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A MAINTENANCE MODEL FOR A DETERIORATING SYSTEM

UNDER RANDOM ENVIRONMENT USING PARTIAL PRODUCT

PROCESS

D. BABU1, §

Abstract. In this paper, deteriorating system maintenance model under random envi-
ronment using partial product process is studied. Up to time t, assume that the number
of random shocks generated by the random environment is a counting process. Whenever
a random shock occurs, the operating time of the system is reduced. The successive re-
ductions in the operating time of the system are statistically independent and identically
distributed random variables. Assume that the system’s successive operating times after
repairs form a decreasing partial product process. Assume that the system’s consecutive
repair times after failures constitute an increasing partial product process provided that
the system suffers no random shock. A replacement policy N is applied. Afterwards, for
minimizing the mean cost per unit time in long-run, an optimal policy N∗ is determined
analytically. A numerical illustration is provided to strengthen the theoretical results.

Keywords: Geometric Process, Partial Product Process, Replacement Policy, Renewal
Process.
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1. Introduction

The mathematical theory of reliability has put forth a great effort to issues of life-
testing, machine support, replacement, order statistics, and so on. The maintenance
problems are concerned about the circumstance that emerges about the reduction of the
productivity level of items or breakdown. The problem of replacement is to recognize
the best policy which enables determination of ideal replacement time that is generally
economical. One of the most interesting and critical topics to study in reliability is the
study of maintenance problems.

A common assumption in the initial period of studying maintenance issues is that
repair is perfect, a repairable framework after the repair is as good as new. This assumption
clearly has the effect of a natal way. In practice, most repairable systems deteriorate
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because of the combined wear and tear impact. Barlow (1960) thusly presented a minimal
repair model in which a system after the repair has the same failure rate and effective age
as it was when it failed. Brown(1983) proposes an imperfect repair model, in which the
repair is perfect with likelihood p, and the repair is minimal with a probability of 1− p.

Deteriorating systems have a different problem as the one portrayed above. For
instance, in machine maintenance problems, after every repair, the working time of a
machine will end up shorter and shorter, so the absolute working time or the existence
of the machine must be limited. However, in perspective on the aging and aggregate
wear, the repair time will turn out to be longer and tend to increase so that at the end
the machine is non-repairable. Therefore, there is need to consider a repair replacement
model for deteriorating systems, the progressive survival times are diminishing, while the
consecutive repair times are expanding. Consequently, a monotone process model would
be a most appropriate model for a deteriorating system.

Lam (1988) first presented a Geometric Process Repair model to model a deteriorating
system with the above characteristics.

Definition 1.1. For two random variables Y and Z, Z is called stochastically less than
Y (or Y is stochastically larger than Z) if for all real α,

P (Y > α) ≥ P (Z > α) .

This is written as Z≤stY or Y≥stZ.
Definition 1.2. A stochastic process {Yn, n = 1, 2, 3, ...} is said to be stochastically in-
creasing (decreasing) if

Yn ≤st (≥st)Yn+1

for all n = 1, 2, 3, ...

Definition 1.3. Given a sequence of non-negative random variables {Xn, n = 1, 2, 3, ...},
if they are independent and the distribution function of Xn is given by F

(
an−1·

)
for

n = 1, 2, 3, ..., where a is a positive constant, then {Xn, n = 1, 2, 3, ...} is called a geometric
process.

Finkelstein (1993) proposes particular deteriorating renewal process in which the dis-
tribution function of Xn is F (an·) where an are scale parameters.

There is a need to estimate a large number of parameters in particular deteriorating
renewal process which may be problematic in real applications as a large number of failure
data are needed to estimate the parameters.

To overcome this, Babu etal (2018) introduced the partial product process in which
the parameters an are related by an = a0a1...an−1 for n = 1, 2, 3, ... .

Definition 1.4. Let {Yn, n = 1, 2, 3, ...} be a sequence of independent and non-negative
random variables and let G (·) be the distribution function of Y1. Then {Yn, n = 1, 2, 3, ...}
is called a partial product process, if the distribution function of Yk+1 is G (βk·) for k=1,2,...
where βk > 0 are constants and βk = β0β1β2...βk−1.

