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NOVEL POSSIBILITY SPHERICAL FUZZY SOFT SET MODEL AND

ITS APPLICATION FOR A DECISION MAKING

M. PALANIKUMAR1∗, K. ARULMOZHI2, §

Abstract. We talk about possibility spherical fuzzy soft set (shortly PSFS set) has
much stronger ability than possibility Pythagorean fuzzy soft set (shortly PPFS set) and
intuitionistic fuzzy soft set. The PSFS soft set is a generalization of PPFS set and soft
set. Here we talk through some operations consisting of complement, union, intersection,
AND and OR. We verify that the De Morgan’s laws, associate laws and distributive laws
are satisfied in the case of PSFS sets. Also we discuss comparative analysis for the soft
set model under the scheme of PSFS sets. Finally, an illustrative example is mentioned
for the soft set model using PSFS set.
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AMS Subject Classification: 03E05, 06D72.

1. Introduction

A fuzzy set is introduced by Zadeh [35] and suggests that decision-makers are to be
solving uncertain problems by considering membership degrees. The concept of an intu-
itionistic fuzzy set is introduced by Atanassov and is characterized by a degree of member-
ship and non-membership satisfying the condition that sum of its membership degree and
non-membership degree is not exceeding unity [4]. However, we may interact a problem
in decision-making (DM) events where the sum of the degree of membership and non-
membership of a particular attribute is exceeding unity. So Yager [33] was introduced
by the concept of Pythagorean fuzzy sets and is characterized by the condition that the
square sum of its degree of membership and non-membership is not exceeding unity. In
2018, spherical fuzzy sets were introduced by Kahraman and Gundogdu as an extension
of Pythagorean, neutrosophic and picture fuzzy sets. Shahzaib Ashraf et al. discussed
spherical fuzzy sets which is an advanced tool of the fuzzy sets, intuitionistic fuzzy sets
and picture fuzzy sets [3].

In 2018, Garg et al. proposed the algorithm for T-spherical fuzzy multi-attribute
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decision making (MADM) based on improved interactive aggregation operators. Ashraf et
al. proposed spherical aggregation operators and applied them in multi-attribute group de-
cision making (MAGDM). Liu et al. extended the generalized Maclaurin symmetric mean
(GMSM) operator to the T-spherical fuzzy environment and proposed the T-spherical
fuzzy GMSM operator (T-SFGMSM) and the T-spherical fuzzy weighted GMSM oper-
ator (T-SFWGMSM). In 2019, Quek et al. developed some new operational laws for
T-spherical fuzzy sets, and based on these new operations, proposed two types of Einstein
aggregation operators, namely the Einstein interactive averaging aggregation operators
and the Einstein interactive geometric aggregation operators under T-spherical fuzzy en-
vironment. In 2019, Gundogdu and Kahraman were introduced by spherical fuzzy sets,
their operational laws, and the spherical fuzzy TOPSIS method. An extension of WAS-
PAS with spherical fuzzy sets, VIKOR method using spherical fuzzy sets and correlation
coefficients were presented by Gundogdu and Kahraman.

Molodtsov [22] proposed the theory of soft sets. Soft sets more accurately reflect
the objectivity and complexity of DM during actual situations. Maji et al. proposed the
concept of fuzzy soft set [20] and intuitionistic fuzzy soft set [21]. These two theories
are applied to solve various DM problems. Alkhazaleh et al [1] defined the concept of
possibility fuzzy soft sets. In recent years, Peng et al [24] has extended fuzzy soft set
to Pythagorean fuzzy soft set. The soft set model solved a class of MADM consisting
sum of the degree of membership and non-membership value is exceeding unity but the
sum of the squares is equal or not exceeding unity. In general, the possibility degree of
belongingness of the elements should be considered in MADM problems. However, Peng
et al [24] failed to do it. The purpose of this paper is to extend the concept of PPFS set
to the parameterization of PSFS set using the soft set model. The paper is organized into
seven sections as follows. Section 1 is the introduction followed by Section 2 which is pre-
liminaries of possibility fuzzy soft set and spherical fuzzy number. Section 3 presents the
possibility spherical fuzzy soft sets of its properties with examples. Section 4 introduces
the notion of similarity measure between PSFS sets. Section 5 is the application for the
PSFS set. Comparative studies for PSFS set and SFS set in Section 6. Concluding and
further investigation is provided in Section 7. Also, insert some numerical examples are
given to evaluate the PSFS set.

2. Preliminaries

In this section, we recall and present some fundamental concepts in connection with the
spherical fuzzy soft set, which are well known in literature.

Definition 2.1. [32, 33] Let X be a non-empty set of the universe, Pythagorean fuzzy set
A in X is an object having the form : A = {x, µA(x), νA(x)|x ∈ X}, where µA(x) and
νA(x) represent the degree of membership and degree of non-membership of A respectively.
Consider the mapping µA : X → [0, 1], νA : X → [0, 1] and 0 ≤ (µA(x))2 + (νA(x))2 ≤ 1.

The degree of indeterminacy is determined as πA(x) =
[√

1− (µA(x))2 − (νA(x))2
]
. Since

A = 〈µA, νA〉 is called a Pythagorean fuzzy number(PFN).

Definition 2.2. [19] Let X be a non-empty set, spherical set A in X is an object having

the following form : A = {u, νA(x), ωA(x), ζA(x)|x ∈ X}, where νA(x), ωA(x) ζA(x)
represents the degree of positive membership, degree of neutral membership and degree of
negative membership of A respectively. The mapping νA, ωA, ζA : X → [0, 1] and
0 ≤ (νA(x))2 + (ωA(x))2 + (ζA(x))2 ≤ 1. The degree of refusal is determined as rA(x) =
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1− (νA(x))2 − (ωA(x))2 − (ζA(x))2

]
. Since A = 〈νA, ωA, ζA〉 is called a spherical fuzzy

number(SFN).

