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UPPER BOUNDS FOR COVERING TOTAL DOUBLE ROMAN

DOMINATION

D. A. MOJDEH1∗, A. TEYMOURZADEH1, §

Abstract. Let G = (V,E) be a finite simple graph where V = V (G) and E = E(G).
Suppose that G has no isolated vertex. A covering total double Roman dominating func-
tion (CTDRD function) f of G is a total double Roman dominating function (TDRD
function) of G for which the set {v ∈ V (G)|f(v) 6= 0} is a covering set. The covering
total double Roman domination number γctdR(G) is the minimum weight of a CTDRD
function on G. In this work, we present some contributions to the study of γctdR(G)-

function of graphs. For the non star trees T , we show that γctdR(T ) ≤ 4n(T )+5s(T )−4l(T )
3

,
where n(T ), s(T ) and l(T ) are the order, the number of support vertices and the number
of leaves of T respectively. Moreover, we characterize trees T achieve this bound. Then
we study the upper bound of the 2-edge connected graphs and show that, for a 2-edge
connected graphs G, γctdR(G) ≤ 4n

3
and finally, we show that, for a simple graph G of

order n with δ(G) ≥ 2, γctdR(G) ≤ 4n
3

and this bound is sharp.
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1. Introduction

Let G be a finite simple graph with vertex set V = V (G) and edge set E = E(G). For
the terminologies and notations which are not defined here explicitly, we may use [10] as
a reference. The open neighborhood of a vertex v ∈ V (G) is the set N(v) = {u : uv ∈
E(G)}. The closed neighborhood of a vertex v ∈ V (G) is N [v] = N(v) ∪ {v}. The open
neighborhood of a set S ⊆ V is the set N(S) = ∪v∈SN(v). The closed neighborhood of
a set S ⊆ V is the set N [S] = N(S) ∪ S = ∪v∈SN [v]. We denote the degree of v by
deg(v) = degG(v) = |N(v)|. By ∆ = ∆(G) and δ = δ(G), we denote the maximum degree
and minimum degree of a graph G, respectively. We write Kn, Pn and Cn for the complete
graph, path and cycle of order n, respectively.
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A set S ⊆ V in a graph G is called a dominating set if N [S] = V . The domination
number γ(G) of G is the minimum cardinality of a dominating set in G, and a dominating
set of G of cardinality γ(G) is called a γ-set of G [5].

Let G be a connected graph. An edge cut of G is a subset F of E(G) such that G−E
is disconnected. In the other words an edge cut is an edge set of the form [S, S], where
S is a nonempty proper subset of V (G) and S = V (G) \ S. A k-edge cut is an edge cut
of k elements, i.e. |[S, S]| = k. The minimum size of any edge cut is called the edge-
connectivity of G and denoted by λ(G). The graph G is said to be k-edge connected if
λ(G) ≥ k. All nontrivial connected graphs are 1-edge connected. An (open) ear of a graph
G is a maximal path whose internal vertices has degree 2 in G. A closed ear of a graph
G is a cycle, whose all vertices except one have degree 2 in G. A closed ear decomposition
of G is a decomposition G = ∪ki=0Pi, where P0 is an (initial) cycle and Pi for i ≥ 1 is an
(open) ear or a closed ear in G, [2, 10].

Given a graph G and a positive integer m, assume that g : V (G)→ {0, 1, 2, . . . ,m} is a
function, and suppose that (V0, V1, V2, . . . , Vm) is the ordered partition of V induced by g,
where Vi = {v ∈ V |g(v) = i} for i ∈ {0, 1, . . . ,m}. So we can write g = (V0, V1, V2, . . . , Vm).

A double Roman dominating function on a graph G is a function f : V → {0, 1, 2, 3}
such that the following conditions are met:
(a) if f(v) = 0, then vertex v must have at least two neighbors in V2 or one neighbor in
V3.
(b) if f(v) = 1, then vertex v must have at least one neighbor in V2 ∪ V3.

The weight of a double Roman dominating function is the sum wf =
∑

v∈V (G) f(v), and

the minimum weight of wf for every double Roman dominating function (DRD function) f
on G is called double Roman domination number of G. We denote this number with γdR(G)
and a double Roman dominating function of G with weight γdR(G) is called a γdR(G)-
function of G. Double Roman domination was studied in [1, 6, 8, 9] and elsewhere.
The total double Roman dominating function (TDRD function) on a graph G with no
isolated vertex is an DRD function f on G with the additional property that the subgraph
of G induced by the set {v ∈ V |f(v) 6= 0} has no isolated vertices. The total double Roman
domination number γtdR(G) is the minimum weight of a TDRD function on G. A TDRD
function on G with weight γtdR(G) is called a γtdR(G)-function [3]. About the parameters
of domination one see the latest book authored by Haynes et al. [4]. Another invariant of
double Roman dominating function is defined as follows.

A covering total double Roman dominating function (CTDRD function) on a graph G

is a TDRD function for which {v ∈ V |f(v) 6= 0} is a covering set or V0 = V f
0 = {v ∈

V |f(v) = 0} is an independent set. The covering total double Roman domination number
γctdR(G) equals the minimum weight of a CTDRD function of G.
It should be noted that the classic concept of vertex covering instead of outer independent
in the graph, has so far been used for other domination parameter. For example, you can
see the paper entitled: Covering Italian domination in graphs [7].

The paper is organized as follows. We study the upper bound for some families of
graphs G in section 2, and next in section 3, we show that for a simple graph G of order

n with δ(G) ≥ 2, γctdR(G) ≤ 4n

3
.

2. Trees

In this section we investigate the upper bound for covering total double Roman domi-
nation number of trees. We start by a path Pn.
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Lemma 2.1. Let Pn = x1, · · · , xn be a path of order n ≥ 3 and n 6= 4. Then there exists
a CTDRD function f of Pn such that ω(f) ≤ 4n

3 and f(x1) = f(xn) = 1. This bound is
sharp for n = 3 and n = 6.

