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Abstract: A dynamic model is structurally identifiable (respectively, observable) if it is theoretically
possible to infer its unknown parameters (respectively, states) by observing its output over time.
The two properties, structural identifiability and observability, are completely determined by the
model equations. Their analysis is of interest for modellers because it informs about the possibility of
gaining insight into a model’s unmeasured variables. Here we cast the problem of analysing structural
identifiability and observability as that of finding Lie symmetries. We build on previous results that
showed that structural unidentifiability amounts to the existence of Lie symmetries. We consider
nonlinear models described by ordinary differential equations and restrict ourselves to rational
functions. We revisit a method for finding symmetries by transforming rational expressions into linear
systems. We extend the method by enabling it to provide symmetry-breaking transformations, which
allows for a semi-automatic model reformulation that renders a non-observable model observable.
We provide a MATLAB implementation of the methodology as part of the STRIKE-GOLDD toolbox
for observability and identifiability analysis. We illustrate the use of the methodology in the context
of biological modelling by applying it to a set of problems taken from the literature.

Keywords: dynamic modelling; nonlinear systems; observability; structural identifiability;
Lie symmetries

1. Introduction

The present work is motivated mainly by problems arising in identification and modelling of
biological systems, although its results are applicable in other fields. We consider nonlinear dynamic
models defined by ordinary differential equations. This framework is sufficiently powerful to model
a wide range of biological processes, from intracellular networks to whole ecosystems, with the
appropriate level of detail.

When compared to other applications, biological models often pose specific challenges due
to the combination of nonlinearity, uncertainty about the underlying system, and experimental
limitations regarding the possibility of perturbations and of measurements [1]. These features make
the identification of biological models particularly challenging, and call for new methodological
developments and computational tools. Indeed, many theoretical advances in nonlinear systems
identification have been motivated by biological problems, even though the type of problems being
considered are often common to other scientific areas, which makes the resulting methodologies
generally applicable [2,3]. An example is the study of structural identifiability, a property that
was introduced in the context of physiological modelling [4] and has since then been adopted in
many scientific and technological areas; since its study is of particular interest for biological models,
many related theoretical developments have been motivated by biological problems [5–7]. Structural
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identifiability refers to the possibility of inferring the values of the unknown (constant) parameters
in the model equations from observations (measurements) of the model output. It is closely related
to—and in fact can be considered a particular case of—another property, observability, which describes
the possibility of determining the (time-varying) state variables of the model [8]. By considering
the parameters as constant state variables, structural (local) identifiability amounts to observability
(In accordance with the usual terminology, we speak of structural identifiability to distinguish it from
practical identifiability. The latter quantifies the uncertainty in parameter values taking into account
the information content of the available data, which may be limited due to experimental errors or low
sampling rates. We also specify that it is structural local identifiability to distinguish it from structural
global identifiability. Although observability is also a structural local property, for historical reasons
we do not add those adjectives to its name, and refer to it simply as observability.).

The cause of lack of structural identifiability or observability can be traced back to the existence of
symmetries in the model equations. In the present work we use Lie’s theory on symmetry analysis of
differential equations [9–11]. It has been shown [12] that the existence of Lie symmetries is equivalent
to the existence of similarity transformations, i.e., transformations of parameters and variables that
leave the output(s) unchanged [13,14]. This means that the existence of symmetries amounts to lack of
structural identifiability and/or observability.

Here we revisit a method for finding symmetries by transforming rational expressions into linear
systems [15]. Determining the existence of symmetries in a model is a way of analysing its structural
identifiability and observability. Furthermore, if symmetries exist, their mathematical expressions
provide information about the relationships between model variables that cause loss of identifiability
and/or observability. One way of exploiting these insights is by fixing one or more parameters
involved in a symmetry, in order to render the remaining ones identifiable. Another way is by using
the symmetry-breaking transformations to reformulate the model, applying the transformations so
that the symmetries disappear and the new model is identifiable and observable. In this paper, we
extend the method by enabling it to provide symmetry-breaking transformations, which allows for
a semi-automatic model reformulation that renders a non-observable model observable. Thus, the
approach can be used not only for characterizing the identifiability and observability of a model, but
also for suggesting alternative reformulations if the original model does not possess those properties.
We illustrate the usefulness and applicability of this approach in biological applications with four
models of biochemical processes. Furthermore, we provide an implementation of the methodology as
part of a new version of the STRIKE-GOLDD software https://github.com/afvillaverde/strike-goldd_
2.1. STRIKE-GOLDD is a MATLAB toolbox that analyses structural identifiability and observability
using a differential geometry approach [16–18].

The organization of this paper is as follows: we begin by providing an overview of the
methodological aspects in Section 2. Then we illustrate its application to a number of modelling
problems in Section 3. Finally, we discuss the implications and provide some conclusions in Section 4.

