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ON THE M-FOLD PRODUCT OF FRACTIONAL OPERATORS

OZNUR KULAK!, §

ABSTRACT. In this work, using the m-fold product of fractional integral and maximal
operators, we prove that the boundedness of these fractional operators and their cor-
responding multilinear fractional operators under some conditions on weighted variable
exponent Lorentz spaces.
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1. INTRODUCTION

Throughout this paper, the space L. (R") consists of all (equivalence classes) measur-

able functions f on R™ such that f.xx € L' (R") for every compact subset K C R", where
Xk is the characteristic function of K. Let u be a Borel measure on R”. The distribution
function of f is defined as

M@ =plee R f@ > = [ dul@.yzo
{zeR™:|f(z)|>y}
The rearrangement function of f is given by

@) =inf{y >0: Af(y) <t} =sup{y >0:A¢(y) >t},t>0.

The average function of f* is defined to be

for t > 0, [6].
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Let 0 <l < 0o. We denote
p- = inf p(z), p" = supp(z).
z€[0,]] z€0,]]

Moreover, we use the notation

Pa:{p:a<p_§p+<oo}, a € R
The set p[0,!] is the family of p € L% ([0,!]) such that there exist the limits p(0) =
limp (z), p(c0) = lim p (z) and we have
x—0 T—00

p@) - pO) < r . <y (©>0)
||
and
p(x)—po) < —C . (©>0). (1.1)
“In(e+|z|)’

If | = oo, then it’s enough to the inequality (1.1) satisfies. We also denote g, ([0,1]) =

@ ([0,1]) N Pa ([0,1]).-
Let © be open set in R"™. We denote by [ = p (€2). Assume that p,q € g ([0,7]). The

variable exponent Lorentz space LP()4()(Q) is defined as the set of all (equivalence classes)
measurable functions f on € such that p, ,(f) < co, where

!
a(t) _
Ppa (f /t @ ()1 dt. (1.2)
0
‘We use the notation

| ;
15000000y = 06 {3 > 02 () < 1.

Let p € g ([0,1]) and g € g1 ([0,1]). If [ = oo, then the equality (1.2) is equivalent to the
following sum

1 00
[E87 g @y [657 (¢ 00 ar
0 1

If | < 0o, then the equality (1.2) is equivalent to the integral

l
4(0)

[867 (g 0y an
0
The space LP()40)(Q) is normed vector space with norm

11l Lo .acy () = inf {)\ >0: pm(i) < 1} ,

where pp, 4 (f ftp(ﬂ (£ ()7 at, [3]. Also if p(.) = p and ¢(.) = ¢ are constants,

>

then the space Lp() 4()(Q) coincide with usual Lorentz space LP4(Q). In the literature,
there is another definition of variable exponent Lorentz spaces in which variable exponent
Lorentz spaces coincide with variable exponent Lebesgue spaces when p(.)=q(.), [7]. But
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since the variable exponent p(.) is defined on © and not on [0, ] in the variable exponent
Lebesgue spaces, the identity LPOP()(Q) = LPG)(Q) does not hold for this definition we
used in our study.

A weight w function is defined by nonnegative and measurable function on [0,{]. The

weighted Lorentz space Lg(')’q(')(Q) with the weight w consists of f € M (€, u) such that

1 1 1 % ‘
= (t) (t)
£ 22000 Hw(t)tp @ f*(¢) Ly <
Also, it is normed space with the norm
1 1
= ) q(t) f**
1Al o200 HW (t)tr® a0 f (t)’ L@

Let p,q € o1 ([0,1]), v € 9 ([0,1]) and w (t) = t¥®)_ If  satisfies the following conditions

then
Hing(-xqu <A ppraer < C'HleLgm,qm

are obtained, where C' > 0 does not depend on f, [3]. In other words, we have HleLpt),qt) ~
11l pracr- T this paper, we will assume that p,q € g1 ([0,]), 7 € o ([0,1]), w (£) = OO,
~v(0) < ﬁ and v (00) < Wlod' Also, we will use the notation f < g to mean that there

is a positive constant C' such that f (t) < Cg(t) for all t € Q.