Definition 2.3. Let β1 = 〈νβ1 , ωβ1 , ζβ1〉, β2 = 〈νβ2 , ωβ2 , ζβ2〉 and β3 = 〈νβ3 , ωβ3 , ζβ3〉 are
any three SFNs over (X,E), then the following properties are holds:

(1) βc1 = 〈ζβ1 , ωβ1 , νβ1〉
(2) β1 tβ2 =

〈
max(νβ1 , νβ2),min(ωβ1 , ωβ2),min(ζβ1 , ζβ2)

〉
(3) β1 uβ2 =

〈
min(νβ1 , νβ2),min(ωβ1 , ωβ2),max(ζβ1 , ζβ2)

〉
(4) β1 ≤ β2 if and only if νβ1 ≤ νβ2 and ωβ1 ≤ ωβ2 and ζβ1 ≥ ζβ2
(5) β1 = β2 if and only if νβ1 = νβ2 and ωβ1 = ωβ2 and ζβ1 = ζβ2.

Definition 2.4. Let X be a non-empty set of the universe and E be a set of parameter.

The pair (F , A) is called a spherical soft set on X if A v E and F : A → SF(X), where

SF(X) is the set of all spherical subsets of X.

Definition 2.5. [1] Let X be a non-empty set of the universe and E be a set of parameter.
The pair (X,E) is a soft universe. Consider the mapping F : E → F(X) and ξ be a fuzzy
subset of E, ie. ξ : E → F(X). Let Fξ : E → F(X) × F(X) be a function defined as
Fξ(e) = (F(e)(x), ξ(e)(x)),∀x ∈ X. Then Fξ is called a possibility fuzzy soft set (PFS
set) on (X,E).

3. Possibility Spherical Fuzzy Soft Sets

We beginning the concept of possibility spherical fuzzy soft set(PSFS set).

Definition 3.1. Let X be a non-empty set of the universe and E be a set of parameter.

The pair (X,E) is called a soft universe. Suppose that F : E → SF(X) and p is a

spherical subset of E. That is p : E → SF(X), where SF(X) denotes the collection

of all spherical subsets of X. If Fp : E → SF(X)×SF(X) is a function defined as

Fp(e) = (F(e)(x), p(e)(x)), x ∈ X, then Fp is a PSFS set on (X,E).

For each parameter e, Fp(e) =

{
x〈

(νF(e)(x),ωF(e)(x),ζF(e)(x)),(νp(e)(x),ωp(e)(x),ζp(e)(x))
〉 , x ∈ X}.

To demonstrate the Definition 3.1, we provide a numerical example as follows:

Example 3.1. A set of three patient’s for cold infection X = {x1, x2, x3} and a set of

parameter E = {e1= Runny nose, e2= lung infection, e3= cough}. Suppose that Fp : E →
SF(X)×SF(X) is given by

Fp(e1) =


x1

〈(0.50,0.20,0.65), (0.65,0.30,0.35)〉
x2

〈(0.65,0.25,0.45), (0.55,0.20,0.45)〉
x3

〈(0.45,0.35,0.50), (0.40,0.35,0.30)〉

 ; Fp(e2) =


x1

〈(0.45,0.25,0.60), (0.65,0.50,0.45)〉
x2

〈(0.55,0.45,0.50), (0.50,0.30,0.40)〉
x3

〈(0.65,0.35,0.55), (0.55,0.40,0.55)〉

 ;

Fp(e3) =


x1

〈(0.35,0.45,0.25), (0.55,0.25,0.45)〉
x2

〈(0.45,0.55,0.25), (0.45,0.35,0.55)〉
x3

〈(0.25,0.35,0.45), (0.55,0.45,0.50)〉
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Definition 3.2. Let X be a non-empty set of the universe and E be a set of parameter.

Suppose that Fp and Gq are two PSFS sets on (X,E). Now Fp is a possibility spherical

fuzzy soft subset of Gq (denoted by Fp v Gq) if and only if

(1) F(e)(x) v G(e)(x) if νF(e)(x) ≤ νG(e)(x), ωF(e)(x) ≤ ωG(e)(x), ζF(e)(x) ≥ ζG(e)(x),

(2) p(e)(x) v q(e)(x) if νp(e)(x) ≤ νq(e)(x), ωp(e)(x) ≤ ωq(e)(x), ζp(e)(x) ≥ ζq(e)(x),
∀ e ∈ E and ∀x ∈ X .

It is easy to verify that these two conditions given in Definition 3.2. To illustrate the
above Definition, we provide a numerical example as follows:

Example 3.2. Consider the PSFS set Fp over (X,E) in Example 3.1. Let Gq be another
PSFS set over (X,E) defined as:

Gq(e1) =


x1

〈(0.55,0.25,0.50), (0.70,0.35,0.20)〉
x2

〈(0.70,0.35,0.25), (0.60,0.30,0.35)〉
x3

〈(0.55,0.45,0.30), (0.50,0.40,0.20)〉

 ; Gq(e2) =


x1

〈(0.50,0.35,0.40), (0.70,0.55,0.35)〉
x2

〈(0.65,0.55,0.30), (0.55,0.35,0.30)〉
x3

〈(0.70,0.40,0.45), (0.60,0.50,0.30)〉

 ;

Gq(e3) =


x1

〈(0.40,0.50,0.20), (0.65,0.35,0.25)〉
x2

〈(0.50,0.60,0.20), (0.55,0.45,0.25)〉
x3

〈(0.35,0.45,0.40), (0.60,0.50,0.35)〉


Definition 3.3. Let X be a non-empty set of the universe and E be a set of parameter.

Suppose that Fp and Gq are two PSFS sets on (X,E). These two PSFS sets are equal

(denoted by Fp = Gq) if and only if Fp v Gq and Fp w Gq.