2. Methods

2.1. Structural Identifiability and Observability

For the study of observability and identifiability we consider the following type of models:

MNL :=


ẋ(t) = f (x(t), θ, u(t), w(t)) ,

y(t) = g(x(t), θ, u(t), w(t)) ,

x(t0) = x0(θ)

(1)

with a parameter vector θ ∈ Rq, known input functions u(t) ∈ Rmu , unknown input functions
w(t) ∈ Rmw , state vector x(t) ∈ Rm, output vector y(t) ∈ Rn and, f and g vectors constituted by
analytical functions. From this point on, the time dependency will be omitted to simplify the notation.

https://github.com/afvillaverde/strike-goldd_2.1
https://github.com/afvillaverde/strike-goldd_2.1
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Definition 1. A parameter θi, denoting the ith component, of the MNL model is structurally locally identifiable
(SLI) if for almost any parameter vector θ∗ ∈ Rq there is a neighbourhood N (θ∗) in which the following
relation holds:

θ̂ ∈ N (θ∗) and y(t, θ̂) = y(t, θ∗)⇒ θ̂i = θ∗i , i = 1, ..., q . (2)

If the above definition does not hold for any neighbourhood of θ∗, θi is structurally unidentifiable
(SU). If all model parameters are SLI, the model is SLI too. Otherwise, the model is SU.

Similarly, the observability of a state can be defined as:

Definition 2. Given an output vector y(t) and a known input vector u(t), the state xi(τ) is observable if it
can be determined from y(t) and u(t) in the interval t0 ≤ τ ≤ t ≤ t f , where t f is a finite time. Otherwise, it is
unobservable.

A model is observable if all states are observable. The same definition applies to the unknown
entries vector but instead of observable, it is called reconstructible.

The term Full Input-State-Parameter Observability (FISPO) has been recently proposed [8] to refer
to a model that is observable, identifiable and reconstructible. Its formal definition is given by:

Definition 3. Given the model (1), the unknown quantities vector is considered z(t) = [x(t), θ, w(t)] ∈
Rm+q+mw . Denoting each component of z in time τ as zi(τ) with t0 ≤ τ ≤ t ≤ t f , for a finite t f . The model
MNL is FISPO if the following condition holds:

ẑ(τ) ∈ N (z∗(τ)) and y(t, ẑ(τ)) = y(t, z∗(τ))⇒ ẑi(τ) = z∗i (τ) . (3)

Observability and identifiability can be studied jointly if the parameters are considered as constant
states. Thus, the observability of these states is equivalent to the local structural identifiability.
Therefore, the augmented state vector is [18]:

x̃(t) =

x(t)
θ

w(t)

 , ˙̃x(t) =

 f (x̃(t), u(t))
0

ẇ(t)

 . (4)

In this way, the model (1) is transformed into:

MNL :=

{
˙̃x(t) = f (x̃(t), u(t)),

y(t) = g(x̃(t), u(t)) .
(5)

To determine the observability of a model it is necessary to calculate the nonlinear observability
matrix ONL using Lie derivatives. In the case of time-dependent entries, i.e., u(t), Lie derivatives are
computed as follows:

Definition 4. The first order Lie derivative of g(x̃) with respect to f (x̃) is:

L f g(x̃) =
∂g(x̃)

∂x̃
f (x̃, u) +

∞

∑
j=0

∂g(x̃)
∂u(j)

u(j+1) , (6)

where u(j) is the jth derivative of u.
For higher orders, i ≥ 2, the calculation is done through a recursive procedure:

Li
f g(x̃) =

∂Li−1
f g(x̃)

∂x̃
f (x̃, u) +

∞

∑
j=0

∂Li−1
f g(x̃)

∂u(j)
u(j+1) . (7)
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The observability-identifiability matrix of the previous model is defined as:

OI(x̃, u) =



∂

∂x̃
g(x̃, u)

∂

∂x̃
(L f g(x̃, u))

∂

∂x̃
(L2

f g(x̃, u))
...

∂

∂x̃
(Lnx̃−1

f g(x̃, u))


. (8)

Theorem 1. Nonlinear Observability-Identifiability Condition (OIC). If the model (5) satisfies
rank(OI(x̃0, u)) = m + q + mw, with OI(x̃0, u) given by (8), where x̃0 is a point in the augmented state space,
then the model is locally observable and locally structurally identifiable in a neighbourhood N (x̃0) of x̃0 [18].

If the OIC is not fulfilled, there is at least one unobservable (respectively, unidentifiable) state
(respectively, parameter). In that case, full observability may sometimes be achieved by measuring
more variables or functions. However, sometimes it is not possible to perform more measurements
due to the characteristics of the experiments.

2.2. Lie Symmetries and Structural Unidentifiability

Yates et al. [12] showed that the existence of Lie symmetries entails the existence of similarity
transformations, and therefore denotes lack of structural identifiability [13,14]. Similarity transformations
allow the existence of parameters and variables transformations that leave the output(s) unchanged.

In Lie algebra, similarity transformations are one-parameter Lie group morphisms that map a
solution of the differential equation onto themselves in terms of state variables. There are an infinite
number of ways to represent this morphism, however the representation is unique when independent
variables are fixed. The uniqueness of representation is a key property for the purpose of implementing
the algorithm.

The expression of the one-parameter Lie group of transformations is:

x∗ = X(x; ε) . (9)

Expanding the above expression in some neighborhood of ε = 0 :

x∗ = x + ε

(
∂X(x; ε)

∂ε
|ε=0

)
+

1
2

ε2
(

∂2X(x; ε)

∂ε2 |ε=0

)
+ ... = x + ε

(
∂X(x; ε)

∂ε
|ε=0

)
+ O(ε2) , (10)

where

η(x) =
∂X(x; ε)

∂ε
|ε=0 (11)

is the infinitesimal of (9) and x + εη(x) is the infinitesimal transformation of the Lie group of
transformations.