Recently, the boundedness of various types of operators between the some function
spaces, which play an important role in harmonic analysis and partial differential equa-
tions, have been studied. One of them, the fractional integral operator is given as

L@ = [y s er0<acn
Rn

for any f € § that is Schwartz class. This operator plays an important role in the theory
of Sobolev’s embeddings, [11]. Also, L. Ephremidze, V. Kokilashvili and S. Samko (see

[3, 9]) proved the boundedness of fractional integral from the space rpat) (Q) with the
weight w (t) = t7® into the space rre)al) (Q), where ;Tl(t) = ﬁ -2 pq€ (0,1,
v €9 ([0,1), 7(0) < 55y and 7 (00) < gy

The fractional integral operator of variable order « (.) is defined for any f € S by

Iy (f) (2) = /‘x_fy(‘gza(x)dy, r € R",
RTL

where 0 < a(.) < n. This operator was shown to be bounded from the variable exponent
Lebesgue space LP() (R™) into the weighted variable exponent Lebesgue space Lg(') (R™),

where p(z) = (1+ |z|)”7 with some v > 0, Tlm) = ﬁ - #, p € ©([0,]]) and 1 <
p(o0) < p(x) < P < oo, [10].

The Hardy-Littlewood maximal operator is defined for any f € L} (R") by

loc
1 n
M (f) () ‘i‘émé‘“y)'dy’ R,

where the supremum is taken over all cubes with sides parallel to the coordinate axes.
The boundedness of Hardy-littlewood maximal operator is considered on Lebesgue spaces,
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variable exponent Lebesgue spaces, variable exponent Wiener amalgam spaces, etc. L.
Ephremidze, V. Kokilashvili and S. Samko (see [3, 9]) proved the boundedness of this op-
erator in the variable exponent Weighted Lorentz space Li(')’Q(')(Q), where p, ¢ € p1 ([0,1]),
w(t) =10 5 e o(0,1]), v(0) < ,(0) and 7 (00) < m. Moreover, A. Kucukaslan,
V.S. Guliyev, C. Aykol and A. Serbetci proved the boundedness of the Hardy-Littlewood
maximal operator on local variable Morrey—Lorentz spaces, [12].

Another important operator is the called fractional maximal operator M, is defined by

Mo (f) (z) = sup /|f )| dy, x € R",
(EEQ‘

for any f € L} (R™). Similarly under some conditions, using the boundedness of fractional
integral operator, this operator is bounded from the space Lf,(') al) (©) with the weight

w(t) = '® into the space L2*"40) (), where o (t) % — 0 Bl

The fractional maximal operator of variable order « (.) is given for any f € L} (R") by

Moty () ) = smp / I ()] dy, @ € R™

The fractional maximal operator of variable order « (.) is bounded from the variable ex-
ponent Lebesgue space LP() (R™) into the weighted variable exponent Lebesgue space
Lf,(') (R™), where p () = (14 |z])~” with some v > 0, chc) = ﬁ - #, p € p([0,1]) and
1 <p(oo) <p(x) <P < oo, [10].

In many research, the boundedness of multilinear integral operators (multilinear frac-
tional integral operators, multisublinear maximal operators etc.) in weighted function
spaces is considered. These operators play an important role in Harmonic Analysis. His-
torically, the multilinear fractional integrals were introduced by L. Grafakos [4], C. Kenig
and E. Stein [8], L. Grafakos and N. Kalton [5]. They make with the operator

BK<f,g><x>=/f<a:+t>g<z—t>f<<t>dt,xew,

where K (t) = W%a, 0 < a < n. They obtained that Bg is bounded from LP! x LP? to

q it 1_1 o1l _ 1,1 i
L% under the conditions i =5 = T 1 < p1, p2, ¢ < co. This boundedness

follows from the pointwise estimate

B (f,9) (@) < In (f7)7 I (9°)% ,

where r = %, s=B_fg>0,[17]. As a tool to understand B, the following operator
is defined.
Let m > 1 and 0 < a < nm. For ? € § x ... x §, the multilinear fractional integral

operator is defined by

I (?) (z) = / : f1 (1) - fm (Ym) 47,

Mz =+t |z = yml)
(R™)

SIS

where dy = dyi...dym, 7 = (f1,.., fm). If the functions «; (1 <i < m) satisfy the
m

statements 0 < a; < n and a1 + ... + oy, = «, then I, (?) <TI Ia, fi, [17, 18].
i
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Let 7 € Li,.(R") x ... x Ll (R") and 0 < o < nmm. the multisublinear fractional

maximal operator (multilinear for brevity) is given by

M, (7) () = 225]@\’1‘_3 f[é | fi ()| dys.

m
Also if a1 + ... + ay = «, then M, <7> < H M,, fi. Let 0 < o« < nm. Then, there exists

a positive C' such that M, ( ) < Cl, (

) 17, 18].

