CNFG is provided.

Theorem 3.5. Let G = (θ, ρ) be the CNFG with n-vertex and θ(a) = 1 ∀ a ∈ θ∗, ρ(e) =

x ∀ e ∈ ρ∗ , 0 < x ≤ 1. Then FCI(G) = n(n−1)
2 x and FHCI(G) = n(n−1)

4 (x+ x2).

Proof. Clearly CONFG(a, b) = x and CONF 2
G(a, b) = x2 for all a, b ∈ θ∗. There are

(
n
2

)
numbers of such pairs (a, b). Hence the results follow. �

HCI of any two isomorphic FGs are discussed below:
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Theorem 3.6. Let two FGs G1 = (θ1, ρ1) and G2 = (θ2, ρ2) be isomorphic. Then
FHCI(G1) = FHCI(G2).

Proof. Let G1 = (θ1, ρ1) and G2 = (θ2, ρ2) be isomorphic FGs. Let φ be a bijective map
from θ∗1 to θ∗2 such that θ1(a) = θ2(φ(a)) for a ∈ θ∗1 and ρ1(ab) = ρ2(φ(a)φ(b)) for ab ∈ ρ∗1.
Since G1, G2 are isomorphic then CONFG1(a, b) = CONFG2(φ(a), φ(b)) for a, b ∈ θ∗1.
Hence

FHCI(G1) =
1

2

∑
a,b∈θ∗1

θ1(a)θ1(b)
[
CONFG1(a, b) + CONF 2

G1
(a, b)

]
=

1

2

∑
φ(a),φ(b)∈θ∗2

θ2(φ(a))θ2(φ(b))
[
CONFG2(φ(a), φ(b)) + CONF 2

G2
(φ(a), φ(b))

]
=FHCI(G2).

�

In the next theorem, the FHCI of a star is calculated.

Theorem 3.7. Let G = (θ, ρ) be a FG where G∗ be a star with θ∗ = {a1, a2, · · · , an} such
that θ(ai) = 1 for 1 ≤ i ≤ n and 0 < p1 ≤ p2 ≤ · · · ≤ pn−1, where pi−1 = ρ(a1ai) for

2 ≤ i ≤ n. Then, FHCI(G) = 1
2

∑n−1
i=1 (n− i)(pi + p2i ).

Proof. Let a1 be the center of the star. Then CONFG(a1, ai) = pi−1 for 1 ≤ i ≤ n and
CONFG(ai, aj) = pi−1 for i 6= 1, i < j. So

2FHCI(G) =
n−1∑
i=1

pi + (n− 2)p1 + (n− 3)p2 + · · ·+ pn−2

+
n−1∑
i=1

p2i + (n− 2)p21 + (n− 3)p22 + · · ·+ p2n−2

=
n−1∑
i=1

(n− i)pi +
n−1∑
i=1

(n− i)p2i

=

n−1∑
i=1

(n− i)(pi + p2i ).

Therefore

FHCI(G) =
1

2

n−1∑
i=1

(n− i)(pi + p2i ).

�

In the next theorem, the FHCI of a saturated cycle is discussed.

Theorem 3.8. Let G = (θ, ρ) be a n-vertex saturated cycle. Let strength of the each α-st
edge be σ and each β-st edge be µ, then

FHCI(G) =
n

4
[(σ + σ2) + (n− 2)(µ+ µ2)].
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Proof.

2FHCI(G) =
∑
a,b∈θ∗

θ(a)θ(b)
[
CONFG(a, b)CONF 2

G(a, b)
]

=
n

2
(σ + µ) + (n− 3)µ+ (n− 3)µ+ (n− 4)µ+ · · ·+ µ

+
n

2
(σ2 + µ2) + (n− 3)µ2 + (n− 3)µ2 + (n− 4)µ2 + · · ·+ µ2

=
n

2
[(σ + σ2) + (n− 2)(µ+ µ2)]

Hence
FHCI(G) =

n

4
[(σ + σ2) + (n− 2)(µ+ µ2)].

�

Corollary 3.4. Let G = (θ, ρ) be a n-vertex saturated cycle. Let strength of the α-st edges
are σ1, σ2, · · · , σn

2
and each β-st edges have strength µ. Then

FHCI(G) =
1

2

n
2∑
i=1

(σi + σ2i ) +
n

4
(n− 2)(µ+ µ2).

4. Application of fuzzy hyper-connectivity index

Many real life problems can not be represented by crisp graphs. For such circumstances
fuzzy graphs are one of the best tools to handle it. In this section, a decision making
problem is described and a decision is taken by using fuzzy hyper-connectivity index.

4.1. Decision-making for selecting a quarter. Suppose a faculty Dr. X in a university
U wants to choose a faculty quarter to stay in the university campus. Let there be only
four quarters available for Dr. X. Suppose the quarters are Q1, Q2, Q3, Q4. Let Dr. X
want to choose the best quarter based on the following four parameters:
P1 = Room size and interior decoration,
P2 = Distance between quarters and his/her department,
P3 = Distance between quarters and shopping mall and
P4 = Distance between quarters and sports complex and gymkhana, etc.
In general, these parameters are different for the quarters. But, all the parameters have

their equal importance to evaluate the best quarter. Since the parameter P1 is linguistic
terms, so there is no fixed value for P1. This term is evaluated by perception of the people
residing in the campus and a membership grade is used to represent its value.