Proof. The proof is given by using induction on n. The result is an immediate for n < 8.
Let n ≥ 8 and let the result hold for all paths of order less than n. Let Pn be a path
of order n ≥ 8. Assume that P ′ is the path obtained from Pn by removing the vertices
x1, x2, x3. From the induction hypothesis, there exists a CTDRD function g of P ′ such

that ω(g) ≤ 4(n−3)
3 and g(x4) = g(xn) = 1. Define the function f on Pn by f(x1) =

f(x3) = 1, f(x2) = 2, and f(x) = g(x) otherwise. Clearly, f is a CTDRD function of Pn,

with f(x1) = f(xn) = 1, and ω(f) ≤ 4(n−3)
3 + 4 ≤ 4n

3 . �

As an immediate consequence we have.

Corollary 2.1. Let Pn = x1, · · · , xn be a path of order n ≥ 3 and n 6= 4. Then γctdR(Pn) ≤
b4n3 c.

It is easy to see that γctdR(P5) = 6 <
20

3
, γctdR(P7) = 9 <

28

3
, γctdR(P8) = 10 <

32

3
,

γctdR(P9) = 11 <
36

3
and γctdR(P10) = 12 <

40

3
. Now using induction posed in Lemma

2.1 it follows that γctdR(Pn) <
4.n

3
for n 6= 3, 6.

Let T1 be a family of trees T such that every vertex of T is a support vertex or a leaf.
Let T2 be a family of trees T obtained from two stars Sp and Sq with p, q ≥ 1, such that
the center of Sp is adjacent to an end vertex of a path P3 and the center of Sq is adjacent
to the other end vertex of this P3. Let Sn = K1,n−1 be a star of order n.

We remark the following immediately.
Remark 1
• If T = Sn for n ≥ 3, then γctdR(T ) = 4 > 4n+5s−4l

3 = 3. So γctdR(Sn) = 4n+5s−4l
3 + 1.

• Let T 6= Sn be a tree of order n ≥ 4 and let v be a support vertex of T , and f be a
CTDRD function of T . Then we can assume that f(v) + f(Lv) = 3 where Lv is the set of
leaf u adjacent to v. In particular,
• if |Lv| ≥ 2, then we may have f(v) = 3 and f(Lv) = 0;
• if Lv = {u}, and degT (v) = 2, then we may have f(v) = 2 and f(u) = 1.

Here, our aim is to determine some bounds on the CTDRD number of trees. We
bound the CTDRD number of trees from above and characterize all trees attaining the
bound. Let L(T ) and S(T ) be the set of leaves and the set of support vertices of a
tree T , respectively. Let l(T ) = |L(T )| and s(T ) = |S(T )|. In order to characterize all
trees T attaining the upper bound given in the next theorem, we introduce a partition
of V (T ) as follows. Let F be the forest obtained from T by removing L(T ) and S(T )
from T and let T0 be a tree as a component of the forest F . Let v be a leaf of T ′ with
its distance from v mod 4. This produces four sets A(T ′) = {u : dT ′(u, v) = 0(mod 4)},
B(T ′) = {u : dT ′(u, v) = 1(mod 4)}, C(T ′) = {u : dT ′(u, v) = 2(mod 4)} and D(T ′) =
{u : dT ′(u, v) = 3(mod 4)} that partition the vertices of T ′. We now have the partition
P = {S(T ) ∪ L(T ), A(T ′), B(T ′), C(T ′), D(T ′)}T ′ of the set of vertices of T . For the sake
of convenience, we let A(T ) =

⋃
T ′ A(T ′), B(T ) =

⋃
T ′ B(T ′), C(T ) =

⋃
T ′ C(T ′) and

D(T ) =
⋃

T ′ D(T ′).
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Theorem 2.1. Let T be a tree of order at least 2 with s(T ) support vertices and l(T )
leaves. If T 6= Sn, n ≥ 3, then

γctdR(T ) ≤ 4n(T ) + 5s(T )− 4l(T )

3
.

The equality holds if and only if T ∈ T1 ∪ T2.

Proof. We make use of the notations which were introduced earlier. Clearly, n(F ) = n(T )−
s(T )− l(T ). Suppose that g assigns 1 to the vertices in A(T ) and the vertices u such that
u is a leaf of some T ′ in B(T )∪C(T )∪D(T ), and 2 to the non leaf vertices in B(T )∪D(T ),
and 0 to the non leaf vertices in C(T ). Iterate this process for all components T ′ of F . It

is not difficult to check that for any T ′ in F , w(g|T ′) ≤ 4n(T ′)
3 and w(g|T ′) = 4n(T ′)

3 if and

only if T ′ = P3. Therefore w(g) = 4n(F )
3 . We now define f : V (T )→ {0, 1, 2, 3} by

f(u) =

 g(u), if u ∈ A(T ) ∪ B(T ) ∪ C(T ) ∪ D(T ),
3, if u ∈ S(T ),
0, if u ∈ L(T ).

It is easy to check that f is a CTDRD function of T . Therefore, γctdR(T ) ≤ w(f) =

4n(F )
3 + 3s(T ) =

4n(T ) + 5s(T )− 4l(T )

3
.

Let γctdR(T ) =
4n(T ) + 5s(T )− 4l(T )

3
. By the definition of function g on F , if F

contains a component T ′ of order m 6= 3, then we can see that γctdR(T ) < 4n(F )
3 +

3s(T ) =
4n(T ) + 5s(T )− 4l(T )

3
; or if F contains at least two components P3 = vwu and

P3 = v′w′u′, then by changing f(v) = 0 or f(v′) = 0, it follows that the resulted function is

a CTDRD function of T and denotes γctdR(T ) < 4n(F )
3 + 3s(T ) =

4n(T ) + 5s(T )− 4l(T )

3
.

On the other hand, if F has exactly one component T ′ = P3, then w(g) = 4 and γctdR(T ) =

4.3
3 + 3s(T ) =

4n(T ) + 5s(T )− 4l(T )

3
. This tree T is in T2. If F is an empty set, then

every vertex of T is a leaf or a support vertex. It follows that n(F ) = 0 and γctdR(T ) =

4n(F )
3 +3s(T ) = 3s(T ) =

4n(T ) + 5s(T )− 4l(T )

3
. This tree T is in T1. On the other hand,

if T ∈ T1 ∪ T1, then the equality is clear. �

3. 2-edge connected graphs

In this section we investigate the upper bound of covering total double Roman domina-
tion number of some connected graphs. For integers m and k where m ≥ 3 and k ≥ 3, let
Cm,k be the graph obtained from a cycle Cm : x1x2 · · ·xmx1 and a path y1y2 · · · yk where
y1 = xi and yk = xj and the order of Cm+k is n = m+ k − 2.

