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A SEMI-PARAMETRIC ESTIMATION OF COPULA MODELS BASED

ON MOMENTS METHOD UNDER RIGHT CENSORING

N. IDIOU1, F. BENATIA1, B. BRAHIMI1∗, §

Abstract. Based on the classical estimation method of moments, a new copula esti-
mator was proposed for censored bivariate data. As theoretical results, general formulas
were proved with analytical forms of the obtained estimators. Taking into account Lopez
and Saint-Pierre’s(2012)[19], Gribkova and Lopez’s (2015)[10] results, the asymptotic
normality of the empirical survival copula was established. The dependence structure
between the bivariate survival times was modeled under the assumption that the under-
lying copula is Archimedean. Accounting for various censoring patterns (singly or doubly
censored), a simulation study was performed enlighten the behavior of the procedure es-
timation method, shown the efficiency and robustness of the new estimator proposed.

Keywords: Archimedean copulas models, Bivariate censoring, Moment estimator, Sur-
vival copula, right censored data.
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1. Introduction

The modeling of bivariate or multivariate data in survival analysis has been discussed by
several authors. Many approaches have been introduced for this modelisation, including
Archimedean copula models, even their application (see [1], [3], [12], [13], [16], [24], [28]).
Archimedean copula models arise naturally from bivariate frailty models ([18], [14]) in
which the two failure times have given an unobserved frailty W and each follows propor-
tional hazards model in W . However, in this aspect, an Archimedean copula is presented
by:

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)),
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where, ϕ is a continuous, convex and decreasing function called the generator of C, defined
on I = [0, 1] → [0,∞] and verifies ϕ(1) = 0. In the context of multivariate survival anal-
ysis, assume that T1 and T2 are two failure times conditionally independent, represented
thereafter by the Archimedean copula C with the cumulative distribution function (CDF):

F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2),

which can be identified according to a copula function as:

F (t1, t2) = C(F1(t1), F2(t2)),

where C is the associated copula function and F1, F2 are the margins. We noted the sur-
vival functions of T1 and T2 by S1(t1) = P (T1 > t1) and S2(t2) = P (T2 > t2) respectively
and the joint survival function by:

S(t1, t2) = P (T1 > t1, T2 > t2).

Although this latter, can also be generated by an Archimedean copula (see [7], [6]) in the
manner of the following:

S(t1, t2) = ϕ−1(ϕ(S1(t1)) + ϕ(S2(t2))),

Besides, the function C̃ which couples S1 and S2 via S(t1, t2) = C̃(S1(t1), S2(t2)), called

the survival copula of (T1, T2). Then, if we define C̃ from I2 → I we obtain:

C̃(u, v) = u+ v − 1 + C(1− u, 1− v), (1)

where (u, v) ∈ I2, see Nelsen (2006)[17]. Hence, it was demonstrated by Genest and
Rivest (1993)[7] that if (T1, T2) follows an Archimedean copula with the marginal survival
functions S1(t1) and S2(t2), then

U =
ϕ (S1 (T1))

ϕ (S1 (T1)) + ϕ (S2 (T2))
,

and
V = C̃(S1 (T1) , S2 (T2)) = ϕ−1 (ϕ (S1 (T1)) + ϕ (S2 (T2))) ,

are random variables distributed independently, where U distributed uniformity on I and
V follows a so-called Kendall distribution with the density function:

kC (t) =
ϕ (t)ϕ′′ (t)

(ϕ′ (t))2 ,

defined on (0, 1], as a function of t depends on the unknown parameter θ. Assume that
the two failure times T1 and T2 can be modeled by an Archimedean copula model and
it is subject to dependence or independence right-censoring with the censoring vector
(C1, C2), we also assume that the vector (C1, C2) follows an arbitrary bivariate continuous
distribution. Therefore, if we denote δi = 1{Ti≤Ci}i=1,2

which represents the indicator
function of censored data, that specifies if our variable of interest is observed or not.
Then, we only observe the variable Zi = min(Ti, Ci) if Ti ≤ Ci when δi = 1, otherwise, if
Ti ≥ Ci the variable in this case is censored and the indicator δi equal to zero δi = 0. In
this paper, we are interested by type one of censoring, where two models are presented, the
first is for doubly censored variables (T1 and T2 both are right-censored) and the second
for a singly censored when only T1 (or T2) is right-censored.

The issues of estimating copula parameters in literature are usually solved by maximum
likelihood methods ([8], [4]). For example, if we consider the IFM method (Joe, 1997,
2005) Joe presented a two-stage procedure to estimate a copula, by maximizing the copula
likelihood function. Even so, this maximization generally becomes very difficult to achieve
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when the dimension is large and the parameter numbers are also higher. For this reason,
our main aim in this paper is to propose an alternative estimation method of a survival
copula C̃, based on the moments method due to its simple mathematical form, given
(T1, T2) as singly or doubly right-censored. General formulas were established when the

considered variable C̃ defined under certain conditions.

The remainder of the paper is structured as follows: in section 2, our main theorems
and corollary are presented where general forms of the survival copula estimator are estab-
lished. As well as, the asymptotic normality of this estimator to be verified, by considering
two types of right-censored models. However, in section 3 a semi-parametric estimation
based on the classical moments method illustrated for a conditional distribution on C̃,
followed by an application presented for the Gumbel model. A simulation study evalu-
ates the performance of our estimator presented in Section 4. Our paper ends with some
discussions in Section 5.

