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APPLICATION OF NEUTROSOPHIC POISSON PROBABILITY

DISTRIBUTION SERIES FOR CERTAIN SUBCLASS OF ANALYTIC

UNIVALENT FUNCTION

I. T. AWOLERE1, A. T. OLADIPO2∗, §

Abstract. Necessary and sufficient conditions for neutrosophic Poisson probability dis-
tribution series to be in the classes Mn

γ (θ) were derived by means of coefficient inequal-
ities. The results obtained further strengthening the relationships between geometric
function theory and statistics and by extension, fuzzy logic.
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑
k=2

akz
k (1)

that are analytic in the open unit disk D = {z : |z| < 1} with normalization condition
f(0) = 0 and f ′(0) = 1. Denote by S the subclass of A which consist of univalent
functions of the form

f(z) = z −
∞∑
k=2

|ak| zk. (2)

The well known subclasses of S are starlike and convex functions. The classes of starlike
and convex functions of order zero are respectively denoted by S∗ and K. Other class of
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interest to the researcher here present is the class of close-to-convex functions with the
geometrical representation

Re

(
eiδ
f ′(z)

g(z)

)
> 0, z ∈ D.

The class of all close-to-convex functions is denoted by C and was introduced by Kaplan in
[5] where g is convex. Let g(z) ≡ z, the class C reduces to class introduced and investigated
by Mahzoon and Kargar in [13] and defined by

R =

{
f ∈ A : Re

(
eiβf ′(z)

z

)
> 0, for β ∈ R, z ∈ D

}
.

where δ ∈ R.

Definition 1. A function f of the form (2) belongs to class Mn
γ (θ) if it satisfies the

condition

Re

{
(Dnf(z))′ +

1 + eiθ

2
z(Dnf(z))′′

}
> γ, 0 ≤ γ < 1, −π < θ ≤ π (3)

where n = 0, 1, 2, 3, ... and Dn is the well-known Salangean derivative operator.

Remark A. If we let n = 0 in the Definition 1, the class introduced and investigated by
in [13] is obtained. Other chains of new and existing function classes can be obtained with
various choices of n and other parameters involved in the definition.

The concept of neutrosophic theory is a new branch of philosophy as a generalization
for the fuzzy logic and a generalization of instrinstic fuzzy logic. The concept was intro-
duced and investigated in [19] by Smarandache, (see also [3,4-7,20-21] it provides a new
foundation for dealing with issues that have indeterminate data (may be numbers). The
use of neutrosophic crisp sets theory alongside classical probability (Poisson, exponential,
uniform distribution) opens a new stairway for dealing with issues that follows the classical
distribution and at the same time contain data not specified accurately [15] as example.
Neutrosophic Poisson distribution of discrete variable X is a classical Poisson distribution
of x, its parameters are imprecise, m can be set with two or more elements and the most
common of such distribution is when m is interval say [1,7].

The proposed work will addresses issues that follows classical distribution and at the
same time containing data not specified accurately or indeterminate, which makes it dif-
ferent from the existing works which only deals with classical distribution in Geometric
Function Theory. The novelty of this investigation is such that the earlier existing works
in Geometric Function Theory/Univalent Function Theory addresses classical Poisson dis-
tribution whose data are specific and accurate, whereas the present investigation captured
both the classical Poisson distribution and neutrosophic Poisson distribution whose data
are indeterminate which in turn addresses physical problems with fluctuations in the sit-
uations of our daily living.

The current work is limited due to its restriction to solving few initial coefficients esti-
mate of neutrosophic Poisson distribution in the unit disk, though with potential applica-
tions in telecommunication industry, signal processing and transport industry.

A variable x is said to be Neutrosophic Poisson distributed if it takes the values

0, 1, 2, 3, ... the probability e−mN , me−mN
1! , m2e−mN

2! , m3e−mN
3! , ... respectively, where mN

is called distribution parameter which is equal to the expected value and the variance,

P (x = k) = mk
N

e−mN

x!
, k = 0, 1, 2, 3, ....