Lemma 3.1. Let Cn = x1, · · · , xnx1 be a cycle of order n ≥ 3. Then there exists a
CTDRD function f of Cn such that f(x1) ≥ 1 and ω(f) ≤ 4n

3 . This bound is sharp for
n = 3 and n = 6.

Proof. The proof is given by induction on n. The result is obvious for n < 6. Let
n ≥ 6 and let the result hold for all cycles of order less than n. Assume that C ′ is the
graph obtained from Cn by removing the vertices x2, x3, x4 and joining x1 to x5. By the

induction hypothesis, there exists a CTDRD function g of C ′ such that ω(g) ≤ 4(n−3)
3

and g(x1) ≥ 1. If g(x1) = 3, g(x5) = 0. Define the function f by f(x2) = 0, f(x3) = 1,
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f(x4) = 3, and f(x) = g(x) otherwise. If g(x1) = 2, 3 and g(x5) ≥ 1. Define the function
f by f(x2) = f(x3) = 1, f(x4) = 2, and f(x) = g(x) otherwise. If g(x1) = 2, g(x5) = 0.
Define the function f by f(x2) = 0, f(x3) = f(x4) = 2, and f(x) = g(x) otherwise. If
g(x1) = 1, g(x5) = 0, 1. Define the function f by f(x2) = f(x4) = 1, f(x3) = 2, and
f(x) = g(x) otherwise. All in all show that, f is a CTDRD function of Cn such that

f(x1) ≥ 1, and ω(f) ≤ 4(n−3)
3 + 4 ≤ 4n

3 .
�

As an immediate consequence we have.

Corollary 3.1. Let Cn = x1, · · · , xnx1 be a cycle of order n ≥ 3. Then γctdR(Cn) ≤ b4n3 c.

We have the classical result as follows.

Theorem 3.1. ([10]) Let G be a graph of order at least 3. G is a 2-edge connected if and
only if it has a closed ear decomposition. Moreover Every cycle in 2-edge connected graph
is the initial cycle in some such decomposition.

Now we have.

Proposition 3.1. Let G = Cm,k for integers m ≥ 3 and k ≥ 3. Then there exists a

CTDRD function f of Cm,k such that f(x1) = 1 = f(yk) and ω(f) ≤ 4(m+k−2)
3 .

Proof. Proof. Let Cm : x1x2 · · ·xmx1 and a path y1y2 · · · yk where y1 = xi and yk = xj .
If xi = xj , then we have two cycles with one common vertex v = xi = y1 = yk. Without
lose of generality we assume that f(v) = 2 and then it is easy to see that γctdR(Cm,k) ≤
4(m+k−2)

3 . Now let xi 6= xj . If k = 3, then in one of assignments, we can assign 2 to

xi = y1 and 1 to y2. It follows that γctdR(Cm,1) ≤ 4(m+1)
3 . If k /∈ {3, 4, 6}, then using

Lemmas 2.1and 3.1 it follows that γctdR(Cm,k) ≤ 4(m+k−2)
3 . Let k = 4. If m 6= 6, then the

graph Cm,k finds one of the situations of the case k = 3 or the case k /∈ {3, 4, 6}. If m = 6
and one of the path between xi and xj is other than of length 3, then the graph Cm,k finds
one of the situations of the case k = 3, or C8. If all paths between xi and xj is of length
3, then we assume that xi = x1 and xj = x4. By assigning 2 to vertices x1, x2, x5, y2, and

1 to x4, x6 and 0 otherwise. It follows that γctdR(Cm,k) ≤ 4(m+k−2)
3 . Let k = 6. If m /∈ 10,

then Cm,k finds one of the above situations. If m = 10, and one of the path between xi
and xj is other than of length 5, then the graph Cm,k finds one of the above situations,
or C14. If all paths between xi and xj is of length 5, then we assume that xi = x1 and
xj = x6. By assigning 2 to vertices x2, x4, x6, x8, x10, y2, and 1 to x3, x7, x9, y1, y3, y4 and 0

otherwise. It follows thatγctdR(Cm,k) ≤ 4(m+k−2)
3 . Therefore the desired result holds. �

Now we investigate the covering total double Roman dominating of 2-edge connected
graph G.

Theorem 3.2. Let G be a 2-edge connected graph. Then γctdR(G) ≤ 4n(G)

3
.

Proof. Let H be a 2-edge connected graph and G be a graph obtain from H by adding a
path Pk with end vertices v1, vk in H such that the vertices degG(vi) = 2 for 2 ≤ i ≤ k−1.
Let the path Pk be added to H as an (open) ear. If k ≥ 5(k 6= 6), then γctdR(G) ≤
γctdR(H) + γctdR(Pk−2) ≤ 4n(H)

3 + 4(k−2)
3 = 4n(G)

3 . Now assume that k ∈ {3, 4, 6}. For
k = 4, we delete the vertices v1, v2, v3 and connect v4 to the all neighbors of v1, the resulted
graph H is 2-edge connected. In the resulted graph H, if the weight of v1 is 0, then in
graph G we assign 0 to v4, 1 to v3 and 3 to v2 or 0 to v4, 2 to v3 and 2 to v2 object to
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the weight of neighbors of v4. If the weight of v1 is 1, then in graph G, we assign 1 to
v4, 1 to v3 and 2 to v2. If in the resulted graph, the weight of v1 is 2, then in graph G,
we assign 2 to v4, 1 to v3 and v2. If in the resulted graph, the weight of v1 is 3, then
in graph G, we assign 3 to v4, 1 to v3 and 0 to v2, or we assign 3 to v4, 0 to v3 and
1 to v2. For k = 6, we delete the vertices v2, v3, v4 and connect v5 to v1, the resulted

graph H is 2-edge connected and γctdR(H) ≤ 4n(H)
3 . In H if we assign 0 to v5, then

by assignment 1, 2, 1 to the v4, v3, v2 respectively, or 2, 1, 1 to the v4, v3, v2 respectively,
or 3, 1, 0 to the v4, v3, v2 respectively. If we assign 1 to v5, then by assignment 0, 3, 1
to v4, v3, v2 respectively, or 1, 2, 1 to the v4, v3, v2 respectively, or 2, 1, 1 to the v4, v3, v2
respectively, or 3, 0, 1 to the v4, v3, v2 respectively. If we assign 2 to v5, then by assignment
1, 1, 2 to v4, v3, v2 respectively. If we assign 3 to v5, then by assignment 0, 1, 3 to v4, v3, v2
respectively, or 1, 0, 3 to the v4, v3, v2 respectively, or 1, 2, 1 to v4, v3, v2 respectively. Let
k = 3. Then in one of assignments, we can assign 2 to v1 or v3, and 1 to two of them. The
proof will be ended, whenever we investigate the case of adding a path Pk as a closed ear.
Let G be a graph obtained from H by adding a path Pk as a closed ear, with end vertices
v1, vk in H such that the vertices degG(vi) = 2 for 2 ≤ i ≤ k − 1. The proof is similar to
the proof of the case, whenever Pk is an open ear. �

