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Enhanced Resonant Current Controller for
Grid-Connected Converters With LCL Filter

Diego Pérez-Estévez, Student Member, IEEE, Jesús Doval-Gandoy, Member, IEEE, Alejandro G. Yepes,
Member, IEEE, Óscar López, Senior Member, IEEE, Fernando Baneira, Student Member, IEEE

Abstract—Conventional resonant controllers (RCs) are com-
monly used in the current control of grid-tied converters with
LCL filter due to their advantages, such as zero steady-state
error at both fundamental sequences, easy design process, and
straightforward implementation. Nevertheless, these traditional
solutions do not permit to place the closed-loop poles of the
system in convenient locations when dealing with a fourth-
order plant model like the LCL filter plus the computation
delay. Therefore, the reference tracking and the disturbance
rejection are deficient in terms of transient behavior and depend
on the LCL filter. Furthermore, an additional active damping
method usually has to be designed in order to ensure stability.
This article presents an enhanced current RC with stable and
fast response, negligible overshoot, good disturbance rejection,
and low controller effort for grid-tied converters with LCL
filter. The developed solution uses a direct discrete-time pole-
placement strategy from the classical control theory (using
transfer functions), involving two extra filters, to enhance the
performance of the RC. In this manner, the complexity of state-
space methods from modern control theory is avoided. Simulation
and experimental results are provided to verify the effectiveness
of the proposed control scheme.

Index Terms—Current control, grid-connected converter, LCL
filter, parameter sensitivity, resonant controllers (RCs).

I. INTRODUCTION

THE increasing popularity of renewable energy sources and
distributed power generation systems [1] is imposing

higher requirements on the grid-connected converters. Fast
regulation is required to compensate for time-varying events
(e.g., voltage sags or fluctuating output power of wind gener-
ation systems) [2], [3]. Among the different converter types,
the voltage source converter (VSC) is commonly used in this
type of applications due to its controllability, compact design,
and ease of interface with power systems [4].
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However, VSCs need a filter to attenuate the high-frequency
switching currents. The LCL filter is the recommended op-
tion because of its compact size and good performance [5].
Contrarily to the attenuation of 20 dB per decade that a
conventional L filter provides above its cutoff frequency, LCL
filters attenuate the grid-side current with a slope of 60 dB
per decade above their resonant frequency. This increased
performance of the LCL filter is caused by its higher order [6].

A fundamental element that affects the performance of a
grid-tied converter is the current controller. Among the several
control structures that can be adopted, resonant controllers
(RCs) are commonly used [3], [6]–[18]. They permit to control
with zero steady-state error both the positive and the negative
sequences of the current [7]. In addition, they offer an easy de-
sign process and a straightforward implementation. The previ-
ously proposed RCs (tuned at the fundamental frequency of the
grid) can be classified into three main categories: proportional-
resonant [6], [8]–[17]; vector proportional-integral [3]; and
variations of these RCs, which improve the stability margins
for certain LCL filters and for high ratios of fundamental-
to-sampling frequency (e.g., by adding a phase compensation
scheme [7], [18]). These references propose tuning methods
for the controller gains but they do not guarantee a closed-loop
pole position independent of the LCL filter used.

Traditional RCs do not have enough order (they are second-
order transfer functions) to completely control the dynamics
of such a relatively high-order plant model that comprises
the LCL filter model plus the computation and modulation
delays (one and a half samples, respectively [19]). In other
words, this type of controller cannot arbitrarily establish the
position of the closed-loop poles of the system, because their
locations depend on the LCL filter installed. This degrades
the reference-tracking and the disturbance-rejection responses
of the system, and sometimes even the stability. Recently, the
authors of [20] have proposed a transfer-function-based current
controller for grid-tied inverters with an L filter that uses
a direct pole-placement technique resulting in an enhanced
transient response when compared to classic design. However,
to the authors knowledge, a transfer-function-based pole-
placement strategy has not yet been applied to a VSC with
an LCL filter. When an LCL filter is considered, the strategy
proposed in [20] is not suitable. In addition, it should be
noticed that a pole-placement strategy is specially convenient
in this case because of the reduced stability that results when
an LCL filter is used with a classic design. This stability
problem was analyzed in [10], where a threshold was found
for the resonant frequency of the LCL filter: fs/6 (with



fs being the sampling frequency). Such critical frequency
value determines the region where an additional damping
mechanism is necessary just to achieve stability. When the
grid-side current is controlled, the frequency region where
conventional RCs are unstable is below fs/6 [10].

Although the damping of the LCL filter can be implemented
passively or actively, the latter is usually preferred, because
passive damping causes extra losses and reduces the efficiency
of the system [21]. The different active damping schemes
can be classified according to the signal that is fed back.
Commonly, the capacitor current [12], [15], [22], the capacitor
voltage [8], [9], [13], or the grid-side current [16], [17], [23]
are the variables involved in the damping scheme. However,
these solutions need extra sensors or mechanisms to estimate
the additional signals. This increases the complexity of the
control, and some algorithms also have sensitivity problems
and reduce the overall robustness of the system (e.g., deriva-
tive filtering of a signal usually increases the noise [9]). In
addition, the active damping techniques only provide a stable
system [8], [12], [13], [15]–[17], [22], [23], but they do not
optimize the transient response in terms of controller effort,
overshoot, axis decoupling, or speed. In order to avoid these
problems, new solutions often resort to state-space controllers
from modern control theory that have a more complex design
process compared to conventional RCs [24].

Some of the proposed current RCs for VSCs with LCL
filter control the converter-side current rather than the grid-
side current [17]. However, in order to have a precise control
of the power and distortion factors of the current injected into
the grid, the grid-side current should be measured or estimated
accurately [25]. A good estimation requires a precise model
of the plant, which sometimes (especially in the case of VSCs
connected to weak grids) is not available to the designer.