Definition 5 ([9]). The infinitesimal generator of the one-parameter Lie group of transformations is the
differential operator:

X = X(x) = η(x) · 5 =
n

∑
i=1

ηi(x)
∂

∂xi
, (12)
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where5 defines the gradient

5 =

(
∂

∂x1
,

∂

∂x2
, ...,

∂

∂xn

)
. (13)

Theorem 2. First Fundamental Theorem of Lie [9]. Given an initial value problem (IVP) for a system of
first-order ODEs:

dx∗

dτ
= η(x∗) , (14)

x∗ = x when τ = 0 . (15)

The Lie group of transformations (9) is equivalent to the above IVP with the parametrization τ(ε):

τ(ε) =
∫ ε

0
Γ(ε′)dε′ ,

where

Γ(ε) =
∂φ(a, b)

∂b
|(a,b)=(ε−1, ε) ,

Γ(0) = 1 .

φ(a, b) is the law of composition and ε−1 denotes the inverse element to ε.

The above theorem shows how infinitesimal transformations contain the essential information
that determines the uniparametric Lie group of transformations. From Theorem (2) and without loss of
generality, it is assumed that the Lie group of transformations has as its law of composition φ(a, b) =
a + b with ε−1 = −ε and Γ(ε) = 1 [9]. Therefore, the uniparametric Lie group of transformations (9) is
rewritten, in terms of its infinitesimals η(x∗), as:

dx∗

dε
= η(x∗) ,

x∗ = x at ε = 0 .
(16)

The above expression defines an Initial Value Problem (IVP) for the Lie group of transformations
in terms of its infinitesimals generators.

The exponential parametrization of the Lie group around the identity is:

Theorem 3 ([9]). The one-parameter Lie group of transformations (9) is equivalent to:

x∗ = exp[εX]x = x + εXx +
1
2

ε2X2x + ... = (17)

=

(
1 + εX +

1
2

ε2X2 + ...
)

x =
∞

∑
k=0

εk

k!
Xkx ,

where X is given by (12) and Xk = XXk−1, k = 1, 2... with X0x = x.

For a more detailed background, we refer the reader to [9,11].

2.2.1. Computing Symmetries

Let us consider the same ODE system as in (1). The state vector will be augmented with parameters
and unknown inputs, as mentioned earlier:

ẋi(t) = fi(x(t), u(t)), i = 1, ..., m

xi(t) = θ, i = m + 1, ..., m + q

xi(t) = wi(t), i = m + q + 1, ..., n∗
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where n∗ = m + q + mw.
We will study three different infinitesimals. Considering dmax, d ∈ N as the maximum degree for

polynomials and ri,d unknown constants to determine, the expressions of infinitesimals are:

• Univariate:

ηi(x) =
dmax

∑
d=0

ri,dxd
i , i = 1, ..., n∗ . (18)

• Partially variate:

ηi(x) =
|d|=dmax

∑
di ,dm+1,...,dm+q=0

ri,dxdi
i xdm+1

m+1 · · · x
dm+q
m+q , i = 1, ..., m ,

ηi(x) =
|d|=dmax

∑
dm+1,...,dm+q=0

ri,dxdm+1
m+1 · · · x

dm+q
m+q , i = m + 1, ..., m + q ,

ηi(x) =
|d|=dmax

∑
di ,dm+1,...,dm+q=0

ri,dxdi
i xdm+1

m+1 · · · x
dm+q
m+q , i = m + q + 1, ..., n∗ .

(19)

• Multivariate:

ηi(x) =
|d|=dmax

∑
d1,...,dm+q=0

ri,dxd1
1 · · · x

dm+q
m+q , i = 1, ..., m ,

ηi(x) =
|d|=dmax

∑
dm+1,...,dm+q=0

ri,dxdm+1
m+1 · · · x

dm+q
m+q , i = m + 1, ..., m + q ,

ηi(x) =
|d|=dmax

∑
d1,...,dn∗=0

ri,dxd1
1 · · · x

dn∗
n∗ , i = 1, ..., n∗ .

(20)

The derivative of infinitesimal generators is also defined, so that it can act on the ẋ(t):

X′ =
n∗

∑
i=1

ηi(x)
∂

∂xi
+

n∗

∑
i=1

η′i (x)
∂

∂ẋi
, (21)

where

η′i (x) =
n∗

∑
j=1

ẋj
∂ηi
∂xj

.

Using the above formulation for infinitesimals generators, the following explicit criterion for
admittance of a Lie group of transformations is obtained:

Theorem 4 ([9,10]). The system of ordinary differential equations admits a one-parameter Lie group of
transformations defined by the infinitesimal generator (12) if and only if:

X′ · (ẋk − fk(x)) = 0, k = 1, ..., m (22)

X · (yl − gl(x)) = 0, l = 1, ..., n (23)
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Applying the previous theorem to the initial system (1), we obtain an explicit criterion:

n∗

∑
j=1

ẋj
∂ηk
∂xj

(x)−
n∗

∑
i=1

ηi(x)
∂ fk
∂xi

(x) =0, k = 1, ..., m

n∗

∑
i=1

ηi(x)
∂gl
∂xi

(x) =0, l = 1, ..., n

(24)

An admitted Lie symmetry is a continuous group of transformations X such that the observation
(observed datum) is unchanged:

g(x∗(t), u∗(t)) = g(x(t), u(t))

The output map should not be modified. The above system defines a system of partial differential
equations. If we consider the rational form of fk(x) and gl(x):

ẋk = fk(x) =
Pk(x)
Qk(x)

, k = 1, ..., m ,

yl = gl(x) =
Rl(x)
Sl(x)

, l = 1, ..., n ,

(25)

then, the system of PDEs (24) is converted into a system of ODEs.
There are different expressions of (24) depending on the infinitesimal generator:

• Univariate and partial:

PkQk ∂ηk
∂xk
−

n∗

∑
i=1

ηi[Pk
xi

Qk − PkQk
xi
] =0, k = 1, ..., m ,

n∗

∑
i=1

ηi[Rl
xi

Sl − RlSl
xi
] =0, l = 1, ..., n .

