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CONTROLLABILITY OF A SEMILINEAR NEUTRAL DYNAMIC

EQUATION ON TIME SCALES WITH IMPULSES AND NONLOCAL

CONDITIONS

C. DUQUE1, H. LEIVA2∗, §

Abstract. In this paper we consider a control system governed by a neutral differential
equation on time scales with impulses and nonlocal conditions. We obtain conditions un-
der which the system is approximately controllable, on one hand, and on the other hand,
the exactly controllable is also proved. Concretely, first of all, we prove the existence of
solutions. After that, we prove approximate controllability assuming that the associated
linear system on time scales is exactly controllable, and applying a technique developed
by Bashirov et al. [8, 9, 10] where we can avoid fixed point theorems. Next, assuming
certain conditions on the nonlinear term, we can apply Banach Fixed Point Theorem to
prove exact controllability. Finally, we propose an example to illustrate the applicability
of our results.
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ditions, time scales
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1. Introduction and Preliminaries

Before formulating the problem to be investigated, we will make a brief introduction
to the theory of differential equations on time scales, especially to clarify the notations
and definitions, which will help for a better understanding of the reader. For more details
about time scales theory, we recommend see the excellent monograph [16].
A time scale, denoted by T, is any closed nonempty subset of R and was introduced
by Stefan Hilger on his doctoral thesis ([33, 34]) with the goal to unify differential and
difference calculus, particularly, the theory of dynamic equations on time scales allows to
unify the study of evolution equations depending on the chosen time scale, for instance,
if T = Z, we have as result difference equations, and if T = R, then we have differential
equations.
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In the recent decades the theory on time scales has been attracting the attention of many
mathematicians (see for instance [1, 16, 17, 30, 31, 32, 40, 43] and references therein), since
this theory represents a powerful tool for applications in different areas such as economics,
biomathematics, engineer, quantum physics, among others (see [4, 13, 14, 15, 16, 17, 20,
32, 36, 41]). Particularly in the last two decades the study of controllability of dynamic
equations on time scales has been attracting of interest of several researches, we can
mention to Bartosiewicz [7] where explored linear positive control systems on time scales,
Bartosiewicz and Pawluszewicz [5, 6] reviewed linear systems on time scale, Janglajew and
Pawluszewicz [35] analyzed the constrained local controllability of linear dynamic systems
on times scales, M. Bohner and N. Wintz [18] studied the controllability and observability
of linear systems on time scales. The aproximate and exact controllability of semilinear
systems on time scales was studied by Duque, Leiva and Uzcátegui in [27, 28], Malik and
Kumar in [39] established the exact controllability for time-varying neutral differential
with impulses on time scales. More works can be seen in references [19, 38, 44].
As mentioned at the beginning, a time scale T is any arbitrary closed nonempty subset of
R. For every t ∈ T, the forward and backward jump operators σ, ρ : T −→ T are defined,
respectively, as σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}. We put
inf ∅ = supT (i.e., σ(t) = t if T has a maximum t) and sup ∅ = inf T (i.e., ρ(t) = t if T has
a minimum t), where ∅ denotes the empty set. A point t ∈ T is said to be right-dense if
σ(t) = t, right-scattered if σ(t) > t, left-dense if ρ(t) = t, left-scattered if ρ(t) < t, isolated
if ρ(t) < t < σ(t). The function µ : T −→ [0,∞) defined by µ(t) := σ(t) − t is known as
graininess function.

We will assume that T has the topology inherited from standard topology on the real
numbers. The time scale interval [a, b]T is defined by [a, b]T = {t ∈ T : a ≤ t ≤ b}, with
a, b ∈ T and similarly is defined open intervals and open neighborhoods.

Definition 1.1 ([16]). A function f : T −→ Rn is said to be right dense continuous or
just rd-continuous, if f is continuous at every right-dense point t ∈ T and lim

s→t−
f(s) exists

(finite) for every left-dense point t ∈ T.

The class of all rd-continuous functions f : T −→ Rn is denoted by Crd(T,Rn). If
f : T → Rn is a function, then we define the function f ◦ σ : T → Rn by fσ(t) = f(σ(t))
for all t ∈ T, i.e., fσ = f ◦ σ. We define el set Tκ by

Tκ :=

{
T \ (ρ(supT), supT] if supT <∞
T if supT =∞

Definition 1.2 ([16]). A function f : T −→ Rn is called delta differentiable (or simply
∆-differentiable) at t ∈ Tκ provided there exists a number f∆(t) with the property that
given ε > 0, there is a neighborhood U = (t− δ, t+ δ)T for some δ > 0 such that∥∥f(σ(t))− f(s)− f∆(t)(σ(t)− s)

∥∥ ≤ |σ(t)− s)| for all s ∈ U.