In addition, there is an increasing trend in the field of control
of power converters that strives to achieve designs with faster
dynamics (higher bandwidth) [3]; but sometimes such work
comes from abstract mathematical proposals [13] where it is
difficult to assess their practical and physical consequences in
terms of controller effort and robustness to plant parameter
variations and disturbances.

This paper presents an enhanced current RC for grid-
connected converters with LCL filter. The proposed controller
includes two filters that enhance the behavior of the system: a
loop filter, which contains an RC and a prefilter. It is designed
in a systematic way and gives a consistent (in agreement with
the design) and fast transient response (using all the available
bandwidth), with low controller effort, no overshoot, and a
good robustness to disturbances and variations in the grid
impedance, which makes it particularly suitable for operation
in a weak grid. These improvements are achieved indepen-
dently of the LCL-filter resonant frequency (above and below
fs/6) and sampling frequency used, and without adding an
extra active damping method. The mathematical background
of the presented current controller is based on a direct pole-
placement strategy from the classical control theory (using
transfer functions). The proposed design process overcomes
the aforementioned problems of previously proposed RCs (i.e.,
the closed-loop poles are placed in convenient locations) and
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Fig. 1. Grid-connected VSC with an LCL filter and a grid-side current
controller.

give a performance comparable to state-space controllers that
use modern control theory [24], but based on a traditional
control structure with a simpler design process and a lower
computational load. Since transfer function control theory is
typically used in the field of current controllers in power
applications, this solution is more valuable for practicing
power-electronic engineers or researchers. In addition, the
assessment of robustness is commonly studied using a trans-
fer function analysis [10], [20]. Another advantage of the
proposal, compared to [24], is the huge reduction in the
computational load, which makes the proposal particularly
suited for an implementation in an embedded controller.

The rest of the paper is organized as follows. Section II
introduces the model of the plant, the RC, and a feedfor-
ward. Then, in Section III, the loop filter and the prefilter
are designed and the performance of the proposed current
controller concerning its time response is analyzed. Next,
in Section IV, its robustness to grid-impedance variations is
assessed. In Section V, the theory is validated by simulation
and experimental results. Finally, Section VI concludes the
work.

II. TRANSFER-FUNCTION MODELING OF THE PLANT AND
THE RESONANT CONTROLLER

This section presents the model of the augmented plant
(i.e., including the RC) and the expression of a disturbance
feedforward gain for the grid-side current controller shown in
Fig. 1, where L1, L2, and C represent the reactive elements
of the LCL filter; R1, R2, and Rc model the equivalent series
resistances of the filter (R2 also includes the equivalent loss
resistance of the VSC [19]); u′d,abc is the VSC output voltage;
i1,abc, i2,abc, and vabc are the LCL-filter state variables (the
grid-side current, the converter-side current, and the capacitor
voltage, respectively); Vg,abc is the grid voltage; and i∗1,dq
denotes the grid-side current reference in the direct quadrature
(dq) frame. The following modeling process successively
calculates transfer functions that relate the variables of interest;
each new transfer-function model is constructed from the
model obtained in the previous stage. The resultant transfer
function, denoted as augmented plant model, consists in an RC
and the discrete model of the LCL filter plus the computation
and modulation delays, and is calculated in Section II-A.
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This transfer function is used later, in Section III, where the
pole-placement is applied to design the remaining two filters
of the controller. Finally, a feedforward gain to improve the
disturbance rejection is calculated in Section II-B.

A. Model of the Augmented Plant

First, a continuous model that relates the grid-side current
i1(t) to the VSC output voltage u′d(t) for the LCL filter shown
in Fig. 2 is defined (when no reference frame in a subscript of a
variable is detailed, the αβ frame with an amplitude-invariant
transformation is assumed). The grid impedance seen at the
point of common coupling (PCC) Zg is assumed to be zero
in the model for the design of the controller because its value
is unknown at the design stage (and often even variable); its
effect is analyzed in Section IV. The resulting transfer function
in continuous time that relates the converter output voltage u′d
with the grid-side current i1 when the effect of the grid voltage
Vg is not considered is

G1(s) =
i1
u′d

∣∣∣∣
Vg=0

Zg=0

=
Zc

Z2(Z1 + Zc) + Z1Zc
(1)

where Z1, Z2, and Zc are the impedances of the reactive
elements including losses:

Z1 = sL1 +R1, Z2 = sL2 +R2, Zc = 1/(sC) +Rc. (2)

Next, (1) is discretized by using a zero-order-hold (ZOH)
equivalent [26]. The effect of the zero-order hold is mainly
to introduce a phase shift that corresponds to a time delay
of Ts/2 [26]. This discretization method takes into account
the half a sample delay added by the pulse width modulator
(PWM) [19]. The resulting model relates the PWM voltage
reference (before the ZOH) ud(k) with the sampled grid-side
current i1(k):

G1(z) =
i1
ud

∣∣∣∣
Vg=0

Zg=0

= (1− z−1)Z
{
L−1

[
G1(s)

s

]}
(3)

where Z [x(k)] and L [x(t)] denote the Laplace and Z trans-
forms of the signal x, respectively. Then, a one-sample input
(computation) delay is added to (3):

G2(z) = z−1G1(z). (4)

Furthermore, the RC CRC(z), which eliminates any steady-
state error in the grid-side current at the fundamental grid

frequency ωg , is

CRC(z) =
1

z−2 − 2cos(ωgTs)z−1 + 1
. (5)

This transfer function places two conjugated open-loop poles
at the fundamental grid frequency ωg (i.e., at positions z =
e±jωgTs , where Ts = 1/fs is the sampling period) so as to
control both positive and negative sequences. No other poles or
zeros are added to (5). Instead, the proposed controller defers
to C(z) and H(z) the task of adding extra degrees of freedom.
In this manner, the design process is simplified and a consistent
performance is obtained independently of the LCL filter used.

