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TOTAL ABSOLUTE DIFFERENCE EDGE IRREGULARITY

STRENGTH OF SOME FAMILIES OF GRAPHS

A. LOURDUSAMY1∗, F. J. BEAULA1, §

Abstract. A total labeling ξ is defined to be an edge irregular total absolute differ-
ence k-labeling of the graph G if for every two different edges e and f of G there is
wt(e) 6= wt(f) where weight of an edge e = xy is defined as wt(e) = |ξ(e)− ξ(x)− ξ(y)|.
The minimum k for which the graph G has an edge irregular total absolute difference
labeling is called the total absolute difference edge irregularity strength of the graph
G, tades(G). In this paper, we determine the total absolute difference edge irregularity
strength of the precise values for some families of graphs.

Keywords: Edge irregularity strength, total absolute difference edge irregularity strength,
double fan, quadrilateral snake.

AMS Subject Classification: 05C78.

1. Introduction

Throughout this paper we consider only finite undirected graphs without loops or mul-
tiple edges. Chartrand et al. in [2] introduced edge k-labeling of a graph G such that
w(x) 6= w(y) for all vertices x, y ∈ V (G) with x 6= y. Such labelings were called irregular
assignments and the irregularity strength s(G) of a graph G is known as the minimum k
for which G has an irregular assignment using labels at most k. Baca et al. in [1] started
to investigate the total edge irregularity strength of a graph, an invariant analogous to
the irregularity strength for total labeling. Recently Ivanco and Jendrol [3] proved that
for any tree T

tes(T ) = max

{⌈
E(G) + 2

3

⌉
,

⌈
∆(G) + 1

2

⌉}
.
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Moreover, they posed a conjecture that for an arbitrary graph G different from K5 and
having maximum degree ∆(G)

tes(G) = max

{⌈
E(G) + 2

3

⌉
,

⌈
∆(G) + 1

2

⌉}
.

The Ivanco and Jendrol’s conjecture has been verified for complete graphs and complete
bipartite graphs in [4] and for categorical product of cycle and path in [6].

Motivated by the total edge irregularity strength of a graph and the graceful labeling,
Ramalakshmi and Kathiresan introduced the total absolute difference edge irregularity
strength of graphs to reduce the edge weights. For a graph G = (V (G), E(G)), the weight
of an edge e = xy under a total labeling ξ is wt(e) = |ξ(e)−ξ(x)−ξ(y)|. For a graph G we
define a labeling ξ : V (G)

⋃
E(G) → {1, 2, . . . , k} to be an edge irregular total absolute

difference k-labeling of G if for every two different edges e = xy and f = x0y0 of G one has
wt(e) 6= wt(f). The total absolute difference edge irregular strength, tades(G), is defined
as the minimum k for which G has an edge irregular total absolute difference k-labeling.
In [5], they posed the following conjectures,

(1) For every tree T of maximum degree ∆(G) on p vertices,

tades(T ) = max

{
p

2
,
∆(G) + 1

2

}
(2) For any graph G, tes(G) ≤ tades(G).

Theorem 1.1. [5] Let G = (V,E) be a graph with vertex set V and a non-empty edge set

E. Then |E|2 ≤ tades(G) ≤ |E|+ 1.

In this paper we discuss with snake related graphs, wheel related graphs, lotus inside
the circle and double fan graph. We determine the total absolute difference edge irregular
strength for these families of graphs.

The join of two graphs G1 and G2 is denoted by G1 + G2 and whose vertex set is
V (G1 + G2) = V (G1)

⋃
V (G2) and edge set is E(G1 + G2) = E(G1)

⋃
E(G2)

⋃
{uv :

u ∈ V (G1), v ∈ V (G2)}. The double fan DFn is defined as Pn + 2K1. The wheel Wn

is defined as the join Cn + K1. The vertex K1 is the apex vertex and the vertices on
the underlying cycle are called rim vertices. The edges of the underlying cycle are called
the rim edges and the edges joining the apex and the rim vertices are called spoke edges.
The gear graph Gn is obtained from the wheel Wn by adding a vertex between every
pair of adjacent vertices of the cycle Cn. The helm Hn is obtained from a wheel Wn by
attaching a pendant edge at each vertex of the cycle Cn. The flower graph Fln is the
graph obtained from a Helm by joining each pendant vertex to the central vertex of the
Helm. The closed helm CHn is a graph obtained from a Helm Hn by joining each pendant
vertex to form a cycle. The web Wbn is the graph obtained by joining the pendant vertices
of a helm Hn to form a cycle and then adding a pendant edge to each vertex of outer cycle.