2. MAIN RESULTS

In this section, we will first give the boundedness of the linear fractional integral operator
and maximal operator on weighted variable exponent lorentz spaces under some conditions.

Theorem 2.1. Let 0 < a—, ay <n. If -7 <7(0), v(0) + &< p/%O)’ p(oo) < 7 (00)
and v (00) + %= < ( 7> then Loy is bounded from the space (Lp(')’q(') N Lp() ()) (Q) into

the space et )(Q), where wq_ (t) = O+ and Wa, (t) = 'W+=" . The condition at
infinity being needed in the case | = oo

Proof. Take any f € (Lﬁ(a')f(') N Lf,(c;)f(')> (©). Since a— < a(.) < a4, we have

1oy (f) (2)| = /Q%dy
Q

- f (Zj)fa(x) dy + / f (g)fa(x) d
(w€Q: e—y|<1} [z =l (2€Q: [o—y|>1} [z =l
< %dy + %dﬂ
|z — | |z — g
{zeQ: |z~ y|<1} {xEQ' lz—y[>1}
/ |f (y / If (y
’x n a+ |$ y|n a_
L (D) () + Ta— !f\)( ) (2.1)

for all z € Q. Then by (2.1), we can write

(o) ()" () < (L (UF1) + Tt (D) 0
< (1o 170" (5) + o (0" (5) >0 (2.2
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By (2.2), we find

oy (D perac gy = [[ac HLP()q() Hw £) 17070 (L) ()" (1) LO®)
< ﬂ@+%rwm(ua<uor+w@+ﬂﬂ»ﬂ(§)
Lq(-)(Q)
<[eestst qmy (5)| e sy (5)
2 L) (Q) 2 L) (Q)
< ﬂ“*ﬁfﬁoua<um”<t) + ”@ﬂ@‘¢WLw0ﬂ»”<t>
2 La0)(Q) 2 L) ()
(2.3)
Also, we have
k% 2 y *
(o 1) (5) = 2 [ (o (10" 01
2 ' 0
<3 [ U (D) (91 =2 (1o (1£1) (0 24)
0
Similarly, we write
(ot (D) () <200 (510" 0 25)
Hence by (2.3), (2.4) and (2.5), we get
[ Za() ( HLP()Q() S Hﬂ D45t 7o (In_(I£D)™ (t)‘ LQ(~)(Q)+
o R A O] B (2.6)

On the other hand by [19], there exist C1 > 0 and Cz > 0 such that

t l
(Io_ (]f\))* (t) < Cq (tl“'an/f* (s)ds + /f* (s) sl“‘ands) (2.7)
0

t

(Tay (IFD)" () < Cs (t 1+M/f d8+/f ST ) (2.8)

Now let a1 (t) = (£)+ %5 + 55— q(lt)jaz(t)=v()+°”+ aw B =7 O+ 55—
and v (t) = 0. Since y € p ([0,1]) and p,q € g1 ([0,1]), it is Clear that ay, 09, ,v €
If we use (2.7) and Hardy-type inequalities (see [2]), we achieve

|70 (1o ) O o = [T (T 1) )

and

Lq(J(Q)

t !
tW(tHﬁ_ﬁ (tHan/f* (s) ds—l—/f* (s) sl+ands)
0 t

Lq(»)(Q)

<C;

Lq(-)(Q)
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t l
S t“*(t”aihm—m‘l/f* (s)ds + t”(t”p(lt)—q?o/f* (5) s~ 1+ ds
0 La)(Q) ¢ La0)(Q)
l o
* g (s " B(s)+2=
_ o1 [S7(s) 8™ s+ [f7(8) 87T
! / 8a1<s K FIOE R
Lq()( ) t La()(Q)
<l m(t)‘ ’
S| L30)(Q) La)(Q
1
- PO aD ok -
Weq_trt La @ + Hw tr(t Lq(.)(Q) 2 HfHLf,Q‘q<')(Q) . (29)