The deterioration of a system is regularly brought about by an internal factor, for
example, aging and accumulated wear and tear of the system. System deterioration can
also be caused by external factors, for example, an ecological factor. For instance, if a
virus attacks a computer, the operating time of the computer is likely to be reduced or
the operating system of the computer can be crumbled. Therefore, when analyzing a
maintenance problem for a repairable system, one ought to consider the internal reason as
well as consider the impact that random shocks produced by the environment can bring
to the system.
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In Babu etal (2018) paper, the maintenance model for a deteriorating system using
partial product process without any shocks is studied. In this paper, the maintenance
model for a deteriorating under a random environment using partial product process is
studied. The preliminary results about partial product process are given below.

Lemma 1.1. If βk = β0β1β2...βk−1, then βk = β0
2k−1

(k = 1, 2, 3, ...) .

Then the distribution function of Yk+1 is G
(
β0

2k−1 ·
)

for k = 1, 2, 3, ... .

Lemma 1.2. The partial product process {Yn, n = 1, 2, 3, ...} is
(i) stochastically decreasing, if β0 > 1.
(ii) stochastically increasing, if 0 < β0 < 1.

It is clear that if β0 = 1, then the partial product process is a renewal process.

Lemma 1.3. Let E (Y1) = µ, V ar (Y1) = σ2. Then for k = 1, 2, 3, ... ,

E (Yk+1) =
µ

β0
2k−1 and V ar (Yk+1) =

σ2

β0
2k
.

The proof of the above Lemmas may be found in Babu, Govindaraju and Babu (2018).

2. Model Descriptions

We consider the maintenance model for a deteriorating system and make the fol-
lowing assumptions.

2.1 A new simple repairable system is used at the start. At whatever point the system
fails, it might be repaired or replaced by a new and similar one.

2.2 Given that there is no random shock, let X1 be the operating time before the first
failure and let F (·) be the distribution function of X1. Assume that λ1 = E(X1) =
λ > 0. Let Xi+1 be the operating time after the i-th repair for i = 1, 2, 3, .... Then,

following Babu etal (2018), the distribution function of Xi+1is F (β0
2i−1 ·) where

β0(≥ 1) is a constant and λi+1 = E(Xi+1) =
λ

β0
2i−1 for i = 1, 2, 3, .... That is the

successive operating times {Xj , j = 1, 2, 3, ...} after repair constitute a decreasing
partial product process if β0 > 1 and a renewal process if β0 = 1 .

2.3 After the first failure, let Y1 be the repair time and let G(·) be the distribution
function of Y1. Assume that µ1 = µ ≥ 0. Here µ = 0 means that the expected
repair time is negligible. For i = 1, 2, 3, ..., let Yi+1 be the repair time after the
(i + 1)-st failure. Regardless of whether or not there is a random shock, the

distribution function of Yi+1 is G(γ0
2i−1 ·) where 0 < γ0 ≤ 1 is a constant and

µi+1 = E(Yi+1) =
µ

γ0
2i−1 for i = 1, 2, 3, ... . That is, the consecutive repair

times {Yj , j = 1, 2, 3, ...} form an stochastically increasing partial product process
if 0 < γ0 < 1 and a renewal process if γ0 = 1.

2.4 Let the random variable R denote the replacement time with mean ξ.
2.5 Assume that {ω(t), t ≥ 0}, the number of random shocks by time t produced by the

random environment, form a counting process having stationary and independent
increment. The operating time of the system will be shortened when a shock
occurs. After the j-th random shock, let Wj be the reduction in the operating time.
Then {Wj , j = 1, 2, ...} are independent identically distributed random variables.
The consecutive reductions in the system operating time are additive. If a system
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fails, it is shut in the meaning that the failed system is not affected by any shock
that happens during the fix time.

2.6 The processes {Xj , j = 1, 2, ...}, {Yj , j = 1, 2, ...} and random variable R are in-
dependent. The processes {Xj , j = 1, 2, ...}, {Wj , j = 1, 2, ...} and {ω(t), t ≥ 0}
are also independent.

2.7 The reward rate is τ , the repair cost rate is κ and the basic replacement cost is
ζ. Let ρ be the proportional cost associated with the duration of the replacement
time R.