Let Q be a family of connected graphs with this property, γctdR(Q) ≤ 4n(Q)
3 for any

Q ∈ Q.

Proposition 3.2. Let Q ∈ Q and u ∈ V (Q). Let H be a 2-edge connected graph and yk
be a vertex in H. If G is a graph obtained from Q and and H, by adding the edge uyk,

then γctdR(G) ≤ 4n(G)
3 .

Proof. Let f be a γtdR(Q)-function and g be a γctdR(H)-function with g(yk) = 1. Then the
function h defined by h(x) = f(x) for x ∈ V (Q) and h(x) = g(x) otherwise, is a CTDRD

function ofG. By Theorem 3.2 we can show that γctdR(H) ≤ 4n(H)
3 and g(yk) = 1. The fact

of Q ∈ Q and γctdR(H) ≤ 4n(H)
3 conclude that γctdR(G) ≤ w(f) +w(g) ≤ 4n(Q)

3 + 4n(H)
3 =

4n(G)
3 . �

In later result we have shown that some family of graphs with connectivity 1 satisfy in
this bound. In the next section we study the CTDRD of graphs with δ(G) ≥ 2, which
includes all connected graph with connectivity 1.

4. Graphs G with δ(G) ≥ 2

For upper bound, we show that for any graph with minimum degree 2, it follows
thatγctdR(G) ≤ 4n

3 and this bound is sharp.

Theorem 4.1. Let G be a simple graph of order n with δ(G) ≥ 2. Then

γctdR(G) ≤ 4n

3
.

This bound is sharp for graphs (
⋃

i≥1C6) ∪ (
⋃

j≥1C3) where i+ j ≥ 1.

Proof. Suppose that G is a simple graph of order n with δ(G) ≥ 2. For n ≤ 10, It is not
difficult to show that the result holds for any graph G for which δ(G) ≥ 2. We proceed the
proof by induction on n. Suppose that n ≥ 3 and the result hold for all graphs of order
less than n with δ(G) ≥ 2. To prove the inductive verdict, we investigate the graphs with
δ(G) = 2 and the graphs with δ(G) ≥ 3 separately. For the simple graphs with δ(G) = 2
there are the following cases.
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Case 1. Suppose that G has an induced path Pk = v1, v2, · · · , vk with k ≥ 3. Let u,w
be two vertices of degree at least three for which v1, vk are adjacent to u,w respectively.
We delete three vertices v1, v2, v3 and add the edge v4u if k ≥ 4, otherwise, add wu.

The resulted graph G′ has degree at least 2. By using induction, γctdR(G′) ≤ 4(n− 3)

3
.

Now by deleting the edge v4u (wu) and assigning 1 to v1, v3 and 2 to v2, it follows that

γctdR(G) ≤ γctdR(G′) + 4 ≤ 4n

3
.

Case 2. Suppose that G has an induced path P2 = v1, v2 as a maximal path. Let u,w
be two vertices of degree at least three for which v1, v2 are adjacent to u,w respectively
and there do not exist another path between u and w. For graph G we consider the as-
signment as follows.
We delete three vertices v1, v2, w, and join u to each vertex x ∈ NG−v2(w). Let G′ be the

resulted graph. Then δ(G) ≥ 2. By using induction, γctdR(G′) ≤ 4(n− 3)

3
. We assign 1

to v1, u, 0 to w and 2 to v2 , or 1 to w, v2, 2 to v1 and 0 to u if the weight of u in G′ is 0.
We assign 1 to one of v1 or v2 and 2 to one of the others, and 1 to v2, if the weight of u
in G′ is 1. We assign 1 to v1, and v2 and 2 to w, if the weight of u in G′ is 2. We assign 3
to w and 0 to one of v1 or v2 and 1 to one of the others if the weight of u in G′ is 3. All

in all, it follows that γctdR(G) ≤ γctdR(G′) + 4 ≤ 4n

3
.

Case 3. Suppose that G has two paths P1 = x1, x2 and P2 = y1, y2 as maximal
paths. Let u,w be two vertices of degree at least three for which x1, y1 and x2, y2 are
adjacent to u,w respectively and there have no other path between u and w. Let H =
G− {x1, x2, y1, y2, u} be a subgraph of G and G′ be a graph obtained from H by joining
w to the vertices in N(u) \ {x1, y1}. Let f be the γctdR-function on G′.
If f(w) = 0, we extend f to the γctdR-function g on G by assigning, g(u) = 0, (g(x1) =
g(y1) = 2, g(x2) = g(y2) = 1, or g(x1) = g(y2) = 2, g(x2) = g(y1) = 1), and g(v) = f(v)
for v ∈ G′.
If f(w) = 1 and its adjacent vertex z in G′ with f(z) = 2 is not in NG(u) (is in NG(u)),
then we extend f the γctdR-function g on G by assigning, g(u) = 1, (g(x1) = g(y1) = 2,
g(x2) = g(y2) = 0, g(w) = 2, and g(v) = f(v) for v ∈ G′ − w (g(u) = g(x2) = g(y2) = 2,
g(x1) = g(y1) = 0, and g(v) = f(v) for v ∈ G′).
If f(w) = 2 and its adjacent vertex z in G′ with f(z) ≥ 1 is not in NG(u) (is in NG(u)),
then we extend the γctdR-function g on G by assigning, g(u) = g(x1) = g(y1) = 2, g(x2) =
g(y2) = 0, and g(v) = f(v) for v ∈ G′ (g(u) = g(x2) = g(y2) = 2, g(x1) = g(y1) = 0, and
g(v) = f(v) for v ∈ G′).
If f(w) = 3 and its adjacent vertex z in G′ with f(z) ≥ 1 is not in NG(u) (is in NG(u)),
then we extend the γctdR-function g on G by assigning, g(u) = 3, g(x1) = g(y1) = 1,
g(x2) = g(y2) = 0 (g(u) = 3, g(x1) = g(y1) = 0, g(x2) = g(y2) = 1), and g(v) = f(v) for
v ∈ G′.
All in all, it follows that γctdR(G) ≤ γctdR(G′) + 6 ≤ 4(n′ + 5)

3
=

4n

3
.