2. Main results

Interesting results to be proven, related by a semi-parametric estimation based on kth-
moments of a variable V = C̃ (u, v) conditionally distributed given T1 and T2 as singly
or doubly censored. Moreover, the following theorems and corollary illustrate our main
results.

Theorem 2.1. Let (T1, T2) be a random pair whose distribution can be modeled by an
Archimedean copula. Assuming that (T1, T2) is subject to dependent or independent right
censoring by a censoring vector (C1, C2) that follows an arbitrary bivariate continuous
distribution, then we have:

(1) The distribution function of (V |T1 > C1 = c1, T2 > C2 = c2) is

F1(v, c1, c2) =
1

C̃ (c1, c2)

v − ϕ(v)− ϕ
(
C̃ (c1, c2)

)
ϕ′(v)

 , 0 ≤ v ≤ C̃ (c1, c2) .

(2) The distribution function of (V |T1 > C1 = c1, T2 = t2) is

F2(v, c1, t2) =
ϕ′
(
C̃ (c1, t2)

)
ϕ′ (v)

, 0 ≤ v ≤ C̃ (c1, t2) .

(3) The distribution function of (V |T1 = t1, T2 > C2 = c2) is

F3(v, t1, c2) =
ϕ′
(
C̃ (t1, c2)

)
ϕ′ (v)

, 0 ≤ v ≤ C̃ (t1, c2) .

Proof. See, Wang and Oakes (2008)[28]. Based on Theorem 2.1 we can show �

Corollary 2.1. Under the same conditions given in Theorem 2.1, we have:
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(1) The kth moments of (V |T1 > c1, T2 > c2) for k ≥ 1 is

E(V k
∣∣∣T1 > c1, T2 > c2) =

(
C̃ (c1, c2)

)k
k + 1

−k
(
C̃ (c1, c2)

)k−1
ϕ
(
C̃ (c1, c2)

)∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, c2)

)dv
+k
(
C̃ (c1, c2)

)k−1
∫ 1

0

vk−1ϕ
(
vC̃ (c1, c2)

)
ϕ′
(
vC̃ (c1, c2)

) dv.

(2) The kth moments of (V |T1 > c1, T2 = t2) for k ≥ 1 is

E(V k
∣∣∣T1 > c1, T2 = t2) =

(
C̃ (c1, t2)

)k
−k
(
C̃ (c1, t2)

)k
ϕ′
(
C̃ (c1, t2)

)∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, t2)

)dv.
(3) The kth moments of (V |T1 = t1, T2 > c2) for k ≥ 1 is

E(V k
∣∣∣T1 = t1, T2 > c2) =

(
C̃ (t1, c2)

)k
−k
(
C̃ (t1, c2)

)k
ϕ′
(
C̃ (t1, c2)

)∫ 1

0

vk−1

ϕ′
(
vC̃ (t1, c2)

)dv.
Proof. In order to prove the result of Corollary2.1 we need to use the results given in
Theorem 2.1 and we start by equation1, using the conditional distribution of
(V |T1 > c1, T2 > c2). Then, for k > 1 the kth moments is given by:

E(V k
∣∣∣T1 > c1, T2 > c2) =

∫ C̃(c1,c2)

0
vkdF1 (v, c1, c2)

E(V k
∣∣∣T1 > c1, T2 > c2) =

=
1

C̃ (c1, c2)

∫ C̃(c1,c2)

0
vk

1−
(ϕ′(v))2 − ϕ′′(v)

(
ϕ(v)− ϕ

(
C̃ (c1, c2)

))
(ϕ′(v))2

 dv

=
1

C̃ (c1, c2)

∫ C̃(c1,c2)

0
vkdv

− 1

C̃ (c1, c2)

∫ C̃(c1,c2)

0
vk

(ϕ′(v))2 − ϕ′′(v)
(
ϕ(v)− ϕ

(
C̃ (c1, c2)

))
(ϕ′(v))2 dv

= I1 − I2,
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by the way, I1 have to simplify as follows: I1 = 1
C̃(c1,c2)

∫ C̃(c1,c2)
0 vkdv = C̃(c1,c2)k

k+1 . On other

hand, to simplify I2 we pass directly to integration by parts, and we have:

I2 =
1

C̃ (c1, c2)

∫ C̃(c1,c2)

0
vk

(ϕ′(v))2 − ϕ′′(v)
(
ϕ(v)− ϕ

(
C̃ (c1, c2)

))
(ϕ′(v))2 dv

=
1

C̃ (c1, c2)


vkϕ(v)− ϕ

(
C̃ (c1, c2)

)
ϕ′(v)

C̃(c1,c2)

0

−k
∫ C̃(c1,c2)

0
vk−1

ϕ(v)− ϕ
(
C̃ (c1, c2)

)
ϕ′(v)

dv


= − k

C̃ (c1, c2)

∫ C̃(c1,c2)

0
vk−1

ϕ(v)− ϕ
(
C̃ (c1, c2)

)
ϕ′(v)

dv.

it follows after changing variables that:

I2 = −k
(
C̃ (c1, c2)

)k−1
∫ 1

0
vk−1

ϕ(vC̃ (c1, c2))− ϕ
(
C̃ (c1, c2)

)
ϕ′(vC̃ (c1, c2))

dv

= −k
(
C̃ (c1, c2)

)k−1
∫ 1

0
vk−1 ϕ(vC̃ (c1, c2)

ϕ′(vC̃ (c1, c2))
dv

+k
(
C̃ (c1, c2)

)k−1
ϕ
(
C̃ (c1, c2)

)∫ 1

0

vk−1

ϕ′(vC̃ (c1, c2))
dv.