1044 TWMS J. APP. AND ENG. MATH. V.13, N.3, 2023

and

NE(x) = NV (x) = mN

where N = d+ I is a nuetrosophic statistical number (see [1,7]) and the reference therein.
Recently, Alhabib et al. [1] introduced and investigated a power series of neutrosophic
Poisson distribution which was further investigated by Oladipo [15] via coefficient inequal-
ities expressed as

K(mN , z) = z +

∞∑
k=2

mk−1
N

(k − 1)!
e−mN zk, z ∈ D, (4)

where m ∈ [1,∞] and by ratio test, the radius of convergence of the above series was
shown to be infinity. Further, we define a series

Ω(mN , z) = 2z −K(mN , z) = z −
∞∑
k=2

mk−1
N

(k − 1)!
e−mN zk, z ∈ D. (5)

By convolution principle (Hadamard product), we have

ΩK(mN , z) = K(mN , z) ∗ f(z) = z +
∞∑
k=2

mk−1
N

(k − 1)!
e−mNakz

k, z ∈ D (6)

where ∗ denote the convolution or Hadamard product of two series.
Motivated by the earlier works in [9,11,15,17,18,22] we determine the necessary and suffi-
cient conditions for neutrosophic Poisson distribution class Ω(mN , z) to be in the following
analytic function classes M0

γ (θ), M1
γ (θ) and M2

γ (θ).
In what follows, we state conditions for the integral

G(mN , z) =

∫ z

0
ε−1K(mN )(ε)dε

to be in the class M0
γ (θ), M1

γ (θ) and M2
γ (θ).

2. Preliminary and Lemmas

Lemma 1. A function f of the form (2) belongs to class Mn
γ (θ) if and only if

∞∑
k=2

kn [2k + k(k − 1)(1 + cosθ)] |ak| ≤ 2(1− γ), (7)

where n = 0, 1, 2, ..., 0 ≤ γ < 1,−π < θ ≤ π. The result (7) is sharp for the relation

f(z) = z − 2(1− γ)

kn [2k + k(k − 1)(1 + cosθ)]
zk, k ≥ 2.

Proof. Suppose that the function f(z) ∈Mn
γ (θ). Then by (3) we have

R

{
1−

∞∑
k=2

kn
[

2k + k(k − 1)(1 + cosθ)

2

]
|ak| zk−1

}
> γ.

Choose z to be real and let z → 1−, we obtain

1−
∞∑
k=2

kn
[

2k + k(k − 1)(1 + cosθ)

2

]
|ak| > γ
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which is equivalent to (7). Conversely, suppose that (7) is true, then, we have∣∣∣∣(Dnf(z))′ +
1 + eiθ

2
z(Dnf(z))′′

∣∣∣∣ < ∞∑
k=2

kn [2k + k(k − 1)(1 + cosθ)] |ak|

≤ 2(1− γ),

which implies that f(z) ∈Mn
γ (θ).

A function f ∈ A is said to be in the class RT (A,B), T ∈ C/{0},−1 ≤ B < A ≤ 1 if∣∣∣∣ f ′(z)− 1

(A−B)T −B(f ′(z)− 1)

∣∣∣∣ < 1.

Lemma 2. [10] If f of the form (1) belongs to class RT (A,B), then

|ak| ≤ (A,B)
|T |
k
, k ∈ N − {1} .

for −1 ≤ B < A ≤ 1. The result is sharp for

f(z) =

∫ z

0
[1 + (A+B)

Ttt−1

1 +Btt−1
]dt, (z ∈ D, k ∈ N − {1}).

3. Necessary and sufficient conditions

For easy handling, throughout the investigation, we shall refer to the following
∞∑
k=2

mk−1
N

(k − 1)!
= emN − 1 and

∞∑
k=j

mk−1
N

(k − 1)!
= mj−1

N emN , j ≥ 2. (8)

Theorem 2.1. Let m ∈ [1,∞], 0 ≤ γ < 1 and −π < θ ≤ π. Then, Ω(mN , z) ∈M0
γ (θ) if

and only if

(1 + cosθ)m2
N + 2(2 + cosθ)mN + 2(1− e−mN ) ≤ 2(1− γ). (9)

Proof. In order to prove that Ω(mN , z) ∈M0
γ (θ), using Lemma 1 we have to show that

P1 =

∞∑
k=2

[2k + k(k − 1)(1 + cosθ)]
mk−1
N

(k − 1)!
e−mN ≤ 2(1− γ).