Case 4. Suppose that G has k ≥ 3 paths Pi2 = vi1, vi2 as maximal paths for 1 ≤ i ≤ k.
Let u,w be two vertices of degree at least three for which vi1, vi2 are adjacent to u,w
respectively and there have no path P1 = v such that v be adjacent to u and w. If u and
w have no another neighbors, then the result is clear. Therefore we assume that u or w
has another neighbors. Let H = G − {vi1, vi2 : i = 1, 2 · · · k} be a subgraph of G and G′

be a graph obtained from H by joining w to the vertices in NG(u) \ {vi1 : i = 1, 2 · · · k}.
Let f be the γctdR-function on G′.
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Henceforth, a similar discussion of the proof of Case 3, it follows that γctdR(G) ≤ γctdR(G′)+

2k + 3 ≤ 4(n− (2k + 1))

3
+ 2k + 3 ≤ 4n

3
, because k ≥ 3.

Case 5. Suppose that G has an induced path P1 = v1 as a maximal path. Let u,w
be two vertices of degree at least three for which v1 be adjacent to u,w and there have
no other path of length 1 between u and w. If u,w have neighbors of degree at least
three, we delete three vertices v1, u, w, then the resulted graph G′ has δ(G′) ≥ 2. By

using induction, γctdR(G′) ≤ 4(n− 3)

3
. By assigning 1 to u, w and 2 to v1, it follows that

γctdR(G) ≤ γctdR(G′) + 4 ≤ 4n

3
.

If u or w has at least another neighbor of degree 2, and assume that v2, v3, · · · , vk are
vertices of degree 2 in N(w). We delete the vertices w, v1, · · · , vk from G and G′ is the

resulted graph. Then δ(G′) ≥ 2. By using induction, γctdR(G′) ≤ 4(n− k − 1)

3
. By

assigning 1 to v1, · · · , vk and 2 to w, it follows that γctdR(G) ≤ γctdR(G′) + k + 2 ≤ 4n

3
,

because 3(k + 2) ≤ 4(k + 1) for k ≥ 2.
Case 6. Suppose that G has an induced path P1 = v1 as a maximal path. Assume

that, for any two vertices u,w of degree at least three, there dose not exist a path of
length 1 adjacent to u,w or there exist at least two paths of length 1 between u,w. Let
there exist t ≥ 2 paths P3 = x3, · · · , Pt1 = xt1 where xi1 be adjacent to u and w. If the
other neighbors of both u and w are of degree at least three, then we delete the vertices
w, x3, · · · , xt1, u from G and G′ is the resulted graph with δ(G′) ≥ 2. By using induction,

γctdR(G′) ≤ 4(n− t− 2)

3
. By assigning 1 to x3, 2 to w and u, 0 to x21, · · · , xt1, it follows

that γctdR(G) ≤ γctdR(G′) + 5 ≤ 4(n− (t+ 2))

3
+ 5 ≤ 4n

3
+, because t ≥ 2.

If the vertices u or w has neighbors x1, x2, · · · , xm or y1, y2, · · · , yk of degree 2 and since
there is no path P2 in G, then for every vertex x ∈ N(xi) or y ∈ N(yj), deg(x) ≥
3, deg(y) ≥ 3. We delete the vertices y1, y2, · · · , yk, w, x3, · · · , xt1, u, x1, x2, · · · , xm from G
andG′ is the resulted graph with δ(G′) ≥ 2. By assigning 1 to x3, yjs, xis, 2 to w and u, 0 to

x21, · · · , xt1, it follows that γctdR(G) ≤ γctdR(G′)+5+k+m+ ≤ 4(n− (t+ 2 + k +m))

3
+

5 + k +m ≤ 4n

3
+, because t ≥ 2, k or m ≥ 1.

Case 7. Suppose that G has k ≥ 1 paths Pi2 = xi1, xi2 for 1 ≤ i ≤ k and m ≥ 1 paths
Pj1 = yj1 for 1 ≤ j ≤ m with common end vertices u,w. Assume that other neighbors of
u and w has degree at least three. We delete the vertices u,w, xi1s, xi2s, yj1s. Then the
resulted graph G′ is a graph with δ(G′) ≥ 2. By assigning 1 to xi1s, xi2s, 2 to w and u, 0 to

yj1s, it follows that γctdR(G) ≤ γctdR(G′) + 4 + 2k ≤ 4(n− (2k +m+ 2))

3
+ 4 + 2k ≤ 4n

3
+,

because k,m ≥ 1.
Let w1, w2, · · · , wt be vertices of degree at least three such that there exist ki ≥ 1 paths
of length 2 and mi ≥ 1 paths of length 1 with end vertices wi, wi+1. Without loss of
generality we can assume that the other neighbors of wis (if exists) are of degree at least
three. Let H be the subgraph induced by wis and the paths between them and G′ = G−H
be the resulted graph. Let H contains q paths of length 2 and r paths of length 1, where

q, r ≥ t − 1. By using induction, γctdR(G′) ≤ 4(n− (t+ 2q + r))

3
. By assigning 1 to the

vertices of q paths of length two, 0 to the vertices of r paths of length one, and 2 to wis, it
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follows that γctdR(G) ≤ γctdR(G′) + 2t+ 2q ≤ 4(n− (t+ 2q + r))

3
+ 2t+ 2q ≤ 4n

3
, because

q, r ≥ t− 1.

For the simple graphs with δ(G) ≥ 3 there are the following case and subcases.
Case 8. Let δ(G) ≥ 3 and x, y, z ∈ V (G) be three vertices such that y be adjacent to

x, z. Assume that Q = {x, y, z} and H = G−Q. Then there exist the following subcases.