(26)

• Multivariate:

m

∑
j=1

PjQk

(
∏
b 6=j

Qb

)
∂ηk
∂xj
−

n∗

∑
i=1

ηi

(
∏
b 6=k

Qb

)
[Pk

xi
Qk − PkQk

xi
] =0, k = 1, ..., m ,

n∗

∑
i=1

ηi[Rl
xi

Sl − RlSl
xi
] =0, l = 1, ..., n .

(27)

Each of these equations can be reordered based on the combinations among the components of x.
Let r be a vector containing all ri,d:

∑
i1,...,in

ci1,...,in(r)xi1
1 · · · x

in
n = 0 . (28)

The coefficients ci1,...,in are linear in r and its matrix form expression allows to reformulate condition
(26) and (27) into:

C · r = 0 .

The problem of finding symmetries is equivalent to solving a linear system of equations with
numeric entries. However, C is a non-square matrix and, in order to find all the solutions, it is necessary
to compute its kernel. It is possible that the obtained solutions are not independent of each other, as a
result of linear combinations or multiplication by xi; for this reason, we will only consider solutions
that are independent of each other and in their greatest degree of simplification.
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The next step is to build the expression of x∗ with the infinitesimal generators as in Theorem (3).
When the infinitesimal transformation is given by powers of the variable, the exact transformation is
known and it is classified as “elementary”. Some examples are:

x∗i = xi + ε, X =
∂

∂xi
(translation)

x∗i = exp(ε)xi, X = xi
∂

∂xi
(scaling)

x∗i =
xi

1− εxi
, X = x2

i
∂

∂xi
(Mobius)

x∗i =
xi

[1− (p− 1)εxp−1
i ]

1
p−1

, X = xp
i

∂

∂xi
(higher order)

(29)

The most common types of symmetries in biochemical models are translation and scaling.
However, those elementary transformations cover only a part of the possible symmetries that a
model can contain. The others must be calculated using Lie series or solving the IVP (16).

It is possible to maximize the number of elementary transformations given by an infinitesimal
generator before applying Lie series. This process starts by searching for all parameter combinations
that forbid an elementary transformation, and dividing the initial infinitesimal generator by them. Each
new infinitesimal generator provides a number of elementary transformations that can be greater than,
lower than or equal to the initial one. Maximizing the total amount, we will obtain an infinitesimal
generator that provides the largest possible number of elementary transformations.

2.2.2. Initial Conditions

The definition of a dynamic model may include specific initial conditions (ICS), which can be
numeric, parametric (known or unknown) or a combination of both [19,20]. Perturbations in ICS must
produce changes in the output y(t) for the model to be observable.

If the symmetries are studied without taking into account the ICS, it may happen that the
generators do not fulfill them. It is important to consider only the generators that satisfy the ICS [19];
by including them as output vectors, a symmetry is admitted by the system if and only if:

X · (xk(t0)− x0(θ))|x=x0(θ)
= 0, k = 1, ..., m , (30)

wherex0(θ) are the ICS (parametric, numerical or a combination of both). Expanding the
above equation:

n∗

∑
i=1

ηi
∂

∂xi
xk(t0)|x=x0(θ)

−
n∗

∑
i=1

ηi
∂

∂xi
x0(θ)|x=x0(θ)

= 0, k = 1, ..., m . (31)

Considering the rational form of x0(θ):

x0(θ) =
Vk(x)
Wk(x)

, k = 1, ..., m .

Expression (31) is reformulated as follow:

n∗

∑
i=1

ηi(x0(θ))−
n∗

∑
i=1

ηi
Vk

xi
Wk −VkWk

xi

(Wk)2
|x=x0(θ)

= 0, k = 1, ..., m . (32)

This new restriction allows us to consider only those symmetries that fulfill the initial conditions,
and provides a tool for study the influence of them.
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2.3. Implementation

An overview of the algorithm described in the preceding subsections is shown in Figure 1. We have
made a MATLAB implementation available at https://github.com/GemmaMasFes6/Lie-Symmetries,
and as part of a new version (v2.1.6) of the STRIKE-GOLDD toolbox (https://github.com/afvillaverde/
strike-goldd_2.1); it will also be included in future releases of said toolbox. Our code represents an
addition to the set of existing tools for studying differential equation symmetries, which include
symmetryDetection [15] in Python, MinimalOutputSets [19] in Mathematica, and SADE [21] in Maple.
Our software is open source and, to the best of our knowledge, it is the first tool of its characteristics
available in MATLAB.

Figure 1. Diagram of the algorithm.