Hence, the model of the augmented plant (i.e., including the
RC), depicted in Fig. 2, is

G3(z) = CRC(z)G2(z). (6)

B. Disturbance Feedforward
A feedforward of the grid voltage Vg is implemented (cf.

Fig. 2) to improve the disturbance rejection and provide a
smooth start of the converter. Nevertheless, when a weak
grid is considered, the voltage feedforward can be reduced to
improve the robustness, as explained in Section IV. Therefore,
in this case, the authors recommend removing the voltage
feedforward by setting Kf to zero. When the controller output
u is zero, the capacitor voltage v should be equal to the grid-
side voltage Vg in order for the grid-side current to be zero
i1 = 0. Consequently, the necessary feedforward voltage that
should be generated at the converter output u′d is

u′d =
(Z2 + Zc)Vg

Zc
. (7)

If the effect of computation and modulation delay is com-
pensated at the fundamental grid frequency component in the
feedforward voltage uf , then the resultant feedforward gain is

Kf =
uf
Vg

=
(Z2 + Zc)e

j1.5ωgTs

Zc
. (8)

III. DESIGN OF LOOP FILTER AND THE PREFILTER

The proposed controller (shown in Fig. 3) uses an output
error feedback structure involving a loop filter and a pre-
filter [26]. The loop filter consists in two transfer functions,
namely, C(z) and CRC(z); and the prefilter is H(z).
C(z) and H(z) are described throughout this section. With

the developed scheme, only the grid-side current i1,abc and

Since zero-sequence current cannot flow, two current sensors are enough.
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the grid voltage Vg,abc are measured. These variables are
transformed to the αβ frame, resulting in i1 and Vg . The
grid-side current references of the current controller in the
positive- and negative-sequence dq frames are i∗1,dq+ and
i∗1,dq−, respectively. They are transformed to the αβ frame
before they are applied to the prefilter. The phase of the
positive-sequence fundamental grid voltage θ is estimated
by a phase-locked loop (PLL). The feedforward uf of the
grid voltage Vg is added at the controller output u. Finally,
the resulting sum is saturated (to take such effect of the
modulator into account), obtaining the saturated PWM voltage
reference usat. In the following, the two filters C(z) and H(z)
that are included in the controller (in addition to the RC)
are designed. However, in order to obtain a good design, a
previous knowledge of the bandwidth of the plant is required
to define the dominant frequency of the system.

A. Assessment of the Dominant Frequency of the System
According to the Available Bandwidth

As mentioned in the Introduction, the physical and practical
implications of the design decisions, such as the bandwidth of
the controller, should not be hidden behind the mathematical
formulation. The response to broadband signals like sags or
reference current changes is determined by the bandwidth of
the controller. If a high bandwidth is set in the controller,
fast references (high frequencies) can be followed. Regarding
disturbances, a fast compensation is obtained. However, a
fundamental fact about power-system models is that they do
not exhibit good frequency response fidelity with the real
power system beyond a certain frequency. This is due to plant
parameter variations, unmodeled dynamics, power limits, or
nonlinearities, to name a few. Here, the focus is placed on
the voltage limits of the VSC (represented by the saturator
in Fig. 3) in relation with the low-pass characteristics of the
LCL filter. In the following, an analysis of the current slew-
rate limitation and its implications on the current controller
is presented. Since the LCL filter heavily blocks the grid-side
current above the resonant frequency ωres, the VSC needs to
generate a high actuation (possibly entering into overmodula-
tion) when high frequencies (fast signals) are commanded [24].
This limitation does not depend on the type of control scheme
adopted, but on the LCL filter and dc-bus voltage of the VSC.

The VSC output voltage is bounded and depends on the
dc-bus voltage Vdc. The maximum amplitude of the voltage

The synchronous frames permit an independent control of the active and
reactive power.

step that the VSC can apply per phase to the LCL filter (in the
linear region of the PWM) is u′d,max − Vg = (2/3)Vdc − Vg .
The slew rate Sr (defined as the rate of change of current per
unit of time, i.e., the time differentiation of i1) that this step
generates in the grid-side current is

Sr =
z − 1

Ts
I1(z) =

z − 1

Ts︸ ︷︷ ︸
Time diff.

(
2Vdc

3
− Vg

)
z

z − 1︸ ︷︷ ︸
Voltage step

G1(z)︸ ︷︷ ︸
LCL filter

. (9)

On the other hand, a sinusoid of frequency fdom and amplitude
Ap has a maximum slew rate of Ssin

r = 2πfdomAp. In this
manner, the bandwidth of the current controller should be set
according to the amplitude Ap and slope Ssin

r of the maximum
expected current references and never exceed the bandwidth
in the real open-loop system, which is limited by the slew rate
(9). Therefore, the available bandwidth is

BWA =
Sr

2πAp
. (10)

This value yields an upper limit for the dominant frequency
of the system fdom. In order to ensure a negligible effect of
the damped resonant poles of the LCL filter on the system
response (as demonstrated later in Section V), the following
condition should also be met: fdom ≤ fres/2 [24]. Therefore,
the proposed controller has a dominant pole at a natural
frequency

fdom ≤ min

{
Sr

2πAp
,
fres

2

}
. (11)

B. Closed-Loop Pole Placement by Means of C(z)

The proposed pole location aims to give a constant and
predictable system performance, in combination with low
controller effort, irrespectively of the LCL filter used. C(z) is
the part of the controller transfer function that is used to place
the closed-loop poles of the system in the desired locations,
and it is calculated according to the proposed pole-placement
strategy.

The desired closed-loop pole locations are defined in the
following. The number of closed-loop poles of the complete
system is nine: four poles from the plant G2(z), two poles
from the RC CRC(z), and three poles from the controller C(z).
Therefore, nine closed-loop pole positions should be defined.

On the one hand, the transfer function of the plant model
(4) has four (open-loop) poles, which have a direct relation
with the physical system. Three of these poles model the
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LCL filter, which has two complex conjugate poles pol1,2 (its
resonant poles) at the resonant frequency and a real pole pol3

at zero frequency. The fourth pole pol4 models the computation
delay and it is placed at the origin of the z-plane. These four
poles are shown in Fig. 4(a), which depicts the pole map of
the system. To maintain the required controller effort low, the
closed-loop poles related to a physical system (as in this case)
should be kept close to the corresponding open-loop poles
whenever the response is not significantly degraded [24], [26].

