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Abstract

Arriaza et al (Metrika 82:99-124, 2019) introduced the right and left shape functions,
which enjoy interesting properties in terms of describing the global form of a distri-
bution. This paper proposes and studies nonparametric estimators of those functions.
The estimators involve nonparametric estimation of the quantile and density functions.
Pointwise and uniform consistency are proved under general regularity assumptions,
as well as the limit in law. Simulations are included to study the practical performance
of the proposed estimators. The analysis of a real data set illustrates the methodology.

Keywords Shape functions - Nonparametric estimation - Pointwise convergence -
Weak convergence

1 Introduction

Arriaza et al. (2019) have introduced two functions, the left shape function and the
right shape function, which, in some stochastic sense, synthesize the form of the
distribution and can be employed to study the behavior of the tails and the symmetry
of a random variable. Specifically, let X be an absolutely continuous random variable
with probability density function f and distribution function F. For each u € (0, 1),
let

xy = F~ ') = inf{x : F(x) > u}.
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The left shape function and the right shape function of X are defined as
Ly (u) =E{(X —x,)" f(X)}, ue(0,]1),

and
Rx() =E{(X —x)" f(X)}, ue 1),

respectively, provided that the expectations exist, where x~ = max{0, —x} and xT =
max{0, x}, Vx € R. Since Lx(u) = R_x(1 — u), Vu € (0, 1) (see Lemma 2.2 in
Arriaza et al. 2019), from now on we will restrict our attention to the right shape
function, Ry. In order to simplify notation, the subindex X will be suppressed from
the right shape function, so, from now on, we write R(u) instead of Ry (#) when there
is no possibility of confusion.

Notice that if E|X| < oo and f is bounded, then R(u) is a well-defined quantity
for each u € (0, 1) since

Rw) =E[X — F'@}" fo01< M {EIXI + IF_I(M)I} <00, Vue(01D),

where M is a positive constant. Moreover, R is a positive and strictly decreasing
function with lim R(u«) = 0 (see Remark 2.4 in Arriaza et al. 2019). So we define

u—1-
R(1) = 0 and, if the limit exists, R(0) = lirg+ R(u).
—

The right shape function has several relrdnarkable properties. For example, the limit
when u approaches 1 of the quotient of the right shape functions of two random
variables provides useful information on the relative behavior of their residual Rényi
entropies of order 2, a measure of interest in reliability and other fields; if F is a
location-scale family of distribution functions, that is,

F={F:Fx)=F(x—-w/c), VxeR, neR, ¢ >0} ey

for some fixed distribution function Fp, then for any random variables X and Y with
distribution function in F, we have that Rx () = Ry (u), Yu € (0, 1), in other words,
the right shape function characterizes location-scale families; among many others (see
Arriaza et al. 2019). Moreover, if

Sx(u) = Rx(u) — R_x(m), ue(,1),

then Sx(u) = Sy(u), Yu € (0, 1), for all X and Y with distribution function in
F,and Sx(u) = 0, Yu € (0, 1), if and only if the distribution of X is symmetric.
These properties can be used to make inferences. For example, since R characterizes
location-scale families, it may be used to build goodness-of-fit tests of these families.
A key step towards the development of statistical procedures based on the right shape
function is the study of an estimator of such function. This is just the objective of this

paper.
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Remark 1 The definition of the function S (as before, the subindex X will be skipped
when there is no possibility of confusion) is a bit different from that given in Arriaza
et al. (2019), which is SA"(u) = R_x(1 — u) — Rx(1 — u). Both definitions are
closely related: S(u) = 0, Yu € (0, 1), if and only if SAT(y) = 0, Vu € (0, 1), and
S(u) >0, Vu € (0, 1), if and only if SA™ () < 0, Vu € (0, 1).

Let Xy, ..., X, be arandom sample from X, thatis, Xy, ..., X, are independent
with the same distribution as X. Since

R(u) = E{(X —x,)" f(X)} = f{x — F W)} f(0)dF (x),

where | stands for the integral on the whole real line, to estimate R («) we propose to
replace F with the empirical distribution function,

1 n
Fax) =~ 3 1{X; < x},
i=1

where 1{-} denotes the indicator function (that is, 1{X; < x} = 1 if X; < x and
1{X; <x}=0if X; > x), and f with a kernel estimator

A 1 " x—Xi
n = Q= K ~ ’
o= 2k (5)

where / is the bandwidth and K is a kernel. We take i = & x g(n), where 6 =
0(X1,..., X,) is an estimator of 0 = o(X), a spread measure of X, both of them
satisfyingo (aX +b) = |alo(X) and 6 (aX|+b, ...,aX,+b) = |a|6 (X1, ..., Xpn),
Va, b € R, and g is a decreasing function. Further assumptions on h and K will be
specified later. For u € (0, 1), the empirical quantile function, Fn_1 (u), is defined as
follows

Xipifuel =10,1/n],

—1 _ . _
Fa (0 =infis 00 =} = {Xk ifuch=(k—/nk/nl, 2<k<n,

where X 1., < --- < Xj,.; denote the order statistics.
Therefore, we consider the following plug-in estimator of R (u),

_1 - Lot £
Ra() =~ 3 1Xi = Fr @)} fu(X).
i=1

Notice that

1 < .
=D K = Xk A X u €I, 1<k<n—1,
Rn(w)y =1 n i=k+1

0 uel,,
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and thus, R, is a piece-wise constant function. Observe that R, (1) = 0, Vn. The
behavior of R, at u = 1 is consistent since, as seen before, lim R(u) = 0. Observe
u—1-

=

also that, by construction, R, (1) = R, (u; X1, ..., Xn) = Ry(u;aX1+b,...,aX,+

b),Va, b € R, thus R, (1) is location-scale invariant, the same as R(u).
Analogously, we consider the following plug-in estimator of S(u),

Sp(u) = RX,n(”) - R—X,n(u)v

where Ry , (u) stands for R, (u), the estimator of Ry (u) calculated from the sample
X1,..., Xy, and R_x ,(u) stands for the estimator of R_x(u) calculated from the
sample — X1, ..., —X,.