In this case the number f∆(t) will be call the ∆-derivative of f in t.

If f is ∆-differentiable at t ∈ Tκ, then is easy to show that (see [16] Thm. 1.16)

f∆(t) =


f(σ(t))−f(t)

σ(t)−t if σ(t) > t

lim
s→t

f(t)−f(s)
t−s if σ(t) = t.
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Definition 1.3 ([16]). A function F : T −→ Rn is called an antiderivative of f : T −→ Rn
if F∆(t) = f(t) for t ∈ Tκ. The Cauchy integral is defined by∫ t

s
f(τ)∆τ = F (t)− F (s), t, s ∈ T.

Where F is an antiderivative of f .

It is known that every rd-continuous function has an antiderivative (see [16] Thm. 1.74).
A function p : T −→ R is said to be regressive if 1 + µ(t)p(t) 6= 0 t ∈ T and positively
regressive if 1 + µ(t)p(t) > 0 t ∈ T. We will denote by R the set of all regressive
and rd-continuous functions and R+ the set of all positive regressive and rd-continuous
functions.

Definition 1.4 ([16]). If p ∈ R, then the generalized exponential function is defined by

ep(t, s) = exp

(∫ t

s
ξµ(τ)(p(τ))∆τ

)
,

where

ξµ(z) :=

{ 1
µLog(1 + µz) if µ > 0

z, if µ = 0.

Here z ∈ Cµ := {z ∈ C : z 6= 1/µ} and Logz = log |z| + i arg z, −π < arg z ≤ π.
Particularly ep(t, 0) will be denoted by ep(t). The function ep(t, s) satisfy the following
properties

Theorem 1.1 ([16] Thm. 2.36). If p, q ∈ R, then

a) e0(t, s) ≡ 1, ep(t, t) ≡ 1,
b) ep(t, r)ep(r, s) = ep(t, s),
c) ep(t, s)eq(t, s) = ep⊕q(t, s),
d) ep(t, s) = 1

ep(s,t) = e	p(s, t),

e) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),
f) e∆

p (t, s) = p(t)ep(t, s),

where (p ⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t), (	p)(t) = −p(t)
1+µ(t)p(t) and (p 	 q)(t) :=

(p⊕ (	q))(t).
Let A be a n×m matrix valued function on T.

Definition 1.5 ([16]). We say that A is rd-continuous on T if each entry of A is rd-
continuous on T, and the class of all such rd-continuous n ×m matrix valued functions
on T is denoted by Crd(T,Rn×m).

Definition 1.6 ([16]). We say that A is differentiable on T provided each entry of A is
differentiable on T. In this case, the ∆-derivative of A(t) is defined as

A∆(t) = (a∆
ij(t)), (i = 1, 2, . . . , n)(j = 1, 2, . . .m),

where A(t) = (aij(t)).

Definition 1.7 ([16]). A is called regressive (with respect to T) provided I + µ(t)A(t) is
invertible for all t ∈ Tκ, and the class of all such regressive and rd-continuous functions
is denoted by R(T,Rn×n).

Let t0 ∈ T and A be a n× n regressive matrix valued function defined on T. Then, the
unique solution of the initial value problem

X∆ = A(t)X, X(t0) = I,
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is called the matrix exponential function and it is denoted by eA(t, t0). If t0 = 0, then we
denote it by eA(t). The matrix exponential function has the following properties

Theorem 1.2 ([16] Thm 5.21). If A,B ∈ R(T,Rn×n), then

a) e0(t, s) ≡ I and eA(t, t) ≡ I,
b) eA(σ(t), s) = (I + µ(t)A(t))eA(t, s),
c) eA(t, s) = eA(s, t)−1,
d) eA(t, s)eA(s, r) = eA(t, r).

Let L2
∆(E,R) denote the space of the functions f : E −→ R Lebesgue ∆-measurable

and absolutely continuous such that
∫
E |f(s)|2 ∆s <∞ (see [2]), where E is an arbitrary

closed interval on time scale T. The set L2
∆(E,R) is a Hilbert space endowed with the

inner product given by

〈f, g〉L2
∆(E,R) =

∫
E
f(s)g(s)∆s.