The two resonant poles of the LCL filter impose serious
limitations on the transient response. In order to provide
a good response and keep the control effort low, a radial
projection [26] of the resonant poles of the plant is used. This
technique minimizes control usage by simply adding damping
(a damping factor ζ of 0.7 is used) to lightly-damped open-
loop poles without changing their natural frequency [26] [cf.
pcl1,2 in Fig. 4(a)].

The third pole of the LCL filter pol3 is displaced to a higher
natural frequency [ see pcl3 , in Fig. 4(a) ] and is set to be the
dominant pole of the system. A natural frequency fdom [cf.
(11)] is recommended for the dominant pole pcl3 , as obtained
from the available-bandwidth analysis.

The delay pole pol4 is not moved because it is already in an
optimum location (at the origin of the z-plane).

On the other hand, the rest of the poles do not correspond to
any physical system: pol5,6, the two resonant poles of CRC(z);
and pol7,8,9, the three poles of C(z). Hence, the locations of
these poles are not restricted to yield a low control effort.
Therefore, a larger bandwidth (faster poles) can be set. In this
manner, it is advisable to place the corresponding closed-loop
poles (pcl5,6,7,8,9) at natural frequencies higher (and sufficiently

damped) than that of the dominant pole pcl3 so as to ensure
that the system dynamics are similar to those of this pole
alone [26]. The locations already defined for pcl1,2,4 are also
assigned to these closed-loop poles (cf. Table I). An analogous
reasoning was applied in [24] to place the poles of the observer
in a state-feedback controller.

Table I summarizes the proposed locations for the closed-
loop poles of the plant and the controller. Appendix A presents
the mathematical details of the pole-placement design method
applied to the system, so that the poles are effectively placed
in such desired locations. In addition, the computational load
of the proposed controller is given in Appendix B.

As mentioned in Section I, the design process is straight-
forward compared with other techniques, because of the use
of a direct discrete-time pole-placement strategy. The poles
are in the desired locations [cf. Table I] provided that the
grid impedance is zero, because the design process takes into
account the resonant frequency of the LCL filter.

C. Prefilter for Eliminating the Slow Zeros

Although the location of the poles determines the system
modes, it is the location of the zeros which determines the
proportion in which these modes are combined in order to
produce the system response [26].

On the one hand, the LCL filter model (1) does not have
any zeros. However, all discrete-time models obtained by
discretization of continuous ones turn out to have relative

The system modes of a linear system determine the system behavior. Any
zero-input response of a linear system is a linear combination of its system
modes [26].



TABLE I
POLE PLACEMENT

Poles
Position in the z-plane

Open-loop Closed-loop

G1(z)
LCL
filter

Radial projection of resonant poles to ζ = 0.7.

pol1,2 = e±jωresTs pcl1,2 = e−(ζωres±jωres

√
1−ζ2)Ts

Moved to make it the dominant pole, with a high bandwidth.

pol3 = 1 pcl3 = e−ωdomTs

Comp.
delay

Not moved; already in a fast and damped location.

pol4 = 0 pcl4 = 0

CRC(z)
Resonant
controller

Moved to twice the frequency of the dominant pole.

pol5,6 = e±jωgTs pcl5,6 = e−2ωdomTs

C(z)
controller

Placed at natural frequencies higher (and sufficiently damped)
than that of the dominant pole pcl3 . The open-loop pole
positions of C(z) (the roots of its denominator) are obtained
from its denominator coefficients n0, n1, n2, and n3, which
are given in Appendix A.
pol
7,8,9 = roots([n3, n2, n1, n0]) pcl7,9 = pcl1,2 pcl8 = pcl4

degree one, irrespective of the relative degree of the original
continuous system [27]. The relative degree of a transfer
function is the difference between the degree of the denom-
inator (number of poles) and that of the numerator (number
of zeros). Therefore, when the third-order LCL filter model is
discretized, two fast (placed at much higher natural frequencies
than the dominant pole) zeros z1,2 appear. These sampling
zeros (introduced by the discretization process [28]) should
never be canceled or compensated [27], in order to avoid high-
frequency oscillations. Fig. 4(b) shows the zero map of the
closed-loop system, where these zeros can be seen.

On the other hand, the controller C(z) has five zeros
[cf. Fig. 4(b)]: two slow zeros (much closer to the stability
boundary than the system dominant pole) z3,4, one fast zero
z5, and two non-minimum-phase zeros z6,7 whose location
varies significantly with the resonant frequency of the LCL
filter. This variation in the location of the zeros is shown in
Fig. 5, which depicts the root locus of the closed-loop system
for a sweep in the resonant frequency of the LCL filter.

In order to obtain a good transient response, it should
be ensured that there are no zeros with natural frequencies
below that of the dominant pole [27]. The effect of the zeros
z1,2,5,6,7 on the response is negligible because they are placed
in regions of natural frequencies above that of the dominant
pole. However, there are two slow zeros, z3,4 [cf. Figs. 4(b) and
5], which should be removed. Hence, the following prefilter
H(z) is added, as depicted in Fig. 3, in order to cancel the
two slow zeros z3,4 with two additional poles:

H(z) =
z

(z − z3)(z − z4)
. (12)

The added zero at the origin cancels pcl4 ; hence, the system
response is one sample faster. This prefilter also modifies the
gain and phase of the closed-loop system at the grid frequency;
therefore, a pair of complex gains K+ and K− are added (cf.
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Fig. 3) to restore the unity gain:

K+ =
1

H(ejωgTs)
and K− =

1

H(e−jωgTs)
. (13)

In summary, the controller changes the dynamics of the
open-loop plant to the desired closed-loop dynamics. The
open-loop plant model G2(z) does not have a flat frequency
response. It has a pole at dc and two complex-conjugate poles
at the resonant frequency of the LCL filter, cf. Fig. 6. When
the loop filter is installed, the closed-loop transfer function of
the system is

Gcl(z) =
i1
i∗1

∣∣∣∣
Vg=0

=
C(z)GRC(z)G2(z)

1 + C(z)GRC(z)G2(z)
. (14)

This transfer function has a damped response, as expected
from the proposed closed-loop poles locations, cf. Fig. 6.
Nevertheless, the obtained response still does not have the
desired flat low-pass response. C(z) introduces two slow zeros
at a frequency fsz that is lower than the frequency of the
dominant pole of the system fdom. These zeros are the cause
of the swell in the frequency response of the system. By adding
the prefilter, the desired closed-loop response is obtained, cf.
Fig. 6. The final bandwidth of the current controller is slightly
less than the specified fdom because of the extra non-dominant
poles of the system; however, the response approximates
accurately that of a first order of system.