Section 5 of Arriaza et al. (2019) proposes another estimator of R(u) that con-
sists of replacing both f(x) and F(x) with kernel estimators f,(x) and ﬁn x) =
/ " oo Jn(¥)dy, respectively. No properties of the resulting estimators of R and § were
studied there. A main drawback of such estimators is that they do not have an easily
computable expression, which must be approximated numerically.

The paper unfolds as follows. Section2 derives asymptotic properties related to
the pointwise and uniform consistency of the proposed estimator of the right shape
function. Several results are given under different regularity assumptions. In Sect.3
results related to the pointwise asymptotic normality and global weak convergence are
detailed. In Sect.4, a simulation study and an application to a real data set illustrate
the practical performance of the estimator. This section also contains an application
to a goodness-of-fit testing problem for a location-scale family that can be solved by
employing the proposed estimator. All computations have been programmed and run
in R (R Core Team 2020). Some conclusions and further research possibilities are
discussed in Sect. 5. Finally, all proofs are deferred to Sect. 6.

Throughout the paper it will be tacitly assumed that X is an absolutely continuous
random variable with cumulative distribution function F and bounded probability
density function f’; all limits are taken whenn — 00, where n denotes the sample size;

L . P . -
— stands for the convergence in law; — stands for the convergence in probability;
a.s .
— stands for the almost sure convergence; for a function w : (a,b) € R — R
and x € (a,b], w(x—) denotes the one-sided limit lim w(y); Op(1) refers to a
y—>x—
stochastic sequence bounded in probability and op (1) refers to a stochastic sequence

that converges to zero in probability; the kernel function K : R — R is a probability
density function satisfying some of the following assumptions:

Assumption 1

(1) K has compact support and is Lipschitz continuous.
(ii) K has bounded variation.
(iii) K is symmetric, K (x) = K(—x), Vx € R.
(iv) The support of K is [c, d], for some co < ¢ <d < 00, K(c) = K(d) =0, K
is twice differentiable on (c, d), with bounded derivatives K’ and K"

The bandwidth 7 = o x g(n) will be assumed to satisfy some of the following
assumptions:
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Assumption 2

(i) h — Oand ), exp{—enh?} < 00, Ve > 0.
(i) h — 0, nh — oo, nh* — 0.
(iii) & — 0, nh®> — oo, nh* — 0.

In Assumption 2, notice that (iii) is stronger than (ii). On the other hand, the con-
dition 3, exp{—enh®} < oo in (i) implies nh> — oo in (iii), but does not entail
nh* — 0.

2 Almost sure limit

The next theorem gives the almost sure limit of R, («), for each u € (0, 1).

Theorem 1 Suppose that E|X| < oo, that & 2% 6 > 0, that f is uniformly con-
tinuous, that K satisfies Assumption 1 (i) and that h satisfies Assumption 2 (i). Let
u € (0, 1). Suppose that there is a unique solution in x of F(x—) < u < F(x). Then,

R, (1) Z5 R(u).

Let (a, b) denote the support of F, thatis,a = sup{x : F(x) =0}and b = inf{x :
F(x) = 1}. A key assumption in Theorem 1 to get the a.s. convergence is the uniform
continuity of f, necessary to get the uniform convergence of fn to f. This assumption
may not hold, specially if eithera > —oo or b < co. Nevertheless, if such assumption
fails, we still can get the a.s. convergence by using other assumptions, as stated in the
next theorem.

Theorem 2 Suppose that f is twice continuously differentiable on (a, b), that E(X?) <
oo, E{f'(X)?} < o0, E{f"(X)?} < 00 and E{X? f"(X)?} < o0, that 6 = o > 0,
that K satisfies Assumption 1 (i) and (iii) and that h satisfies Assumption 2 (i) and (ii).
Let u € (0, 1). Suppose that there is a unique solution in x of F(x—) < u < F(x).
Then, R,(u) =5 R(u).

In general, it is not possible to get the uniform a.s. convergence of R, to R because
the convergence of the empirical quantile function to the population quantile function

is not uniform, unless F has finite support. In such a case, the next theorem shows that
we also have the uniform convergence of R, to R.

Theorem 3 Suppose that —co < a < b < oo, [ is continuous in (a,b) and

0<inf<l f (F_1 (u)) > 0. Suppose also that K satisfies Assumption 1 (i), that h satisfies
\u\

Assumption 2 (i), and that & 2% o > 0. Then,

sup |R,(u) — R(u)] =5 0.
o<u<l

Let w : [0,1] — R a measurable positive function and let L?(w) denote the
separable Hilbert space of (equivalence classes of) measurable functions f : [0, 1]
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R satisfying fol fu)?wu)du < oo, the scalar product and the resulting norm in

L2(w) will be denoted by (f. g)w = Jy /g w()du and | fll = /TF- Flu-
respectively. If w(u) = 1,0 < u < 1, then we simply denote Lz(w), (-, Ywand || - ||w
by L2, (-, -y and || - ||, respectively.

As said before, in general, it is not possible to obtain the uniform convergence of
R, to R. However, under quite general assumptions, it can be shown that R, converges
to R in L?(w). A first result in this sense is given in the following theorem.

Theorem 4 Suppose that E(X?) < oo, that & 25 6 > 0, that [ is uniformly
continuous, that K satisfies Assumption 1 (i) and that h satisfies Assumption 2 (i).

Then R € L* and |R, — R| =5 0.

It readily follows thatif w : [0, 1] — R is a measurable bounded positive function,
then the statement in the previous theorem also holds in L% (w).

Corollary 1 Let w : [0, 1] = R be a measurable bounded positive function. Suppose
that assumptions in Theorem 4 hold. Then R € Lz(w) and ||R, — R||w 2500,

The uniform continuity of f can be replaced with other assumptions.

Theorem5 Let w : [0, 1] — R be a measurable bounded positive function. Suppose
that f is twice continuously differentiable on (a, b), that E(X?) < oo, E{f/(X)?} <
00, E{f"(X)?} < 00 and B{X2f"(X)?} < 00, that 6 =5 & > 0, that K satisfies
Assumption 1 (i) and (iii) and that h satisfies Assumption 2 (i) and (ii). Then R € L*(w)
and | R, — Rllw =5 0.