Denote by L2
∆(E,Rm) the space of the function f : E −→ Rm, f(t) = (f1(t), . . . , fm(t)),

such that fi ∈ L2
∆(E,R). The space L2

∆(E,Rm) is a Hilbert space endowed with the inner
product given by

〈f, g〉L2
∆(E,Rm) =

∫
E
〈f(s), g(s)〉Rm∆s.

2. Setting the Problem

Once having clear the notations and definitions corresponding to the theory of differ-
ential equations on time scales, we will formulate the problem to be investigated in this
work. Without further ado, we will study the existence of solutions and the controllability
of the following semilinear dynamic equations of neutral type on time scales with impulses
and nonlocal conditions [z(t)− f(t, zτ (t))]∆ = A(t)z(t) +B(t)u(t) + h(t, zτ (t)), t ∈ [t0, b]T \ {t1, t2, . . . , tp}

z(s) = g(z)(s) + φ(s), s ∈ [τ(t0), t0]T
z(t+k ) = z(t−k ) + Jk(tk, z(t

−
k )), k = 1, 2, . . . , p,

(1)
where the nonlocal condition z(s) = g(z)(s) + φ(s), s ∈ [τ(t0), t0]T means

z(s) = g

(
z
∣∣∣
[τ(t0),t0]T

)
(s) + φ(s), s ∈ [τ(t0), t0]T,

z(t) ∈ Rn is the state function, zτ (t) = z(τ(t)) where τ : T −→ T is the delay function
and is an increasing and unbounded function on T such that τ(t) ≤ t for t ∈ T (see [31]).
A ∈ R(T,Rn×n), B ∈ R(T,Rn×m), and the control u ∈ L2

∆([t0, b]T,Rm). The functions
f, h : [t0, b]T × Rn −→ Rn are suitably defined functions satisfying certain conditions that
will be specified later, and Jk : [0,∞)T × Rn −→ Rn, k = 1, 2, . . . , p, are continuous and
represents the impulsive effect in the system (1), in this case, we are considering that the
system can undergo drastic changes of their state at a given time. These alterations in
state might be due to certain external factors, which cannot be well described by pure
time scales models, (see, for instance, [3, 12, 26, 29, 37, 38, 43] and reference therein). The
points {t1, t2, . . . , tp} ⊂ T satisfies t0 < t1 < t2 < · · · < tp < b, z(t+k ) and z(t−k ) represents
right and left limits with respect to the time scale, and in addition, if tk is right-scattered
then z(t+k ) = z(tk), whereas if tk is left-scattered, then z(t−k ) = z(tk). Moreover, it is
usually assumed that the solution z should be left-continuous (see [12, 29, 37]), in this
case z(t+k ) = z(tk)+J(tk, z(tk)), k = 1, 2, . . . , p. On the other hand, if tk is right scattered,
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then J(tk, z(tk)) = 0, in other words, it make sense to consider impulses at right-dense
points only. φ ∈ PCrd, where PCrd is the Banach space

PCrd =
{
φ : [τ(t0), t0]T −→ Rn : φ is rd-continuous except in a finite number of points

θk, k = 1, . . . , p, where φ(θ+
k ), φ(θ−k ) exist and φ(θ−k ) = φ(θk)

}
endowed with the norm

‖φ‖PCrd = sup
{
|φ(t)| : t ∈ [τ(t0), t0]T

}
.

The continuous function g : PCrd −→ PCrd represent the nonlocal conditions, this
function acts as a feedback operator which adjusts a part of the past when the initial
function is present, or even, the whole past when the function φ is absent according to
some precise future requirements (see [21]). The advantage of using nonlocal conditions
is that measurements at more places can be incorporated to get better models. For more
details and physical interpretations about non local condition see [21, 22, 23, 24, 25, 42]
and references therein.

The main goal of this paper is to study the controllability of system (1). Specifically, we
shall show that under certain conditions the controllability of the associated linear system
implies the controllability of the semilinear neutral differential equations with impulses
and nonlocal conditions on time scales. In order to prove this asseveration, we impose
some conditions on the nonlinear terms presented in the system, and applying a direct
approach developed by A.E. Bashirov et al. ([8, 9, 10]) to avoid fixed point theorems, we
prove the approximate controllability of the system; then assuming different conditions on
the nonlinear terms presented in the system, we can apply Banach Fixed Point Theorem
to achieve exact controllability. Finally, we consider an example where our results can be
applied.