Similarly if we use (2.8) and Hardy-type inequalities, we get

[+ (1o (1710 H ~ Ht”“”ﬁ‘ﬁ (Tae (11)" ®)

L1 (Q L1 (Q)
* B+ E
< ta2 )+u(t f ds + t’B )+o(t ids
80‘2(3 sP(s)
)(Q) LtI(-)(Q)
1
— B0 a®) ok —
’ War, E71 LI (Q + Hw b Lq(~)(Q) 2 HfHLi(Q’Q(')(Q) ' (2.10)
Combining (2.6), (2.9) and (2.10) we obtain
[Hae) (D] e ) S Nl poac g + Il z0a0 @) = 11l g atr s -
This completes the proof. O

Corollary 2.1. Let 0 < a_, ay < n, v € p([0,1]). If ‘ﬁ < 7(0), v(0) + af <

ﬁ, —ﬁ < y(00) and vy (c0) + 5+ < p,éo), then My is bounded from the space
(Lf,((;) 1) Lg(alq( )> (Q) into the space Lf,(')’q(')(Q). The condition at infinity being needed

in the case | =

Proof. Let f € (Lﬁi) 1) Lﬁg)f( )> (Q) be given. It is known that there exist C' > 0 such
that

Mo ()(f) (z) < Cly (If]) (), (2.11)

for all x € Q, [11]. Then by Theorem 2.1 and (2.11), we conclude
(| My HLp< 1a0) () S o) ’f\)HLgm,q(.)(m S ’\f\\L&),q(')ng&),q(') : (2.12)
]

Lemma 2.1. Let I = p () <1, 0 < a; < ay. Then
p(-),a(.) p(-).a(.)
LOa0() o 120(Q),
where we, (t) = YO+ i =1,2.

Proof. By assumptions, we can write wqy, (t) = nH+32 < PO+ Way (t). Then, we
So by Closed Mapping Theorem, we obtain L, ()a(.) (Q) —

wal

h . <. .
ave [l spacy ) < Il g0 )

LEL (). -
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Theorem 2.2. Let |l = p(Q) < 1 0< oz_,oz+ < n. Then I,y is bounded from the space
Lgi')_’q(')(Q) into the space LBt ( ), if 57 < (0), v(0) + &< Wlo)'
Proof. Since w,, < w,_ and by Lemma 2.1, we have LZ&%q(')(Q) — Lf,(c;l’q(')(ﬂ). Now,
take any f € Lg(c;)_’q(A)(Q). Then, by (2.12)

oty (D] a0 ) S 1 0000000

= £l porac g + ||f||L5(+A>,q(A>(Q) < 2 fll porac) g -
Therefore, the desired is achieved. ]

The following Corollary is easily proved by Theorem 2.2 and the inequality (2.11).

Corollary 2.2. Let | = u(Q2) <1, 0 < a_,ay < n. Then, M,y is bounded from the
space Lf,(c;)_’q(')(Q) into the space Lﬁ(’)’q(')(Q), if 'ﬁo) <7(0), v(0) + =+ <

1
p’(0)

Definition 2.1. Let 0 < a; (.) <n,i=1,...,m and ? €8 x...x 8. The m-fold product
of fractional integral operator of variable order « (.) is given by

15, (7)) @) = L) (7)) @) L) (2) (@) L) () (@), 2 € 92

where ac () = a1 (L) + ... +am (1) and? (f1yes fm) -
Definition 2.2. Let 7 €L, (R") x...x L, (R") and 0 < o; (.) <mn, i=1,..m. The

m-fold product of fractional mazimal opemtor of variable order o (.) is defined by

ME ) (F) (@) = May) (1) (2) Mgy (f2) (2) - Mo (Fin) (), 2 €9,

where a () = a3 () + ... + auy (- and? (f1y s fm) -

M. Carro and E. Roure (see [1]) defined the 2-fold product of Hardy-Littlewood maximal
operator. They study boundedness of this operator from the space LPU! (wy) x LP2'! (wo)

P p

into LP>° (wf ! w2’72> under some conditions. They so proved the boundednes of the

bilinear Hardy-Littlewood maximal operator from the space LPL! (w;) x LP2! (ws) into
D P

LP | wit wy?
The proof of the following lemma is obtained immediately from the inequality (2.11).