Remark 2 The assumptions in the statements of the previous asymptotic results exclude
the optimal rate of the bandwidth for density estimation, to wit,n™ 1/5 Notice, however,
that the objective here differs from the mere estimation of the density. This situation is
not uncommon in nonparametric literature. For instance, when the target is to estimate a
distribution function using the kernel method, Azzalini (1981) showed that the optimal
bandwidth is of order n~!/3. Other examples can be found in Pardo-Fernandez et al.
(2015) and Pardo-Ferndandez and Jiménez-Gamero (2019).

Remark 3 All properties studied so far were stated for R,, as an estimator of R. Clearly,
these properties carry over S, as an estimator of S, which are not given to save space.
The finite sample performance R, (u) and S, (u#) as estimators of R(u) and S(u),
respectively, will be numerically studied in Sect.4 for data coming from a uniform
distribution.

3 Weak limit

We first study the weak limit of /n {R,, () — R(u)} at each u € (0, 1).

Theorem 6 Suppose that f is twice continuously differentiable on (a, b), that E(X?) <
oo, E{f"(X)?} < oo, B{f"(X)?} < 00 and E{X? f"(X)?} < oo, that \/n(6 — o) =
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Op (1), that K satisfies Assumption 1 (i), (iii) and (iv), and that h satisfies Assumption 2
(i) and (iii). Let u € (0, 1) be such that f(F~'(u)) > 0, then

] n
VAR, () = R}y = —= " Yi(w) + op(D),
i=1

N
where

UX; < Flw))—u
FF~ ()

Y;(w) = 2[{X; — F~')}* (X)) — Rw)] + n(u),

1 <i < n,with
@ =E[FOOUF @) < X)].
and therefore

S {Ry(u) — Rw)} > Z ~ N (0, 0*(u)).

where 0% (u) = E{Y (u)?}.

Recall that to estimate R (u) we replaced the population quantile function F~! with
the empirical quantile function an1 and the population density function f with the
kernel estimator f;,. Each of these two replacements have an effect on the asymptotic

behavior of /7 {R, () — R(u)}: (a) the first replacement is the responsible for the

HXi<F ) —u
FF=Tw)

is the responsible for the coefficient 2 in the first part of ¥; (u). Notice that, under the

assumptions made, taking the bandwidth data dependent, 7 = 6 g(n), has no effect
on the asymptotic distribution of /7 {R,, () — R(u)}.

The result in Theorem 6 can be used to give approximate (in the sense of asymptotic)
confidence intervals for R(u). Let 0(u) denote any consistent estimator of o(u) (see
the explanation below for a candidate). If z, is such that ®(z,) = v, where ® stands
for the cumulative distribution function of the standard normal distribution, for a given
o € (0, 1), then

term w(u) in the expression of Y;(u); and (b) the second replacement

(R () = 21-0/20(u) /1, Ry(u) + 21-020(u)//n) 2

is a random confidence interval for R(u) with asymptotic confidence level 1 — «. If
Yi(u), ..., Y,(u)were observed, since Qz(u) = E{Y; (u)z}, which also coincides with
the variance of Y1 (1), V{Y1 (1)}, one could consistently estimate Qz(u) by means of the
sample variance of Y (u), ..., Y, (u). The point is that Y7 (u), ..., Y, (u) depend on
unknown quantities. Taking into account that V{Y(u)} = V{W;(u)}, where W; (1) =
2(X; — F )T f (X)) +1{X; < F'@)hu@)/ f(F~'w)), 1 <i < n, we propose
to replace f by fn and F by F, in the expression of Wi (u), ..., W,(u), giving rise
to
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Wiu) = 2{X; — F, ) fu(Xo) + 1X < Fr @)l aw)/ fu (B ), 1< <n,

(3)
where
~ 7 —1 I ; -1
pu) = | fa)UF, (u) < x}dF,(x) = - an(Xi)l{Fn (u) < Xi},
i=1
and then estimate 02 (u) by means of the sample variance of Wl (n), ..., W,, (u), that

we denote by 0%(u). The finite sample performance of the confidence interval in (2)
as well as the the goodness of 9% () /n as an approximation to the variance of R,, (i)
will be examined in Sect. 4 for data coming from a uniform distribution.

Finally, we study the convergence in law of n|| R, — R ||§j, for some adequate w. In
general, n|| R, — R||2 does not possess a weak limit unless we assume rather strong
assumptions on F'. This is because the derivations to study such a limit involve those
of \/n{F, ' — F~'}in L?, and therefore, it inherits the same limitations (see, for
example, del Barrio et al. 2000, 2005). A convenient way to overcome these difficulties
is to consider, instead of || - ||%, the norm in L%(w), with w(u) = f>(F~!(u)). This
weight function is taken for analytical convenience. It may seem a bit odd, because
f (and hence F) is unknown in practical applications. Nevertheless, as stated in the
Introduction, n||R,, — R ||%U could be used as a test statistic for testing goodness-of-fit to
a location-scale family (1), and in such a case under the null hypothesis f(F “lw)) =
L fo(F5 (W), so we can take w(u) = fo(F; ' () which is known in that testing
framework. Later on, we will discuss other weight functions

We first show that, under some conditions, the linear approximation for /n{ R, (1) —
R(u)} given in Theorem 6 for a fixed u € (0, 1), is valid for all « in certain intervals,
in the Lz(w) sense.