The lotus inside a circle LCn is a graph obtained from the cycle Cn : b1b2 · · · bnb1 and
the star K1,n with central vertex u and the end vertices a1, a2, a3, . . . , an by joining each
bi to ai and ai+1 (mod n).
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A Kn-snake is defined as a connected graph in which all blocks are isomorphic to Kn

and the block-cut point graph is a path. A K3-snake is called triangular snake.

The quadrilateral snake is obtained from a path a1a2 · · · an+1 by joining ai, ai+1 to new
vertices bi, ci respectively and joining bi and ci.

2. Snake Related Graphs

In this section we discuss the total absolute difference edge irregular strength for snake
related graphs.

Theorem 2.1. For Tn, n ≥ 1, tades(Tn) =
⌈
3n
2

⌉
.

Proof. Let Tn be a triangular snake with n blocks. Since |V (Tn)| = 2n+ 1 and |E(Tn)| =
3n. Let k =

⌈
3n
2

⌉
. From Theorem (1.1), tades(Tn) ≥

⌈
3n
2

⌉
. It is enough to prove that

tades(Tn) ≤
⌈
3n
2

⌉
. Define the labeling ξ as follows:

ξ(u1) = 1;
ξ(u2i) = 3i− 1, 1 ≤ i ≤

⌈
n
2

⌉
;

ξ(u2i+1) = 3i, 1 ≤ i ≤
⌊
n
2

⌋
;

ξ(v2i−1) = 3i− 2, 1 ≤ i ≤
⌈
n
2

⌉
;

ξ(v2i) = 3i, 1 ≤ i ≤
⌊
n
2

⌋
;

ξ(u1u2) = 2;
ξ(uiui+1) = 1, 1 ≤ i ≤ n;
ξ(u1v1) = 2;

ξ(uivi) =

{
2 if i is even and 2 ≤ i ≤ n
1 if i is odd and 2 ≤ i ≤ n;

ξ(viui+1) = 1, 1 ≤ i ≤ n.
Now,

max{{ξ(u)|u ∈ V (Tn)}, {ξ(e)|e ∈ E(Tn)}} =
⌈
3n
2

⌉
and we observe that,

wt(uivi) = 3i− 3, 1 ≤ i ≤ n;
wt(viui+1) = 3i− 1, 1 ≤ i ≤ n;
wt(uiui+1) = 3i− 2, 1 ≤ i ≤ n.

The weights are distinct. Hence tades(Tn) =
⌈
3n
2

⌉
. �

Theorem 2.2. For Qn, n ≥ 1, tades(Qn) = 2n.

Proof. LetQn be a quadrilateral snake with V (Qn) = {ai|1 ≤ i ≤ n+1}
⋃
{bi, ci|1 ≤ i ≤ n}

and E(Qn) = {aiai+1, aibi, ai+1ci, bici|1 ≤ i ≤ n}. Therefore, |V (Qn)| = 3n + 1 and
|E(Qn)| = 4n. From Theorem (1.1), tades(Qn) ≥ 2n. For the reverse inequality, we define
the labeling ξ as follows.