For illustration, suppose the value of the membership grade for P1, distance from quar-
ters to department, shopping mall, sports complex and gymkhana and distance between
quarters are listed in Table 1. Let us consider the diameter of the university (D) is around
10 kilometer. Now a fuzzy graph for each parameter is constructed whose vertices are the
quarters and each pair of vertices connected by an edge. The vertex and edge membership
values are calculated by the following formulas and listed in Table 2,3. The fuzzy graph
for each parameter is shown in Figure 5.

σPi(Qj) =

{
membership grade of Qj for Pi i = 1; j = 1, 2, 3, 4
D−distPi

(Qj)

D i = 2, 3, 4; j = 1, 2, 3, 4.

µPi(QjQk) = min{σPi(Qj)
D− distPi(QjQk)

D
, σPi(Qk)

D− distPi(QjQk)

D
} i, j = 1, 2, 3, 4.

The connectivity matrix of a FG is defined as a symmetric square matrix whose (i, j)th
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Table 1. Membership grade for P1 and distance from quarters to depart-
ment, shopping mall, sports complex and gymkhana and distance between
quarters (distance measured in kilometer).

P1 P2 P3 P4 Q1 Q2 Q3 Q4

Q1 0.5 4.7 3.9 6.1 Q1 3.9 4.8 5.6
Q2 0.4 7.1 4.9 3.5 Q2 3.9 5.3 5.2
Q3 0.6 5.8 2.9 5.3 Q3 4.8 5.3 4.9
Q4 0.7 3.5 5.7 4.9 Q4 5.6 5.2 4.9

Table 2. Vertex membership values.

Quarter P1 P2 P3 P4

Q1 0.5 0.53 0.61 0.39
Q2 0.4 0.29 0.51 0.65
Q3 0.6 0.42 0.71 0.47
Q4 0.7 0.65 0.43 0.51

Table 3. Edge membership values.

P1 Q1 Q2 Q3 Q4 P2 Q1 Q2 Q3 Q4

Q1 0.244 0.26 0.22 Q1 0.1769 0.2184 0.2332
Q2 0.244 0.188 0.192 Q2 0.1769 0.1363 0.1392
Q3 0.26 0.118 0.306 Q3 0.2184 0.1363 0.2142
Q4 0.22 0.192 0.306 Q4 0.2332 0.1392 0.2142

P3 Q1 Q2 Q3 Q4 P4 Q1 Q2 Q3 Q4

Q1 0.3111 0.3172 0.1892 Q1 0.2379 0.2028 0.1716
Q2 0.3111 0.2397 0.2064 Q2 0.2379 0.2209 0.2448
Q3 0.3172 0.2397 0.2193 Q3 0.2028 0.2209 0.2397
Q4 0.1892 0.2064 0.2193 Q4 0.1716 0.2448 0.2397

Table 4. Connectivity matrix of the fuzzy graphs shown in Figure 5.

GP1 Q1 Q2 Q3 Q4 GP2 Q1 Q2 Q3 Q4

Q1 0.244 0.26 0.26 Q1 0.1769 0.2184 0.2332
Q2 0.244 0.244 0.244 Q2 0.1769 0.1769 0.1769
Q3 0.26 0.244 0.306 Q3 0.2184 0.1769 0.2184
Q4 0.26 0.244 0.306 Q4 0.2332 0.1769 0.2184

GP3 Q1 Q2 Q3 Q4 GP4 Q1 Q2 Q3 Q4

Q1 0.3111 0.3172 0.2193 Q1 0.2379 0.2379 0.2379
Q2 0.3111 0.3111 0.2193 Q2 0.2379 0.2397 0.2448
Q3 0.3172 0.3111 0.2193 Q3 0.2379 0.2397 0.2397
Q4 0.2193 0.2193 0.2193 Q4 0.2379 0.2448 0.2397

entry is CONF (vi, vj). The connectivity matrix of the FGs shown in Figure 5 is listed
in Table 4. Using the connectivity matrix shown in Table 4, the value of the FHCI for
each parameter is 0.299667, 0.163776, 0.332977 and 0.225119 respectively. Now the total
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Figure 5. Fuzzy graph representation of the decision making problem.

hyper-connectivity index (TFHCI) is defined as the sum of FHCI for each parameter. For
the fuzzy graph G, TFHCI is 1.021539.

Now a FSG is constructed from the FG G by deleting the vertex Qi and calling it GQi .
Using a similar manner, FHCI and TFHCI are calculated for the FSG GQi for i = 1, 2, 3, 4
and listed in Table 5. Now score of Qi is calculated by the formula:

S(Qi) = TFHCI(G)− TFHCI(GQi).
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Table 5. Hyper-connectivity index and total hyper-connectivity index.