Theorem 7 Suppose that f is twice continuously differentiable on (a, b), that E(X?) <
oo, E{f(X)?} < oo, E{f"(X)?} < oo and E{X? f"(X)?} < oo, that \/n(6 — ) =
Op (1), that K satisfies Assumption 1 (i), (iii) and (iv), and that h satisfies Assumption
2 (i) and (iii). Suppose also that f (F_l(u)) >0,uec(0,1)and

[f(F~ )]
T W) ST

for some finite y > 0. Let

A =lim f(x) < o0.
xla

Suppose also that if A = 0 then f is nondecreasing on an interval to the right of a.
Let w(u) = f2(F~Y(u)), then

Vi (R () = R(w)} = %;Yi(u) +ra(w), uel,= (0, 1 ; 1:| ’
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/ ) >ww)du = op(1).
]In

. . L
Corollary 2 Under assumptions in Theorem 7, n||R, — R||2w — ||Z||%), where

(Zw),0 < u < 1} is a zero-mean Gaussian process on L*(w) with Z(1) = 0
and covariance function cov{Z (u), Z(s)} = E{Y1(u) Y1(s)}, u,s € (0, 1).

From the proof of Theorem 7 and Theorem 4.6 (i) of del Barrio et al. (2005), the
results in Theorem 7 and Corollary 2 keep on being true for any bounded weight
function w satisfying

1 . _ 1
ul =) odu < oo, lim W J, wedu _

o SRF~I(w) utt  f2F~Nw)

Although this result may seem more general than those stated in Theorem 7 and
Corollary 2, notice that the choice of an adequate weight function requires a strong
knowledge of f.

As observed after Theorem 6, the replacement of the population quantile function
F~! with the empirical quantile function F{] in the expression of R to build the
HX SF ') —u

G O))
Y; (1), which makes Y; (u) to inherit the properties and difficulties of estimating the

quantile function. So, one may wonder if there is any advantage in using the right (left)
shape function instead of the quantile function. From a theoretical point of view the
answer is yes: in order to use the quantile function one must assume certain conditions
on the right tail and on the left tail of the distribution, while if one uses right (left) shape
function then only assumptions on the left (right) tail are necessary. This is because
both R, (#) and R(u) (respectively, L, (u) and L(u)) goto O as u 1 1 (respectively,
u | 0).

estimator R, is the responsible for the term u(u) in the expression of

Remark 4 The properties studied in this section for R, — R are inherited by S, — S.
Specifically, let u € (0, 1), then

(Sn(u) — zi—ay20s W) /N1, Sp(u) + 21—a/205U)//n) “4)

is an approximate (in the sense of asymptotic) confidence interval for S(u), where
@%(u) is the sample variance of Vi(u),..., V,(u), where V;(u) = Wx ;(u) —
W_X,i(u), Wx,,‘(u) are the quantities defined in (3) calculated on the sample

Xi1,...,X,,and W_X,,- are the quantities defined in (3) calculated on — X1, ..., —X,,,
i =1,...,n. Notice that if 0 does not belong to the confidence interval (4) one may
conclude that the law of X is not symmetric.
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4 Some numerical illustrations
4.1 Estimationof Rand S

If X has a uniform distribution on the interval (a, b), X ~ U(a, b), then R(u) =
0.5(1 — u)? (see, Table 1 in Arriaza et al. 2019). For several values of n, we have
generated 10,000 random samples with size n from a distribution U (0, 1). For each
sample, we have estimated R using R, taking as K the Epanechnikov kernel (scaled
so that it has variance 1) and h = sd x n~ ", with t = 0.35, 0.40, 0.45, 0.49, and
sd?* denoting the sample variance. Notice that for these choices of & Assumption
2 (i), (ii) and (iii) are met. Tables 1 and 2 show the value of R(u), the bias and the
standard deviation of the values of R, (u), the mean of the standard deviation estimator
0(u)/+/(n) (recall that it is based on asymptotic arguments), and the coverage of the
confidence interval (2) calculated at the nominal level 95%, for u = 0.1,...,0.9
and n = 100, 250, 500, 1000. Figure 1 displays the graph of 1000 estimations for
T = 0.45 in grey joint with the population shape function in black. Looking at these
tables and figure we see that the bias and the variance become smaller as u approaches
1; the standard deviation estimator is, on average, a bit larger than the true standard
deviation, specially for smaller sample sizes; the bias depends on the values of T and
u, being negative for smaller values of 7 and for larger values of u; as for the coverage
of the confidence interval, it also depends the values of T and u: it is rather poor for
smaller values of T and larger values of u, this is because in such cases the value of the
bias in relation to the standard deviation estimator is non-negligible. As expected from
Theorem 3, the differences between R, (1) and R(u) become smaller as n increases,
uniformly in u.

A similar experiment was carried out for the estimation of S, whose results are
summarized in Tables 3 and 4 and Fig. 2. Looking a these tables and figure we see that
the bias is quite small in all cases; that the variance becomes smaller as u# approaches 1
and it also decreases with n; the standard deviation estimator is, on average, a bit larger
than the true standard deviation, the differences become smaller as n increases; this
fact provokes that the coverage of the confidence intervals is larger than the nominal
value, specially for small sample sizes.

4.2 Glass fibre breaking strengths

As an illustration, we will analyse a real data set already considered in Arriaza et al.
(2019) and which had been previously introduced by Smith and Naylor (1987). The
set consists of 63 observations of the breaking strength of glass fibres of 1.5cm of
length collected by the National Physical Laboratory in England (for more details
about the data set, see Smith and Naylor 1987). The left panel of Fig.3 depicts the
histogram and the kernel density estimator obtained from the data. As discussed in
Arriaza et al. (2019), this explanatory analysis suggests a certain negative skewness
in the distribution. The right panel of Fig. 3 displays the estimator S, (#), u € (0, 1),
with & = sd x n=%% and taking as K the Epanechnikov kernel (scaled so that it
has variance 1). Other values for / have been investigated and similar results were
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Fig. 1 Graphs of 1000 generated estimations calculated with 7 = sd x n™ S in grey joint with the

population shape function R(«) in black

obtained. The graph also displays the confidence intervals in (4) for S(u) calculated at
the nominal level 90% foru = 0.1, ..., 0.9. The confidence intervals are also detailed
in Table 5. Notice that the estimator of the function S tends to lie over the horizontal
axis, which indicates asymmetry in the distribution. Moreover, the confidence intervals
for $(0.1), S$(0.2) and S(0.4) do not contain the zero. This conclusion is in agreement
with Arriaza et al. (2019).