IV. SENSITIVITY TO GRID-IMPEDANCE VARIATIONS

The robustness analysis to the grid impedance is structured
into three parts. In the first place, the parameters involved in
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the analysis are discussed. This permits to generalize the con-
clusions obtained to any LCL filter and sampling frequency.
In the second place, a robustness analysis is carried out using
a Nyquist diagram to obtain the phase and gain margins of the
system for all combinations of LCL filter values and sampling
frequencies. A frequency region 1/10 ≤ fres/fs ≤ 1/4, which
includes the different regions established in [10], is chosen. In
the third place, the effect of the grid impedance on the gain
and phase margins of the system is analyzed. Such analysis
gives an insight to the previous mathematical results and helps
to understand the practical implications of increasing the grid
impedance.

In order to analyze the robustness of the proposed controller
to variations in the grid impedance, first, the parameters
involved in the analysis need to be presented. The open-
loop transfer function (OLTF) is the transfer function that
determines the stability of the system. It is the transfer function
where the gain and phase margins of the system are calculated,
and also where the Nyquist stability criterion is applied. The
OLTF of the proposal is the product of the loop filter times
the discrete-time plant model (cf. Fig. 3):

OLTF = C(z)CRC(z)︸ ︷︷ ︸
Loop filter

G2(z). (15)

The plant model depends on seven parameters: the filter
reactive values L1, L2, and C; the equivalent series resistances
(ESRs) R1, R2, and Rc; and the sampling frequency fs. In
addition, the designer also specifies an extra parameter fdom,
which sets the desired bandwidth of the current controller. In
order to reduce the number of parameters in the robustness
analysis, the ESRs of the LCL filter are considered to be
zero. This simplification assumes a high-quality-factor reso-
nant LCL filter, which is a worst-case scenario in terms of
stability. The ESRs damp the resonant poles and the dc pole
of the LCL filter and yield a more stable filter. Therefore
the results and conclusions derived in this analysis can also
be applied to lower-quality-factor LCL filters. The parameter
fdom is defined as one third of the resonant frequency of the

LCL filter for the analysis.
Although the physical nature of the problem can be best

understood in terms of the physical parameters (L1, L2, Cf ), it
is the frequency-domain parameters (poles and zeros) that best
serve the purpose of this first part of the robustness analysis. If
the ESRs are assumed to be zero, then the discrete-time plant
model [cf. (4)] can also be expressed in the zero-pole-gain
form as

G2(z) =

Gain︷︸︸︷
K

Sampling zeros︷ ︸︸ ︷
(z − z1)(z − z2)

z︸︷︷︸
Comp. delay

(z − 1)︸ ︷︷ ︸
DC pole

(z − pol
1 )(z − pol

2 )︸ ︷︷ ︸
Resonant poles

. (16)

This model has one pole at dc, z = 1; one pole at the origin,
which models the computational delay; two resonant poles pol

1,2

[cf. Fig. 4(a)]; two sampling zeros z1,2 [cf. Fig. 4(b)]; and a
constant gain K to complete the zero-pole-gain form of the
model. The location of both pol

1,2 and z1,2 depends on the ratio
of the LCL-filter resonant frequency to sampling frequency
fres/fs.

The proposed controller design gives a loop filter that yields
the same closed-loop poles (cf. Table I) irrespectively of the
particular value of K, due to the pole-placement strategy. In
this manner, the OLTF does not depend on the value of the
gain K neither. Therefore, although the OLTF seems to depend
on many parameters, it is the ratio of the LCL-filter resonant
frequency to sampling frequency fres/fs the one that should
be varied in the robustness analysis.

The developed robustness analysis is conducted for a wide
sweep of such parameter: 1/10 ≤ fres/fs ≤ 1/4, which in-
cludes the value 1/6, where conventional resonant controllers
become unstable [10]. Fig. 7 shows the Nyquist diagram and
the associated phase and gain margins of the system for a
fres/fs sweep. The Nyquist diagram goes several times to
infinity because of the infinite gain of the OLTF at the grid
frequency, at dc, and at the resonant frequency of the LCL
filter. Therefore, in order not to clutter the diagram, only the
part of the plot that corresponds to positive frequencies and is
closest to the point −1 is depicted (the part that corresponds
to the negative frequencies is a mirror image). The results
show that the encirclement of the point −1 is performed
with an approximately constant radius. Therefore, there are no
sensitivity peaks [7] in the response. Furthermore, the results
are consistent in spite of the large variation in the ratio fres/fs,
as expected from the design process.

This analysis also gives a mathematical assessment of the
well-known fact that the design of the current controller
becomes more difficult as the resonant frequency of the
LCL filter approaches the Nyquist frequency (fs/2), because
the robustness of the system is degraded. Nevertheless, such
mathematical results do not convey a good understanding of
the robustness to a variation in a physical parameter such as
the grid impedance. In order to tackle this problem, a careful
study of the effect of such parameter, in terms of gain and
phase margins, is presented next.