Fuzzy
graph

Hyper-
connectivity
index for
P1

Hyper-
connectivity
index for
P2

Hyper-
connectivity
index for
P3

Hyper-
connectivity
index for
P4

Total
hyper-
connectivity
index

GQ1 0.1434282 0.06010431 0.12393716 0.131513257 0.458982927
GQ2 0.19039356 0.115475264 0.166364009 0.082228768 0.554461601
GQ3 0.1148996 0.085157968 0.123405664 0.117123595 0.440586827
GQ4 0.11591792 0.05829544 0.227771509 0.10324132 0.505226189

Table 6. Score and normalized score of the quarters.

Quarter Q1 Q2 Q3 Q4

Score (FHCI) 0.562556073 0.467077399 0.580952173 0.516312811
Score (FCI) 0.816861 0.729974 0.886138 0.819639
Score (First ZI) 1.680354 1.790257 1.565369 1.648194

The score of the quarters are calculated and listed in Table 6. As score is directly related
to connectivity index and if we increase the vertex membership value of a vertex the score
is also increased and same occurs when we increase an edge membership value of an edge
joined with that vertex. As the score of quarter Q3 is higher than other quarters, so
quarter Q3 is the best choice for the faculty Dr. X.

Figure 6. Comparison graph.

4.2. Analysis of hyper-connectivity index for fuzzy graph and its comparison
with existing indices on result of application. The comparisons with other exiting
method are useful to evaluate the quality of our proposed method. We summarize it as
under:

(i) It is noticed that topological indices for crisp graph is depends on the structure of
the graph but does not depend on the behavior of the vertices or the relation between the
pair of vertices. As indices which are defined on fuzzy graph are depend on the behavior
of the vertices and relation between the each pair of vertices, hence those indices are more
suitable for real life application. Hence the indices which are defined in crisp graph is
ignored in this comparison. For this comparison, the decision-making problem described
in Subsection 4.1 are chosen and compared with the indices: first Zagreb index for fuzzy
graph, connectivity index for fuzzy graph.

(ii) Score of each quarter with respect to those indices are listed in Table 6 and com-
parison graph of the score of those indices are drown in Figure 6.
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(iii) Preference of quarter choice using hyper-connectivity index for fuzzy graph is:
Q3 � Q1 � Q4 � Q2.

(iv) Preference of quarter choice using connectivity index for fuzzy graph is: Q3 � Q4 �
Q1 � Q2.

(v) Preference of quarter choice using first Zagreb index for fuzzy graph is: Q2 � Q1 �
Q4 � Q3.

(vi) The decision getting by using connectivity index and hyper-connectivity index for
fuzzy graph is same but second and third choice is alternate for those index. But the
decision getting by using first Zagreb index for fuzzy graph does not related with other
two indices.

(vii) Connectivity index for fuzzy graph is depends proportionally on the strength of
connectedness between each pair of vertices but hyper-connectivity index for fuzzy graph
is depends proportionally on the strong strength of connectedness between each pair of
vertices. Hence, hyper-connectivity index for fuzzy graph gives the better results for
connection related real life application than connectivity index for fuzzy graph.

(viii) As first Zagreb index for fuzzy graph depends on degree i.e. depends only the
neighboring vertices and does not depends on the other vertices, hence this index is not
appropriate for connectivity related decision making problem.

Hence, hyper-connectivity index for fuzzy graph provides the better result on connec-
tivity related real life problem than other indices.

5. Conclusion

FHCI has an important parameter in fuzzy graph theory. In this article, FHCI is
introduced and studied various fuzzy graphs like fuzzy partial subgraph, fuzzy subgraph,
saturated cycle, isomorphic fuzzy graphs, etc. A relation among fuzzy graphs, partial
fuzzy subgraphs, fuzzy subgraphs are established with respect to FHCI. Also a relation
between connectivity index and hyper-connectivity index for fuzzy graphs is established
and this index is calculated for saturated cycles. Also in the end of this article, a decision
making problem is presented and solved by using FHCI.

The limitations and future scopes of the study are:
(i) Good lower bound of the FHCI for n-vertex connected FG is presented here but we

cannot provide the good upper bound.
(ii) Good upper bound of the FHCI for path and star are presented here but we cannot

provide the good lower bound.
(iii) Which n−vertex tree (fuzzy) has the maximum FHCI?
(iv) Which n−vertex tree (fuzzy) has the minimum FHCI?
(v) Which n−vertex connected FG has the maximum FHCI?
(vi) Which n−vertex connected FG has the minimum FHCI?
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Table 7. The list of abbreviation.

Abbreviation Meaning

FSS Fuzzy subset
FG Fuzzy graph
FSG Fuzzy subgraph
PFSG Partial fuzzy subgraph
CNFG Connected fuzzy graph
CPFG Complete fuzzy graph
CI Connectivity index
FHCI fuzzy Hyper-connectivity index
AFHCI Average fuzzy Hyper-connectivity index
HCRN Hyper-connectivity reducing node
HCEN Hyper-connectivity enhancing node
HCNN Hyper-connectivity neutral node
MV Membership value