Setting
k = (k − 1) + 1, k2 = (k − 1)(k − 2) + 3(k − 1) + 1, (10)

we have

P1 =
∞∑
k=2

[2k + k(k − 1)(1 + cosθ)]
mk−1
N

(k − 1)!
e−mN

=

∞∑
k=2

[(1 + cosθ)(k − 1)(k − 2) + 2(2 + cosθ)(k − 1) + 2]
mk−1
N

(k − 1)!
e−mN

=
∞∑
k=2

(1 + cosθ)(k − 1)(k − 2)
mk−1
N

(k − 1)!
e−mN +

∞∑
k=2

2(2 + cosθ)(k − 1)
mk−1
N

(k − 1)!
e−mN

+
∞∑
k=2

2
mk−1
N

(k − 1)!
e−mN

= (1 + cosθ)

∞∑
k=2

mk−1
N

(k − 3)!
e−mN + 2(2 + cosθ)

∞∑
k=2

mk−1
N

(k − 2)!
e−mN + 2

∞∑
k=2

mk−1
N

(k − 1)!
e−mN
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and by (8), we note that

P1 = (1 + cosθ)m2
N + 2(2 + cosθ)mN + 2(1− e−mN ).

The last expression is bounded above by 2(1 − γ), if and only if (9) is satisfied. Using
MATHEMATICA to solve for (9) for selected interval mN , the table and the figure below
are obtained. The values obtained are in agreement with existing literature with consid-
eration for cosθ

γ θ exp−(1,3) exp−(4,6) exp−(7,9) exp−(10,12) exp−(13,15)

0.0 −170 ◦ 0.742368 3.305782 3.71256 1.62463 5.191065
0.1 −150 ◦ 0.765961 3.315391 3.664105 1.333853 5.191065
0.2 −120 ◦ 0.739958 3.328393 3.652495 0.958093 5.191065
0.3 −90 ◦ 0.840355 3.344756 3.344756 0.457078 5.191065
0.4 −60 ◦ 0.806345 3.85672 3.234632 0.758511 4.651781
0.5 −30 ◦ 0.765961 1.073055 3.108090 0.855382 0.86886
0.6 0 ◦ 0.596623 3.344756 3.344756 0.657287 -0.10607
0.7 30 ◦ 0.768936 4.810744 3.572167 0.734085 -4.33072
0.8 60 ◦ 0.749724 5.703564 5.133456 0.945536 -1.48213
0.9 90 ◦ 0.748955 5.007446 4.191590 1.050707 1.95339
0.1 120 ◦ 0.656740 3.999445 3.344756 0.720507 2.72255
0.2 150 ◦ 0.638521 3.344756 2.074505 0.742961 2.69613
0.3 170 ◦ 0.623452 3.325782 1.054101 0.442614 2.31235

Theorem 2.2. Let m ∈ [1,∞], 0 ≤ γ < 1 and −π < θ ≤ π. Then, Ω(mN , z) ∈ M1
γ (θ)

if and only if

(1 + cosθ)m3
N + (7 + 5cosθ)m2

N + 2(5 + 2cosθ)mN + 2(1− e−mN ) ≤ 2(1− γ). (11)

Proof. Let

TK(mN , z) = z −
∞∑
k=2

mk−1
N

(k − 1)!
e−mN zk
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and by Lemma 1 we have to prove that

P2 =

∞∑
k=2

k [2k + k(k − 1)(1 + cosθ)]
mk−1
N

(k − 1)!
e−mN ≤ 2(1− γ)emN .

Using (10) we have

k3 = (k − 1)(k − 2)(k − 3) + 6(k − 1)(k − 2) + 7(k − 1) + 1,

we have

P2 =
∞∑
k=2

[2k + k(k − 1)(1 + cosθ)]
mk−1
N

(k − 1)!
e−mN

= ((1 + cosθ))

∞∑
k=2

mk−1
N

(k − 4)!
e−mN + (7 + 5cosθ)

∞∑
k=2

mk−1
N

(k − 3)!
e−mN

+2(5 + 2cosθ)
∞∑
k=2

mk−2
N

(k − 2)!
e−mN + 2

∞∑
k=2

mk−1
N

(k − 1)!
e−mN

and by (8), we observe that

P2 = (1 + cosθ)m3
Ne

mN + (7 + 5cosθ)m2
Ne

mN + 2(5 + 2cosθ)mNe
mN + (emN − 1).