The code consists of a main MATLAB script, ‘Lie_Symmetry’, and ten auxiliary functions defined
in separate files. Each of these functions performs one of the stages outlined above: calculation of

https://github.com/GemmaMasFes6/Lie-Symmetries
https://github.com/afvillaverde/strike-goldd_2.1
https://github.com/afvillaverde/strike-goldd_2.1
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infinitesimal polynomials (univariate, partially variate and multivariate); computation of polynomials
for states (depending on the type of polynomial there are two possibilities), observations, and ICS (if
they are specified); and obtaining the transformations. The last step in turn incorporates two other
functions, corresponding to maximizing the number of elementary transformations and, if necessary,
calculating the transformations using Lie series.

The algorithm has a number of options that can be specified by the user: the type of infinitesimal
polynomial, its degree, and the number of terms in Lie series (in case it has to be used).

The input of the programme must include the following vectors of symbolic variables, declared
through the MATLAB sym command: parameters, states, initial conditions, ODEs, observations, and
inputs (known or unknown). For initial conditions, two vectors must be provided: a vector called
known_ics with entries equal to 1 for a known initial condition and 0 otherwise, and a vector ics with
the values of the known ICS, either numeric or (known or unknown) parametric value.

The output of the programme first reports whether there is any symmetry. If a symmetry exists,
the programme prints the infinitesimal generator and the transformations on the screen.

3. Results

To illustrate the application of the method in biological and biomedical modelling, we use it to
analyse a set of models taken from the literature. The models are listed in Table 1 and their schematic
representations are shown in Figure 2.

Table 1. List of models analysed in this paper and summary of their features.

Model Name (and Acronym) Reference States Parameters Outputs

Simple chemical reaction (CR) [15] A k, s1, s2 Aobs

Pharmacokinetic model (PK) [22] x1, x2, x3, x4 k1, k2, k3, k5, xobs
2 , xobs

3
k6, k7, s2, s3

NF-κB signalling pathway (NFKB)
[23] x1, x2, x3, x4, x5, k0, k1, k1p, k2, k3, k4, y1, y2, y3, y4

x6, x7, x8, x9, x10 k5, k6, k7, k8, k9, k10, k11,
s1, s2, s3, s4, ρvol, I0cyt , I0nuc

Glucose-insulin regulation (Bolie) [24] q1, q2 p1, p2, p3, p4, Vp h

3.1. Simple Chemical Reaction

This model represents a bimolecular reaction described by one ODE and one observation [15]:

Ȧ = −2kA2 ,

Aobs = s1
A

1 + s2 A
.

(33)

It is used to provide a basic illustration of the methodology, due to its simplicity. Without
considering initial conditions, and using an univariate polynomial of second order, the programme
finds two infinitesimal generators:

X = A
∂

∂A
− k

∂

∂k
− s1

∂

∂s1
− s2

∂

∂s2
,

X = A2 ∂

∂A
+

∂

∂s2
.

(34)
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Figure 2. Diagrams of the models analysed in this article. (A) Simple chemical reaction.
(B) Pharmacokinetic model. (C) NF-κB signalling pathway. (D) Glucose-insulin regulation system.

All the transformations are elementary:

A∗ = eε A , k∗ = e−εk , s∗1 = e−εs1 , s∗2 = e−εs2 .

A∗ =
A

1− εA
, s∗2 = s2 + ε .

(35)

Our results coincide with those reported in [15]. It is possible to include ICS in order to study its
influence in the model.

This example, because of its simplicity, allows us to check the results manually. Once the
transformations are computed, it is easy to see that the second group of transformations solves
the same ODE. The time derivative of A∗ is:

Ȧ∗ =
Ȧ

(1− εA)2

Incorporating the above expression with A∗ in (33), the ODE is still fulfilled.
Below are two screenshots of the results of the observability and identifiability analysis obtained

with STRIKE-GOLDD. In the first panel, Figure 3 (Page 1), corresponding to the initial model, all states
and parameters are unobservable; in the second one, Figure 3 (Page 2), corresponding to the model
with Lie transformations given by the second generator, states and parameters are observable.
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Figure 3. Output of STRIKE-GOLDD for the initial model (Page 1) and the model with one-parameter
Lie transformations (Page 2).

3.2. Pharmacokinetic Model

A pharmacokinetic (PK) model describes the time course of the concentrations of a drug in
different compartments, after entering an organism. This model includes one input, four ODEs, and
two outputs [22,25]:

ẋ1 = u− (k1 + k2)x1 ,

ẋ2 = k1x1 − (k3 + k6 + k7)x2 + k5x4 ,

ẋ3 = k2x1 + k3x2 − k4x3 ,

ẋ4 = k6x2 − k5x4 ,

xobs
2 = s2x2 ,

xobs
3 = s3x3 .

We use partial variate polynomials of second order, without ICS. Maximizing the number of
elementary transformations leads to four of them, and the procedure yields the following infinitesimal
generator:

X = k1

(
∂

∂k1
− ∂

∂k2

)
− k3(k1 + k2)

k2

(
∂

∂k3
− ∂

∂k7

)
− s2

∂

∂s2
+

k1s3

k2

∂

∂s3
+ x2

∂

∂x2
− k1s3

k2

∂

∂x3
+ x4

∂

∂x4
.