ξ(a1) = 1;
ξ(a2i) = 4i− 2, 1 ≤ i ≤

⌈
n
2

⌉
;

ξ(a2i+1) = 4i, 1 ≤ i ≤
⌊
n
2

⌋
;

ξ(bi) = 2i− 1, 1 ≤ i ≤ n;
ξ(ci) = 2i, 1 ≤ i ≤ n;
ξ(a1a2) = 2;
ξ(aiai+1) = 1, 2 ≤ i ≤ n;
ξ(a1b1) = 2;
ξ(bici) = 1, 1 ≤ i ≤ n;
ξ(aibi) = 1, 2 ≤ i ≤ n;
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ξ(ai+1ci) = 1, 1 ≤ i ≤ n.
Now,

max{{ξ(a)|a ∈ V (Qn)}, {ξ(e)|e ∈ E(Qn)}} = 2n
and we observe that,

wt(aiai+1) = 4i− 3, 1 ≤ i ≤ n;
wt(aibi) = 4i− 4, 1 ≤ i ≤ n;
wt(bici) = 4i− 2, 1 ≤ i ≤ n;
wt(ai+1ci) = 4i− 1, 1 ≤ i ≤ n.

The weights are distinct. Hence tades(Qn) = 2n. �

3. Wheel Related Graphs

In this section we investigate the total absolute difference edge irregular strength for
wheel related graphs.

Theorem 3.1. For Hn, n ≥ 3, tades(Hn) =
⌈
3n
2

⌉
.

Proof. Let V (Hn) = {a, xi, yi|1 ≤ i ≤ n} and E(Hn) = {axi, xiyi|1 ≤ i ≤ n}
⋃

{xixi+1, xnx1|1 ≤ i ≤ n−1}. Since |V (Hn)| = 2n+1 and |E(Hn)| = 3n. Let k =
⌈
3n
2

⌉
. By

Theorem (1.1), we have tades(Hn) ≥
⌈
3n
2

⌉
. It is enough to prove that tades(Hn) ≤

⌈
3n
2

⌉
.

Define the labeling ξ : V
⋃
E → {1, 2, 3, . . . ,

⌈
3n
2

⌉
} as follows:

Case 1. n is odd.
ξ(a) = k; ξ(xi) =

⌊
n
2

⌋
+ i, 1 ≤ i ≤ n; ξ(yi) = 1, 1 ≤ i ≤ n; ξ(axi) = 1, 1 ≤ i ≤ n;

ξ(xixi+1) = i+ 1, 1 ≤ i ≤ n− 1; ξ(xnx1) = 1; ξ(xiyi) =
⌊
n
2

⌋
+ 2, 1 ≤ i ≤ n.

Case 2. n is even.
ξ(a) = k; ξ(xi) = n

2 + i, 1 ≤ i ≤ n; ξ(yi) = 1, 1 ≤ i ≤ n; ξ(axi) = 1, 1 ≤ i ≤ n;
ξ(xixi+1) = i+ 2, 1 ≤ i ≤ n− 1; ξ(xnx1) = 2; ξ(xiyi) = n

2 + 2, 1 ≤ i ≤ n.
Now,

max{{ξ(x)|x ∈ V (Hn)}, {ξ(e)|e ∈ E(Hn)}} =
⌈
3n
2

⌉
and the edge weights are as follows:

wt(axi) = 2n− 1 + i, 1 ≤ i ≤ n;
wt(xixi+1) = n+ i− 1, 1 ≤ i ≤ n− 1;
wt(xiyi) = i− 1, 1 ≤ i ≤ n;
wt(xnx1) = 2n− 1.

Hence, the weights are distinct. Therefore, tades(Hn) =
⌈
3n
2

⌉
. �

Theorem 3.2. For CHn, n ≥ 3, tades(CHn) = 2n.

Proof. Let V (CHn) = {a, xi, yi|1 ≤ i ≤ n} and E(CHn) = {axi, xiyi|1 ≤ i ≤ n}
⋃

{xixi+1, xnx1, yiyi+1, yny1|1 ≤ i ≤ n−1}. Define the labeling ξ : V
⋃
E → {1, 2, 3, . . . , 2n}

by
ξ(a) = 2n;
ξ(xi) = n+ i, 1 ≤ i ≤ n;
ξ(yi) = i, 1 ≤ i ≤ n;
ξ(axi) = 1, 1 ≤ i ≤ n;
ξ(xixi+1) = i+ 2, 1 ≤ i ≤ n− 1;
ξ(xiyi) = i+ 1, 1 ≤ i ≤ n;
ξ(yiyi+1) = i+ 2, 1 ≤ i ≤ n− 1;
ξ(xnx1) = ξ(yny1) = 2.