The same proof used previously can applies for equations 2 and 3 in the Corollary2.1.
�

2.1. Survival empirical copula for right-censored. Initially, let us clarify that there
are two models we are interested in, the first is for doubly censored variables (T1 and
T2 both) and the second is for a singly censored, only T1 (or T2) is censored. Given the
accessible observation (Z1i, Z2i, δ1i, δ2i)1≤i≤n : the independent copies of a non-negative

random variable of the vector (Z1, Z2, δ1, δ2) and the survival copula C̃. Assuming that

the survival copula C̃ is known and the following assumptions:

• [H1] The first and the second partial derivatives of C̃ are limited on I2, where

C̃(u, v) is different to zero for u 6= 0 and v 6= 0.

• [H2] ∃ (α, β) ∈ I2, where C̃(u, v) ≥ uαvβ.
• [H3] The integral

∫ dF (t1,t2)

C̃(S1(t1),S2(t2))
, is strictly less than infinity. For θ > 0, where

Fi(t) =
∫ t

0
dFi(v)

Si(u)2STi (u)
, i ∈ {1, 2} we have

∫
{S

1−α
1 (t1)F

1
2+θ

1 (t1)

Sβ2 (t2)
+
S1−β

2 (t2)F
1

2+θ

2 (t2)

Sα1 (t1)
}dF (t1, t2) <∞.
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• [H4] Suggesting that
∫ dF (t1,t2)

S1(t−1 )
, is strictly less than infinity and for θ > 0, we have

∫ {(∫ t1

0

dF1(v)

S1(v−)2ST1(v)

) 1
2+θ

}
dF (t1, t2) <∞.

Lopez and Saint-Pierre(2012)[19] have studied the first model, noting that F can be
consistently estimated by an Fn estimator in the following form:

F̃n(t1, t2) =
1

n

n∑
i=1

1{T1i≤t1,T2i≤t2},

that could not be used to estimate F (t1, t2) since T1 and T2 are unobserved. Therefore,
according to the proposition of Lopez and Saint-Pierre(2012)[19], the F estimate can be
given in such form:

Fn(t1, t2) =
1

n

n∑
i=1

δ1iδ2i

C̃
(
Ŝ1 (Z1i) , Ŝ2 (Z2i)

)1{Z1i≤t1,Z2i≤t2}, (2)

where C̃ is the survival copula given by (1) and

Ŝ1 (t) =
∏

k/Z′1k<t

(1−
∑n

i=1 1{Z1i=Z′1k,δ1i=0}∑n
i=1 1{Z1i≥Z′1k}

)

is the Kaplan-Meier estimate of S1, for ((Z ′1:k)1≤k≤m,m ≤ n), and Ŝ2, is the Kaplan-Meier
estimate of S2 defined by the same way. Noted ΓT1 and ΓT2 the support of T1 and T2

respectively and l∞(W ) all bounded real-valued functions space, identified on non-empty
set W .
Assuming that the assumptions [H1] − [H3] hold, Lopez’s and Saint Pierre’s(2012) have

concluded that the processes n
1
2 (Fn − F ) converges weakly in l∞(ΓT1 ∗ ΓT2) to a centred

Gaussian process (theorem 3.4[19]). Otherwise, indicating that we are in the second case,
this model was studied by Stute (1993)[24], who suggested Gn the empirical distribution
function given by:

Gn(t1, t2) =
1

n

n∑
i=1

δ1i

Ŝ1

(
Z−1i
)1{Z1i≤t1,Z2i≤t2} (3)

Which is a particular model situation from the first case, where C̃(u, v) = uv (see [16]).
Following the theorem 3.4, of Lopez and Saint Pierre (2012)[19], the weak convergence of
Gn has proved under the assumptions [H4]. By the way, in the event of complete data,
the copula C can be estimated by:

Ĉ(u, v) = Fn(F−1
1n (u), F−1

2n (v)),

where (u, v) ∈ I2, F1n(t1) = lim
t2→∞

Fn(t1, t2) and F2n(t2) = lim
t1→∞

Fn(t1, t2), Gribkova and

Lopez (2015)[10] proposed the empirical copula of C in the case of incomplete data given
by

Cn (u, v) =
1

n

n∑
i=1

δ1iδ2i

C̃
(
Ŝ1 (Z1i) , Ŝ2 (Z2i)

)
,
1{F1n(Z1i)≤u,F2n(Z2i)≤v}, (4)



856 TWMS J. APP. AND ENG. MATH. V.13, N.3, 2023

when the two variables are both right-censored (first model). By analogy, using (1) and
(4), the empirical survival copula via:

C̃n(u, v) = u+ v − 1 +
1

n

n∑
i=1

δ1iδ2i

C̃
(
Ŝ1 (Z1i) , Ŝ2 (Z2i)

)1{1−F1n(Z1i)≥u,1−F2n(Z2i)≥v} (5)