The formulation of the IVP (16) for this infinitesimal generator, considering only the
non-elementary transformations, is:
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k̇2
∗
= −k∗1 , k∗2(0) = k2 ,

k̇3
∗
= −k∗3

(k∗1 + k∗2)
k∗2

, k∗3(0) = k3 ,

k̇7
∗
= k∗3

(k∗1 + k∗2)
k∗2

, k∗7(0) = k7 ,

ṡ3
∗ =

k∗1s∗3
k∗2

, s∗3(0) = s3 ,

ẋ3
∗ = −

k∗1x∗3
k∗2

, x∗3(0) = x3 .

The solution of the ODE system, replacing k∗1 with its transformation, is:

k∗2 =k1 + k2 − k1eε , (36)

k∗3 =
k3e−ε(k1 + k2 − k1eε)

k2
, (37)

k∗7 =k7 +
k3(k1 + k2)

k2
− k3e−ε(k1 + k2)

k2
, (38)

x∗3 =
x3(k1 + k2 − k1eε)

k2
, (39)

s∗3 =
k2s3

(k1 + k2 − k1eε)
. (40)

These new transformations coincide with those presented in [25]. Using Lie series in the
infinitesimal generator, the new expressions are:

x∗2 = x2eε , x∗4 = x4eε , k∗1 = k1eε , s∗2 = s2e−ε , (41)

x∗3 = x3 −
εk1x3

k2
− ε2k1x3

2k2
− ε3k1x3

6k2
− ε4k1x3

24k2
, (42)

k∗2 = k2 − εk1 −
ε2k1

2
− ε3k1

6
− ε4k1

24
, (43)

k∗3 = k3 −
k3(k1 + k2)ε

k2
+

ε2k3(k1 + k2)

2k2
− ε3k3(k1 + k2)

6k2
+

ε4k3(k1 + k2)

24k2
, (44)

k∗7 = k7 +
k3(k1 + k2)ε

k2
− ε2k3(k1 + k2)

2k2
+

ε3k3(k1 + k2)

6k2
− ε4k3(k1 + k2)

24k2
, (45)

s∗3 = s3 +
εk1s3

k2
+

ε2k1s3(2k1 + k2)

2k2
2

+
ε3k1s3(6k2

1 + 6k1k2 + k2
2)

6k3
2

+ (46)

+
ε4k1s3(24k3

1 + 36k2
1k2 + 14k1k2

2 + k3
2)

24k4
2

.

These expressions seem to differ from the closed form, however, the result can be reformulated in
order to obtain them. Taking as example x∗3 :

x∗3 = x3 −
k1x3

k2

(
ε +

ε2

2
+

ε3

6
+

ε4

24

)
. (47)
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The last part of the previous expression consists of the first terms of the following series:

∞

∑
n=0

εn

n!
− 1 = eε − 1 . (48)

Substituting (48) in (47), the transformation of x∗3 is the same as the one obtained from IVP:

x∗3 = x3 −
k1x3

k2
(eε − 1) =

x3k2 − k1x3(eε − 1)
k2

=
x3(k2 − k1(eε − 1))

k2
.

The most complicated case appears to be s∗3 . The expression obtained from the IVP (40) can be
rearranged as:

s∗3 =
k2s3

k2 + k1(1− eε)
=

s3

1− k1
k2
(eε − 1)

= s3

∞

∑
n=0

(
k1

k2
(eε − 1)

)n
. (49)

It is only necessary to prove that (46) is the same as (49) to show that both transformations are
equal. Equation (46) can be reordered in terms of the powers of k1/k2:

s∗3 = s3

(
1 +

k1

k2

(
ε +

ε2

2
+

ε3

6
+

ε4

24

)
+

k2
1

k2
2

(
ε2 + ε3 +

7ε4

12

)
+

k3
1

k3
2

(
ε3 +

3ε4

2

)
+

k4
1ε4

k4
2

)
. (50)

The coefficient of k1/k2 is eε − 1, as was proven before in (47) and (48).
The coefficient of the third term must be equal to

(eε − 1)2 = e2ε + 1− 2eε .

Considering the Taylor series of the previous expression until the fifth order,

1 + 2ε + 2ε2 +
8ε3

6
+

16ε4

24
+ 1− 2− 2ε− ε2 − ε3

3
− 2ε4

24
= ε2 + ε3 +

7ε4

12
, (51)

we obtain that the final expression is the same as that presented in (50).
The coefficient of k3

1/k3
2 is the result of considering some terms of the Taylor series of (eε − 1)3:

3
(

1 + ε +
ε2

2
+

ε3

6
+

ε4

24

)
− 3

(
1 + 2ε + 2ε2 +

8ε3

6
+

16ε4

24

)
+

(
1 + 3ε +

9ε2

2
+

27ε3

6
+

81ε4

24

)
− 1 =

= ε3 +
36ε4

24
= ε3 +

3ε4

2
.

It is necessary to consider more terms of the Lie series to prove that the coefficient of k4
1/k4

2 is
(eε − 1)4. In any case, regardless of the model under consideration, the transformations obtained with
Lie series—that is, the output of the programme—are the expanding form of the solution of the IVP. In
order to obtain a good approximation of the closed form (36)–(40) the programme needs to consider
sufficient terms of the Lie series. For this case, two terms are sufficient to achieve full observability
(i.e., FISPO).