Subcase 8.1 Let δ(H) ≥ 2. Say G′ = H, by using induction, γctdR(G′) ≤ 4(n−3)
3 . We

assign 2 to y, and 1 to x, z. It follows that γctdR(G) ≤ γctdR(G′) + 4 ≤ 4(n−3)
3 + 4 ≤ 4n

3 .
Now let for every such Q and H = G − Q, δ(H) ≤ 1. Then there exist vertices

vij , uj ∈ V (G) such that vijs are adjacent to vertices uj , two vertices of Q where deg(vij) = 3

for 1 ≤ i ≤ k, 1 ≤ j ≤ k′ and k 6= 1, or there exist vertices v′r, u
′
r ∈ V (G) such that ver-

tex v′r is adjacent to u′r, two vertices of Q such that u′r is adjacent to a vertex of Q and
deg(v′r) = deg(u′r) = 3 for 1 ≤ r ≤ k′′, or there exist vertices wss ∈ V (G) such that those
are adjacent to all vertices of Q and deg(ws) = 3 for 1 ≤ s ≤ l, or there exist vertices w′ts
∈ V (G) such that those are adjacent to at least two vertices of Q and degH(w′t) = 1 for
1 ≤ t ≤ l′. Then there exist the following subcases.

Subcase 8.2 Let k′′ = 1 and l ≥ 1 or l′ ≥ 1. First let l ≥ 1. Then G′ be the
graph obtained from G by removing the vertex y. The induction hypothesis implies

that, there exists a CTDRD function f of G′ such that ω(f) ≤ 4(n′)
3 . Then we ex-

tend f to g on G by assigning 1 to y and g(t) = f(t) for otherwise. It follows that

γctdR(G) ≤ γctdR(G′) + 1 ≤ 4n

3
.

If l′ = 1, then G′ is the graph obtained from G by removing the vertices x, y, z, and joining
v′1 to w′1 and joining the vertex v1j to vijs. By using induction, there exists a CTDRD

function f of G′ such that ω(f) ≤ 4(n′)
3 . Then we extend f to g on G by assigning 1, 2, 1

to the vertices x, y, z respectively, if f(v′1) ∈ {0, 1}, f(w′1) ∈ {0, 1} or by assigning 2 to
x, y, z, 0 to v′1, if f(v′1) = 2 and f(w′1) = 0, by assigning 2 to two the vertices of {x, y, z},
1 to one of the others, v′1 if f(v′1) ∈ {2, 3} and f(w′1) ∈ {1, 2, 3} or by assigning 2 to x, y, z,
1 to v′1, if f(v′1) = 3 and f(w′1) ∈ {0, 1} or by assigning 1 to two the vertices of {x, y, z},
2 to one of the others if f(v′1) ∈ {0, 1}, f(w′1) = 2 or f(v′1) = 1, f(w′1) = 3 or by assigning
2 to w′1, to two the vertices of {x, y, z}, 1 to one of the others if f(v′1) = 0, f(w′1) = 3 and

g(t) = f(t) for otherwise. It follows that γctdR(G) ≤ γctdR(G′) + 4 ≤ 4n

3
.

Now let l′ > 1. let G′ be the graph obtained from G by removing the vertices x, y, z, v′1,
w′ts, and joining the vertex v1j to vijs and joining the vertex u′1 to v ∈ V (G) where v be

adjacent to w′1. By using induction, there exists a CTDRD function f of G′ such that

ω(f) ≤ 4(n′)
3 . Then we extend f to g on G by assigning 2 to two the vertices of {x, y, z},

1 to one of the others, v′1, w
′
ts if f(u′1) ∈ {0, 1}, f(v) ∈ {0, 1, 2} or by assigning 2 to w′1,

two the vertices of {x, y, z}, 1 to one of the others, to w′2, · · · , w′l′ , 0 to v′1 if f(u′1) = 2,
f(v) ∈ {0, 1, 2, 3} or f(u′1) = 3, f(v) ∈ {1, 2, 3} or by assigning 2 to two the vertices of
{x, y, z}, u′1, 1 to one of the others, to w′2, · · · , w′l′ , 0 to v′1, 3 to w′1 if f(u′1) = 3, f(v) = 0
or by assigning 2 to x, y, z, 1 to w′2, · · · , w′l′ , u′1, 0 to v′1, w

′
1 if f(u′1) = 0, f(v) = 3 or by

assigning 2 to x, y, z, 1 to w′ts, 0 to v′1 if f(u′1) = 1, f(v) = 3 and g(t) = f(t) for otherwise.

γctdR(G) ≤ γctdR(G′) + 5 + l′ ≤ 4n

3
.
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Subcase 8.3 Let k′′ = 1 and l′ = k = k′ = 0. If y is adjacent to v′1, u
′
1, then assume

that G′ is the graph obtained from G by removing the vertex y. By the induction hy-

pothesis, there exists a CTDRD function f of G′ such that ω(f) ≤ 4(n′)
3 . We extend f

to g on G by assigning 1 to y, and g(t) = f(t) for otherwise. On the other hand let G′

be the graph obtained from G by removing the vertices v, u, v′1, where v, u ∈ {x, y, z}, u′1
is not adjacent to u, v. By the induction hypothesis, there exists a CTDRD function f

of G′ such that ω(f) ≤ 4(n′)
3 . We extend f to g on G by assigning 1 to u, v, 2 to v′1 or

2 to one of v or u and 1 to one of the others, v′1 and g(t) = f(t) for otherwise. Thus

γctdR(G) ≤ γctdR(G′) +
4(n− n′)

3
≤ 4n

3
.

Subcase 8.4 Let k′′ = 1 and k ≥ 2, k′ ≥ 1. Let G′ be the graph obtained from G by
removing the vertices x, y, z, and joining the vertex v1j to vijs, and joining the vertex v′1 to

v11. By using induction, there exists a CTDRD function f of G′ such that ω(f) ≤ 4(n′)
3 .