Let X ′j be the actual operating time following the (j − 1)-st repair. First, we study its

distribution. Denote tj−1 as the completion time of the (j−1)-st repair. Then the number
of shocks due to environment in (tj−1, tj−1 + t] is given by

ω(tj−1, tj−1 + t] = ω(tj−1 + t)− ω(tj−1). (1)

Thus, in the operating time in (tj−1, tj−1 + t], the total reduction is given by

∆X(tj−1, tj−1 + t] =

ω(tj−1+t)∑
i=ω(tj−1)+1

Wi

=

ω(tj−1, tj−1+t)∑
i=1

Wi . (2)

Let Rj(t) be the residual time at tj−1 + t under random environment. Then,

Rj(t) = Xj − t−∆X(tj−1, tj−1 + t] (3)

subject to Rj(t) ≥ 0. This implies that

X ′j = inf
t≥0

{
t
∣∣ Rj(t) ≤ 0

}
. (4)

To study the monotonicity of E(X ′j), we need following two lemmas.

Lemma 2.1. If fj and lm are the density functions of Xj and
m∑
i=1

Wi respectively, then

P (X ′j > t′
∣∣ ω(tj−1, tj−1 + t′] = m) =

∫ ∞
0

[∫ ∞
t′+w

fj(x)dx

]
lm(w)dw. (5)

Proof.

P (X ′j > t′
∣∣ ω(tj−1, tj−1 + t′] = m)

= P (inf
t≥0

{
t
∣∣ Rj(t) ≤ 0

}
> t′

∣∣ ω(tj−1, tj−1 + t′] = m)

= P (Rj(t) = Xj − t−∆X(tj−1, tj−1 + t] > 0, ∀t ∈
[
0, t′
] ∣∣ ω(tj−1, tj−1 + t′] = m)

= P (Xj −∆X(tj−1, tj−1 + t′] > t′
∣∣ ω(tj−1, tj−1 + t′] = m)

= P (Xj −
m∑
i=1

Wi > t′)

=

∫ ∞
0

[∫ ∞
t′+w

fj(x)dx

]
lm(w)dw. �
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Lemma 2.2. If Fj and Lm are the distribution functions of Xj and
m∑
i=1

Wi respectively,

then

P (X ′j > t′) = 1−
∞∑
m=0

[∫ ∞
0

Fj(t
′ + w)dLm(w)

]
P (ω(t′) = m). (6)

Proof. First, note that using Lemma 2.1, we have

P (X ′j > t′
∣∣ ω(tj−1, tj−1 + t′] = m) =

∫ ∞
0

[∫ ∞
t′+w

fj(x)dx

]
lm(w)dw

=

∫ ∞
0

[
1− Fj(t′ + w)

]
dLm(w)

= 1−
∫ ∞
0

Fj(t
′ + w)dLm(w). (7)

Thus,

P (X ′j > t′) =
∞∑
m=0

P (X ′j > t′
∣∣ ω(tj−1, tj−1 + t′] = m)P (ω(tj−1, tj−1 + t′] = m)

=
∞∑
m=0

[
1−

∫ ∞
0

Fj(t
′ + w)dLm(w)

]
P (ω(tj−1, tj−1 + t′] = m)

= 1−
∞∑
m=0

[∫ ∞
0

Fj(t
′ + w)dLm(w)

]
P (ω(t′) = m)

( since {ω(t), t ≥ 0} has stationary increments). �

Lemma 2.3. λ′j = E(X ′j) is non-increasing in j.

Proof. The distribution function of X ′j is

P (X ′j ≤ x) =



∞∑
m=0

∫ ∞
0

F (x+ w)dLm(w)P (ω(x) = m), if j = 1,

∞∑
m=0

∫ ∞
0

F (β0
2j−2

(x+ w))dLm(w)P (ω(x) = m), if j = 2, 3, 4, ... .

(8)

Now, as {Xj , j = 1, 2, 3, ...} form an decreasing partial product process, and Fj is the
distribution of Xj , then from equation (8) for all real x, we have

P (X ′j > x) ≥ P (X ′j+1 > x).

This implies that,

E(X ′j) ≥ E(X ′j+1).