Definition 3.4. Let X be a non-empty set of the universe and E be a set of parameter.

Let Fp be a PSFS set on (X,E). The complement of Fp is denoted by Fcp and is defined

by Fcp =
〈
Fc(e)(x), pc(e)(x)

〉
, where Fc(e)(x) =

〈
ζF(e)(x), ωF(e)(x), νF(e)(x)

〉
,

pc(e)(x) =
〈
ζp(e)(x), ωp(e)(x), νp(e)(x)

〉
. Also true that

(
Fcp
)c

= Fp

Definition 3.5. Let X be a non-empty set of the universe and E be a set of parameter.

Let Fp and Gq be two PSFS sets on (X,E). The union and intersection of Fp and Gq
over (X,E) are denoted by Fp tGq and Fp uGq respectively and is defined by Jj : E →
SF(X)×SF(X), Ii : E → SF(X)×SF(X) such that Jj(e)(x) =

〈
J(e)(x), j(e)(x)

〉
,

Ii(e)(x) =
〈
I(e)(x), i(e)(x)

〉
, where J(e)(x) = F(e)(x)tG(e)(x), j(e)(x) = p(e)(x)t

q(e)(x), I(e)(x) = F(e)(x)uG(e)(x) and i(e)(x) = p(e)(x)u q(e)(x), for all x ∈ X.

Example 3.3. Let Fp and Gq be the two PSFS sets on (X,E) is defined by

Fp(e1) =


x1

〈(0.5,0.4,0.6),(0.4,0.3,0.7)〉
x2

〈(0.5,0.6,0.4),(0.6,0.3,0.5)〉
x3

〈(0.7,0.5,0.3),(0.8,0.4,0.3)〉

 ; Fp(e2) =


x1

〈(0.6,0.1,0.7),(0.4,0.3,0.6)〉
x2

〈(0.5,0.2,0.6),(0.6,0.1,0.5)〉
x3

〈(0.7,0.3,0.4),(0.5,0.4,0.3)〉

 ;

Fp(e3) =


x1

〈(0.3,0.2,0.7),(0.3,0.2,0.8)〉
x2

〈(0.5,0.4,0.6),(0.6,0.3,0.4)〉
x3

〈(0.7,0.5,0.3),(0.4,0.6,0.5)〉
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and

Gq(e1) =


x1

〈(0.4,0.3,0.5),(0.2,0.6,0.7)〉
x2

〈(0.3,0.1,0.8),(0.3,0.7,0.4)〉
x3

〈(0.6,0.4,0.3),(0.4,0.2,0.8)〉

 ; Gq(e2) =


x1

〈(0.2,0.3,0.6),(0.4,0.5,0.6)〉
x2

〈(0.3,0.1,0.6),(0.5,0.2,0.4)〉
x3

〈(0.5,0.4,0.7),(0.7,0.4,0.3)〉

 ;

Gq(e3) =


x1

〈(0.6,0.3,0.5),(0.4,0.3,0.7)〉
x2

〈(0.5,0.3,0.4),(0.6,0.5,0.4)〉
x3

〈(0.4,0.2,0.7),(0.5,0.4,0.6)〉


Thus, PSFS set is obtained and is represented by matrix form of Fp tGq:〈(0.5, 0.3, 0.5), (0.4, 0.3, 0.7)〉 〈(0.5, 0.1, 0.4), (0.6, 0.3, 0.4)〉 〈(0.7, 0.4, 0.3), (0.8, 0.2, 0.3)〉
〈(0.6, 0.1, 0.6), (0.4, 0.3, 0.6)〉 〈(0.5, 0.1, 0.6), (0.6, 0.1, 0.4)〉 〈(0.7, 0.3, 0.4), (0.7, 0.4, 0.3)〉
〈(0.6, 0.2, 0.5), (0.4, 0.2, 0.7)〉 〈(0.5, 0.3, 0.4), (0.6, 0.3, 0.4)〉 〈(0.7, 0.2, 0.3), (0.5, 0.4, 0.5)〉


Thus, PSFS set is obtained and is represented by matrix form of Fp uGq:〈(0.4, 0.3, 0.6), (0.2, 0.3, 0.7)〉 〈(0.3, 0.1, 0.8), (0.3, 0.3, 0.5)〉 〈(0.6, 0.4, 0.3), (0.4, 0.2, 0.8)〉
〈(0.2, 0.1, 0.7), (0.4, 0.3, 0.6)〉 〈(0.3, 0.1, 0.6), (0.5, 0.1, 0.5)〉 〈(0.5, 0.3, 0.7), (0.5, 0.4, 0.3)〉
〈(0.3, 0.2, 0.7), (0.3, 0.2, 0.8)〉 〈(0.5, 0.3, 0.6), (0.6, 0.3, 0.4)〉 〈(0.4, 0.2, 0.7), (0.4, 0.4, 0.6)〉


Definition 3.6. A PSFS set ∅θ(e)(x) =

〈
∅(e)(x), θ(e)(x)

〉
is said to be a possibility

null spherical fuzzy soft set ∅θ : E → SF(X)×SF(X), where ∅(e)(x) = (0, 0, 1) and

θ(e)(x) = (0, 0, 1), ∀ x ∈ X.

Definition 3.7. A PSFS set ΩΛ(e)(x) =
〈

Ω(e)(x),Λ(e)(x)
〉

is said to be a possibility

absolute spherical fuzzy soft set ΩΛ : E → SF(X)×SF(X), where Ω(e)(x) = (1, 0, 0),

Λ(e)(x) = (1, 0, 0), ∀ x ∈ X.