The last expression is bounded above by 2(1 − γ), if and only if (11) is satisfied. (1 +
cosθ)M2

n + 2(2 + cosθ)Mn + (1− exp−Mn)
Theorem 2.3. Let m ∈ [1,∞], 0 ≤ γ < 1 and −π < θ ≤ π. Then, Ω(mN , z) ∈ M2

γ (θ) if
and only if

(1 + cosθ)m4
N + (11 + 9cosθ)m3

N + (31 + 19cosθ)m2
N + 2(11 + 4cosθ)mN + 2(1− e−mN )

≤ 2(1− γ). (12)

Proof. Let

Ω(mN , z) = z −
∞∑
k=2

mk−1
N

(k − 1)!
e−mN zk

and by Lemma 1 we have to show that

P3 =

∞∑
k=2

[
2k3 + k3(k − 1)(1 + cosθ)

] mk−1
N

(k − 1)!
e−mN ≤ 2(1− γ)emN . (13)

Using (10) and setting

k4 = (k−1)(k−2)(k−3)(k−4)+10(k−1)(k−2)(k−3)+25(k−1)(k−2)+15(k−1)+1,

in equation (13) and by simple computation we have the desired result.

Making use of Lemma 2, we shall study the effect of neutrsophic Poisson distribution
series on the classes M0

γ (θ), M1
γ (θ) and M2

γ (θ).

Theorem 2.4. Let m ∈ [1,∞], 0 ≤ γ < 1 and −π < θ ≤ π and f ∈ RT (A,B). Then,
Ω(mN , z) ∈M0γ(θ) if and only if

(A−B) |T | [(1 + cosθ)mN + 2(1− e−mN )] ≤ 2(1− γ). (14)

Proof. In view of Theorem 1 it suffices to prove that

P4 =

∞∑
k=2

k [2 + (k − 1)(1 + cosθ)]
mk−1
N

(k − 1)!
e−mN ≤ 2(1− γ)
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and since f ∈ RT (A,B) from Lemma 2 we have

P4 ≤ (A−B) |T |

[ ∞∑
k=2

[2 + k(k − 1)(1 + cosθ)]
mk−1
N

(k − 1)!
e−mN

]
.

Thus

P4 ≤ (A−B) |T |

[ ∞∑
k=2

(1 + cosθ)(k − 1)
mk−1
N

(k − 1)!
e−mN + 2

∞∑
k=2

mk−1
N

(k − 1)!
e−mN

]
.

≤ (A−B) |T |

[ ∞∑
k=2

(1 + cosθ)
mk−1
N

(k − 2)!
e−mN + 2

∞∑
k=2

mk−1
N

(k − 1)!
e−mN

]
≤ (A−B) |T | [(1 + cosθ)mN + 2(1− e−mN )].

The last expression is bounded above by 2(1− γ), if and only if (14) is satisfied.

Theorem 2.5. Let m ∈ [1,∞], 0 ≤ γ < 1,−π < θ ≤ π and if f ∈ RT (A,B),−1 ≤ B <
A ≤ 1. Then, Ω(mN , z) ∈M1

γ (θ) if and only if

(A−B) |T |
[
(1 + cosθ)m2

N + 2(2 + cosθ)mN + 2(1− e−mN )
]
≤ 2(1− γ). (15)

Proof. The prove follow the same process as in the last Theorem.

Theorem 2.6. Let m ∈ [1,∞], 0 ≤ γ < 1 −π < θ ≤ π and if f ∈ RT (A,B),−1 ≤ B <
A ≤ 1. Then, Ω(mN , z) ∈M2

γ (β, θ) if and only if

(A−B) |T |
[
(1 + cosθ)m3

N + (7 + 5cosθ)m2
N + 2(5 + 2cosθ)mN + 2(1− e−mN )

]
≤ 2(1− γ). (16)

4. Integral Operator

In this section we obtain necessary and sufficient conditions for the integral operator

G(m)(z) =

∫ z

0

F (m)()ε

ε
dε

to be in M0
γ (θ), M1

γ (θ) M2
γ (θ).