As a result, for a singly censored (second case), it is possible to define empirical survival

copulas C̃n in the same manner as seen above. The reader is invited to take a look on the
references mentioned below ([16] and [10]). Observe that for both models

sup
(u,v)∈I2

|Cn(u, v)− Ĉ(u, v)| = Op

(
1

n

)
,

which means that the process n
1
2 (Cn − C) converges weakly in l∞(I2) to the limiting

approach L (centered Gaussian process), that either have been proven by Gribkova and
Lopez (2015)[10] in theorem 2. Hence, this weak convergence allows us to prove the
asymptotic normality of a statistics given by the form

∫
I2 g(u, v)dCn(u, v), noted g as a

function that has a real value defined on I2. Fermanian, Radulovic, and Wegkamp (2004)
have proven this asymptotic normality in the case of complete data. By the way, thanks
to theorem1 of M. Boukeloua (2020), who proved that under some assumption when

n→∞ the quantity n
1
2

{∫
I2 g(u, v)d (Cn(u, v)− C(u, v))

}
converges in distribution to a

Gaussian random variable G =
∫
I2 g(u, v)d (L(u, v)), where g ∈ R2(I2) the set of all real-

valued functions defined on I2. Based on these results and if we assume the assumptions
[H1]− [H4] hold we can show the next theorem.

Theorem 2.2. Assuming the function g ∈ R2(I2), C̃ and C̃n the survival copula and
its empirical version respectively, then when n→∞ we have

n
1
2

{∫
I2
g(u, v)d

(
C̃n(u, v)− C̃(u, v)

)}
D−→

∫
I2
g(u, v)d (L(u, v)) ,

where the limiting is a Gaussian random variable and (u, v) ∈ I2.

This theorem proved the asymptotic normality of the empirical survival copula, which
remains valid for both models considered.

Proof. If we consider the survival copula C̃ and its empirical version C̃n, we have

C̃n(u, v)− C̃(u, v) = u+ v − 1 + Cn(1− u, 1− v)− C̃(u, v)

= Cn(1− u, 1− v)− C(1− u, 1− v),

hence by a change of variables w1 = 1− u and w2 = 1− v, we get

C̃n(u, v)− C̃(u, v) = Cn(w1, w2)− C(w1, w2),

where (w1, w2) remain belongs to the interval I2. So, we can concluded that n
1
2

(
C̃n − C̃

)
also converges weakly in l∞(I2) to the limiting approach L. Let the set among all functions
R2(I2) defined on [0, 1]2 and we assume the application ζ represented on R2(I2) and given
by

ζ(h) =

∫
I2
g(w1, w2)dh(w1, w2),
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which is Hadamard differentiable on R2(I2), see van der Vaart and Wellner (1996). Bea-

cause n
1
2 (Cn − C) converges weakly to the limiting approach L, then, by using delta

method we get

n
1
2

{∫
I2
gdCn(w1, w2)−

∫
I2
gdC(w1, w2)

}
= n

1
2

{∫
I2
gdC̃n(u, v)−

∫
I2
gdC̃(u, v)

}
= n

1
2

{
ζ(C̃n(u, v))− ζ(C̃(u, v))

}
= ζ̄

⇔ ζ̄ D−→ ζ ′c(L)

where ζ ′c(L) =
∫
I2 g(u, v)d (L(u, v)) is the derivative of ζ in the point c. See M. Boukeloua

Theorem1’s proof (2020). �

3. Moments estimator for right-censoring

Either the following figure, T1 and T2 represent the survival time point and (C1, C2)
the censoring time point. The display contains four data kinds points, including observed
points (T1, T2), two types of singly censored points (T1, C2), (C1, T2) and doubly censored
points (C1, C2).

Figure 1. Censored data samples

From now, we are only interested by the first model presented before. Let (T1,T2)
a random variables whose distribution can be modeled by an Archimedean copula and
is subject to dependent or independent right censoring, V = C̃ (S1 (Z1i) , S2 (Z2i)) is a
conditionally distributed variable follows a so-called Kendall distribution KC with the

density function: kC (t) = ϕ(t)ϕ′′(t)

(ϕ′(t))2
, defined on (0, 1].

We define the kth-moments of V for k ≥ 1 by: Mk(V |H) = E(V k|H), where H = h(c1,c2)

indicate the first case of censoring (T1 and T2 are both right-censoring). Then, relying on
the results obtained above in Corollary 2.1, we have:

Mk(V |H) =

(
C̃ (c1, c2)

)k
k + 1

− k
(
C̃ (c1, c2)

)k−1
ϕ
(
C̃ (c1, c2)

)∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, c2)

)dv
+k
(
C̃ (c1, c2)

)k−1
∫ 1

0

vk−1ϕ
(
vC̃ (c1, c2)

)
ϕ′
(
vC̃ (c1, c2)

) dv. (6)

Suppose now V belongs to a parametric family Vθ = C̃θ(u, v), it follows that ϕ = ϕθ,

C̃ = C̃θ and KC = Kθ, where u = S1(t1) = F̄1(t1) and v = S2(t2) = F̄2(t2), mentioned
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that F1 and F2 are completely known. Noted that Mk(V |H) = Mk(θ|H), then, we can
distinguish the following form of the kth-moments:

Mk(θ|h(c1,c2)) =

(
C̃θ (c1, c2)

)k
k + 1

−k
(
C̃θ (c1, c2)

)k−1
ϕθ

(
C̃θ (c1, c2)

)∫ 1

0

vk−1
θ

ϕ′θ

(
vθC̃θ (c1, c2)

)dvθ
+k
(
C̃θ (c1, c2)

)k−1
∫ 1

0

vk−1
θ ϕθ

(
vθC̃θ (c1, c2)

)
ϕ′θ

(
vθC̃θ (c1, c2)

) dvθ,

for unknown θ ∈ Rd. Given the empirical version of moment estimator under doubly
censored presented by:

M̂k = M̂k(V̂ |h(c1,c2)) =
1

n

n∑
i=1

{
C̃n

(
Ŝi(ti)|H

)}k
,

for k ≥ 1 where V̂ = C̃n is the survival empirical copula given by formula (5). By analogy,
as the natural estimators of moments copula it is necessary to solve the equation system
given below: 

M1(θ|h(c1,c2)) = M̂1

M2(θ|h(c1,c2)) = M̂2

:

Md(θ|h(c1,c2)) = M̂d.