4.3 An application to testing goodness-of-fit

Now we consider the problem of testing goodness-of-fit to a uniform distribution, that
is, we want to test

Hy: X ~U(a,b), forsomea <b, a,b e R,
H : X »~U(a,b), foralla <b, a,beR,

on the basis of a sample of size n from X. Let fy and Fy denote the probability density
function and the cumulative distribution function of the U (0, 1) law, respectively.
Then w(u) = fo(Fo(u)) = 1{0 < u < 1}, and thus || - || = || - ||lw. Let R denote
the right shape function of X and let Ry denote the right shape function of a uniform
distribution, Ro(x) = 0.5(1 — u)2. From Theorem 3, it follows that ||R, — Ro|
converges to ||R — Ryl|, which is equal to 0, under the null, and a positive quantity
under alternatives. Thus, it seems reasonable to consider the test that rejects Hy for
large values of 7, = n||R, — Ro||>. The critical region is 7, > Iy, Where t, o is
the o upper percentile of the null distribution of 7;,, whose value can be calculated
by simulation by generating data from a U (0, 1) law, since the null distribution of 7},
does not depend on the values of @ and b, but only on Fy. Notice that 7}, has the readily
computable expression

n—1 n—1
2 n n
T, = it g3 E CkTk,
k=1 k=1
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where

1 & .
o=~ Y KXin = Xen) oK) and e = (1= (k= 1)/m)* = (1 = k/m)’.
i=k+1

There are many tests in the statistical literature for testing Hp against Hj, and the
objective of this section is not to provide an exhaustive list of such tests, but only to
suggest a possible application of the results stated in the previous sections. In our view,
this as well as other possible applications deserve further separate research, out of the
scope of this manuscript. Nevertheless, since T;, is closely related to the Wasserstein
distance between F, and Fy, which is equal to the squared root of the L? norm of
the difference between the empirical quantile function and the quantile function of
Fp, we carried out a small simulation experiment in order to compare the powers of
the newly proposed tests and the one based on the Wasserstein distance. To make the
Wasserstein distance invariant with respect to location and scale changes, we consider
as test statistic W,, = n|| Fn_1 —Fy 2 /62,62 denoting the sample variance, and reject
the null hypothesis for large values of W, (see, del Barrio et al. 2000), The critical
region is W, > wy o, where wy, o is the o upper percentile of the null distribution of
W,, whose value can be calculated by simulation by generating data from a U (0, 1)
law, since the null distribution of W, does not depend on the values of a and b, but
only on Fjp.

Table 6 displays the values ¢, , and w,, o forn = 30, 50 and« = 0.05, calculated by
generating 100,000 samples. To calculate 7,, we used the Epanechnikov kernel (scaled
so that it has variance 1) and h = sd x n~ %, t =0.26, 0.30, 0.35, 0.40, 0.45, 0.49.
As alternatives, we considered several members of the log-Lindley distribution, a
family with support on (0,1) with a large variety of shapes (see Gémez-Déniz et al.
2014; Jodra and Jiménez-Gamero 2016) and probability density function

K2

- K)L(A —log(x)x*7!, x €(0,1),

fxse,d) =

for some x > 0 and A > 0. Figure4 represents the empirical power of the two tests
fork = 1.5, 2, 2.5and 0.6 < A < 5, calculated by generating 10,000 samples for
each combination of the parameter values. Looking at Fig.4 we see that, although
according to Corollary 2 the asymptotic null distribution of 7;, does not depend on the
value of /1, for finite sample sizes it has an effect on the power of the test, being higher
for larger values of h. As expected from the results in Janssen (2000), no test has the
largest power against all alternatives. The power increases with the sample size.

5 Conclusions and further research

As seen in the Introduction, shape functions have shown to have interesting properties.
From a practical point of view, estimators of these functions need to be proposed and
studied. This paper has focused on nonparametric estimators of the shape functions.
The proposed estimators have been studied both theoretically and numerically. They
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Fig. 2 Graphs of 1000 generated estimations of calculated with & = sd x n=045 in grey joint with the
population function S(u) in black
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Fig.3 Left: histogram and kernel density estimator for Glass fibre breaking strengths data. Right: graph of
Sn(u), u € (0, 1), and confidence intervals at the nominal level 90% calculated with & = sd x n=045 for
u=0.1,...,09

Table 5 Confidence intervals (4) for S(u) at nominal level 90%, calculated with h = sd x n_0'45, for
u=0.1,...,0.9, for the Glass fibre breaking strengths data

u Lower limit Upper limit u Lower limit Upper limit
0.1 0.0384 0.7052 0.6 —0.0241 0.0223

0.2 0.0619 0.3223 0.7 —0.0355 0.0089

0.3 —0.0306 0.0970 0.8 —0.0170 0.0090

0.4 0.0013 0.0644 0.9 —0.0076 0.0006

0.5 —0.0340 0.0178

Table 6 Critical points for n = 30, 50 with h = sd x n~ " and « = 0.05

Wn, o In,a
T= 0.26 0.30 0.35 0.40 0.45 0.49
n =230 2.6839 0.1590 0.1606 0.1736 0.2046 0.2610 0.3213
n =250 2.7199 0.1832 0.1800 0.1876 0.2178 0.2778 0.3438
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Fig.4 Empirical power based on 10,000 samples with size n = 30, 50 from a log-Lindley distribution

exhibit nice asymptotic properties and the numerical experiments show a reasonable
practical behavior. Optimal choice of the smoothing parameter involved in the con-
struction of the estimator has not been dealt with in this piece of research. This issue
deserves more investigation and will be considered in future studies.

6 Proofs

This section sketches the proofs of the results stated in the previous sections. Along this
section, M is a generic positive constant taking many different values throughout the
proofs and f;,(x) is defined as f;,(x) with h = & x g(n) replaced with h = o x g(n).