The previous stability margins correspond to a system where
the grid impedance is zero, i.e., with nominal plant parameters.
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When a nonzero grid impedance is considered and the voltage
feedforward is removed, the continuous plant model becomes

G1(s,Rg, Lg) =
i1
u′d

∣∣∣∣
Vg=0

Kf=0

=
Zc

Z2(Z1 + Zg + Zc) + (Z1 + Zg)Zc
(17)

where

Zg = Rg + sLg, Z1 = sL1, Z2 = sL2, Zc = 1/(sC). (18)

This last part of the robustness study resorts to a numerical
evaluation of the discrete plant model G2(z) obtained from
the modified continuous plant model (17) for a set of repre-
sentative grid-impedance values and the parameters of LCL
filter I from Table II. Such study permits to obtain an insight
into the problem and avoid the complexity of an analytical
analysis.

Fig. 8 shows the frequency response of the discrete-time
plant model G2(z) when the reactive and ohmic components
of the grid impedance are independently increased. For a

clearer evaluation of their effect, the ohmic and reactive
components of the grid impedance are discussed separately.
First, the effect of Rg is discussed assuming that Lg is zero.
Then, Lg is modified while Rg is zero.

On the one hand, Fig. 8(a) shows that if Rg is increased,
then the magnitude of the plant model is reduced, especially
at the highest-gain frequency ranges, namely at dc and at the
resonant frequency. At the phase crossover frequency fgm, the
frequency where the gain margin is measured, the magnitude
change is minimum; hence, robustness is maintained. In order
to assess the effect of Rg on the phase of the OLTF, it is impor-
tant to recall that, in an inductor, current lags voltage by 90◦,
whereas in a resistor, both magnitudes are in phase. Therefore,
increasing Rg while Lg is kept constant also reduces the phase
lag of the system at a wide range of frequencies, including the
gain crossover frequency fpm, the frequency where the phase
margin is measured. This improves the stability, as expected
from the higher damping of the system.

On the other hand, Fig. 8(b) shows that increasing Lg has
a similar effect to rising Rg because it also boosts the overall
impedance of the filter. Therefore, a lower magnitude in the
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Fig. 9. Nyquist diagram of the system that shows the effect of the grid impedance on the OLTF. (a)-(c) Sweep in Lg while Rg is kept constant. (d)-(f)
Sweep in Rg while Lg is kept constant.

plant model (and in the OLTF) is obtained. However, increas-
ing the grid inductance also lowers the resonant frequency of
the system. When the resonant frequency is lowered, the gain
of the OLTF dramatically increases at the frequency of the new
resonant frequency. If this change in the resonant frequency
is big enough to reach the phase crossover frequency, then
the system becomes unstable, because there is no gain margin
large enough to compensate for the infinite gain of an LCL
filter at the resonant frequency.

In order to complete the analysis, Fig. 9 shows the resultant
Nyquist diagram when both the reactive and ohmic compo-
nents are modified simultaneously. On the one hand, Figs. 9(a)-
(c) display the effect of increasing the grid inductance from
zero to a value of 0.3 p.u. for three values of grid resistance
(0, 0.1, and 0.3 p.u.). On the other other hand, Figs. 9(d)-
(f) present the effect of increasing the grid resistance from
zero to a value of 0.3 p.u. for three values of grid inductance
(0, 0.1, and 0.3p.u.). As indicated above, increasing Rg results
in greater system stability whereas rising Lg improves the gain
margin but reduces the phase margin because of the change in
the resonant frequency. When Lg is 0.3 p.u. and Rg is zero,
the system reaches the stability boundary.

As a conclusion from the numerical results, a brief qual-
itative analysis is presented here. For a given modulator
reference voltage u, the grid-side current is usually reduced

as the grid impedance is increased (Ohm’s law). Therefore,
increasing the grid impedance has a similar effect to reducing
the controller gain, which typically increases the stability of
a system. There are some subtleties which are neglected in
this simple reasoning; hence, a complete and careful study
of the numerical results is recommended for a comprehensive
understanding of the problem. In order to drive the system into
instability, a value of Lg equal to 0.3p.u. is required, which is
higher than the inductance of a properly designed LCL filter.
Since during normal operation the grid impedance is much
lower than such value, it can be concluded that the proposed
controller is robust to changes in the grid impedance. When
the grid impedance becomes greater than such a large value,
e.g. during islanded operation, a voltage controller should be
used in place of a current controller.

V. SIMULATION AND EXPERIMENTAL RESULTS

The experimental results are carried out in a 10-kW VSC
working as an inverter with a dc-bus voltage of Vdc = 730 V
and connected to a 400-V line-to-line three-phase grid of
50 Hz. The switching frequency is fsw = 2.5 kHz, and the
dead-time is 3µs. A double-update sampling strategy is used,
resulting in a sampling frequency fs of 5 kHz. Two LCL filters
with different resonant frequencies fres (above and below the
threshold fs/6 [10]) are used to connect the VSC to the grid.
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The filter parameters are presented in Table II. Filter I was de-
signed according to [29] in order to obtain a high filter perfor-
mance in combination with low reactive values. The available
bandwidth [cf. (10)] with filter I and filter II is 230 Hz and
200 Hz, respectively, according to Section III-A (Ap = 10 A
and Sr = 14500A/s for filter I, and Sr = 12500A/s for
filter II). The implemented controllers are designed using the
proposed method with a dominant frequency equal to the
available bandwidth. Figs. 10(a) and 10(b) show a diagram
and a photograph of the experimental setup, respectively. In
addition, a video demonstration that the authors feel it would
enhance the reader’s understanding of the research contribution
has also been included.

The reference tracking (of both sequences) and the distur-
bance rejection (of both sequences) are tested for each of the

TABLE II
LCL FILTER, ESRS, AND GRID IMPEDANCE PARAMETERS

Param. Filter I Filter II

L1 3.75 mH, 0.07 p.u. 5.4 mH, 0.11 p.u.
L2 3.75 mH, 0.07 p.u. 5.4 mH, 0.11 p.u.
C 15 µF, 0.07 p.u. 18 µF, 0.09 p.u.
fres 950 Hz 722 Hz

ESRs R1 0.5 Ω, 0.03 p.u. 0.5 Ω, 0.03 p.u.
R2 1.0 Ω, 0.06 p.u. 1.0 Ω, 0.06 p.u.
Rc 0.1 Ω, 0.01 p.u. 0.1 Ω, 0.01 p.u.