Theorem 3.1. Let Fp be a PSFS set on (X,E). Then the following properties are holds:

(1) Fp = Fp tFp, Fp = Fp uFp
(2) Fp v Fp tFp, Fp v Fp uFp
(3) Fp t∅θ = Fp, Fp u∅θ = ∅θ
(4) Fp tΩΛ = ΩΛ, Fp uΩΛ = Fp.

Remark 3.1. Let Fp be a PSFS set on (X,E). If Fp 6= ΩΛ or Fp 6= ∅θ, then Fp tFcp 6= ΩΛ

and Fp uFcp 6= ∅θ.

Theorem 3.2. Let Fp and Gq are any two PSFS sets over (X,E). Then the commutative
and De Morgan’s laws are holds:

(1) Fp tGq = Gq tFp
(2) Fp uGq = Gq uFp
(3)

(
Fp tGq

)c
= Fcp uGcq

(4)
(
Fp uGq

)c
= Fcp tGcq .

Proof. The proof follows from Definition 3.4 and 3.5. �
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Theorem 3.3. Let Fp, Gq and Hr are three PSFS sets over (X,E). Then the associative
laws and distributive laws are holds:

(1) Fp t(Gq tHr) = (Fp tGq) tHr.
(2) Fp u(Gq uHr) = (Fp uGq) uHr.
(3) Fp t(Gq uHr) = (Fp tGq) u (Fp tHr).
(4) Fp u(Gq tHr) = (Fp uGq) t (Fp uHr).
(5) (Fp tGq) u Fp = Fp.
(6) (Fp uGq) t Fp = Fp.

Proof. The proof follows from Definition 3.4 and 3.5. �

Definition 3.8. Let (Fp, A) and (Gq, B) be two PSFS sets on (X,E). Then the opera-

tion “(Fp, A) AND (Gq, B)” is denoted by (Fp, A) ∧ (Gq, B) and is defined by (Fp, A) ∧
(Gq, B) = (Hr, A×B), where Hr(α, β) =

〈
H∇(α, β)(x), r(α, β)(x)

〉
such that H(α, β) =

F(α)uG(β) and r(α, β) = p(α)u q(β), for all (α, β) ∈ A×B.

Definition 3.9. Let (Fp, A) and (Gq, B) be two PSFS sets on (X,E). Then the oper-

ation “(Fp, A) OR (Gq, B)” is denoted by (Fp, A) ∨ (Gq, B) and is defined by (Fp, A) ∨
(Gq, B) = (Hr, A×B), where Hr(α, β) =

〈
H∇(α, β)(x), r(α, β)(x)

〉
such that H(α, β) =

F(α)tG(β) and r(α, β) = p(α)t q(β), for all (α, β) ∈ A×B.

Theorem 3.4. Let (Fp, A) and (Gq, B) be two PSFS sets on (X,E), then

(1)
(

(Fp, A) ∧ (Gq, B)
)c

=
(
Fp, A

)c
∨
(
Gq, B

)c
(2)

(
(Fp, A) ∨ (Gq, B)

)c
=
(
Fp, A

)c
∧
(
Gq, B

)c
.

Proof. (i) Suppose that (Fp, A) ∧ (Gq, B) = (Hr, A × B) and
(

(Fp, A) ∧ (Gq, B)
)c

=

(Hcr, A×B). Now Hcr(α, β) =
〈
Hc(α, β)(x), rc(α, β)(x)

〉
. By Theorem 3.2 and

Definition 3.8, Hc(α, β) =

(
F(α)uG(β)

)c
= Fc(α)tGc(β) and rc(α, β) =(

p(α)u q(β)

)c
= pc(α)t qc(β). Also,

(
Fp, A

)c
∨
(
Gq, B

)c
= (Λo, A×B), where Λo(α, β)

=
〈

Λ(α, β)(x), o(α, β)(x)
〉

such that Λ(α, β) = Fc(α)tGc(β), o(α, β) = pc(α)t qc(β) for

all (α, β) ∈ A×B. Thus, Hcr = Λo. Hence
(

(Fp, A) ∧ (Gq, B)
)c

=
(
Fp, A

)c
∨
(
Gq, B

)c
.

(ii) Suppose (Fp, A)∨(Gq, B) = (Hr, A×B) and
(

(Fp, A) ∨ (Gq, B)
)c

= (Hcr, A×B). Now,

Hcr(α, β) =
〈
Hc(α, β)(x), rc(α, β)(x)

〉
. By Theorem 3.2 and Definition 3.9, Hc(α, β) =(

F(α)tG(β)

)c
= Fc(α)uGc(β) and rc(α, β) =

(
p(α)t q(β)

)c
= pc(α)u qc(β). Also(

Fp, A
)c
∧
(
Gq, B

)c
= (Λo, A×B), where Λo(α, β) =

〈
Λ(α, β)(x), o(α, β)(x)

〉
such that
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Λ(α, β) = Fc(α)uGc(β) and o(α, β) = pc(α)u qc(β) for all (α, β) ∈ A×B. Thus, Hcr = Λo.

Hence
(

(Fp, A) ∨ (Gq, B)
)c

=
(
Fp, A

)c
∧
(
Gq, B

)c
. �

4. Similarity measure between two PSFS sets

In this section, finding similarity measure between PSFS sets is given below.

Definition 4.1. Let X be a non-empty set of the universe and E be a set of parameter.