Without loss of generality we first assume that f(v11) = 1, f(u1) = 3. Then we extend f
to g on G by assigning 2 to y, 1 to x, z, and g(t) = f(t) for otherwise.
If f(v11) = 2, f(v21) = 1, f(u1) = 0 then we extend f to g on G by assigning 2 to x, y, z,
1 to u1, 0 to v11, v

2
1, and g(t) = f(t) for otherwise. If f(v11) = 2, f(v21) = 0, f(u1) = 2

then we extend f to g on G by assigning 2 to x, z, 1 to y, v11, and g(t) = f(t) for oth-
erwise. If f(v11) = 3, f(v21) = 0, f(u1) ≥ 1 then we extend f to g on G by assigning
2 to u1 if f(u1) = 1, also by assigning 2 to two vertices of {x, y, z} where are adja-
cent to v′1, 1 to one of the others, v11, and g(t) = f(t) for otherwise. It follows that

γctdR(G) ≤ γctdR(G′) + 4 ≤ 4n

3
.

Subcase 8.5 Let k′′ 6= 1 and l ≥ 1 or l′ ≥ 3. Let G′ be the graph obtained from G by
removing the vertices x, y, z, wss, w

′
ts, and joining the vertex v1j to vijs, and joining v′1 to

v′rs. The induction hypothesis implies that, there exists a CTDRD function f of G′ such

that ω(f) ≤ 4(n′)
3 . First assume that f(v11) = 1, f(u1) = 3. Then we extend f to g on G

by assigning 0 to wss, 1 to w′ts, 2 to x, y, z, v′1, if f(v′1) = 3 or by assigning 0 to wss, 1 to
w′ts, g(x) + g(y) + g(z) = 5 and g(t) = f(t) for otherwise.
If f(v11) = 2, f(v21) = 1, f(u1) = 0, then we extend f to g on G by assigning 2 to x, y, z,
1 to u1, w

′
t, 0 to v11, v

2
1, wss and g(t) = f(t) for otherwise. It follows that γctdR(G) ≤

γctdR(G′) + 5 + l′ ≤ 4n

3
.

Subcase 8.6 Let l′ = 2 and k′′ = 0. Let G′ be the graph obtained from G by removing
the vertices x, y, z, and joining the vertex v1j to vijs and joining vertex w′1 to w′2. By the

induction, there exists a CTDRD function f of G′ such that ω(f) ≤ 4(n′)
3 . Without loss

of generality we first assume that f(v11) = 1, f(u1) = 3. If f(w′1), f(w′2) ∈ {0, 1}, then we
extend f to g on G by assigning g(y) = 2, g(x) = g(z) = 1 and g(t) = f(t) for otherwise.
If f(w′1) = 0, 1, 2, 3, f(w′2) = 2, then extend f to g on G by assigning g(v) = 2 for one
vertex v ∈ Q where v ∈ N(w′1), g(x) = 1 for x ∈ Q − {v} and g(t) = f(t) for otherwise.
If f(w′1) = 1, 2, 3, f(w′2) = 3, then by assigning g(v) = 2 for one vertex v ∈ Q where
v ∈ N(w′1), g(x) = 1 for x ∈ Q − {v} and g(t) = f(t) for otherwise. If f(w′1) = 0,
f(w′2) = 3, then by assigning g(v) = 2 for one vertex v ∈ Q where v ∈ N(w′1), g(x) = 1
for x ∈ Q− {v}, g(w′1) = 1, g(w′2) = 2 and g(t) = f(t) for otherwise.
Now let f(v11) = 2, f(v21) = 1, f(u1) = 0. We extend f to g on G by assigning 2 to x, y, z,

1 to u1, 0 to v11, v
2
1 and g(t) = f(t) for otherwise. Then γctdR(G) ≤ γctdR(G′) + 4 ≤ 4n

3
.
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Subcase 8.7 Let l′ = 1 and k′′ = 0 and w′1 be adjacent to y. Let G′ be the graph
obtained from G by removing the vertices x, y, z, w′1, and joining the vertex v1j to vijs. By

the induction hypothesis, there exists a CTDRD function f of G′ such that ω(f) ≤ 4(n′)
3 .

We first assume that f(v11) = 1, f(u1) = 3. Then we extend f to g on G by assigning
g(y) = 2, g(x) = g(z) = g(w′1) = 1 and g(t) = f(t) for otherwise.
If f(v11) = 2, f(v21) = 1, f(u1) = 0, then we extend f to g on G by assigning 2 to x, y, z, 1 to
u1, w

′
1, 0 to v11, v

2
1 and g(t) = f(t) for otherwise. It follows that γctdR(G) ≤ γctdR(G′)+5 ≤

4n

3
.

Subcase 8.8 Let l′ = 1 and k′′ = 0 and w′1 do not be adjacent to y and let y be adjacent
to at least two vertices other than x, z and vijs in G. Let G′ be the graph obtained from

G by removing the vertices x, z, w′1, and joining the vertices v1j s to vijs. By the induction

hypothesis, there exists a CTDRD function f of G′ such that ω(f) ≤ 4(n′)
3 . First assume

that f(v11) = 1, f(u1) = 3. Then we extend f to g on G by assigning g(w′1) = 2,
g(x) = g(z) = 1 and g(t) = f(t) for otherwise.
If f(v11) = 2, f(v21) = 1, f(u1) = 0, then we extend f to g on G by assigning 2 to the
vertices of x, u1, z, 1 to w′1, 0 to v11, v

2
1 and g(t) = f(t) for otherwise. It follows that

γctdR(G) ≤ γctdR(G′) + 4 ≤ 4n
3 .

Subcase 8.9 Let l′ = 1 and k′′ = 0 and w′1 is not adjacent to y and let y be adjacent
to at most one vertex other than x, z and vijs in G. First assume that y is not adjacent to

any vertex other than x, z and vijs in G. Let G′ be the graph obtained from G by removing

the vertices x, y, z, w′1, and joining the vertex v1j to vijs. By the induction hypothesis, there

exists a CTDRD function f of G′ such that ω(f) ≤ 4(n′)
3 . Then we extend f to g on G

by assigning g(w′1) = 1, g(x) = g(z) = 2, g(y) = 0 and g(t) = f(t) for otherwise.
Now assume that y is adjacent to one vertex other than x, z and vijs in G, say v. Assume

thatNH(w′1) = u. LetG′ be the graph obtained fromG by removing the vertices x, y, z, w′1,
and joining the vertex v1j to vijs and joining v to u. Using induction hypothesis, there exists

a CTDRD function f of G′ such that ω(f) ≤ 4(n′)
3 . Assume that f(v11) = 1, f(u1) = 3.