Lemma 1 Suppose that 6 <5 o > 0, that K satisfies Assumption 1 (i) and that h
satisfies Assumption 2 (i). Then sup | Fu(x) — fa(x)] £ 0.
X

Proof We have that

Fa(x) = fu(x) = 81(x) + 82(x), )

with
_(Lr_1 zn : K Xj—x
810 (nfz nh) < h ) ' ©
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1 < X —X; Xi—x
) = — K %)—K( J )} 7
2() nhz{ ( p h M

Since

n

og—o0 1 Xi—x o—0
) = — Y k(< =
1) = — nhj; ( - ) — fa(x),

we can write

oc—0
[81(x)| < =
o

{Suplfn(x) — E{/n (0} +SUPE{fn(x)}}~ ®)

Recall that if K is Lipschitz continuous and has compact support, then it has bounded
variation. Under the assumptions made on K and /& we have that (see, for example,
the proof of Theorem 2.1.3 of Prakasa Rao 1983)

sup | £ (x) — E{ £, ()} 5 0. )

Since f is bounded,

o]

E{f,(x)} = f K@) f(x —hu)du < M/OO K(u)du =M, Vx. (10)

—00
Using (8), (9), (10) and that 6 > o > 0, it follows that

sup 81 (x)| =5 0. (11)
X

Now we study 6> (x). Since K is Lipschitz continuous and has compact support,

Sup(K), we have that
_K Xj — X
h

K< ]A >
h
& 7 . P { J 'C)/ up( )OI ( J 'C)/ up( )}'

1 n

D(x)=—Y_

nh “<—
j=l

Since 6 =% o > 0, it follows that for n large enough, 1{(X; — x)/h €
Sup(K) or (X; — x)/fz € Sup(K)} € 1{|X; — x|/h < C}, for certain positive
constant C. Therefore

o
D(x) < M+
5

== 1| foao, (12)
g
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where fy ,(x) is the kernel estimator of f built by using as kernel the probability
density function of the uniform law on the interval [—C, C]. Proceeding as before, we
have that

sup fun(x) <M a.s., (13)
X

Using that |8>(x)| < D(x), (12), (13) and that 6 =% o > 0, it follows that

sup [82(x)| =5 0. (14)
X

The result follows from (5), (11) and (14). O

Remark 5 From the previous proof, notice that if in the statement of Lemma 1 the

assumption & L% ois replaced with & ", & then it is concluded that sup | f,, (x) —
X
P
Jan()| — 0.
Proof of Theorem 1 We have that
Ry (u) = Rin(u) + Ron(u) + R3, (1) + Ran(u), (15)

where

1 n
Rin() = =3 {X; = FH @} £ (Xo),

i=1

1 n
Ron(u) = — 3 (Xi = FH @)} (£ (X0) = f(X0)},

i=1

I ¢ A
Rsn() = ~ 3 [(X; = £ G0y = (X = F oy | fucxo,

i=1

Ry () = % St = F o { Ao = f(0) -
i=l

From the SLLN, it follows that
Rin(u) 25 R(u). (16)

As for Ry, (1), we have that

1 n
Ry ()] < sup o) = ]~ DXl + 1F @l

i=1
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Under the assumptions made (see, for example, Theorem 2.1.3 in Prakasa Rao 1983)

sup| fu(x) — f ()| = 0. (17)

Taking into account that % Yo IXil 5 E|X| < oo, it follows that

Ry (1) =5 0. (18)

In order to study Rj3, (1) we first observe that

[xi- ]~ [xi - Fw)

0 if X; < min{F, '), F~ ()},
X; — F, () if Fluw) < X; < F~ '),
—Xi+ F ') it Fw) < Xi < F M),
F~Yu) — F ) if X; > max{F, ' (u), F~'(w)},

(19)

which implies
—1 + —1 + —1 —1 .
{Xi—Fn (u)} —{Xi—F (u)} <‘F W) — F, (u)), vi,

and therefore

1 n R
Ran (0] < 1F; @) = FTH@)l= 3 fa(Xi).
i=1

Under the assumptions made |F;1 w) — F~ )| 2500 (see, for example display
(1.4.9) in Csorgd 1983). We also have that

1w » l & .
= FuX) <=3 F(Xi) +sup | fu(x) = f)] +sup | fu(6) = fa)]. (20)
i=1 i=1 * *

From (17), Lemma 1 and taking into account that f is bounded, it follows that the
right hand-side of inequality (20) is bounded a.s. Therefore,

Ry, (1) =5 0. (21)
We have that
Ran(u) = Ry (u) + Rany (), (22)

@ Springer



M. D. Jiménez-Gamero, J. C. Pardo-Fernandez

where

n

1
Ran() = — 3 (Xi = F~ )} 81(X;)

i=1

and

1 n
Raon(u) = — 3 {Xi = F~ )} 82(Xs),
i=1

where &1 (x) and 8, (x) are as defined in (6) and (7), respectively. Since
Rain(u) = (0 — 6){Rin(u) + Ron(u)}/6 (23)
and 6 =% o, from (16) and (18), it follows that
Ratn(u) 5 0. (24)

Using (12), we get that

o
| Raop (u)| < M§

o
% =1 Ry, 25)
g

where

1 n
Ry @) =~ 1Xi = F @} fun(X0).

i=1
Proceeding as before, it can be seen that Ry, (u) 25 R(u), and hence
a.s.
Raon(u) — 0. (26)

The result follows from (15), (16), (18), (21), (22), (24) and (26). m]

Proof of Theorem 2 Let us consider decomposition (15). We have that Ry, (u) +
Ron(u) = Tin(u) + T2n (1) with

1 n
Tin() = KO)—- > (X = F~ @)},
i=1

and Ty, (1) = "T_lUn(u), where U, (1) = m Zi#j H,(X;, X j; u)is adegree two
U-statistic with symmetric kernel

1 i — A&
Hy (X, Xjiu) = % [{Xl- - Fla)t + (X, - Fﬁl(”)ﬁ] 0w~ (X h Xj) '
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We first see that
Tin () 25 0. (27)

Notice that under the assumptions made,
E [{X - F_l(u)}+] < 00, (28)

therefore, by the SLLN,
1 n
S - Pl S5 R - Pl ] < .
n
i=1

Finally, since K is bounded and nh — oo, (27) follows.
Next we will see that

Ton () =5 R(u). (29)

With this aim, we first calculate E{U, (u)}.
E{Un(w)} = E{H, (X1, X2; u)} = /{x — F 'yt (/ K(y)f(x— h)’)dy) S(x)dx.