Zg Rg 2.5 Ω, 0.15 p.u.
Lg 5.4 mH, 0.10 p.u.

LCL filters [Figs. 11(a)–14(a) for LCL filter I, and Figs. 11(b)–
14(b) for LCL filter II ]. Fig. 15 tests the robustness of the
controller to an increase in the grid inductance (filter I is
used). In all the tests, the controller achieves zero steady-state
error at both fundamental sequences thanks to the action of
the resonant controller CRC(z).

Discrete-time linear simulations obtained with Matlab are
shown superimposed to the experimental results. The oscil-
loscope captures show the reference signal i∗1, the simulated
response isim1 , and the measured response i1. The experimental
response accurately matches that predicted by the simulation,
as shown in Figs. 11–14, in spite of it using a simple linear
averaged model. The minor differences that appear between
the simulated and the measured grid-side current are caused
by nonidealities not taken into account in the system model,
such as the nonlinear nature of the VSC.

First, the reference-tracking capability of the system is
shown in Figs. 11 and 12. In order to test the transient
response of the current controller, a reference step in the
d axis is generated. Fig. 11 shows this reference step for
the positive-sequence dq frame (dq+). The measured currents
i1,abc are also transformed to a synchronous frame rotating at
the same frequency. This transformation permits to measure
the transient-response parameters (rise time, settling time and
overshoot) in the variable i1,dq . The 10%–90% rise time of the
experimental response i1 in Fig. 11 is approximately 1.5 ms
for filter I and 1.75 ms for filter II. These values are in
accordance with those of a first-order system of the same
bandwidth, T10%−90% = 2.2/(2πfdom). Negligible overshoot
and good axis decoupling are attained because the response is
mainly determined by the well-damped dominant closed-loop
pole pcl3 (see Fig. 4) placed at the natural frequency fdom.
Next, Fig. 12 shows a reference step of the same amplitude, but
now in the negative-sequence dq frame (dq−). The obtained
response has roughly the same transient-response parameters
as in Fig. 11, because the proposed enhanced RC manages to
treat both sequences in the same manner.

Next, the disturbance-rejection capability of the controller
to sags in the grid voltage is assessed. Sags usually cause
unbalanced voltage grid conditions. In particular, a 40%-
depth type-C sag [30], which contains both voltage sequences,
is generated with a three-phase ac voltage source for the
remaining tests. In the first disturbance test (see Fig. 13), the
current reference i∗1,dq+ is kept constant. The settling time
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Fig. 11. Experimental and simulation waveforms (i1,dq and isim
1,dq , respectively) for a reference step i∗1,q+ in the positive synchronous frame dq+ rotating at

the fundamental grid frequency ωg . (a) LCL filter I (b) LCL filter II.
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Fig. 12. Experimental and simulation waveforms (i1,dq and isim
1,dq , respectively) for a reference step i∗1,q− in the negative synchronous frame dq− rotating

at the fundamental grid frequency ωg . (a) LCL filter I (b) LCL filter II.
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Fig. 13. Experimental and simulation waveforms (i1,dq and isim
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constant. (a) LCL filter I. (b) LCL filter II.
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Fig. 14. Experimental and simulation waveforms (i1,αβ and isim
1,αβ , respectively) for a 40%-depth type-C sag in Vg,abc. The reference step i∗1 is calculated

according to the so-called positive-negative-sequence compensation strategy [31]. (a) LCL filter I. (b) LCL filter II.
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Fig. 15. Experimental, simulation, and reference waveforms (i1,dq , isim
1,dq , and i∗1,q+, respectively) in the positive synchronous frame dq+ when the converter

is connected to a weak grid and the LCL filter I is installed. (a) A reference step. (b) A 40%-depth type-C voltage sag in Vg,abc.

to within 2% makes it possible to evaluate the time required
by the current controller to recover from a sag disturbance.
A value of settling time tst = 4 ms is obtained, which is
slightly greater (but still short) than the tst = 4/(2πfdom) of
a first-order system; this is due to the effect of the extra non-
dominant closed-loop poles. The next test (Fig. 14) evaluates
the reference-tracking capability under the same sag. A refer-
ence step i∗1 is generated according to the positive-negative-
sequence compensation strategy [31]. Since the currents now
have a positive and a negative sequence, they are shown in
stationary frame. A fast and well damped response is also
obtained when both effects are combined.

In the previous tests, it can be seen that the transient-
response parameters (rise time, overshoot, and settling time)
are determined by the selected dominant natural frequency
fdom, defined during the design process. They do not depend
on the LCL filter resonant frequency. The oscilloscope cap-
tures obtained with filter I (fres < fs/6), shown in Figs. 11(a)–
14(a) display similar transient characteristics to those made

with filter II (fres > fs/6), shown in Figs. 11(b)–14(b).
Finally, an experimental test was carried out to assess the

robustness of the controller when connected to a weak grid.
The weak grid has an impedance of value Zg = 0.15 +
j0.10 p.u., which is one of the values analyzed in Section IV,
cf. Fig. 9(e). The test is composed of two parts. In Fig. 15(a),
a reference step is commanded to test the reference-tracking
response and, in Fig. 15(a), the disturbance rejection is tested
under the same voltage sag as in Fig. 13. The responses are
not significantly modified compared to Figs. 11 and 13. In
conclusion, the stability of the system is preserved even with
substantial deviations in the plant parameters. This behavior
is in accordance with the theoretical analysis presented in
Section IV.