Suppose that Fp and Gq are two PSFS sets on (X,E). The similarity measure between

two PSFS sets Fp and Gq is defined as Sim(Fp,Gq) = ϕ(F ,G) · ψ(p, q) such that

ϕ(F ,G) =
T1

(
F(e)(x),G(e)(x)

)
+ T2

(
F(e)(x),G(e)(x)

)
+ S

(
F(e)(x),G(e)(x)

)
3 and

ψ(p, q) = 1−
∑
|(α1i+α2i)−(β1i+β2i)|∑
|(α1i+α2i)+(β1i+β2i)| ,

where T1

(
F(e)(x),G(e)(x)

)
=

∑n
i=1(νF(ei)

(x) · νG(ei)(x))∑n
i=1( 1−

√
(1−ν2F(ei)

(x)) · (1−ν2G(ei)(x)) )
,

T2

(
F(e)(x),G(e)(x)

)
=

∑n
i=1(ω2

F(ei)
(x) · ω2

G(ei)
(x))∑n

i=1( 1−
√

(1−ω4
F(ei)

(x)) · (1−ω4
G(ei)

(x)) )
,

S

(
F(e)(x),G(e)(x)

)
=

√
1−

∑n
i=1 |ζ2F(ei)

(x) − ζ2G(ei)
(x)|∑n

i=1 1+((ζ2F(ei)
(x)) · (ζ2G(ei)

(x)) )
and

α1i =
ν2
p(ei)

(x)

ν2
p(ei)

(x) + ζ2
p(ei)

(x)
, α2i =

ν2
p(ei)

(x)

ν2
p(ei)

(x) + ω2
p(ei)

(x)

β1i =
ν2
q(ei)

(x)

ν2
q(ei)

(x) + ζ2
q(ei)

(x)
, β2i =

ν2
q(ei)

(x)

ν2
q(ei)

(x) + ω2
q(ei)

(x)
, where 1 ≤ i ≤ n.

Theorem 4.1. Let Fp, Gq and Hr be the any three PSFS sets over (X,E). Then the
following statements are holds:

(1) Sim(Fp,Gq) = Sim(Gq,Fp)
(2) 0 ≤ Sim(Fp,Gq) ≤ 1

(3) Fp = Gq =⇒ Sim(Fp,Gq) = 1

(4) Fp v Gq v Hr =⇒ Sim(Fp,Hr) ≤ Sim(Gq,Hr)
(5) Fp uGq = {φ} ⇔ Sim(Fp,Gq) = 0.

Proof. The proof (i), (ii) and (v) are trivial. (iii) Suppose that Fp = Gq implies that
νF(e)

(x) = νG(e)(x), ωF(e)
(x) = ωG(e)(x), ζF(e)

(x) = ζG(e)(x), νp(e)(x) = νq(e)(x), ωp(e)(x) =

ωq(e)(x) and ζp(e)(x) = ζq(e)(x).

Now, T1

(
F(e)(x),G(e)(x)

)
=

∑n
i=1 ν

2
F(ei)

(x)∑n
i=1(1−1+ν2F(ei)

(x))
=

∑n
i=1 ν

2
F(ei)

(x)∑n
i=1 ν

2
F(ei)

(x)
= 1

and T2

(
F(e)(x),G(e)(x)

)
=

∑n
i=1 ω

4
F(ei)

(x)∑n
i=1(1−1+ω4

F(ei)
(x))

=

∑n
i=1 ω

4
F(ei)

(x)∑n
i=1 ω

4
F(ei)

(x)
= 1

and S

(
F(e)(x),G(e)(x)

)
=
√

(1− 0) = 1. Thus, ϕ(F ,G) = 1+1+1
3 = 1 and ψ(p, q) = 1.

Hence Sim(Fp,Gq) = 1.
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(iv) Given that

Fp v Gq =⇒ νF(e)
(x) ≤ νG(e)(x), ωF(e)

(x) ≤ ωG(e)(x), ζF(e)
(x) ≥ ζG(e)(x)

νp(e)(x) ≤ νq(e)(x), ωp(e)(x) ≤ ωq(e)(x), ζp(e)(x) ≥ ζq(e)(x)

Fp v Hr =⇒ νF(e)
(x) ≤ νH(e)

(x), ωF(e)
(x) ≤ ωH(e)

(x), ζF(e)
(x) ≥ ζH(e)

(x)

νp(e)(x) ≤ νr(e)(x), ωp(e)(x) ≤ ωr(e)(x), ζp(e)(x) ≥ ζr(e)(x)

Gq v Hr =⇒ νG(e)(x) ≤ νH(e)
(x), ωG(e)(x) ≤ ωH(e)

(x), ζG(e)(x) ≥ ζH(e)
(x)

νq(e)(x) ≤ νr(e)(x), ωq(e)(x) ≤ ωr(e)(x), ζq(e)(x) ≥ ζr(e)(x)


(1)

Clearly, νF(e)
(x) · νH(e)

(x) ≤ νG(e)(x) · νH(e)
(x) implies that

n∑
i=1

(νF(ei)
(x) · νH(ei)

(x)) ≤
n∑
i=1

(νG(ei)(x) · νH(ei)
(x)) (2)

Clearly, ν2
F(e)

(x) ≤ ν2
G(e)

(x) implies that −ν2
F(e)

(x) ≥ −ν2
G(e)

(x) and

(1− (ν2
F(e)

(x))) · (1− (ν2
H(e)

(x))) ≥ (1− (ν2
G(e)

(x))) · (1− (ν2
H(e)

(x))) and√
(1− (ν2

F(e)
(x))) · (1− (ν2

H(e)
(x))) ≥

√
(1− (ν2

G(e)
(x))) · (1− (ν2

H(e)
(x))) and

1−
√

(1− (ν2
F(e)

(x))) · (1− (ν2
H(e)

(x))) ≤ 1−
√

(1− (ν2
G(e)

(x))) · (1− (ν2
H(e)

(x))) and

n∑
i=1

1−
√

(1− (ν2
F(ei)

(x))) · (1− (ν2
H(ei)

(x))) ≤
n∑
i=1

1−
√

(1− (ν2
G(ei)

(x))) · (1− (ν2
H(ei)

(x))) (3)

Equation (2) is divided by (3),∑n
i=1(νF(ei)

(x) · νH(ei)
(x))∑n

i=1 1−
√

(1− (ν2
F(ei)