Hence the proof is completed. �
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3. The Mean Cost in Long-run

Let C (N) be the mean cost per unit time in long-run under N -policy. Then,

C (N) =

κ
N−1∑
j=1

E(Yj) + ζ + ρE(R)− τ
N∑
j=1

E(X ′j)

N∑
j=1

E(X ′j) +
N−1∑
j=1

E(Yj) + E(R)

=

κ( µ+
N−1∑
j=2

µ

γ0
2j−2 ) + ζ1 − τ

N∑
j=1

λ′j

N∑
j=1

λ′j + ( µ+
N−1∑
j=2

µ

γ0
2j−2 ) + ξ

(9)

where ζ1 = ζ + ρξ. Let

D(N) =
N∑
j=1

λ′j + µ( 1 +
N−1∑
j=2

1

γ0
2j−2 ) + ξ.

Then, from equation (9), we have,

C (N) =

(κ+ τ)µ( 1 +

N−1∑
j=2

1

γ0
2j−2 ) + ζ1 + τξ

D(N)
− τ . (10)

4. The Optimal Policy N∗

For minimizing C (N), an optimal policy N∗ is determined analytically in this
section.
Now, from equation (10), we have,

C (N + 1)− C (N)

=



[
N∑
j=1

λ′j + µ(1 +
N−1∑
j=2

1

γ0
2j−2 ) + ξ

][
(κ+ τ)µ(1 +

N∑
j=2

1

γ0
2j−2 ) + ζ1 + τξ

]

−

[
N+1∑
j=1

λ′j + µ(1 +
N∑
j=2

1

γ0
2j−2 ) + ξ

][
(κ+ τ)µ(1 +

N−1∑
j=2

1

γ0
2j−2 ) + ζ1 + τξ

]


D(N)D(N + 1)

=


(κ+ τ)µ

[
N∑
j=1

λ′j(1 +
N∑
j=2

1

γ0
2j−2 )−

N+1∑
j=1

λ′j(1 +
N−1∑
j=2

1

γ0
2j−2 )

]
− (ζ1 + τξ)λ′N+1

−(ζ1 + τξ)µ(
1

γ0
2N−2 ) + (κ+ τ)µξ(

1

γ0
2N−2 )


D(N)D(N + 1)
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=


(κ+ τ)µ

[
N∑
j=1

λ′j(1 +
N∑
j=2

1

γ0
2j−2 )−

N+1∑
j=1

λ′j(1 +
N−1∑
j=2

1

γ0
2j−2 ) + ξ(

1

γ0
2N−2 )

]
−(ζ1 + τξ)

[
λ′N+1 + µ(

1

γ0
2N−2 )

]


D(N)D(N + 1)

=


(κ+ τ)µ

[
N∑
j=1

λ′j(
N∑
j=2

1

γ0
2j−2 )−

N+1∑
j=1

λ′j(
N−1∑
j=2

1

γ0
2j−2 )− λ′N+1 + ξ(

1

γ0
2N−2 )

]
−(ζ1 + τξ)

[
λ′N+1 + µ(

1

γ0
2N−2 )

]


D(N)D(N + 1)

=


(κ+ τ)µ

[
N∑
j=1

λ′j(
1

γ0
2N−2 )− (λ′N+1)(

N−1∑
j=2

1

γ0
2j−2 )− λ′N+1 + ξ(

1

γ0
2N−2 )

]
−(ζ1 + τξ)

[
λ′N+1 + µ(

1

γ0
2N−2 )

]


D(N)D(N + 1)

=

 (κ+ τ)µ

[
N∑
j=1

λ′j − (λ′N+1)γ0
2N−2

(
N−1∑
j=2

1

γ0
2j−2 )− γ0

2N−2
λ′N+1 + ξ

]
−(ζ1 + τξ)(λ′N+1γ0

2N−2
+ µ)


γ0

2N−2
D(N)D(N + 1)

. (11)

For optimality, define the auxiliary function A (N) from equation (11) as follows.

A (N) =

(κ+ τ)µ

 N∑
j=1

λ′j − (λ′N+1)γ0
2N−2

(
N−1∑
j=2

1

γ0
2j−2 )− γ0

2N−2
λ′N+1 + ξ


(ζ1 + τξ)(λ′N+1γ0

2N−2
+ µ)

. (12)

Now, we prove the following lemma.