To obtained the unique solution θ̂CCM = (θ̂1, ..., θ̂d) called the censored copula moment
(CCM) estimator of θ.

3.1. Application: illustrative example. In particular, in the bivariate case, the Gum-
bel model of one-parameter is given by:

Cα (u, v) = exp
(
− ((− lnu)α + (− ln v)α)

1
α

)
,

with the generator: ϕα(t) = (− ln t)α, α ∈ [1,+∞[. Consequently, by considering the case
of two parameters, the preceding model becomes:

Cα,β (u, v) =

(((
u−α − 1

)β
+
(
v−α − 1

)β) 1
β

+ 1

)− 1
α

, (7)

with the generator: ϕα,β(t) = (t−α − 1)β, where α > 0 and β ≥ 1 (see [2]). Obviously, by
the use of (1), we obtain the survival copula of the Gumbel family given by:

C̃α,β (u, v) = u+ v − 1 +

(((
(1− u)−α − 1

)β
+
(
(1− v)−α − 1

)β)1/β
+ 1

)−1/α

(8)

Hence, as an application of our results proved previously we can reach the following
bivariate censoring models using equation 1 in Corollary2.1.
For k ≥ 1, α > 0 and 1 ≤ β ≤ 2, the kth moments of the Gumbel’s survival copula, is
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given by:

Mk((α, β) |H) = E(V k
∣∣∣h(c1,c2))

=
mk

k + 1
+
k (m−α − 1)

β

α2βm
βmα

(
β +

k + 1

α
, 2− β

)
(9)

+
kmk−1

αβ

(
mα+1

k + α+ 1
− m

k + 1

)
,

in which βmα(x, y) is the Beta function and m = C̃ (c1, c2) is the ordinary copula. If we
simplify more the previous formula we will obtain the following writing:

Mk((α, β) |h(c1,c2)) =
mk

k + 1
+

k

αβ
(10)

×

(
mk+α

k + α+ 1
− mk

k + 1
− (β − 1) (m−α − 1)

β

αmα+1

Γ (1− β) Γ
(

1
α (k + αβ + 1)

)
Γ
(

1
α (k + 2α+ 1)

) )
,

where Γ (x) is the Gamma function. In particular, the two first moments are given by: M1((α, β) |h(c1,c2)) = 1
2m+

(m−α−1)
β

α2βm
βmα

(
β + 2

α , 2− β
)

+ 1
αβ

(
mα+1

α+2 −
m
2

)
M2((α, β) |h(c1,c2)) = 1

3m
2 +

2(m−α−1)
β

α2βm
βmα

(
β + 3

α , 2− β
)

+ 1
αβ

(
mα+1

α+3 −
m
3

)
Which can further simplify as well:

M1((α, β) |h(c1,c2)) = 1
2m+ 1

αβ

{
mα+1

α+2 −
1
2m−

(β−1)(m−α−1)
β

αmα+1

Γ(1−β)Γ( 1
α

(αβ+2))
Γ( 2

α
(α+1))

}
M2((α, β) |h(c1,c2)) = 1

3m
2 + 2

αβ

{
mα+2

α+3 −
1
3m

2 − (β−1)(m−α−1)
β

αmα+1

Γ(1−β)Γ( 1
α

(αβ+3))
Γ( 1

α
(2α+3))

}
However, the CCM estimator of θ = (α, β) is the unique solution of the system:{

M1(θ|h(c1,c2)) = M̂1

M2(θ|h(c1,c2)) = M̂2

4. Simulation study

To illustrate the performances of the proposed estimator, a simulation study is carried
out based on the Monte Carlo method for right-censored sampling. First, we generate a bi-
variate survival distribution of the Gumbel copula model where the margins are assumed to
be Pareto(λ), F (t) = 1−t−λ, t ≥ 0. The distribution of survival times T1 , T2, and the cen-
soring times C1, C2 are all assumed to be Pareto of parameters λ1, λ2, λ3, λ4 respectively.
If we suppose that the corresponding percentage of observed data is equal to p1 = λ2

λ1+λ2
for the first sample, then we can choose the values 0.3 for λ1 and 0.95, 0.90, 0.85, 0.80 for
p1, next we solve the equation p1 = λ2