(x))) · (1− (ν2
H(ei)

(x)))
≤

∑n
i=1(νG(ei)

(x) · νH(ei)
(x))∑n

i=1 1−
√

(1− (ν2
G(ei)

(x))) · (1− (ν2
H(ei)

(x)))
(4)

Clearly, ω2
F(e)

(x) · ω2
H(e)

(x) ≤ ω2
G(e)

(x) · ω2
H(e)

(x) implies that

n∑
i=1

(ω2
F(ei)

(x) · ω2
H(ei)

(x)) ≤
n∑
i=1

(ω2
G(ei)

(x) · ω2
H(ei)

(x)) (5)

Clearly, ω4
F(e)

(x) ≤ ω4
G(e)

(x) implies that −ω4
F(e)

(x) ≥ −ω4
G(e)

(x) and

(1− (ω4
F(e)

(x))) · (1− (ω4
H(e)

(x))) ≥ (1− (ω4
G(e)

(x))) · (1− (ω4
H(e)

(x))) and√
(1− (ω4

F(e)
(x))) · (1− (ω4

H(e)
(x))) ≥

√
(1− (ω4

G(e)
(x))) · (1− (ω4

H(e)
(x))) and

1−
√

(1− (ω4
F(e)

(x))) · (1− (ω4
H(e)

(x))) ≤ 1−
√

(1− (ω4
G(e)

(x))) · (1− (ω4
H(e)

(x))) and

n∑
i=1

1−
√

(1− (ω4
F(ei)

(x))) · (1− (ω4
H(ei)

(x))) ≤
n∑
i=1

1−
√

(1− (ω4
G(ei)

(x))) · (1− (ω4
H(ei)

(x))) (6)

Equation (5) is divided by (6),∑n
i=1(ω

2

F(ei)
(x) · ω2

H(ei)
(x))∑n

i=1 1−
√

(1− (ω4
F(ei)

(x))) · (1− (ω4
H(ei)

(x)))
≤

∑n
i=1(ω

2

G(ei)
(x) · ω2

H(ei)
(x))∑n

i=1 1−
√

(1− (ω4
G(ei)

(x))) · (1− (ω4
H(ei)

(x)))
(7)

Clearly, ζ2
F(e)

(x) ≥ ζ2
G(e)

(x) and ζ2
F(e)

(x)− ζ2
H(e)

(x) ≥ ζ2
G(e)

(x)− ζ2
H(e)

(x).

Hence
n∑
i=1

∣∣∣ζ2
F(ei)

(x)− ζ2
H(ei)

(x)
∣∣∣ ≥ n∑

i=1

∣∣∣ζ2
G(ei)

(x)− ζ2
H(ei)

(x)
∣∣∣ (8)
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Also, ζ2
F(e)

(x) · ζ2
H(e)

(x) ≥ ζ2
G(e)

(x) · ζ2
H(e)

(x) implies that

n∑
i=1

1 + (ζ2
F(ei)

(x) · ζ2
H(ei)

(x)) ≥
n∑
i=1

1 + (ζ2
G(ei)

(x) · ζ2
H(ei)

(x)) (9)

Equation (8) is divided by (9), we get∑n
i=1 |ζ2

F(ei)
(x)− ζ2

H(ei)
(x)|∑n

i=1 1 + (ζ2
F(ei)

(x) · ζ2
H(ei)

(x))
≥

∑n
i=1 |ζ2

G(ei)
(x)− ζ2

H(ei)
(x)|∑n

i=1 1 + (ζ2
G(ei)

(x) · ζ2
H(ei)

(x))
and

1−

∑n
i=1 |ζ2

F(ei)
(x)− ζ2

H(ei)
(x)|∑n

i=1 1 + (ζ2
F(ei)

(x) · ζ2
H(ei)

(x))
≤ 1−

∑n
i=1 |ζ2

G(ei)
(x)− ζ2

H(ei)
(x)|∑n

i=1 1 + (ζ2
G(ei)

(x) · ζ2
H(ei)

(x))
and

√√√√1−

∑n
i=1 |ζ2

F(ei)
(x)− ζ2

H(ei)
(x)|∑n

i=1 1 + (ζ2
F(ei)

(x) · ζ2
H(ei)

(x))
≤

√√√√1−

∑n
i=1 |ζ2

G(ei)
(x)− ζ2

H(ei)
(x)|∑n

i=1 1 + (ζ2
G(ei)

(x) · ζ2
H(ei)

(x))
(10)

Adding Equations (4), (7), (10) and divided by 3,

ϕ(F ,H) ≤ ϕ(G,H) (11)

By Equation (1), Clearly α1i ≤ β1i ≤ γ1i and α2i ≤ β2i ≤ γ2i, where

α1i =
ν2
p(ei)

(x)

ν2
p(ei)

(x) + ζ2
p(ei)

(x)
, α2i =

ν2
p(ei)

(x)

ν2
p(ei)

(x) + ω2
p(ei)

(x)

β1i =
ν2
q(ei)

(x)

ν2
q(ei)

(x) + ζ2
q(ei)

(x)
, β2i =

ν2
q(ei)

(x)

ν2
q(ei)

(x) + ω2
q(ei)

(x)
.

γ1i =
ν2
r(ei)

(x)

ν2
r(ei)

(x) + ζ2
r(ei)

(x)
, γ2i =

ν2
r(ei)

(x)

ν2
r(ei)

(x) + ω2
r(ei)

(x)
.

Clearly, (α1i + α2i) ≤ (β1i + β2i) ≤ (γ1i + γ2i) and (α1i + α2i)− (γ1i + γ2i) ≤ (β1i + β2i)
− (γ1i + γ2i). Since (α1i + α2i), (β1i + β2i), (γ1i + γ2i) are numerical values.