VI. CONCLUSION

This paper has presented an enhanced current RC for grid-
tied converters with LCL filter. The developed method is
based on direct discrete-time pole placement from the classical



control theory, involving two extra filters. It provides a simple
design process of the controller for a wide range of LCL
filter values and it ensures stable operation without additional
damping methods. The available bandwidth is examined in
order to define the frequency of the dominant pole in the
system. As a result, a fast reference-tracking capability with
negligible overshoot and low controller effort are attained in
combination with a fast disturbance rejection. The sensitivity
to variations in the grid inductance is low due to the proposed
pole-placement strategy.

The proposed controller also has the well-known charac-
teristics of the conventional RCs, e.g., zero steady-state error
at both fundamental sequences, and a simple implementation
with a low computational load compared to state-space con-
trollers from modern control theory.

The design was validated with both simulations and exper-
iments.

APPENDIX A
POLE-PLACEMENT EQUATIONS TO LOCATE THE POLES AT

THE DESIRED LOCATIONS FROM TABLE I

The augmented plant model (i.e., including the RC) in (6)
has order six and a relative degree of four:

G3(z) =
B(z)

A(z)
(19)

where

A(z) = a6z
6 + a5z

5 + a4z
4 + a3z

3 + a2z
2 + a1z + 0

B(z) = b2z
2 + b1z + b0. (20)

The C(z) controller transfer function is

C(z) =
M(z)

N(z)
. (21)

This controller permits to obtain the ten coefficients of the
desired system characteristic polynomial Acl according to the
closed-loop pole locations defined in Section III:

Acl = A(z)N(z) +B(z)M(z)

= d9z
9 + d8z

8 + d7z
7 + d6z

6 + d5z
5

+d4z
4 + d3z

3 + d2z
2 + d1z + d0 (22)

where the roots of the characteristic polynomial are the desired
closed-loop poles of the system from Table I:

Acl = (z − pcl1 )(z − pcl2 ) · · · (z − pcl9 ).

To reduce the order of the complete system, the controller
C(z) is designed to have the lowest order possible. C(z)
can have a negative relative degree of two (which gives
the minimum order achievable for the system) because the
complete controller C(z)CRC(z) is still proper.

Hence, since the controller C(z) has ten parameters and a
negative relative degree of two, the following two polynomials

A proper transfer function is that in which the degree of the numerator
does not exceed the degree of the denominator [26]. This ensures that the
system is causal and can be implemented in a real control device.

[which give a third-order transfer function for C(z)] are
obtained:

M(z) = m5z
5 +m4z

4 +m3z
3 +m2z

2 +m1z +m0

N(z) = n3z
3 + n2z

2 + n1z + n0. (23)

The polynomial Diophantine equation in (22) can be ex-
pressed in matrix notation as

Sc = d (24)

where

S =



a6 0 0 0 0 0 0 0 0 0
a5 a6 0 0 0 0 0 0 0 0
a4 a5 a6 0 b2 0 0 0 0 0
a3 a4 a5 a6 b1 b2 0 0 0 0
a2 a3 a4 a5 b0 b1 b2 0 0 0
a1 a2 a3 a4 0 b0 b1 b2 0 0
0 a1 a2 a3 0 0 b0 b1 b2 0
0 0 a1 a2 0 0 0 b0 b1 b2
0 0 0 a1 0 0 0 0 b0 b1
0 0 0 0 0 0 0 0 0 b0


c =

[
n3 n2 n1 n0 m5 m4 m3 m2 m1 m0

]T
d =

[
d9 d8 d7 d6 d5 d4 d3 d2 d1 d0

]T
. (25)

Therefore, the coefficients of the controller C(z) that place
the closed-loop poles at the desired locations are obtained by
solving this system of linear equations:

c = S−1d. (26)

APPENDIX B
COMPUTATIONAL LOAD

The computational load of the proposed transfer function
controller is analyzed in number of operations and compared
with an equivalent state-space controller. This is commonly
regarded as valid for assessing the computational burden
without further experimental verification [32].

The proposed controller implements two transfer functions,
which are the prefilter and the loop filter. The prefilter (12) is
a second-order transfer function with a relative degree of one
(the difference between the number of poles and the number of
zeros). The loop filter is the product of CRC(z) [cf. (5)] times
C(z) [cf. (21) and (23)]. This yields a strictly-proper (the same
number of poles and zeros) fifth-order transfer function. The
computational load required by a discrete transfer function is
proportional to the number of coefficients. Each coefficient
requires a multiplication of a complex variable by a real
coefficient and a complex addition to be performed. At most,
the number of coefficients in a transfer function is equal to
the number of poles and zeros plus two. A multiplication
requires two floating-point operations (flops) and a complex
addition is performed in two flops. Therefore, this controller
has a constant complexity of 34 flops. The total number of
flops per second that the proposed current controller executes
is 34fs. In the presented implementation (fs = 5 kHz), a figure
of 170 kilo-flops per second is obtained.

Sylvester’s theorem [27] ensures that S is invertible.



On the other hand, the state space controller in [24] requires
the implementation of an observer and a control law. The
observer equation is

x̂b(k) = (Fbb −KoFab)︸ ︷︷ ︸
5×5

x̂b(k − 1)︸ ︷︷ ︸
5×1

+ Ko︸︷︷︸
5×1

i1(k)︸ ︷︷ ︸
1×1

+(Fba −KoFaa)︸ ︷︷ ︸
5×1

i1(k − 1)︸ ︷︷ ︸
1×1

+(Gb −KoGa)︸ ︷︷ ︸
5×1

u(k − 1)︸ ︷︷ ︸
1×1

. (27)

The control law equation is

u(k) = Kf︸︷︷︸
1×1

i∗1︸︷︷︸
1×1

−
[
Kc 1 0

]︸ ︷︷ ︸
1×6

[
i1
x̂b

]
︸ ︷︷ ︸
6×1

. (28)

Therefore, the number of operations that this controller re-
quires is 47 multiplications of complex variables by real co-
efficients and 47 complex additions. This results in a constant
complexity of 188 flops (188fs-flops per second).

As a consequence, the computational load of the proposed
controller is less than five times that of [24], which makes
the former particularly suited for an implementation in a
embedded controller when a high switching frequency is
required.
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