Theorem 4.1. Let m in[1,∞], 0 ≤ γ < 1 and −π < θ ≤ π, then, G(mN , z) ∈
M0
γ (θ), M1

γ (θ) M2
γ (θ) if and only if the conditions

(1 + cosθ)mN + 2(1− e−mN ) ≤ 2(1− γ), (17)

(1 + cosθ)m2
N + 2(2 + cosθ)mN + 2(1− e−mN ) ≤ 2(1− γ) (18)

and

(1 + cosθ)m3
N + (7 + 5cosθ)m2

N + 2(5 + 2cosθ)mN + 2(1− e−mN ) ≤ 2(1− γ) (19)

are respectively satisfied.

Example for case study 1
In a company, phone employee receives phone calls, the calls arrive with rate of [1, 3] calls
per minute, we will estimate the probability that the employee will not receive any call
within a minute.
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Corollary 4.1. Let m in[1, 3], 0 ≤ γ < 1 and −π < θ ≤ π. Then, K(mN , z) ∈
[M0

γ (θ), M1
γ (θ) M2

γ (θ)] if and only if

(1 + cosθ)[1, 3]2 + 2(2 + cosθ)[1, 3] + 2(1− e−[1,3]) ≤ 2(1− γ),

(1 + cosθ)[1, 3]3 + (7 + 5cosθ)m[1, 3]2 + 2(5 + 2cosθ)[1, 3] + 2(1− e−[1,3]) ≤ 2(1− γ)

and

(1 + cosθ)[1, 3]4 + (11 + 9cosθ)[1, 3]3 + (31 + 19cosθ)[1, 3]2

+2(11 + 4cosθ)[1, 3] + 2(1− e−[1,3]) ≤ 2(1− γ)

respectively.
Corollary 4.2. Letm ∈ [1, 3], γ = 0 and−π < θ ≤ π. Then, Ω(mN , z) ∈ [M0

0 (θ), M1
0 (θ) M2

0 (θ)]
if and only if

(1 + cosθ)[1, 3]2 + 2(2 + cosθ)[1, 3] + 2(1− e−[1,3]) ≤ 2,

(1 + cosθ)[1, 3]3 + (7 + 5cosθ)[1, 3]2 + 2(5 + 2cosθ)[1, 3] + 2(1− e−[1,3]) ≤ 2

and

(1 + cosθ)[1, 3]4 + (11 + 9cosθ)[1, 3]3 + (31 + 19cosθ)[1, 3]2

+2(11 + 4cosθ)[1, 3] + 2(1− e−[1,3]) ≤ 2

respectively.
Example for case study 2
In a company, phone employee receives phone calls, the calls arrive with rate of [1, 3] calls
per minute, we will estimate the probability that the employee will not receive any call
within 5 minutes.
Corollary 4.3. Let m ∈ [1, 3], 0 ≤ γ < 1 and −π < θ ≤ π. Then, K(mN , z) ∈
[M0

γ (θ), M1
γ (θ) M2

γ (θ)] if and only if

(1 + cosθ)[5, 15]2 + 2(2 + cosθ)[5, 15] + 2(1− e−[5,15]) ≤ 2(1− γ),

(1 + cosθ)[5, 15]3 + (7 + 5cosθ)[5, 15]2 + 2(5 + 2cosθ)[1, 3] + 2(1− e−[5,15]) ≤ 2(1− γ)
and

(1 + cosθ)[5, 15]4 + (11 + 9cosθ)[5, 15]3 + (31 + 19cosθ)[5, 15]2

+2(11 + 4cosθ)[5, 15] + 2(1− e−[1,3]) ≤ 2(1− γ)
respectively.