Since [ K (y)f(x —hy)dy — f(x), {x — F~ @)}t ([ K () f(x — hy)dy) f(x) <
M{x — F~'(u)}* and (28), by dominated convergence theorem we have that
E{U, )} — R(u).
Now, let A, (x;u) = E{H,(x, X;u)} and T = fsz(x)dx. Routine calculations

show that

Ap(x;u) = A(x; u) + an(x; u),

Alvu) = fx = F ) f (),

an(x;u) = 0.5th> £/ () fx — F~ )} 4+ 0.5th? f/(x) + o(h?).

Let ¢ > 0. From the stated assumptions E{a, (X, u)?} = O(h*), therefore
1 1 1 2
; y — 4
P(;X;an(Xi,u)>8> gg—ZIE {;X;an(X,,u)} = 0h").
1= 1=

Since nh* — 0, it follows that

Z P (%Zan(X,-; u) > 8) < 00,

n>1 i=1
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which implies that
1 ¢
p Zan(Xi; u) — 0.
i=1

Let B,(u) = Up(u) + E{H, (X1, X2; u)} — % > An(Xi; u). It can be seen that
E {B,, (u)z} = 0(1/n2 h). Reasoning as before, we get that

By(u) = 0.
Summarizing,
2 n
Ton(u) = =) " A(Xizu) — R() + 12 (1),
n i=1

with 1, (1) <= 0. By the SLLN we have that 1 37| A(X;; u) = R(u), and thus
(29) is proven.

Finally, proceeding as in the proof of Theorem 1, one gets that R;, (u) 2% 00,
i = 3, 4. This completes the proof. O

Lemma 2 Let f be a probability density function with finite support, (a, b), continuous
in (a, b). Suppose also that K satisfies Assumption 1 (ii) and that h satisfies Assumption

2 (ii). Then sup |fa(x) — f(x)] =3 0.
x€(a,b)

Proof From the proof of Theorem 2.1.3 in Prakasa Rao (1983), we have that
sup | £ (x) = B{ fu ()} = 0.
X

So, it suffices to see that

sup [E{fn(x)} — f(x)[—>0. (30)
x€(a,b)

We have that

BUAW) = [ KO)FG = hy)dy.
From the continuity of f, for each fixed y € R

f(x+hy) = f(x), Vxe€(a,b),
and

K(y) f(x +hy) < MK(y).
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Thus, (30) holds true by applying dominated convergence theorem. O

Proof of Theorem 3 First of all, we see that, under the assumptions made, R is a con-
tinuous function on [0, 1]. Since the function

G:Rx(0,1)—R
(x,u) > G, u) = {x — F @)t f2(x)

is continuous, it follows that R(u) = f G (x, u)dx is continuous on (0, 1). Recall
that lim R(u) = 0 = R(1) and, if the limit exists, R(0) = lim+ R(u). Thus, R is
u—0

u—>1-
continuous at # = 1. To see that it is also continuous at # = 0 it suffices to see that

the limit lim R(u) exits, which is true since
u—0+

lim (x = F~l@)}" f20) = (=) (),

x = F'w) f2(x) <cex) = M(x —a)lfa < x < b}

and [ c(x)dx < oo, then by dominated convergence theorem

lirg+ R(u) = /{x — a}+f2(x)dx < 00.

Next, we consider decomposition (15) and study each term on the right hand-side
of such expression. Since R is a continuous function on [0, 1], the point by point
convergence of Ry, (u) to R(u) implies the uniform convergence on [0, 1], that is

sup |Rin(u) — Rw)| L5 0. (31)
0<uxl

és for Ry, (u), taking into account that %Z;’Zl {Xi — F‘l(u)}+ < X — a, with
X = (1/n) Y7_, X;, we have that

sup |Ro ()] < sup | fu(x) — fOIX — a).

o<u<l1 x€la,b]

From Lemma 2, taking into account that Assumption 1 (i) implies Assumption 1 (ii)
and that X — a =5 E(X) — a < oo, we conclude that

sup |Ran(u)| 25 0. (32)
o<u<l

From (31) and (32), we conclude that

sup |Ri, () + Ron(u) — R(w)| <5 0. (33)
o<uxl
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For R3, (1) we have that

n
—1 -1 1 2 )
sup |R3, ()] < sup |F, ') — F~ )= Y fu(X),
o<u<l o<u<l e

In the proof of Theorem 1 we saw that (1/n) Z?:l fn (X;) is bounded a.s. Under the
assumptions made (see, for example, p. 6 of Csorgd 1983),

sup |F ') — F~ )| &5 0.
o<u<l

Therefore

a.s.
sup |R3,(u)] — 0.
o<u<l

Finally, taking into account decomposition (22), it suffices to show that supy<, <
|Rain ()] 2R0,i=1,2. Using (23), (33) and that & 2% o > 0, one gets that

a.s.
sup |R41p(u)| — 0.
o<uxl

Using (25), (33) and that & o> 0, one similarly gets that

a.s.
sup |Razn(u)| — 0.
o<uxl

This concludes the proof. O

Proof of Theorem 4 First of all, we see that, under the assumptions made, R € L2. We
have that

1 1 00
/ R*(u)du = f (/ {x — Fl(u)}fz(X)dX>
0 0 F~l(w)

X (/ {y—F_l(u)}fz(y)dy> du=1—2L+ I,

F=luw)

with (recall that f is a bounded function and that [y F~'(u)%du = E(X?))

1 00 2
I = / (/ xfz(x)dx> du < MJE(XZ) < 00,
0

F=lw)

1 00 1 1/2
b :/ F—l(u)/ xf2(x)dxdu < M (/ F_l(u)zdu/xzf(x)dx>
0 F=1(u) 0

= ME(X?) < oo,
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1 00 2 1
I = f F'w)? (/ fz(x)dx) du < Mf F~ ' w)?du = ME(X?) < oo,
0 F~Y(u) 0

and thus R € L.