λ1+λ2
to get the pertaining λ2-values. In this path, we

fix λ3 and p2 = λ4
λ3+λ4

by the same previous values to find λ4 by the same way. Since the

quality of the estimate is assessed by evaluating the bias (relative Bias) and the root mean
square error (RMSE), then for the two samples both we generate 1000 replicas for each
common size n varied for n = 30, 50, 100, 500, 1000,2000, to pick our final performance as
empirical evidence of the results gained across all replicates. Besides, for a wide set of
parameters of the true survival copula C̃α,β the simulation procedure based on Section 3
is repeated for each sample. The selection of true survival copula parameter values (α, β)
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must be significant, i.e. each couple of parameters consists a value of one of the depen-
dency measurements. So, if we consider Kendall’s τ as an association index then, it can be
expressed as a function of the dependency parameter in Archimedean copula models. In
this case, we should select the parameter values of C̃ that correspond to specified values
of τ by using the transformed of the underlying survival copula. Since the link between
Kendall’s τ and C̃ is usually formulated by τα,β = 4E(Vα,β)− 1, where Vα,β = C̃α,β(u, v),
then to generate data, we select values for survival copula parameters that corresponding
to Kendall’s tau values 0.05 (low association), 0.5 (mean association) and 0.7 (high positive
association), summarized in Tables 1− 3.

For the Gumbel survival copula of two parameters, the performance of the estimator
proposed is presented in Tables 1−3. The results obtained for different values of Kendall’s
τ are quite good in the three cases of dependence considered (0.05, 0.5, 0.7) and by con-
sidering different censoring percentages. In each table, τ1 and τ2 are represent respectively
the Kendall’s tau value before and after censoring. From the three tables, we deduce that
the estimator proposed have a good performance and works quite well if we compare it
by other methods used before on the copulas estimation. By the way, the performance
of survival copula estimate based on the moments method is justified, through the adop-
tion of relative bias (Re.Bais) and RMSE discourse, when we can see all their values are
sufficiently decreased for each case of small and even large samples (are almost close to
zero). Even so, the value of Kendall’s tau after censoring (τ2 ) remains close to its original
theoretical value given by τ1 , which means that the variables remain dependent despite
the censorship.

5. Discussion

In this paper, we elaborate a semi-parametric estimation method of a survival copula
based on Archimedean models, but in specific conditions on the data. Indeed, under
different censoring (singly or doubly), the results of our estimator were presented with an
analytical form which overcame the problem that occurs usually by other methods. As an
application of the considered method we have chosen the Gumbel model, given T1 and T2

as doubly right-censored variables. In the simulation part, three cases of dependence are
considered, where the results can validate the use of the method proposed. Consequently,
this method is preferable if we compare it with the maximum likelihood method, because
of its easy mathematical form. Our main result for these studies is based on the copula
approaches and the survival analysis, in which the correlation between two survival time
variables was detected. Therefore, our research results open a vast area of application,
notably in real life, when there are two related events defined under specific situations.
This will be discussed in an interesting new paper that we are currently working on. Based
on the outcomes of Gripkova and Lopez’s (2015)[10], Lopez and Saint-Pierre’s (2012)[19]
research, our results can be applied for left and right censoring. This is one of our current
research topics and the idea has been developed in another paper that is also under
preparation.

Acknowledgement. The authors would like to extend their gratitude to the editor of
the journal and to the reviewers for their valuable advice.
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τ = 0.05 , α = 0.1→ β = 1.00

1% of censoring
N n = 30 n = 50 n = 100 n = 500 n = 1000 n = 2000

(α̂, β̂) α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
Re.Bias -0.0563 0.2852 -0.0537 0.2119 -0.0539 0.2515 -0.0536 0.2403 -0.051 0.2461 -0.0546 0.1972

RMSE 0.0649 0.0116 0.0624 0.0117 0.0629 0.0119 0.0620 0.0117 0.0606 0.0118 0.0631 0.0116

τ1 0.04336 0.05059 0.0477 0.04733 0.04892 0.04791

τ2 0.04384 0.04992 0.0477 0.04711 0.04838 0.03699

c1 0.03188 0.01975 0.00974 0.00208 0.00105 0.00043

c2 0.03134 0.01956 0.00947 0.00195 0.00104 0.00041

5% of censoring

Re.Bias -0.0539 0.2072 -0.0526 0.2490 -0.0551 0.2450 -0.0544 0.2339 -0.0520 0.2457 -0.0540 0.2475

RMSE 0.0625 0.0115 0.0613 0.0115 0.0638 0.0118 0.0628 0.0115 0.0610 0.0115 0.0629 0.0116

τ1 0.04685 0.04920 0.04682 0.04851 0.05031 0.04969

τ2 0.04240 0.04914 0.04524 0.04656 0.04771 0.04782

c1 0.03090 0.01852 0.00932 0.00195 0.00100 0.00053

c2 0.03135 0.01953 0.00948 0.00192 0.00100 0.00051

10% of censoring

Re.Bias -0.0526 0.2387 -0.0538 0.2264 -0.0548 0.2455 -0.0526 0.2294 -0.0547 0.2380 -0.0546 0.2186

RMSE 0.0616 0.0117 0.0627 0.0119 0.0637 0.0117 0.0617 0.0120 0.0634 0.0118 0.0635 0.0116

τ1 0.05670 0.04865 0.04794 0.05103 0.04924 0.04989

τ2 0.04909 0.04385 0.04431 0.04669 0.04515 0.04565

c1 0.02813 0.01722 0.00890 0.00179 0.00098 0.00052

c2 0.02860 0.01670 0.00867 0.00175 0.00098 0.00048

20% of censoring

Re.Bias -0.0531 0.2136 -0.0532 0.2003 -0.0530 0.1926 -0.0524 0.2049 -0.0532 0.2038 -0.0518 0.1965