Corollary 4.4. Let m ∈ [5, 15], 0 ≤ γ < 1 and −π < θ ≤ π. Then, K(mN , z) ∈
[M0

0 (θ), M1
0 (θ) M2

0 (θ)] if and only if

(1 + cosθ)[5, 15]2 + 2(2 + cosθ)[5, 15] + 2(1− e−[1,3]) ≤ 2,

(1 + cosθ)[5, 15]3 + (7 + 5cosθ)[5, 15]2 + 2(5 + 2cosθ)[1, 3] + 2(1− e−[5,15]) ≤ 2

and

(1 + cosθ)[5, 15]4 + (11 + 9cosθ)[5, 15]3 + (31 + 19cosθ)[5, 15]2

+2(11 + 4cosθ)[5, 15] + 2(1− e−[5,15]) ≤ 2.

respectively. Using MATLAB we generate the following table and figures for specific values
of mN .
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mN θ = −150 ◦ θ = −120 ◦ θ = −90 ◦ θ = −60 ◦ θ = −30 ◦ θ = 0 ◦

1.00 3.662 4.7642 6.2642 7.7642 8.8623 9.2642
2.00 6.8011 9.7293 13.7293 17.7293 20.6575 21.7293
3.00 9.9100 15.4004 22.9000 30.4004 38.8908 37.9004
4.00 13.1788 21.9634 33.9634 45.9634 54.7480 57.9634
5.00 16.6756 29.4865 46.9865 64.4865 77.2974 81.9865
6.00 20.4258 37.9950 61.9950 85.9950 103.5643 109.9950
7.00 24.4386 47.4982 78.9982 110.4982 133.5578 141.9982
8.00 28.7173 57.9993 97.9993 137.9993 167.2814 177.9993
9.00 33.2632 69.4998 118.9998 168.4998 204.7363 217.9998
10.00 38.0769 81.9999 141.9999 201.9999 245.9230 261.9999
11.00 43.1583 95.5000 167.0000 238.5000 290.8416 310.0000
12.00 48.5077 110.0000 194.0000 278.0000 339.4923 362.0000
13.00 54.1250 125.5000 223.0000 320.5000 291.8749 418.0000
14.00 60.0103 142.000 254.0000 366.0000 447.9897 478.0000
15.00 66.1635 159.5000 287.0000 414.5000 507.8365 542.0000
16.00 72.5847 178.0000 322.0000 466.0000 571.4153 610.0000
17.00 79.2738 197.5000 359.0000 520.5000 638.7662 682.0000

mN θ = 30 ◦ θ = 60 ◦ θ = 90 ◦ θ = 120 ◦ θ = 150 ◦ θ = 180 ◦

1.00 8.8623 7.7642 6.2642 4.7642 3.6662 3.2642
2.00 20.6575 17.7293 13.7293 9.7293 6.8011 5.7293
3.00 35.8908 30.4004 22.9000 15.4004 9.9100 7.9004
4.00 54.7480 45.9634 33.9634 21.9634 13.1788 9.9634
5.00 77.2974 64.4865 46.9865 29.4865 16.6756 11.9865
6.00 103.5643 85.9950 61.9950 37.9950 20.4258 13.9950
7.00 133.5578 110.4982 78.9982 47.4982 24.4386 15.9982
8.00 167.2814 137.9993 97.9993 57.9993 28.7173 17.9993
9.00 204.7363 168.4998 118.9998 69.4998 33.2632 19.9998
10.00 245.9230 201.9999 141.9999 81.9999 38.0769 21.9999
11.00 290.8416 238.5000 167.0000 95.5000 43.1583 24.0000
12.00 339.4923 278.0000 194.0000 110.0000 48.5077 26.0000
13.00 391.8748 320.5000 223.0000 125.5000 54.1250 28.0000
14.00 447.9897 366.0000 254.0000 142.0000 60.0103 30.0000
15.00 507.8365 414.5000 287.0000 159.5000 66.1635 32.0000
16.00 571.4153 466.0000 322.0000 178.0000 72.5847 34.0000
17.00 863.7262 520.5000 359.0000 197.5000 79.2738 36.0000

5. Conclusion

Neutrosophic statistics is the extension of classical statistics and is applied when the
data is coming from a complex process or from an uncertain environment. The current
study can be extended using neutrosophic statistics as future research.
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