This model had been previously analysed in [15,25]. In [15] a different infinitesimal generator was
obtained; due to the lack of a method to compute non-elementary transformations, it was not possible
to obtain all transformations. In [25] the same infinitesimal generator as reported here was obtained,
and transformations were computed using Hermite-Padé polynomials. The resulting transformations
in [25] are the same as those obtained from the IVP, as well as those obtained by our programme using
Lie series.
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3.3. NF-κB Signalling Pathway

The model studied in this example was described in [23,26]. It represents a cellular signaling
pathway found in most animal cells, corresponding to the NF-κB transcription factor. It is depicted in
Figure 2C, where black arrows indicate exit routes.

ẋ1 = k11x10 −
(

k1u
1 + k0u

+ k1p

)
x1 ,

ẋ2 =

(
k1u

1 + k0u
+ k1p

)
x1 − k2x2 ,

ẋ3 = k2x2 − k3x3 ,

ẋ4 = k2x2 − k4x4 ,

ẋ5 = k3ρvolx3 − k5x5 ,

ẋ6 = k5x5 − k10x9x6 ,

ẋ7 = k6x6 − k7x7 ,

ẋ8 = k8x7 − k9x8 ,

ẋ9 = k9ρvolx8 − k10x9x6 ,

ẋ10 = k10x9x6 − k11ρvolx10 ,

yobs
1 = s1(x1 + x2 + x3) + I0cyt ,

yobs
2 = s2(x10 + x5 + x6) + I0nuc ,

yobs
3 = s3(x2 + x3) ,

yobs
4 = s4(x2 + x4) .

This model is the only one studied with ICS. In this case, they are parametric and include an
additional parameter, x10 , that does not appear in the model equations:

x1(0) = x10 , x2(0) =
k1px1

k2
, x3(0) =

k1px1

k3
,

x4(0) =
k1px1

k4
, x5(0) =

k3ρvolx3

k5
, x6(0) =

k7x7

k6
,

x7(0) =
k9x8

k8
, x8(0) =

k3x3

k9
, x9(0) =

k5x5

x6k10
, x10(0) =

k1px1

k11
.

Using a second order univariate polynomial, the following infinitesimal transformations
were found:

• Scaling symmetry was found for the known input function and two parameters:

u∗ = ue−ε; k∗i = kieε i = 0, 1 .

• The second symmetry was also for the input function and one parameter, in this case, a Mobius
and translation symmetry, respectively:

u∗ = − u
εu− 1

; k∗0 = k0 + ε .

• Another scaling symmetry involving one state and two parameters:

x∗7 = x7e−ε; k∗6 = k6e−ε; k∗8 = k8eε .
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• One scaling type symmetry is admitted using the parameter ρvol. All the nucleus states, as well as
four parameters, take part in the symmetry:

x∗i = xieε i = 5, 6, 9, 10; s∗2 = s2e−ε ;

k∗i = kie−ε i = 6, 10, 11; ρ∗vol = ρvoleε .

• The last symmetry is the only one that involves the initial condition parameter, x10 . All of the
states have a scaling type symmetry, compensated by the scaling factor of si and k10:

x∗i = xieε i = 1, ..., 10; s∗i = sie−ε i = 1, ..., 4 ;

k∗10 = k10e−ε; x∗10
= x10 eε .

All of the symmetries are elementary transformations and it was not necessary to use Lie series. If
ICS had not been considered, the symmetries would be elementary too.

This model was studied in [15]. The results of the first four transformations presented above
coincide with those found in [15]; however, the last transformation includes the ICS parameter, unlike
in the aforementioned article.

3.4. Glucose-Insulin Regulation

This model describes the regulation of blood glucose and insulin [24]. It has two states (glucose
and insulin), one output (a glucose measurement), and a known input (the glucose entering from the
digestive system):

q̇1 = u + p1q1 − p2q2 ,

q̇2 = p3q2 + p4q1 ,

y =
q1

Vp
.

Here we analyse its symmetries without considering ICS. The model has two infinitesimal generators,
which can be found using multivariate polynomials of second order:

X = q2
∂

∂q2
− p2

∂

∂p2
+ p4

∂

∂p4
,

X = −q1
∂

∂q1
+

u + p3q1

p2

∂

∂q2
+ p3

∂

∂p1
− p2

∂

∂p2
− p3

∂

∂p3
+

+
p1 p3 − p2

3 + p2 p4

p2

∂

∂p4
−Vp

∂

∂Vp
.

The first infinitesimal generator includes only elementary transformations:

q∗2 = q2eε , p∗2 = p2e−ε , p∗4 = p4eε .
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The second infinitesimal generator has seven transformations, four of which are elementary:

q∗1 = q1e−ε , p∗2 = p2e−ε , p∗3 = p3e−ε , V∗p = Vpe−ε ,

q∗2 =
(u− p3q1)ε

4

24p2
+

(u + p3q1)ε
3

6p2
+

(u− p3q1)ε
2

2p2
+

(u + p3q1)ε

p2
+ q2 ,

p∗1 = − p3ε4

24
+

p3ε3

6
− p3ε2

2
+ p3ε + p1 ,

p∗4 =
(p2

3 + p1 p3 + p2 p4)ε
4

24p2
+

(−p2
3 + p1 p3 + p2 p4)ε

3

6p2
+

+
(p2

3 + p1 p3 + p2 p4)ε
2

2p2
+

(−p2
3 + p1 p3 + p2 p4)ε

p2
+ p4 .