3. Existence and Uniqueness of Solutions

In this section we will show that system (1) is well posed, i.e., we will prove that system
(1) admits a unique solution defined on [τ(t0), b]T. We shall also fix the basis to study the
controllability of system (1). In this regards, we define the space

PCp =
{
φ : [τ(t0), b]T −→ Rn : φ|[τ(t0),t0]T ∈ PCrd and φ|[t0,b]T is rd-continuous except in a

finite number of points tk, k = 1, 2, . . . , p, where φ(t−k ), φ(t+k ) exist and

φ(tk) = φ(t−k )
}

A straightforward computation shows the following theorem

Theorem 3.1. Consider a control u ∈ L2
∆([t0, b]T;Rm). z is solution of system (1) if and

only if z satisfy the integral equation

z(t) =



g(z)(t) + φ(t), t ∈ [τ(t0), t0]T,
f(t, zτ (t)) + eA(t, t0)

[
g(z)(t0) + φ(t0)− f(t0, gτ (z)(t0) + φτ (t0)

]
+

∫ t

t0

eA(t, σ(s))A(s)f(s, zτ (s))∆s+

∫ t

t0

eA(t, σ(s))B(s)u(s)∆s

+

∫ t

t0

eA(t, σ(s))h(s, zτ (s))∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z(tk)), t ∈ [t0, b]T,

(2)

where gτ (z)(t) = g(z)(τ(t)).

Henceforth, we will assume the following hypotheses
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H1) There exist positive constants Lf and Lh such that for all t ∈ [t0, b]T, z, z̃ ∈ Rn

|f(t, z)− f(t, z̃)| ≤ Lf |z − z̃| ,
|h(t, z)− h(t, z̃)| ≤ Lh |z − z̃| ,

H2) there exist nonnegative constants dk, k = 1, 2, . . . , p such that for all t ∈ [0,∞)T,
z, z̃ ∈ Rn

|Jk(t, z)− Jk(t, z̃)| ≤ dk |z − z̃| ,

H3) there exists a nonnegative constant Lg such that for all φ, ψ ∈ PCrd

‖g(φ)− g(ψ)‖PCrd ≤ Lg ‖φ− ψ‖PCrd .

H4) Lf +M

[
Lg + LfLg + ‖A‖Lfb+ Lhb+

p∑
k=1

dk

]
< 1, where

M = sup{‖eA(t, σ(s))‖ : t, s ∈ [t0, b]T} and ‖A‖ = max{‖A(t)‖ : t ∈ [t0, b]T}.

Theorem 3.2. Suppose that H1)- H4) hold. Then for φ ∈ PCrd the system (1) has a
unique solution defined on [τ(t0), b]T.

Proof. Let u ∈ L2
∆([t0, b]T;Rm) and we define the operator T : PCp −→ PCp by

T (t) =



g(z)(t) + φ(t), t ∈ [τ(t0), t0]T,
f(t, zτ (t)) + eA(t, t0)

[
g(z)(t0) + φ(t0)− f(t0, gτ (z)(t0) + φτ (t0)

]
+

∫ t

t0

eA(t, σ(s))A(s)f(s, zτ (s))∆s+

∫ t

t0

eA(t, σ(s))B(s)u(s)∆s

+

∫ t

t0

eA(t, σ(s))h(s, zτ (s))∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z(tk)), t ∈ [t0, b]T.

(3)

If t ∈ [τ(t0), t0]T then

|(T z)(t)− (T z̃)(t)| = |g(z)(t)− g(z̃)(t)| ≤
∥∥∥∥(g(z)− g(z̃))

∣∣∣
[τ(t0),t0]T

∥∥∥∥
PCrd

≤ Lg

∥∥∥∥(z − z̃)
∣∣∣
[τ(t0),t0]T

∥∥∥∥
PCrd

≤ Lg ‖z − z̃‖PCp .

If t ∈ [t0, b]T, then
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|(T z)(t)− (T z̃)(t)| ≤ |f(t, zτ (t))− f(t, z̃τ (t))|+ ‖eA(t, t0)‖
[
|g(z)(t0)− g(z̃)(t0)|

+ |f(t0, gτ (z)(t0) + φτ (t0))− f(t0, gτ (z̃)(t0) + φτ (t0))|
]