Hence
∣∣∣(β1i + β2i)− (γ1i + γ2i)

∣∣∣ ≤ ∣∣∣(α1i + α2i)− (γ1i + γ2i)
∣∣∣ and

−
∣∣∣(α1i + α2i)− (γ1i + γ2i)

∣∣∣ ≤ −∣∣∣(β1i + β2i)− (γ1i + γ2i)
∣∣∣ and (12)∣∣∣(α1i + α2i) + (γ1i + γ2i)

∣∣∣ ≤ ∣∣∣(β1i + β2i) + (γ1i + γ2i)
∣∣∣ (13)

Equation (12) is divided by (13), we get

−
∣∣(α1i + α2i)− (γ1i + γ2i)

∣∣∣∣(α1i + α2i) + (γ1i + γ2i)
∣∣ ≤ −

∣∣(β1i + β2i)− (γ1i + γ2i)
∣∣∣∣(β1i + β2i) + (γ1i + γ2i)
∣∣ and

1−
∣∣(α1i + α2i)− (γ1i + γ2i)

∣∣∣∣(α1i + α2i) + (γ1i + γ2i)
∣∣ ≤ 1−

∣∣(β1i + β2i)− (γ1i + γ2i)
∣∣∣∣(β1i + β2i) + (γ1i + γ2i)
∣∣ .

Hence

ψ(p, r) ≤ ψ(q, r) (14)

Multiply by Equations (11) and (14), ϕ(F ,H) · ψ(p, r) ≤ ϕ(G,H) · ψ(q, r).

Hence Sim(Fp,Hr) ≤ Sim(Gq,Hr). This proves (iv). �

Example 4.1. Calculate the similarity measure between the two PSFS sets namely Fp
and Gq. We choose the first sample of Fp and Gq, E = {e1, e2, e3, e4} can be defined as
below:
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Fp(e) e1 e2 e3 e4

F(e) 〈0.65, 0.25, 0.45〉 〈0.55, 0.35, 0.45〉 〈0.75, 0.35, 0.25〉 〈0.35, 0.25, 0.55〉
p(e) 〈0.45, 0.25, 0.45〉 〈0.35, 0.25, 0.55〉 〈0.65, 0.15, 0.25〉 〈0.35, 0.25, 0.45〉

Gq(e) e1 e2 e3 e4

G(e) 〈0.55, 0.25, 0.35〉 〈0.45, 0.15, 0.55〉 〈0.65, 0.25, 0.45〉 〈0.25, 0.35, 0.55〉
q(e) 〈0.35, 0.35, 0.55〉 〈0.35, 0.25, 0.45〉 〈0.65, 0.15, 0.55〉 〈0.55, 0.25, 0.45〉

Using Definition 4.1 and routine calculation, we get

T1

(
F(e)(x),G(e)(x)

)
= 0.3575+0.2475+0.4875+0.0875

1.209851 = 1.18
1.209851 = 0.975327.

T2

(
F(e)(x),G(e)(x)

)
= 0.00390625+0.00275625+0.00765625+0.00765625

0.030633 = 0.021975
0.030633 = 0.717364.

S

(
F(e)(x),G(e)(x)

)
=
√

1− 0.32
4.190225 = 0.961058.

ϕ(F ,G) = 0.975327+0.717364+0.961058
3 = 0.884583.

ψ(p, q) = 1− 1.2416706
9.861500 = 0.874089.

Sim(Fp,Gq) = 0.884583× 0.874089 = 0.773204.

5. Similarity Measure for Parental Choice of Colleges

In the selection of college teaching education, the evaluation of teacher education is
carried out according to various standards of experts. There are various studies, primarily
conducted that have investigated the reasons why parents select a college. Which they
think best suits their college student’s needs and parental aspirations for their college
student. We identify a factor regarded as parental decision making: Academic Factor -
divided into five identified elements namely Campus environment, overall cost, academic
quality, student/faculty relationship and career opportunities. Our goal is to select the
optimal one out of a great number of alternatives based on the assessment of experts
against the criteria.

5.1. Algorithms based on the similarity measures for PSFS set Model. An al-
gorithm for decision making problems using PSFS set model is explained. The algorithm
for the selection of the best choice is given as:
Step 1. Input PSFS set in tabular form.
Step 2. Form the set of choice parameters A ⊆ E.
Step 3. Compute the values of T1, T2 and S.
Step 4. Calculate the ϕ value by taking T1+T2+S

3 .

Step 5. Determine the value ψ(p, q) = 1−
∑
|(α1i+α2i)−(β1i+β2i)|∑
|(α1i+α2i)+(β1i+β2i)| and 1 ≤ i ≤ 5.

Step 6. Compute the similarity measure = ϕ · ψ.
Step 7. Determine maximum similarity = max{similarityi} and 1 ≤ i ≤ 5.
Step 8. To choose the best solution.
Step 9. End.

5.2. Survey study. A parent intends to choose the popular college education. Here we
intends to choose five colleges are nominated. The score of the college education evaluated
by the experts is represented by E = {e1 : campus environment, e2: overall cost, e3 :
academic quality, e4 : student/faculty relationship, e5: career opportunities}.
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Table 1
PSFS set for the ideal college education property

Lp(e) e1 e2 e3 e4 e5

L(e) 〈0.75, 0.3, 0.4〉 〈0.65, 0.35, 0.45〉 〈0.55, 0.45, 0.5〉 〈0.6, 0.35, 0.5〉 〈0.6, 0.45, 0.55〉
p(e) 〈1, 0, 0〉 〈1, 0, 0〉 〈1, 0, 0〉 〈1, 0, 0〉 〈1, 0, 0〉