Now,
max{{ξ(x)|x ∈ V (CHn)}, {ξ(e)|e ∈ E(CHn)}} = 2n

and we observe that,
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wt(axi) = 3n− 1 + i, 1 ≤ i ≤ n;
wt(xixi+1) = 2n+ i− 1, 1 ≤ i ≤ n− 1;
wt(xiyi) = n+ i− 1, 1 ≤ i ≤ n.
wt(yiyi+1) = i− 1, 1 ≤ i ≤ n− 1;
wt(xnx1) = 3n− 1;
wt(yny1) = n− 1.

The weights are distinct. Then we have tades(CHn) ≤ 2n. However by Theorem (1.1),
tades(CHn) ≥

⌈
4n
2

⌉
= 2n, that is tades(CHn) ≥ 2n. This completes the proof. �

Theorem 3.3. For Wbn, n ≥ 3, tades(Wbn) =
⌈
5n
2

⌉
.

Proof. Let V (Wbn) = {a, xi, yi, zi|1 ≤ i ≤ n} and E(Wbn) = {axi, xiyi, yizi|1 ≤ i ≤
n}
⋃
{xixi+1, xnx1, yiyi+1, yny1|1 ≤ i ≤ n − 1}. Let k =

⌈
5n
2

⌉
. By Theorem (1.1), we

have tades(Wbn) ≥
⌈
5n
2

⌉
. It is enough to prove that the reverse inequality. We define the

function ξ by considering the following two cases.
Case 1. n is odd.

ξ(a) = k;
ξ(xi) = k − n+ i− 1, 1 ≤ i ≤ n;
ξ(yi) = k − 2n+ i− 1, 1 ≤ i ≤ n;
ξ(zi) = 1, 1 ≤ i ≤ n;
ξ(axi) = 1, 1 ≤ i ≤ n;
ξ(xixi+1) = ξ(yiyi+1) = i+ 1, 1 ≤ i ≤ n− 1;
ξ(xnx1) = ξ(yny1) = 1;
ξ(xiyi) = i, 1 ≤ i ≤ n;
ξ(yizi) =

⌊
n
2

⌋
+ 2, 1 ≤ i ≤ n.

Case 2. n is even.
ξ(a) = k;
ξ(xi) = k − n+ i, 1 ≤ i ≤ n;
ξ(yi) = k − 2n+ i, 1 ≤ i ≤ n;
ξ(zi) = 1, 1 ≤ i ≤ n;
ξ(axi) = 1, 1 ≤ i ≤ n;
ξ(xixi+1) = ξ(yiyi+1) = i+ 2, 1 ≤ i ≤ n− 1;
ξ(xnx1) = ξ(yny1) = 2;
ξ(xiyi) = i+ 1, 1 ≤ i ≤ n;
ξ(yizi) = n

2 + 2, 1 ≤ i ≤ n.
Now,

max{{ξ(x)|x ∈ V (Wbn)}, {ξ(e)|e ∈ E(Wbn)}} =
⌈
5n
2

⌉
and we observe that,

wt(axi) = 4n− 1 + i, 1 ≤ i ≤ n;
wt(xixi+1) = 3n+ i− 1, 1 ≤ i ≤ n− 1;
wt(xiyi) = 2n+ i− 1, 1 ≤ i ≤ n.
wt(yiyi+1) = n+ i− 1, 1 ≤ i ≤ n− 1;
wt(yizi) = i− 1, 1 ≤ i ≤ n.
wt(xnx1) = 4n− 1;
wt(yny1) = 2n− 1.

The weights are distinct. Hence tades(Wbn) ≤
⌈
5n
2

⌉
. �

Theorem 3.4. For Fln, n ≥ 3, tades(Fln) = 2n.