+

∫ t

t0

‖eA(t, σ(s))‖ ‖A(s)‖ |f(s, zτ (s))− f(s, z̃τ (s))|∆s

+

∫ t

t0

‖eA(t, σ(s))‖ |h(s, zτ (s))− h(s, z̃τ (s))|∆s

+
∑

0<tk<t

‖eA(t, tk)‖ |Jk(tk, z(tk))− Jk(tk, z̃(tk))|

≤ Lf |zτ (t)− z̃τ (t)|+M
[
Lg ‖z − z̃‖PCp + Lf |gτ (z)(t0)− gτ (z̃(t0)|

]
+ M ‖A‖Lf

∫ t

t0

|zτ (s)− z̃τ (s)|∆s+MLh

∫ t

t0

|zτ (s)− z̃τ (s)|∆s

+ M
∑

0<tk<t

dk |z(tk)− z̃(tk)|

≤

(
Lf +M

[
Lg + LfLg + ‖A‖Lfb+ Lhb+

p∑
k=1

dk

])
‖z − z̃‖PCp .

Thus,

‖T z − T z̃‖PCp ≤

(
Lf +M

[
Lg + LfLg + ‖A‖Lfb+ Lhb+

p∑
k=1

dk

])
‖z − z̃‖PCp ,

so, the operator T satisfies all the assumptions of the Banach contraction theorem, and
therefore T has only one fixed point in the space PCp which is the solution of problem
(1). �

4. Controllability of System (1)

As we have mentioned from the beginning, our fundamental objective is to study the
controllability of the system (1), both the approximate controllability and the exact con-
trollability; in this regard, we will begin by giving the corresponding definitions of con-
trollability.

Definition 4.1. System (1) is said to be approximately controllable on [t0, b]T if for every
φ ∈ PCrd, z1 ∈ Rn and ε > 0 there exists u ∈ L2

∆([t0, b]T;Rm) such that the solution of
(1) corresponding to u verifies:

z(t0) = g(z)(t0) + φ(t0) and
∣∣z(b)− z1

∣∣ < ε.

Definition 4.2. System (1) is said to be exactly controllable on [t0, b]T if for every
φ ∈ PCrd, z1 ∈ Rn, there exists u ∈ L2

∆([t0, b]T;Rm) such that the solution z(t) of (1)
corresponding to u verifies:

z(t0) = g(z)(t0) + φ(t0) and z(b) = z1.

Corresponding to the nonlinear system (1), we shall consider also the linear system{
z∆(t) = A(t)z(t) +B(t)u(t), t ∈ [t0, b]T
z(t0) = z0.

(4)



982 TWMS J. APP. AND ENG. MATH. V.13, N.3, 2023

The solution of (4) is given by

z(t) = eA(t, t0)z0 +

∫ t

t0

eA(t, σ(s))B(s)u(s)∆s. (5)

Definition 4.3 ([27]). For the linear system (4) we define the following concepts:

1) The controllability map is defined as Bb : L2
∆((t0, b]T,Rm)→ Rn by

Bbu =

∫ b

t0

eA(t, σ(s))B(s)u(s)∆s. (6)

2) The Grammian map is defined by LBb = BbBb∗.

Proposition 4.1 ([27]). The adjoint Bb∗ : Rn −→ L2
∆([t0, b]T,Rm) of the operator Bb is

given by

(Bb∗z)(t) = B∗(t)e∗A(b, σ(t))z

and

LBbz =

∫ b

t0

eA(b, σ(s))B(s)B∗(s)e∗A(b, σ(s))z∆s.

Theorem 4.1 ([27]). System (4) is controllable on [t0, b]T if and only if one of the following
statement holds:

1) Rang(Bb) = Rn,
2) There exists γ > 0 such that 〈LBbz, z〉 > 0, for every z ∈ Rn \ {0},
3) There exists γ > 0 such that

∥∥Bb∗z∥∥
L2

∆
≥ γ ‖z‖ for every z ∈ Rn,

4) LBb is invertible. Moreover, G = BbL−1
Bb is a right inverse of Bb, and the control

u ∈ L2
∆([t0, b]T,Rm) steering the system from the initial state z0 to a final state z1 is

given by

u = Bb∗L−1
Bb (z1 − eA(b, t0)z0). (7)

5. Approximate controllability

In this section we will give condition to get the approximate controllability of system
(1).

Theorem 5.1. Suppose that b is left-dense, |f(t, ϕ)| ≤ Mf , |h(t, ϕ)| ≤ Mh for t ∈
[τ(t0), b]T, ϕ ∈ PCp, and (4) is controllable on [δ, b]T for each δ ∈ [t0, b]T, then system
(1) is approximate controllable on [t0, b]T.