Table 2
PSFS set for the first college education property

Ap1(e) e1 e2 e3 e4 e5

A(e) 〈0.55, 0.1, 0.45〉 〈0.4, 0.15, 0.5〉 〈0.3, 0.2, 0.55〉 〈0.35, 0.15, 0.6〉 〈0.5, 0.1, 0.6〉
p1(e) 〈0.45, 0.1, 0.55〉 〈0.5, 0.25, 0.4〉 〈0.6, 0.25, 0.45〉 〈0.65, 0.1, 0.35〉 〈0.65, 0.2, 0.45〉

Table 3
PSFS set for the second college education property

Bp2(e) e1 e2 e3 e4 e5

B(e) 〈0.5, 0.1, 0.5〉 〈0.5, 0.15, 0.65〉 〈0.55, 0.2, 0.6〉 〈0.3, 0.15, 0.65〉 〈0.45, 0.1, 0.75〉
p2(e) 〈0.35, 0.2, 0.55〉 〈0.45, 0.35, 0.25〉 〈0.55, 0.15, 0.45〉 〈0.4, 0.35, 0.65〉 〈0.5, 0.2, 0.45〉

Table 4
PSFS set for the third college education property

Cp3(e) e1 e2 e3 e4 e5

C(e) 〈0.6, 0.1, 0.45〉 〈0.45, 0.15, 0.55〉 〈0.3, 0.05, 0.75〉 〈0.35, 0.15, 0.65〉 〈0.25, 0.1, 0.7〉
p3(e) 〈0.65, 0.15, 0.4〉 〈0.15, 0.3, 0.6〉 〈0.35, 0.25, 0.15〉 〈0.5, 0.35, 0.75〉 〈0.5, 0.25, 0.65〉

Table 5
PSFS set for the fourth college education property

Dp4(e) e1 e2 e3 e4 e5

D(e) 〈0.3, 0.1, 0.45〉 〈0.45, 0.05, 0.65〉 〈0.3, 0.2, 0.5〉 〈0.4, 0.15, 0.55〉 〈0.25, 0.1, 0.7〉
p4(e) 〈0.5, 0.2, 0.4〉 〈0.65, 0.35, 0.2〉 〈0.35, 0.5, 0.45〉 〈0.55, 0.2, 0.5〉 〈0.45, 0.2, 0.6〉

Table 6
PSFS set for the fifth college education property

Ep5(e) e1 e2 e3 e4 e5

E(e) 〈0.6, 0.25, 0.45〉 〈0.45, 0.1, 0.6〉 〈0.3, 0.25, 0.65〉 〈0.45, 0.3, 0.55〉 〈0.5, 0.1, 0.6〉
p5(e) 〈0.65, 0.15, 0.5〉 〈0.55, 0.3, 0.25〉 〈0.45, 0.15, 0.75〉 〈0.55, 0.45, 0.4〉 〈0.45, 0.35, 0.55〉

The SFNs values in Tables 2-6 are provided by the experts, depending on their assessment
of the alternatives against the criteria under consideration. To find the college education
property is closest to the ideal college education property, we should calculate the similarity
measure of PSFS sets in Tables 2-6 with the one in Table 1 based on Definition 4.1.
Calculating the similarity measure for the 1-5 colleges education property is given below.

Table 7
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T1 T2 S ϕ ψ Similarity

(L,A) 0.891096 0.266985 0.970638 0.709573 0.863467 0.612693

(L,B) 0.911240 0.266985 0.919106 0.699110 0.766551 0.535904

(L, C) 0.861358 0.146233 0.922766 0.643452 0.717221 0.461498

(L,D) 0.773876 0.228346 0.952375 0.651533 0.787300 0.512952

(L, E) 0.930259 0.474965 0.954239 0.786488 0.796558 0.626483

From the above results, we find that the fifth college education property is closest to
the ideal college education property with the highest value of the similarity measure is
0.626483.

5.3. Algorithms based on the similarity measures for SFS set Model. An algo-
rithm for decision making problems using SFS set model is explained. The algorithm for
the selection of the best choice is given as:
Step 1. Input SFS set in tabular form.
Step 2. Form the set of choice parameters A ⊆ E.
Step 3. Compute the values of T1, T2 and S.
Step 4. Calculate the similarity measure = T1+T2+S

3 .

Step 5. Determine maximum similarity = Max{similarityi} and 1 ≤ i ≤ 5.
Step 6. To choose the best solution.
Step 7. End.
Calculating the similarity measure for the mentioned above 1-5 colleges education property
using SFS set model as follows. We have

Table 8

T1 T2 S Similarity

(L,A) 0.891096 0.266985 0.970638 0.709573

(L,B) 0.911240 0.266985 0.919106 0.699110

(L, C) 0.861358 0.146233 0.922766 0.643452

(L,D) 0.773876 0.228346 0.952375 0.651533

(L, E) 0.930259 0.474965 0.954239 0.786488

It is observed that the first, second, third and fourth colleges education property
from the perspective of similarity measure are quite away from the ideal college education
property. We find that the fifth college education property is closest to the ideal college
education property with the highest value of the similarity measure is 0.786488.

6. Comparative studies for PSFS set and SFS set

If the college education property unit chooses the threshold 〈0.45,0.1,0.6〉, we should
choose the fifth college education property as a potential college. On the contrary, when
using SFS set approach without the generalization parameter, we can not distinguish
which the colleges education property is the best one. So the possibility parameter has an
important influence to the similarity measure of the college education property.
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7. Conclusion and direction of future work

The main goal of this work is to present a possibility spherical fuzzy soft set to solve
the phenomena related to decision making in which the sum of the squares of positive
membership, neutral membership and negative membership is not exceed one. Finally,
PSFS set approach is more scientific and reasonable than SFS set approach without the
generalization parameter in the process of decision making. So in future, we should con-
sider the possibility interval valued spherical fuzzy soft sets and bipolar fuzzy soft sets
theory.
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