Considering two terms of Lie series, the reparameterized model is FISPO, as classified by
STRIKE-GOLDD.

The formulation of the IVP for the second infinitesimal generator is:

q̇1
∗ = −q∗1 , q∗1(0) = q1 ,

q̇2
∗ =

u + p∗3q∗1
p∗2

, q∗2(0) = q2 ,

ṗ1
∗ = p∗3 , k∗7(0) = k7 ,

ṗ2
∗ = −p∗2 , p∗2(0) = p2 ,

ṗ3
∗ = −p∗3 , p∗3(0) = p3 ,

ṗ4
∗ =

p∗1 p∗3 − (p∗3)
2 + p∗2 p∗4

p∗2
, p∗4(0) = p4 .

V̇p
∗
= −V∗p , V∗p (0) = Vp .

The solution of the ODE system is:

q∗1 =q1e−ε ,

q∗2 =q2 +
e−ε p3q1 + eεu

p2
,

p∗1 =p1 + p3 − p3e−ε ,

p∗2 =p2e−ε ,

p∗3 =p3e−ε ,

p∗4 =
p2

3e−ε

p2
−

p2
3 + p1 p3

p2
+

eε(p1 p3 + p2 p4)

p2
,

V∗p =Vpe−ε .

It is possible, using the procedure described for the pharmacokinetic model, to verify that the IVP
solutions are the closed form of the solutions obtained through Lie series provided by the programme.

This model was proposed by Bolie [24] and its structural identifiability was analysed in [27] for
the first time. However, its symmetries had not been studied until now.

4. Discussion

This article has addressed the relationship between non-observability and Lie algebra. Its main
contribution is a computational method that searches for infinitesimal transformations in models
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composed of rational functions, in order to undo the symmetries that these may present. The procedure
is based on expressing each transformation admitted by the ODE system according to its infinitesimal
generator in polynomial form. In this way, the search for symmetries is equivalent to solving a system
of linear equations, whose solution yields a transformation of the parameters that makes the model
observable while leaving the observations invariant.

Our method builds on previous work [12,19,25], and especially on the procedure presented by
Merkt et al. [15], with the addition of two features. The first one is the a priori maximization of the
number of explicit transformations that can be obtained from the infinitesimal generator. The second
one is the calculation of non-elementary transformations by means of Lie series. Increasing the number
of explicit transformations is beneficial not only because it reduces the number of terms to consider
from the Lie series, but also for calculating the solutions of the IVP. The complexity of the IVP solutions
is inversely proportional to the number of explicit transformations. The pharmacokinetic model (PK)
analysed here illustrates this point: without the use of the maximization of explicit transformations,
MATLAB’s symbolic math toolbox did not manage to solve the IVP.

The algorithm allows to study the influence of the initial conditions in the model. The type of ICS
(parametric, numeric or both) and the states that incorporate them may affect the number and type of
symmetries of the models, varying from explicit to non-elementary transformations and reducing the
number of infinitesimal generators.

We have implemented the method as a MATLAB programme that automates both the search
for symmetries and the reconstruction of the model from the infinitesimal generators found. The
programme has been integrated in the STRIKE-GOLDD toolbox for observability and identifiability
analysis. The software has been tested with four previously published biomedical models, one of
which—Bolie’s glucose-insulin regulation model—had not been tested for symmetries before. In the
other cases our diagnoses mostly agree with those previously reported in the literature. An exception
is the NF-κB model, for which we found an infinitesimal generator that includes the parameter
introduced by the initial conditions and that was not found in a previous analysis [15]. We observed
another difference between our software and the one provided with [15]: when analysing the chemical
reaction (CR) and pharmacokinetic (PK) models, the generators obtained with our code remained the
same when varying the type of polynomial and degree; in contrast, the generators obtained with the
programme of [15] changed when using partially varied and multivariate polynomials of order three
or higher. These discrepancies may be due to implementation issues.

Our symmetry-detecting algorithm can be directly used to analyse structural identifiability
and observability, providing an alternative to the OIC-checking algorithm already included in
STRIKE-GOLDD for that purpose. More importantly however, this new code provides additional
information about the relationships between model variables that cause loss of identifiability and/or
observability. These insights can be exploited in two ways: (i) by fixing one or more parameters
involved in a symmetry, in order to render the remaining ones identifiable, and (ii) by using
the symmetry-breaking transformations to reformulate the model, yielding a modified model
that is identifiable and observable. To facilitate the application of the latter procedure, we have
implemented in our programme the semi-automatic transformation of a non-observable (respectively,
non-identifiable) model into an observable (respectively, identifiable) model. It should be noted that,
while said transformation may render a model fully observable, it also modifies the expression of the
variables involved in its equations, which lose their original mechanistic meaning. Thus, while the
results of the procedure can offer valuable insight about the model structure, they should be applied
carefully for the purpose of model reformulation.

Our programme has some known limitations. First, while it considers high order generators and
it can uncover a wide range of possible symmetries, it lacks procedures for determining a priori the
type and total number of symmetries present in a model. Second, it does not provide a bound on the
number of terms of the Lie series needed to obtain the infinitesimal transformations, when these are
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not given by explicit transformations. To the best of our knowledge, these limitations are shared with
other existing methodologies. The possibility of overcoming them will be considered in future work.
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SLI Structurally locally identifiable
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