Proof. Given φ ∈ PCrd, a final state z1 and ε > 0, we want to find a control uε ∈
L2

∆([t0, b]T;Rm) steering the system (1) to an ε-neighborhood of z1 and on time b. Indeed,
consider a control u ∈ L2

∆([t0, b]T;Rm) arbitrary but fixed and the corresponding solution
z(t) = z(t, t0, φ, u) of system (1). Since b is left-dense then given ε > 0 there exists
δε ∈ [t0, b]T such that b− δε < ε

M(‖A‖Mf+Mh) .

We define the control uε ∈ L2
∆([t0, b]T;Rm) as follow:

uε(t) =

{
u(t) if t ∈ [t0, δε]T,
ũ(t) if t ∈ [δε, b]T,

(8)

where ũ(t) = B∗(t)e∗A(b, σ(t))L−1
Bb (z1 − eA(b, δε)z(δε)) is the control steering the system

(4) from the initial state z(δε) to the final state z1 on [δε, b]T.
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Then the corresponding solution zδε(t) = zδε(t, t0, φ, u
ε) of the problem (1) at time b

can be expressed by

zδε(b) = f(b, zδετ (b)) + eA(b, t0)
[
g(zδε)(t0) + φ(t0)− f(t0, gτ (zδε)(t0) + φτ (t0))

]
+

∫ b

t0

eA(b, σ(s))A(s)f(s, zδετ (s))∆s+

∫ b

t0

eA(b, σ(s))B(s)uε(s)∆s

+

∫ b

t0

eA(b, σ(s))h(s, zδετ (s))∆s+
∑

0<tk<δ

eA(b, tk)Jk(tk, z
δε(tk))

= f(b, zδετ (b))+eA(b, δε)

{
eA(δε, t0)

[
g(zδε)(t0)+φ(t0)−f(t0, gτ (zδε)(t0)+φτ (t0))

]
+

∫ δε

t0

eA(δε, σ(s))A(s)f(s, zδετ (s))∆s+

∫ δε

t0

eA(δε, σ(s))B(s)u(s)∆s

+

∫ δε

t0

eA(δε, σ(s))h(s, zδετ (s))∆s+
∑

0<tk<δε

eA(δε, tk)Jk(tk, z
δε(tk))

}

+

∫ b

δε

eA(b, σ(s))A(s)f(s, zδετ (s))∆s+

∫ b

δε

eA(b, σ(s))B(s)ũ(s)∆s

+

∫ b

δε

eA(b, σ(s))h(s, zδετ (s))∆s

= f(b, zδετ (b))+eA(b, δε)
[
zδε(δε)−f(δε, z

δε
τ (δε))

]
+

∫ b

δε

eA(b, σ(s))A(s)f(s, zδετ (s))∆s

+

∫ b

δε

eA(b, σ(s))B(s)ũ(s)∆s+

∫ b

δε

eA(b, σ(s))h(s, zδετ (s))∆s.

On the other hand, the corresponding solution y(t) = y(t, δε, y(δε), ũ) of the initial value
problem (4) at time t = b, is given by

y(b) = eA(b, δε)y(δε) +

∫ b

δε

eA(b, σ(s))B(s)ũ(s)∆s = z1.

Taking y(δε) = eA(δε, b)f(b, zδετ (b))− f(δε, z
δε
τ (δε)) + zδε(δε), we have that

y(b) = f(b, zδτ (b)) + eA(b, δε)
[
zδε(δε)− f(δ, zδετ (δ))

]
+

∫ b

δ
eA(b, σ(s))B(s)ũ(s)∆s,

so

zδε(b) = z1 +

∫ b

δε

eA(b, σ(s))A(s)f(s, zδετ (s))∆s+

∫ b

δε

eA(b, σ(s))h(s, zδετ (s))∆s.

Hence∣∣∣zδε(b)− z1
∣∣∣ ≤ ∫ b

δε

‖eA(b, σ(s))‖ ‖A(s)‖
∣∣∣f(s, zδετ (s))

∣∣∣∆s+

∫ b

δε

‖eA(b, σ(s))‖
∣∣∣h(s, zδετ (s))

∣∣∣∆s
≤M

(
‖A‖Mf +Mh

)
(b− δε) < ε.

This conclude the proof. �
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6. Exact controllability

In this section we will prove that under certain conditions and by using the Banach
fixed point Theorem, the system (1) is exactly controllable.

Theorem 6.1. Suppose that system (4) is exactly controllable and

(
1 + ‖B‖2M2

∥∥L−1
Bb
∥∥ b) [Lf +MLg +MLfLg +M ‖A‖Lfb+MLhb+M

p∑
k=1

dk

]
< 1.