Proof. Let V (Fln) = {a, xi, yi|1 ≤ i ≤ n} and E(Fln) = {axi, ayi, xiyi|1 ≤ i ≤ n}
⋃

{xixi+1, xnx1|1 ≤ i ≤ n− 1}. Define the labeling ξ : V
⋃
E → {1, 2, 3, . . . , 2n} by
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ξ(a) = 2n;
ξ(xi) = i, 1 ≤ i ≤ n;
ξ(yi) = n+ i, 1 ≤ i ≤ n;
ξ(axi) = 1, 1 ≤ i ≤ n;
ξ(ayi) = 1, 1 ≤ i ≤ n;
ξ(xiyi) = i+ 1, 1 ≤ i ≤ n;
ξ(xixi+1) = i+ 2, 1 ≤ i ≤ n− 1;
ξ(xnx1) = 2.

Now,
max{{ξ(x)|x ∈ V (Fln)}, {ξ(e)|e ∈ E(Fln)}} = 2n

and we observe that,
wt(axi) = 2n− 1 + i, 1 ≤ i ≤ n;
wt(ayi) = 3n− 1 + i, 1 ≤ i ≤ n;
wt(xiyi) = n+ i− 1, 1 ≤ i ≤ n.
wt(xixi+1) = i− 1, 1 ≤ i ≤ n− 1;
wt(xnx1) = n− 1.

The weights are distinct. Then we have tades(Fln) ≤ 2n. However by Theorem (1.1),
tades(Fln) ≥

⌈
4n
2

⌉
= 2n, that is tades(Fln) ≥ 2n. This completes the proof. �

Theorem 3.5. For Gn, n ≥ 3, tades(Gn) =
⌈
3n
2

⌉
.

Proof. Let V (Gn) = {u, ai, bi|1 ≤ i ≤ n} and E(Gn) = {uai, aibi|1 ≤ i ≤ n}
⋃

{biai+1, bna1|1 ≤ i ≤ n − 1}. Let k =
⌈
3n
2

⌉
. From Theorem (1.1), tades(Gn) ≥⌈

3n
2

⌉
. It is enough to prove that tades(Gn) ≤

⌈
3n
2

⌉
. Define the labeling ξ : V

⋃
E →

{1, 2, 3, . . . ,
⌈
3n
2

⌉
} by

Case 1. n is odd.
ξ(u) = k; ξ(ai) = k−n+i, 1 ≤ i ≤ n; ξ(bi) = k−n+i−2, 1 ≤ i ≤ n; ξ(uai) = 2, 1 ≤ i ≤ n;
ξ(aibi) = n+ 1, 1 ≤ i ≤ n; ξ(biai+1) = n+ 1, 1 ≤ i ≤ n− 1; ξ(bna1) = 1.
Case 2. n is even.
ξ(u) = k; ξ(ai) = k−n+i, 1 ≤ i ≤ n; ξ(bi) = k−n+i−1, 1 ≤ i ≤ n; ξ(uai) = 1, 1 ≤ i ≤ n;
ξ(aibi) = n+ 1, 1 ≤ i ≤ n; ξ(biai+1) = n+ 1, 1 ≤ i ≤ n− 1; ξ(bna1) = 1.
Now,

max{{ξ(a)|a ∈ V (Gn)}, {ξ(e)|e ∈ E(Gn)}} =
⌈
3n
2

⌉
and we observe that,

wt(uai) = 2n− 1 + i, 1 ≤ i ≤ n;
wt(aibi) = 2i− 2, 1 ≤ i ≤ n;
wt(biai+1) = 2i− 1, 1 ≤ i ≤ n− 1;
wt(bna1) = 2n− 1.

The weights are distinct. Hence tades(Gn) =
⌈
3n
2

⌉
. �

4. Some Families of Graphs

In this section we determine the total absolute difference edge irregular strength for
lotus inside the circle and double fan graph.

Theorem 4.1. For LCn, n ≥ 3, tades(LCn) = 2n.