RMSE 0.0619 0.0117 0.0617 0.0118 0.0620 0.0118 0.0615 0.0114 0.0623 0.0115 0.0611 0.0117

τ1 0.0524 0.05195 0.05116 0.04761 0.04974 0.05035

τ2 0.03684 0.04077 0.04059 0.03969 0.04155 0.04125

c1 0.02514 0.01573 0.00828 0.00171 0.00088 0.00045

c2 0.02540 0.01537 0.00785 0.00169 0.00081 0.00045

25% of censoring

Re.Bias -0.0518 0.1861 -0.0531 0.2058 -0.0526 0.2109 -0.0519 0.1782 -0.0534 0.1950 -0.0546 0.1972

RMSE 0.0610 0.0116 0.0625 0.0115 0.0612 0.0114 0.0606 0.0118 0.0622 0.0116 0.0631 0.0116

τ1 0.04636 0.04423 0.04691 0.04842 0.04888 0.04791

τ2 0.03840 0.03729 0.03637 0.03693 0.03795 0.03699

c1 0.02441 0.01444 0.00754 0.00148 0.00078 0.00043

c2 0.02402 0.01445 0.00698 0.00161 0.00078 0.00041

Table 1. Moments estimator performance based on Gumbel survival cop-
ula generated from 1000 replications with Pareto margins and shape param-
eter 0.3. Re.Bias and RMSE of the estimators are calculated for different
censoring values and weak dependence.

.
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τ = 0.5 , α = 0.2→ β = 1.82

1% of censoring
N n = 30 n = 50 n = 100 n = 500 n = 1000 n = 2000

(α̂, β̂) α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
Re.Bias -0.0263 0.3759 -0.0263 0.3735 -0.0259 0.3480 -0.0256 0.3648 -0.0252 0.3649 -0.0250 0.3695

RMSE 0.0302 0.0063 0.0302 0.0063 0.0299 0.0064 0.0299 0.0064 0.0293 0.0063 0.0292 0.0064

τ1 0.49995 0.50077 0.49672 0.50080 0.50048 0.50033

τ2 0.49148 0.49273 0.48865 0.49225 0.49224 0.49208

c1 0.03163 0.01859 0.00977 0.00195 0.00102 0.00005

c2 0.03296 0.01876 0.00972 0.00194 0.00103 0.00053

5% of censoring

Re.Bias -0.0267 0.3538 -0.0266 0.3554 -0.0255 0.3759 -0.0257 0.3415 -0.0255 0.3500 -0.0265 0.3566

RMSE 0.0309 0.0064 0.0306 0.0062 0.0296 0.0062 0.0299 0.0063 0.0298 0.0065 0.0306 0.0064

τ1 0.50274 0.50408 0.49962 0.50013 0.50015 0.50143

τ2 0.46311 0.46417 0.45925 0.46042 0.45939 0.46095

c1 0.02847 0.01856 0.00946 0.00183 0.00099 0.00051

c2 0.02926 0.01803 0.00940 0.00183 0.00094 0.00049

10% of censoring

Re.Bias -0.0259 0.3875 -0.0261 0.3658 -0.0255 0.3319 -0.0261 0.3312 -0.0262 0.3260 -0.0265 0.3301

RMSE 0.0300 0.0065 0.0303 0.0065 0.0298 0.0063 0.0302 0.0065 0.0302 0.0065 0.0304 0.0062

τ1 0.49346 0.50026 0.50191 0.49985 0.50019 0.49999

τ2 0.41385 0.41922 0.42175 0.42134 0.42191 0.42137

c1 0.02790 0.01841 0.00902 0.00178 0.00092 0.00049

c2 0.02938 0.01794 0.00901 0.00177 0.00089 0.00046

20% of censoring

Re.Bias -0.0261 0.3413 -0.0256 0.2964 -0.0252 0.3214 -0.0259 0.3021 -0.0250 0.3065 -0.0264 0.3017

RMSE 0.0303 0.0063 0.0298 0.0065 0.0295 0.0063 0.0302 0.0063 0.0292 0.0065 0.0304 0.0063

τ1 0.50244 0.49760 0.49889 0.50007 0.50027 0.49999

τ2 0.35571 0.34813 0.35141 0.35171 0.35227 0.35153

c1 0.02586 0.01614 0.00838 0.00164 0.00081 0.00041

c2 0.02487 0.01648 0.00797 0.0016 0.00081 0.00042

25% of censoring

Re.Bias -0.0251 0.2793 -0.0259 0.3205 -0.0266 0.2833 -0.0254 0.2982 -0.0253 0.2869 -0.0256 0.2838

RMSE 0.0293 0.0063 0.0299 0.0062 0.0305 0.0064 0.0296 0.0064 0.0295 0.0064 0.0298 0.0065

τ1 0.49657 0.50095 0.50224 0.50036 0.50043 0.50059

τ2 0.31482 0.32157 0.31815 0.31958 0.32107 0.32089

c1 0.02483 0.01532 0.00737 0.00156 0.00079 0.00040

c2 0.02584 0.01444 0.00729 0.00152 0.00074 0.00040

Table 2. Moments estimator performance based on Gumbel survival cop-
ula generated from 1000 replications with Pareto margins and shape param-
eter 0.3. Re.Bias and RMSE of the estimators are calculated for different
censoring values and moderate dependence.