Then problem (1) is exactly controllable.

Proof. Suppose for a moment that system (1) is exactly controllable. So, for every φ ∈
PCrd and for every z1 ∈ Rn there exist u ∈ L2

∆([t0, b]T;Rm) such that the corresponding
solution z(t) = z(t, φ, u) of (1) satisfies z(b) = z1, where

z(b) = f(b, zτ (b)) + eA(b, t0)
[
g(z)(t0) + φ(t0)− f(t0, gτ (z)(t0) + φτ (t0))

]
+

∫ b

t0

eA(b, σ(s))A(s)f(s, zτ (s))∆s+

∫ b

t0

eA(t, σ(s))B(s)u(s)∆s

+

∫ b

t0

eA(b, σ(s))h(s, zτ (s))∆s+
∑

0<tk<b

eA(b, tk)Jk(tk, z(tk)).

Consider the controllability operator given by (6), then

Bbu = z1 − f(b, zτ (s))− eA(b, t0)
[
g(z)(t0) + f(t0, gτ (z)(t0) + φτ (t0))

]
−

∫ b

t0

eA(b, σ(s))A(s)f(s, zτ (s))∆s−
∫ b

t0

eA(b, σ(s))h(s, zτ (s))∆s

−
∑

0<tk<b

eA(b, tk)Jk(tk, z(tk)).

If we define L : PCp([τ(t0), b]T;Rn) −→ Rn by

L (z) = z1 − f(b, zτ (s))− eA(b, t0)
[
g(z)(t0) + f(t0, gτ (z)(t0) + φτ (t0))

]
−

∫ b

t0

eA(b, σ(s))A(s)f(s, zτ (s))∆s−
∫ b

t0

eA(b, σ(s))h(s, zτ (s))∆s

−
∑

0<tk<b

eA(b, tk)Jk(tk, z(tk)),

we get that

u = GL (z).

Therefore, the controllability of system (1) will be equivalent to find a fixed points for
the following operator

T : PCp([τ(t0), t0]T;Rn) −→ PCp([τ(t0), t0]T;Rn)

given by
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(T z)(t) =f(t, zτ (t)) + eA(t, t0)
[
g(z)(t0) + φ(t0)− f(t0, gτ (z)(t0) + φτ (t0))

]
+

∫ t

t0

eA(t, σ(s))A(s)f(s, zτ (s))∆s+

∫ t

t0

eA(t, σ(s))GL (z)(s)∆s

+

∫ t

t0

eA(t, σ(s))h(s, zτ (s))∆s+
∑

0<tk<t

eA(t, tk)Jk(tk, z(tk)).

Now, let z, z̃ ∈ PCp, then

|(T z)(t)− (T z)(t)| ≤ |f(t, zτ (t))− f(t, z̃τ (t))|+ ‖eA(t, t0)‖
[
|g(z)(t0)− g(z̃)(t0)|

+ |f(t0, gτ (z)(t0) + φτ (t0))− f(t0, gτ (z̃)(t0) + φτ (t0))|
]

+

∫ t

t0

‖eA(t, σ(s))‖ ‖A(s)‖ |f(s, zτ (s))− f(s, z̃τ (s))|∆s

+

∫ t

t0

‖eA(t, σ(s))‖ ‖B(s)‖ |GL (z)(s)− GL (z̃)(s)|∆s

+

∫ t

t0

‖eA(t, σ(s))‖ |h(s, zτ (s))− h(s, z̃τ (s))|∆s

+
∑

0<tk<t

‖eA(t, tk)‖ |Jk(tk, z(tk))− Jk(tk, z̃(tk))|

On the other hand

|GL (z)(t)− GL (z̃)(t)| ≤ ‖B‖M
∥∥L−1
Bb
∥∥ |L (z)(t)−L (z̃)(t)|

≤ ‖B‖M
∥∥L−1
Bb
∥∥(Lf +MLg +MLfLg +M ‖A‖ bLf

+MLhb+M

p∑
k=1

dk

)
‖z − z̃‖PCp .

So

‖T z −T z̃‖PCp ≤
(

1 + ‖B‖2M2
∥∥W−1

∥∥ b)(Lf +MLg +MLfLg +M ‖A‖Lfb

+MLhb+M

p∑
k=1

dk

)
‖z − z̃‖PCp .