Proof. Let V (LCn) = {u, ai, bi : 1 ≤ i ≤ n} and E(LCn) = {uai, aibi|1 ≤ i ≤ n}
⋃

{ai+1bi, bibi+1, a1bn, bnb1|1 ≤ i ≤ n − 1}. Let k = 2n, then from (1.1) it follows that,
tades(LCn) ≥ 2n. We define a total labeling ξ as follows.

ξ(u) = 2n;
ξ(ai) = n+ i, 1 ≤ i ≤ n;
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ξ(bi) = i+ 1, 1 ≤ i ≤ n− 1;
ξ(bn) = 1;
ξ(uai) = 1, 1 ≤ i ≤ n;
ξ(aibi) = 1, 1 ≤ i ≤ n− 1;
ξ(anbn) = n+ 1;
ξ(ai+1bi) = 1, 1 ≤ i ≤ n− 1;
ξ(a1bn) = 1;
ξ(bibi+1) = i+ 3, 1 ≤ i ≤ n− 2;
ξ(bn−1bn) = 2;
ξ(bnb1) = 3.

Now,
max{{ξ(a)|a ∈ V (LCn)}, {ξ(e)|e ∈ E(LCn)}} = 2n

and the edge weights are as follows:
wt(uai) = 3n+ i− 1, 1 ≤ i ≤ n;
wt(aibi) = n+ 2i, 1 ≤ i ≤ n− 1;
wt(anbn) = n;
wt(ai+1bi) = n+ 2i+ 1, 1 ≤ i ≤ n− 1;
wt(a1bn) = n+ 1;
wt(bibi+1) = i, 1 ≤ i ≤ n− 1;
wt(b1bn) = 0.

The weights are distinct. Hence tades(LCn) = 2n. �

Theorem 4.2. For DFn, n ≥ 2, tades(DFn) =
⌈
3n−1

2

⌉
.

Proof. The vertex set of DFn is V (DFn) = {xi, a, b|1 ≤ i ≤ n} and edge set of DFn is
E(DFn) = {axi, bxi|1 ≤ i ≤ n}

⋃
{xixi+1|1 ≤ i ≤ n − 1}. Therefore, |V (DFn)| = n + 2

and |E(DFn)| = 3n − 1. By Theorem (1.1), we have tades(DFn) ≥
⌈
3n−1

2

⌉
. For the

reverse inequality, we define the labeling ξ : V
⋃
E → {1, 2, 3, . . . ,

⌈
3n−1

2

⌉
} by considering

the following two cases.
Case 1. n is odd.
ξ(a) = 1; ξ(b) =

⌈
3n−1

2

⌉
; ξ(xi) = k − n + i, 1 ≤ i ≤ n; ξ(axi) = n+3

2 , 1 ≤ i ≤ n;
ξ(xixi+1) = i+ 1, 1 ≤ i ≤ n− 1; ξ(bxi) = 1, 1 ≤ i ≤ n.
Case 2. n is even.
ξ(a) = 1; ξ(b) =

⌈
3n−1

2

⌉
; ξ(xi) = k − n + i − 1, 1 ≤ i ≤ n; ξ(axi) = n

2 + 1, 1 ≤ i ≤ n;
ξ(xixi+1) = i, 1 ≤ i ≤ n− 1; ξ(bxi) = 1, 1 ≤ i ≤ n.
Now,
max{{ξ(x)|x ∈ V (DFn)}, {ξ(e)|e ∈ E(DFn)}} =

⌈
3n−1

2

⌉
and the edge weights are as follows:

wt(axi) = i− 1, 1 ≤ i ≤ n;
wt(xixi+1) = n+ i− 1, 1 ≤ i ≤ n− 1;
wt(bxi) = 2n+ i− 2, 1 ≤ i ≤ n.

Hence, the weights are distinct. Therefore, tades(DFn) =
⌈
3n−1

2

⌉
. �

5. Conclusions

In this paper, we have determined the edge irregular total absolute difference k-labeling
for snake related graphs, wheel related graphs, lotus inside the circle and double fan graph.
We are further investigating Transformed tree related graphs, super subdivision of graphs,
ladder and bistar related graphs admit edge irregular total absolute difference k-labeling.
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