We extend f to g on G by assigning 2 to x, z, 1 to y, 0 to w′1 or 2 to x, z, 1 to w′1, 0 to y
if f(v) ∈ {0, 1}, f(u) ∈ {0, 1}, and by assigning 1 to x, y, z, 2 to w′1 or 0 to y, 1 to x, z,
3 to w′1 if f(u) ∈ {0, 1, 2, 3} and f(v) ∈ {2, 3}, and by assigning 1 to x, z, w′1, and 2 to y
if f(u) = 2, f(v) ∈ {0, 1} and by assigning 3 to y and 0 to w′1, 1 to x, z or 2 to y, 1 to
x, z, w′1 if f(u) = 3, f(v) ∈ {0, 1} and g(t) = f(t) for otherwise.
If f(v11) = 2, f(v21) = 1, f(u1) = 0, then we extend f to g on G by assigning 2 to x, y, z,
1 to u1, w

′
1, 0 to v11, v

2
1 and g(t) = f(t) for otherwise. Thus γctdR(G) ≤ γctdR(G′) + 5 ≤

4(n− 4)

3
+ 5 ≤ 4n

3
.

Subcase 8.10 Let 1 ≤ l′ ≤ 2 and k′′ ≥ 2. Let G′ be the graph obtained from G by
removing the vertices x, y, z,w′ts, and joining the vertex v1j to vijs, and joining v′1 to v′rs. By

the induction hypothesis, there exists a CTDRD function f of G′ such that ω(f) ≤ 4(n′)
3 .

First assume that f(v11) = 1, f(u1) = 3. Then we extend f to g on G by assigning 2 to
x, y, u′1, 1 to z, w′ts If f(v′1) = 0, f(u′1) = 3 and by assigning 2 to x, y, z, 1 to w′ts, 0 to v′2 If
f(v′1) = 0, f(u′1) = 2, f(v′2) = 2, by assigning 2 to x, y, z, 1 to w′ts, 0 to v′2, v

′
3 If f(v′1) = 0,

f(u′2), f(u′3) ≥ 1, f(v′2) = f(v′3) = 2, by assigning 2 to x, y, z, 1 to w′ts, 0 to v′2 If f(v′1) = 0,
f(u′2) ≥ 1, f(v′2) = 3, and by assigning 2 to x, y, z, 1 to w′ts, 0 to v′2 if f(v′1) = f(u′2) = 1,
f(v′2) = 2 and 2 to x, y, 1 to z, w′ts, 0 to v′1 if f(v′1) = 1, f(u′1) = 2 and by assigning 2 to
x, y, z, 1 to u′1, w

′
ts, 0 to v′1 or 2 to x, y, z, 1 to w′ts, 0 to v′1 If f(v′1) = 3 and by assigning
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2 to two vertices of x, y, z, 1 to one of the others, u′1, w
′
ts, 0 to v′1 or 2 to x, y, z, 1 to w′ts,

0 to v′1 If f(v′1) = 2.
If f(v11) = 2, f(v21) = 1, f(u1) = 0, then we extend f to g on G by assigning 2 to
x, y, z, 1 to u1, w

′
ts, 0 to v11, v

2
1 and g(t) = f(t) for otherwise. It follows that γctdR(G) ≤

γctdR(G′) +
4(n− n′)

3
≤ 4n

3
. �

As an immediate consequence from Theorem 4.1 it follows that:

Corollary 4.1. Let G be a simple graph of order n with δ(G) ≥ 2. Then

γctdR(G) ≤ b4n
3
c.

5. Conclusions

We already discuss on the covering total double Roman domination of trees, 2-edge
connected graphs and graph with minimum degree 2. Therefore, there exist some problems
as follows.
1. Let G be a graph of order n with minimum degree 2. Characterize the graph G for

which γctdR(G) ≤ b4n
3
c.

2. The complexity the CTDRD of graph G.
3. What is the relationship between CTDRD with other domination parameters?
4. The CTDRD of (Cartesian, lexicographic, strong) products of graphs may be studied.

Acknowledgement. Authors are grateful to the anonymous referee for the valuable sug-
gestions and useful comments.

References

[1] Beeler, R. A., Haynes, T. W. and Hedetniemi, S. T., (2016), Double Roman domination, Discrete
Applied Mathematics, 211, pp. 23-29.

[2] Bondy, J. A. and Murty, U. S. R., (1982), Graph Theory with Applications, The Macmillan Press
Ltd. London and Basingstoke.

[3] Hao, G., Volkmann, L. and Mojdeh, D. A., (2020), Total double Roman domination in graphs,
Commun. Comb. Optim., 5 no. 1, pp. 27-39.

[4] Haynes, T. W., Hedetniemi, S. T. and Henning, M. A., (2020), Topics in Domination in Graphs,
https://doi.org/10.1007/978-3-030-51117-3 Springer Nature Switzerland, AG.

[5] Haynes, T. W. and Hedetniemi, S. T. and Slater, P. J., (1998), Fundamentals of Domination in graphs,
New York: Marcel Dekker.

[6] Jafari Rad, N. and Rahbani, H., (2019), Some progress on the double Roman domination in graphs,
Discuss. Math. Graph Theory, 39, pp. 41-53.

[7] Khodkar, A., Mojdeh, D. A., Samadi, B. and Yero I. G., Covering Italian domination in graphs, To
appear in Discrete Applied Mathematic

[8] Mojdeh, D. A. and Mansouri, Zh., (2020), On the independent double Roman domination in graphs,
Bulletin of the Iranian Mathematical Society, 46, pp. 905-915, DOI: 10.1007/s41980-019-00300-9.

[9] Mojdeh, D. A. and Parsian, A. and Masoumi, I., Characterization of double Roman trees, to appear
in Ars Combinatoria.

[10] West, D. B., (2001), Introduction to Graph theory, Second edition, Prentice Hall.



D. A. MOJDEH, A. TEYMOURZADEH: UPPER BOUNDS FOR COVERING TOTAL... 1041

D. A. Mojdeh for the photography and short autobiography, see TWMS J. App. and Eng. Math.
V.12, N.2.

Atieh Teymourzadeh is a researcher and Ph.D student of Mathematics (in the
field of graph theory) at the Department of Mathematics, University of Mazandaran,
Babolsar, Iran. Her research interests include graph theory, (domination parameters
and dominator colorings.)