Since(
1 + ‖B‖2M2

∥∥L−1
Bb
∥∥ b) [Lf +MLg +MLfLg +M ‖A‖Lfb+MLhb+M

p∑
k=1

dk

]
< 1,

then the operator T has a unique fixed point, that is to say

T z = z.

Due to u = GL (z), we get that
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Bbu = L (z) =z1 − f(b, zτ (s))− eA(b, t0)
[
g(z)(t0) + f(t0, gτ (z)(t0) + φτ (t0))

]
−
∫ b

t0

eA(b, σ(s))A(s)f(s, zτ (s))∆s−
∫ b

t0

eA(b, σ(s))h(s, zτ (s))∆s

−
∑

0<tk<b

eA(b, tk)Jk(tk, z(tk)).

and so the system (1) is exactly controllable. This conclude the proof. �

7. An example

Let us consider the following control system
[
z(t)−

(
1 +

tanh(z( t
5

))

8(t+10)2

)]∆

= z(t) + 2u(t) + e
− z( t

5 )

10(t+5)3 , t ∈ [1, 5]T

z(s) =
(

1 + sin(z)
302

)
(s) + φ(s), s ∈ [1

5 , 1]T

z(t+k ) = z(t−k ) + 1 +
cos(z(t−k ))

4(tk+8)4 , k = 1, 2.

(9)

Here t0 = 1, t1 = 5
2 , t2 = 9

2 and b = 5, τ(t) = t
5 . Define the functions f(t, z) =

1 + tanh(z)
8(t+10)2 , h(t, z) = e

− z
10(t+5)3 , g(z) = 1 + sin(z)

302 , Jk(t, z) = 1 + cos(z)
4(t+8)4 , A(t) = 1 and

B(t) = 2. Then we have,

|f(t, z)− f(t, z̃)| = 1
8(t+10)2 |tanh(z)− tanh(z̃)| ≤ 1

8·102 |z − z̃| ,

|h(t, z)− h(t, z̃)| =

∣∣∣∣e− z
10(t+5)3 − e−

z̃
10(t+5)3

∣∣∣∣ ≤ 1
10·53 |z − z̃| ,

|Jk(t, z)− Jk(t, z̃)| = 1
4(t+8)4 |cos(z)− cos(z̃)| ≤ 1

4·84 |z − z̃| ,
|g(z)− g(z̃)| = 1

302 |sin(z)− sin(z̃)| ≤ 1
302 |z − z̃| ,

and Lf+M [Lg+LfLg+‖A‖Lfb+Lhb+d1+d2] ≤ 0.63, therefore the conditions (H1)-(H4)
are satisfied. On the other hand, the operator

LB5 =

∫ 5

t0

e1(5, σ(s))B(s)B∗(s)e∗1(5, σ(s))∆s = 4

∫ 5

t0

e1(5, σ(s))e1(5, σ(s))∆s

=4

∫ 5

t0

e1⊕1(5, σ(s))∆s 6= 0,

so it is invertible, and hence the linear system{
z(t)∆ = z(t) + 2u(t), t ∈ [t0, 5]T
z(t0) = z0,

(10)

is controllable.
Therefore, if for example we take [0, 5]T = [0, 5]R, or [0, 5]T = [1

5 , 1] ∪ [2, 3] ∪ [4, 5], then
by Theorem 5.1, system (9) is approximately controllable.

8. Final Remark

In this paper we study a control system governed by a neutral differential equation on
time scales with impulses and nonlocal conditions. Specifically, first of all, we prove the
existence and uniqueness of solutions. After that, we prove the approximate controllability
of the system assuming that the associated linear control problem on time scales is exactly
controllable on [δ, b]T, for any δ ∈ (t0, b)T with b being a left-dense point. Next, assuming
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certain conditions on the nonlinear term, we prove the exact controllability applying Ba-
nach Fixed Point Theorem. Finally, we consider an example to illustrate the applicability
of our results. It is good to mention that, our technique can be extended to the infinite
dimensional case, where the operator A(t) = A generates a compact strongly continuous
semigroup on time scales. Bashirov in [11] presented a new and simple technique to study
exact controllability without using fixed point theorems, which is based on a piecewise
construction of steering controls that allows to prove the exact controllability of semilin-
ear systems. However, we think that to use this technique we need certain additional
conditions on the time scale. Nevertheless, this will be analyzed in a forthcoming papers;
the continuous and the time scales cases.

Acknowledgement. The authors are very grateful to anonymous referees for careful
reading of this work, which permitted them to improve the final presentation of this
manuscript.
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