Lemma 4.1. For C (N) given by the equation (10) and A (N) by the equation (12), we
have C (N) is increasing(decreasing) if and only if A (N) > 1(A (N) < 1).

Proof. It is clear that, γ0
2N−2

D(N)D(N + 1) > 0.
Thus, from equations (11) and (12),

C (N) is increasing if and only if C (N + 1)− C (N) > 0.

This implies that (κ+ τ)µ

 N∑
j=1

λ′j − (λ′N+1)γ0
2N−2

(

N−1∑
j=2

1

γ0
2j−2 )− γ0

2N−2
λ′N+1 + ξ


−(ζ1 + τξ)(λ′N+1γ0

2N−2
+ µ)

 > 0.

From this, we have A (N) > 1. In a similar way, we can prove that C (N) is decreasing if
and only if A (N) < 1. �
Remark: C (N + 1) = C (N) if and only if A (N) = 1.
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Lemma 4.2. A (N) given by the equation (12) is non-decreasing in N .

Proof. Let

K(N) =
(κ+ τ)µ

(ζ1 + τξ)(λ′N+1γ0
2N−2

+ µ)(λ′N+2γ0
2N−1

+ µ)
.

From equation (12),

A (N + 1)−A (N)

=K(N)×


(λ′N+1γ0

2N−2
+ µ)

N+1∑
j=1

λ′j − (λ′N+2)γ0
2N−1

(
N∑
j=2

1

γ0
2j−2 )− γ0

2N−1
λ′N+2 + ξ


−(λ′N+2γ0

2N−1
+ µ)

 N∑
j=1

λ′j − (λ′N+1)γ0
2N−2

(

N−1∑
j=2

1

γ0
2j−2 )− γ0

2N−2
λ′N+1 + ξ





=K(N)×

 (

N+1∑
j=1

λ′j)(λ
′
N+1γ0

2N−2 − λ′N+2γ0
2N−1

) + (

N∑
j=2

1

γ
0
2j−2 )µ(λ′N+1γ0

2N−2 − λ′N+2γ0
2N−1

)

+µ(λ′N+1γ0
2N−2 − λ′N+2γ0

2N−1

) + ξ(λ′N+1γ0
2N−2 − λ′N+2γ0

2N−1

)



= K(N)× γ0
2N−2

(λ′N+1 − λ′N+2γ0
2N−2

)(
N+1∑
j=1

λ′j + µ
N∑
j=2

1

γ0
2j−2 + µ+ ξ)



=

(κ+ τ)µγ0
2N−2

(λ′N+1 − λ′N+2γ0
2N−2

)(

N+1∑
j=1

λ′j + µ

N∑
j=2

1

γ0
2j−2 + µ+ ξ)


(ζ1 + τξ)(λ′N+1γ0

2N−2
+ µ)(λ′N+2γ0

2N−1
+ µ)

.

This implies that A (N + 1)−A (N) ≥ 0, because 0 < γ0 ≤ 1 and λ′j is non-increasing in
j. �
Now, we prove the main theorem of this section.

Theorem 4.1. For A (N) given in equation (12),

N∗ = min {N | A (N) ≥ 1} (13)

is the optimal replacement policy . Moreover, N∗ is unique if and only if A (N) > 1.

Proof. The proof of this theorem follows from Lemma (4.1) and Lemma (4.2). �

5. Numerical Example

In this section, we provide an example to illustrate the theoretical results. Assume that
{ω(t), t ≥ 0} follows a Poisson process with rate υ.
Then,

P (ω(t) = k) =
(υt)k

k!
e−υt, k = 0, 1, 2, ... . (14)

Assume that W1,W2, ...,Wm, ... follows a gamma distribution Γ(a, b) which are indepen-
dent and identically distributed with density function l given by
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l(w) =


ba

Γ(a)
wa−1e−bw, if w > 0,

0, elsewhere.
(15)

Thus

m∑
i=1

Wi follows a Gamma distribution Γ(ma, b) and ∆X(0,t] =

ω(t)∑
i=1

Wi constitute

a compound Poisson process. Moreover, let X1 follows an exponential distribution with

parameter
1

λ
. Then for x > 0,

Fj(x) =


1− e

−x
λ , if j = 1,

1− e
−β0

2j−2
x

λ , if j = 2, 3, 4, ...