.
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τ = 0.7 , α = 0.4→ β = 2.78

1% of censoring
N n = 30 n = 50 n = 100 n = 500 n = 1000 n = 2000

(α̂, β̂) α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
Re.Bias -0.0131 0.4582 -0.0129 0.4197 -0.0128 0.4053 -0.0127 0.4127 -0.0128 0.4195 -0.0125 0.4171

RMSE 0.0150 0.0041 0.0149 0.0042 0.0147 0.0040 0.0147 0.0040 0.0148 0.0430 0.0145 0.0042

τ1 0.70344 0.69913 0.70007 0.70007 0.70013 0.69997

τ2 0.69002 0.68812 0.68855 0.68788 0.68815 0.68794

c1 0.03001 0.01890 0.00982 0.00190 0.00096 0.00005

c2 0.03035 0.01927 0.01000 0.00191 0.00950 0.00048

5% of censoring

Re.Bias -0.0126 0.4252 -0.0127 0.4063 -0.0127 0.3972 -0.0126 0.3973 -0.0126 0.4056 -0.0124 0.4001

RMSE 0.0146 0.0041 0.0147 0.0042 0.0147 0.0042 0.0146 0.0042 0.0146 0.0042 0.0144 0.0041

τ1 0.69937 0.69845 0.69828 0.70019 0.70010 0.70065

τ2 0.64116 0.63732 0.6397 0.64107 0.64168 0.64204

c1 0.03068 0.02042 0.00955 0.00194 0.00098 0.00049

c2 0.03050 0.01966 0.00974 0.00186 0.00095 0.00049

10% of censoring

Re.Bias -0.0123 0.3847 -0.0125 0.3756 -0.0127 0.3768 -0.0127 0.3927 -0.0129 0.3889 -0.0121 0.3860

RMSE 0.0144 0.0041 0.0145 0.0042 0.0146 0.0041 0.0147 0.0042 0.0149 0.0041 0.0142 0.0043

τ1 0.69714 0.70026 0.69879 0.69974 0.70095 0.70013

τ2 0.58936 0.58693 0.58613 0.58613 0.58814 0.58743

c1 0.03007 0.01752 0.00928 0.00183 0.00088 0.00045

c2 0.02926 0.01711 0.00886 0.00186 0.00092 0.00047

20% of censoring

Re.Bias -0.0128 0.3923 -0.0125 0.3671 -0.0125 0.3364 -0.0132 0.3458 -0.0130 0.3441 -0.0127 0.3445

RMSE 0.0148 0.0042 0.0146 0.0041 0.0148 0.0041 0.0151 0.0041 0.0149 0.0041 0.0147 0.0041

τ1 0.70236 0.70103 0.69985 0.70113 0.70053 0.70069

τ2 0.49520 0.49110 0.48840 0.49066 0.48991 0.48950

c1 0.02444 0.01543 0.00820 0.00160 0.00082 0.00040

c2 0.02485 0.01492 0.00829 0.00155 0.00077 0.00039

25% of censoring

Re.Bias -0.0126 0.2926 -0.0128 0.3569 -0.0126 0.3280 -0.0126 0.3417 -0.0122 0.334 -0.0126 0.3247

RMSE 0.0147 0.0043 0.0149 0.0041 0.0146 0.0042 0.0146 0.0040 0.0142 0.0041 0.0146 0.0041

τ1 0.69894 0.69874 0.70112 0.70002 0.70018 0.70029

τ2 0.44299 0.43503 0.44424 0.44622 0.44462 0.44530

c1 0.02306 0.01406 0.00691 0.00147 0.00073 0.00038

c2 0.02331 0.01521 0.00749 0.00147 0.00072 0.00036

Table 3. Moments estimator performance based on Gumbel survival cop-
ula generated from 1000 replications with Pareto margins and shape param-
eter 0.3. Re.Bias and RMSE of the estimators are calculated for different
censoring values and strong dependence.



N. IDIOU, F. BENATIA, B. BRAHIMI: A SEMI-PARAMETRIC ESTIMATION OF ... 865

Nesrine Idiou is a postgraduate student preparing for her Ph.D. degree affiliated to
the Applied Mathematics Laboratory, Mohamed Khider University, Biskra, Algeria.
She received her master’s degree in Applied mathematics to economics and finance
(2017) from the University of Mentouri Constantine1, Constantine, Algeria. She is a
statistician research scholar whose research interests focus on the copulas estimation
and their applications for complete and incomplete data.

Fatah Benatia is currently working as a professor in the department of mathematics
and a member in a laboratory of applied mathematics, Mohamed Khider University,
Biskra, Algeria. He received his D.E.A from Pierre et Marie Curie University,Jussieu,
Paris. He received his Academic Master in Applied Mahtematics from the University
of Constantine 1 and his Ph.D. in Applied Mathematics (Statistics and probability)
from Mohamed Khider University, Biskra, Algeria. His research interests are copula
estimation for complete and incomplete data.

Brahim Brahimi is a full professor in Mathematical Statistics affiliated to labora-
tory of Applied Mathematics. He received his Ph.D. in Mathematical Statistics in
2011 form Mohamed Khider University. He received his master’s and advanced Stud-
ies Diploma in Probability, Statistics and Optimizations (2003), University Badji
Mokhtar. His research interests are in non-parametric statistics, statistical inference
for incomplete data, rare events and applications to finance and insurance, extreme
value theory and actuarial risk measures, copula modeling and multivariate statistics.