Lemma 2.2. Let 0 < «;(.) <n,i=1,...,m. Then

gy (7)< 15, (7))

where « = aq (\) + ... + am (1), 7 (fiyees frm) and‘?‘ ([f1l5 s [ fiml) -

In the following Lemmas and Theorems, we will assume ; € o ([0,
(1 =1,...,m) and take w (t) = wi (t) ... wm, (1), ﬁ) = pll(.) —|—...—|—ﬁ

N
=}
—~

% @
@ «@
+

wi (t) = 70w (1) = O wei, (1) = 7O (i=1,2,...,m).



OZNUR KULAK: ON THE M-FOLD PRODUCT OF FRACTIONAL OPERATORS 971

Lemma 2.3. Ifv; (0) < ﬁ, 7i (00) < WIOQ (i =1,...,m), then for all f; € Lﬁ(')’qi(')(ﬂ),
there exists C > 0 such that '

117

=1

< CH 1ill i -

LZ(%q( ) i=1

The condition at infinity being needed in the case | = oo

Proof. Let f; € LZ@“’%‘“(Q) be given for i = 1,...,m. We easily write,

(Hfz) SIIs
i1 i1

by (2.14) in [15]. If we use the Holder inequality for variable exponent Lebesgue spaces,

then there exists C' > 0 such that
m *
1 1
s (1)
i=1

m 1
117
wy (t) ..t (1) t(zall(.)‘ﬁ) t(ﬁ()‘#@)nﬁ*

i=1 Lﬁ(‘)’Q(‘>(Q)
=1

m

117

=1

Lg(~),0(-)(9) Lq()(Q)

S

Lq(<)( )

-1 1ill g0 g

Lq(-)(Q) =1

wi (t) t(ﬁ’ﬁ)ﬁ*

O
Theorem 2.3. Let 0 < o', o', <n (i=1,...,m) and a(.) = a1 (.) + ... + am (.). Then,
1% ) is bounded from the space (Lf}a(i)’ql(‘) N Lf}a(l')m(')> (Q)x...x (Lf)}}f')’qm(') N ngg),qm(.))

Oé(. + +

(Q) into the space Lﬁ(')’q(')(Q), if 1

1 o
. —pi(0)<%(0), 'yi(0)+%<mand ( )<'yz( 00),
i (00) + 2 < m, (i=1,...,m) . The condition at infinity being needed in the case

|l =00

Proof. Let f = (fi, s fm) € (Lﬁjg’ql(') N LB ?7“’) (Q)x...x (LLp0 a0 o gl )
(©) be given. From Theorem 2.1 and Lemma 2.3, there exists C' > 0 such that

|25 (7))

<CHH i) (D] L7090 (g <CHHszLp1<)q1<>Lp1<>q1()

12090 q = || 1a, O (f2) oy (fm) HLPUq()( )

=1
- CH H . (2.13)
<L51(14>,q1<.>m51<1.>,q1<4>) “ % (LZ%(JaQM(-)ng':;LT(’i)vqm(»))
]
Corollary 2.3. Let 0 < o', o/, < n (i=1,...,m) and a(.) = a1 (.) + ... + am ()
Then, the operator Mfi) is bounded from the space (Lf,l()‘h() NL (1) ‘h(')) (Q) x ... x
: o

(Lfgl(')’qm(') N Lffgé)’qm(')> (Q) into the space Lg(')7q(’)(§2), if -—~ < 4; (0), v (0) + % <
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p'-%()) and —p,(loo) < 75 (00), 7i (00) + e (it =1,...,m). The condition at infinity

n p;(00)’
being needed in the case | = oo

Proof. By Lemma 2.2 and Theorem 2.3, the proof is clear. g

Definition 2.3. Let m > 1 and 0 < a(.) < nm. For 7 € S x..x 8, the multilinear
fractional integral operator of variable order o (.) is defined by

Tty (?) (z) = / : f1 (1) - fm (Ym) )d7,

(Rn)™ |$ - y1| + ...+ ’x _ ym‘)nmfa(g;

where dy = dy ...dym, and 7 = (f1, s fm) - If the functions a; () (1 <i <

m)
conditions 0 < a; (.) <nm and a1 () + ... + am () = a (), then I (7) ﬁ

1, (7).
(R™)x...x L}

Definition 2.4. Let 7 €L, loe R™) and 0 < o (.) < nm. The multisublinear
fractional maximal operator (multzlmear for brevity) of variable order «(.) is given by