(16)

where F1(x) = F (x). Now, from Equation (8), we have,

P
(
Xj
′ ≤ x

)

=



∞∑
m=0

 ∞∫
0

1− e
−(x+ w)

λ

 bma

Γ(ma)
wma−1e−bwdw

 (υx)m

m!
e−υx, if j = 1,

∞∑
m=0

 ∞∫
0

1− e
−β0

2j−2
(x+ w)

λ

 bma

Γ(ma)
wma−1e−bwdw

 (υx)m

m!
e−υx, if j = 2, 3, ...

=



1−
∞∑
m=0

e

−x
λ

bma

Γ(ma)

(υx)m

m!
e−υx

∞∫
0

e

−w
λ wma−1e−bwdw, if j = 1,

1−
∞∑
m=0

e

−β0
2j−2

x

λ
bma

Γ(ma)

(υx)m

m!
e−υx

∞∫
0

e

−β0
2j−2

w

λ wma−1e−bwdw, if j = 2, 3, ...

=



1− exp

−
υ
1− ba[

b+
1

λ

]a
+

1

λ

x
, if j = 1,

1− exp

−
υ
1− ba[

b+
β0

2j−2

λ

]a
+

β0
2j−2

λ

x
, if j = 2, 3, ...
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Thus,

E
[
X ′j
]

= λ′j =



υ
1− ba[

b+
1

λ

]a
+

1

λ


−1

, if j = 1,

υ
1− ba[

b+
β0

2j−2

λ

]a
+

β0
2j−2

λ


−1

, if j = 2, 3, ... .

(17)

If a = 1, then each Wi follows an exponential distribution. Then equation (17) becomes,

E(X ′j) = λ′j =



λ

1 +
υ

b+
1

λ

, if j = 1,

λ

β0
2j−2

1 +
υ

b+
β0

2j−2

λ


, if j = 2, 3, 4, ... .

(18)

Let the parameter values be κ = 45, τ = 90, ρ = 10, λ = 40, µ = 10, , ζ = 5000, ξ =
10, υ = 5, b = 4.

The results of C (N) and A (N) for different values of β0 = 1.05, 1.1, 1.15, 1.5 and
γ0 = 0.8, 0.85, 0.9, 0.95 are provided in Table 1 to Table 4 and plotted in Figure 1 to
Figure 8.

For all these values, it can be seen that C (N) attains its minimum when A (N) ≥ 1.
This accords with the Theorem 4.1.

Table 1. Values of C (N) and A (N) when β0 = 1.05 for different values of γ0

N
γ0 = 0.8 γ0 = 0.85 γ0 = 0.9 γ0 = 0.95

C (N) A (N) C (N) A (N) C (N) A (N) C (N) A (N)
1 129.0876 0.2646 128.0477 0.2557 127.1180 0.2473 126.2809 0.2395
2 44.0456 0.3126 44.0456 0.2943 44.0456 0.2772 44.0456 0.2612
3 18.2094 0.4624 17.9715 0.4140 17.7564 0.3689 17.5610 0.3271
4 7.9248 0.8549 7.0856 0.7341 6.3393 0.6167 5.6728 0.5052
5 6.0679 1.5662 3.9442 1.3894 2.1203 1.1738 0.5526 0.9311
6 13.0917 2.1083 7.8693 2.0446 3.5507 1.9121 0.0811 1.6615
7 32.0539 2.2446 22.0732 2.2420 11.8900 2.2308 3.8227 2.1800
8 44.4253 2.2644 41.4560 2.2644 30.3482 2.2643 12.5720 2.2632
9 44.9995 2.2657 44.9771 2.2657 44.1561 2.2657 29.8264 2.2657
10 45.0000 2.2657 45.0000 2.2657 44.9989 2.2657 44.0011 2.2657
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Figure 1 Figure 2

Table 2. Values of C (N) and A (N) when β0 = 1.1 for different values of γ0

N
γ0 = 0.8 γ0 = 0.85 γ0 = 0.9 γ0 = 0.95

C (N) A (N) C (N) A (N) C (N) A (N) C (N) A (N)
1 129.0876 0.2713 128.0477 0.2624 127.1180 0.2541 126.2809 0.2462
2 45.9538 0.3329 45.9538 0.3146 45.9538 0.2975 45.9538 0.2815
3 21.1400 0.5210 20.9222 0.4738 20.7253 0.4294 20.5464 0.3877
4 12.1287 0.9718 11.3520 0.8694 10.6600 0.7656 10.0409 0.6629
5 11.7711 1.5884 9.8447 1.4940 8.1802 1.3690 6.7420 1.2124
6 19.4648 1.8627 14.9817 1.8483 11.2047 1.8171 8.1232 1.7524
7 35.4424 1.8946 27.7040 1.8944 19.4516 1.8935 12.6416 1.8898
8 44.5922 1.8961 42.4688 1.8961 34.2764 1.8961 20.2874 1.8961
9 44.9997 1.8961 44.9838 1.8961 44.4014 1.8961 33.8924 1.8961
10 45.0000 1.8961 45.0000 1.8961 44.9993 1.8961 44.2912 1.8961

Figure 3 Figure 4
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Table 3. Values of C (N) and A (N) when β0 = 1.15 for different values of γ0

N
γ0 = 0.8 γ0 = 0.85 γ0 = 0.9 γ0 = 0.95

C (N) A (N) C (N) A (N) C (N) A (N) C (N) A (N)
1 129.0876 0.2777 128.0477 0.2689 127.1180 0.2606 126.2809 0.2528
2 47.7441 0.3521 47.7441 0.3340 47.7441 0.3169 47.7441 0.3009
3 23.8742 0.5731 23.6767 0.5277 23.4980 0.4846 23.3355 0.4437
4 15.9440 1.0505 15.2311 0.9674 14.5950 0.8803 14.0250 0.7910
5 16.5874 1.5446 14.8575 1.4960 13.3551 1.4287 12.0513 1.3391
6 24.1210 1.6826 20.2707 1.6787 16.9816 1.6704 14.2669 1.6526
7 37.4923 1.6914 31.2315 1.6914 24.3671 1.6914 18.5507 1.6911
8 44.6850 1.6916 43.0383 1.6916 36.5716 1.6916 25.0973 1.6916
9 44.9997 1.6916 44.9875 1.6916 44.5376 1.6916 36.2641 1.6916
10 45.0000 1.6916 45.0000 1.6916 44.9994 1.6916 44.4524 1.6916

Figure 5 Figure 6

Table 4. Values of C (N) and A (N) when β0 = 1.5 for different values of γ0

N
γ0 = 0.8 γ0 = 0.85 γ0 = 0.9 γ0 = 0.95

C (N) A (N) C (N) A (N) C (N) A (N) C (N) A (N)
1 129.0876 0.3170 128.0477 0.3085 127.1180 0.3005 126.2809 0.2930
2 57.7308 0.4588 57.7308 0.4426 57.7308 0.4271 57.7308 0.4123
3 38.7114 0.7796 38.6448 0.7529 38.5845 0.7260 38.5295 0.6992
4 34.6676 1.0939 34.3680 1.0802 34.0984 1.0644 33.8551 1.0464
5 36.0518 1.1688 35.4002 1.1677 34.8223 1.1661 34.3115 1.1639
6 39.0776 1.1720 37.8117 1.1720 36.6795 1.1720 35.7076 1.1720
7 43.0512 1.1720 41.2912 1.1720 39.2023 1.1720 37.2859 1.1720
8 44.9215 1.1720 44.5068 1.1720 42.8008 1.1720 39.4339 1.1720
9 44.9999 1.1720 44.9969 1.1720 44.8847 1.1720 42.7165 1.1720
10 45.0000 1.1720 45.0000 1.1720 44.9999 1.1720 44.8634 1.1720
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Figure 7 Figure 8

6. Conclusion

The deteriorating system maintenance model under a random environment utilizing
partial product process is discussed in detail. The long-run mean cost per unit time under
N -policy is derived explicitly and an optimal policy N∗ is determined analytically and is
explained with numerical example.
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