M) (7) (z) =sup——~ a0 H/ | fi (ya)| dyi-

el

satzsfy the

Also if ay () +... +am (.) = a (), then My (?) < H My, fi= MS)(‘) (7) . Also it is
i=1
clear by (2.11) that there exists a positive C' such that M) (?) < Clyy, <’7D

Theorem 2.4. Let0 < o', o’ <n (i=1,...m) and a(.) = a1 (.)+...+am (.). Then, the
Lgla(i)m(ﬁ N Lgl(l-),m(-)) ()

“+

X X (Li%f')’qm(') N Lg;é),%()) (Q) into the space LZ(')’Q(')(Q), if —[%(0) <7 (0), v (0) +

multilinear operators My and I,y are bounded from the space

al 1

—+ < =
n pi(O)
infinity being needed in the case | = 0o

and —ﬁ < 75 (00), i (00) + O 1 (i=1,...,m). The condition at

n S plo)

Proof. Let | € ((LZL&)’“(') N Lﬁﬁ’ql(')) X oo X (Lﬁg{')’qm(') N LZ’Z,E;)"”"('))> (2) be given.

Since I, (?) < IS)(.) (?) and by (2.13), we have

®
IO‘() <7)’ LP(J#Z(J(Q) < IOL() (7)‘ Lg(‘)7Q(<)(Q)
H7H Lp1<>q1<)mLp1<>q1(> (Lp%(.xqm<.)0L5m<'>,qm(.))'
ol va oF

Similarly, using the inequality M) (7) < Mg‘i') (7), by Lemma 2.2 and (2.13), we get

[0, (7)) L) gy S |z, (7)) 15, (7))

< ‘
~ p1(-)q1(.) p1(-),q1(.) pm(.),am(.) pm(-),am(.)
(L( 1 L 1 )XX(L% m L m m )

<
Lf,(')’q(')(ﬂ) ~ La(-)vq(-)(ﬂ)
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Hence we say that the multilinear operators M, and I, are bounded from the space

al ol o

U
Theorem 2.5. Let [ =u(Q) <1,0<a’,a, <n (i=1,..,m) and a(.) = )+ ..+
am (). Then, IS’(.) is bounded from the space <Lff(1) @) Lﬁmm (. ) ) into the

space Lf:(')’q(')(Q), if _1%(0) <7 (0) and ~; (0) + o < (i=1,.

_1
n p;(0)’

Proof. Take any ? € (Lﬁl(l')’ql(') X ... X Lﬁ’;&)’q”(')> (Q) . Then by Theorem 2.2 and

Lemma 2.3

15 (7))

m

m
L2000 (g SHHIaz Lm()qz SHHszLp()q()

=[7]

is obtained. Therefore, we completed the proof. O

Lm(-),tn(»)>< w [Pm(-),am ()
Wy X Lo lm

Following Corollary is obtained easily by Lemma 2.2 and Theorem 2.5.
Corollary 2.4. Let = p () <1,0<a’ 0 <n (i=1,..m) and a(.) =

am (.). Then, M®() is bounded from the space (ng(l-)m(-) X Lgm,(n (- > ) into the

space L4 ( ), if -5 <'yz( )and%(O)+%<p,_—%0), (1=1,..

Corollary 2.5. Let | = p(Q) < 1,0 < a',a’, <n (i=1,...,m) and a(.) = a1 (.) +
.+ am (). Then, the multilinear operators I,y and M,y are bounded from the space
<Lﬁ2(l')’ql(') X . X Lﬂ’:i(,;)’qm('v () into the space )t )( 0), if ) < 7; (0)and ~; (0) +
T <y (1= 1m)

Proof. It we use the inequalities I, (7) < IS’(') (7), My (?) < Mff(.) (7), by
Theorem 2.5 and Corollary 2.4 we find the desired. O

3. CONCLUSIONS

The bilinear and multilinear operators have been been studied in a number of papers
[4, 5, 8] and have been proved the boundedness on some function spaces, [13, 14, 15, 16,
17, 18]. In this study, we are primarily motivated to boundedness of the n-fold product of
fractional operators of variable order « (.) under some conditions. In this way, we had the
opportunity to consider the boundedness of the multilinear fractional operators of variable
order a (.) on weighted variable exponent Lorentz spaces.
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