Next, we consider decomposition (15) and study each term on the right hand-side of
such expression. Since Ry, is an average of integrable i.i.d. random elements whose
expectation is R(u), applying the SLLN in Hilbert spaces we obtain that (see, for
example Theorem 2.4 of Bosq 2000),

in L2. As for Ry, (u), we have that
1 n
| Ran ()] < sup| f(x) — f(0)|= D (Xi — F~ @)}t
* i

Let V(i) = E[{X; — F 'w)}T]. A parallel reasoning to that used to prove that
R € L? shows that V € L2. Now, from the SLLN in Hilbert spaces it follows that

% S X — Fl )t 25 v, in L2 This fact and (17) gives
Ro, 250,
in L2. From (15), (31) and (32), we conclude that
IR1n + Row — R = 0. (34)

For R3;,(u) we have that
1 n
|R3, ()| < |Fy H(u) — F—1<u>|; Zl Fu(X0).
1=

As shown in the proof of Theorem 1, the second factor on the right hand-side of
the above inequality is a.s. bounded. Since E(X?) < oo, from Lemma 8.3 in Bickel

and Freedman (1981), it follows that ||Fn_1 — F1 2% 0, and thus R3, 250, in
L2, Finally, taking into account decomposition (22), using (23), (25) (34) and that

685 5> 0, one also gets that R4y, 25 0, in L2. This concludes the proof. O

Proof of Theorem 5 Similar developments to those made in the proof of Theorem 2,
and sharing the notation used there, show that
2 n
Rin() + Rap(u) = = " A(Xi; 1) — R(w) + 12, (w),
n i=1
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with o, =3 0 in L% (w). By the SLLN in Hilbert spaces we have that
% Y AKX ) 25 R, in L?(w). Finally, proceeding as in the proof of Theorem 4
we get that || Ri, ||w £%0,i = 3, 4, which completes the proof. m]

Proof of Theorem 6 Similar developments to those made in the proof of Theorem 2,
and sharing the notation used there, show that

2 n
Vi {Rin (W) + Ron(u) — R(w)} = 7 D [xi = F @)t f(Xi) — Rw)] + op(1).
i=1
(35)

Now, taking into account (19) we can write

VR, () = Tip () + Ton(u) + T3 (w), (36)

where
1 < .
T = 23 {xi = Ao} foonr e < X < Fr ),
1 ¢ .
P =~ 7% {xi = F o} f0o1F " w < X < B w),

I,
T () = ¥ {F~' @) = F7 o} = 37 AG01F @) < Xi).

i=1

We have that

0< Tin() < [V | F7 60 — o | %an(xol{F;‘(u) < Xi < F '),
i=1

Under the assumptions made, \/n {Fn_l(u) — F_l(u)} = Op(1l) and Fn_l(u) 23
F~1(u), which implies that for each & > 0 there exists n¢ such that l{Fn_l(u) < X; <
F'w) < YF ') —e < X; < F~'(w)}, Yn > no, and hence E[1{F, (1) <
X; < F~'(u)}] = O(e). Proceeding as in the proof of Theorem 1, it can be seen that
(1/n) Y7, f,, (X;) = Op(1). Therefore Ty, (u) —P> 0. Analogously, it can seen that

Ton(u) —> 0 and that 1 3 £,(X)UF ') < X; < F7 )} = op(1). Now,
proceeding as in the proof of Theorem 2, it can be seen that

1 n
=3 AOUFT ) < X} = w) = E[FCOUF~ @) < X}, GT)
i=1
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From Lemma 1,

A as.
‘;Z{fn(xn XD | UF @) < Xi)| < supl o) = fuo] 5 0.

i=1

We also have that (see, e.g. Theorem 2.5.2 in Serfling 1980)

1 1X; < F'w} -
ﬁ{F—l(u)—F,,—‘(u)} Z{ f(F,l((:)))} “ +op(1),.

Thus, by Slutsky theorem,

1
T3y, (u) \/_

1 Xl X 71 - —
Z e B [F00tE @) < X+ op(1),

Therefore, it has been shown that
1 n
Vn{R1n(u) + Rop(u) + R3,(u) — R(u)} = 7 Z Yi(u) +op(1). (33)
i=1

To prove the result, it remains to see that «/n R4, (1) = op(1). Recall decomposition
(22). From (23) and (35), it follows that

VR4, () = —/n{é — o}Rw) /o +op(1). (39)

Now we study R42,(u). A Taylor expansion of K((X; — X,-)/fz) around K((Xj —
X,-)/h) gives,

1 n
VR (1) = %ﬁ(a &) ;‘{X,- — Pyt

1 <X —X; X;—X;
$— Jh lK/< Jh l)+Qn(M),

j=1

where

AOES W - &)} Z{X — F )t

%é(x 2 ()

qu))l Q
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where i = ah + (1 — a)h, for some a € (0, 1). The assumptions made imply that
0, (u) = op(1). Now proceeding as in the proof of Theorem 2, and taking into account
that [ uK’'(u) f(x + hu)du — f(x) [uK'(u)du = — f(x), we obtain that

VR (u) = /n(6 — o)R(u)/o +op(1). (40)
Finally, the result follows from (38), (39) and (40). O

Proof of Theorem 7 Similar developments to those made in the proof of Theorem 2,
and sharing the notation used there, show that

Vi (R (@) + Roa() = R0} = % ; [X; = F @y F(X) = R

+rin(), u € (0,1),

with fol Fin(w)?w(u)du L.
As for Rz, (u), we consider decomposition (36). In the proof of Theorem 6 it was

shown that 77, (u) i) 0, for each u € (0, 1). We have that
1 n
0< T < [Va{F = F | = 3 fucx).
i=1
From Theorems 2.1, 3.1.1 and 3.2.1 in Cs6rgd (1983), it follows that

(n—1)/n 2
n/ {Fn_l(u) - F_l(u)} w)du = Op(1).
0

Under the assumptions made,

0<

S| =

n
A P

> fu(Xi) — E{f(X)} < oo
i=1

Thus, by dominated convergence theorem, it follows that

(n—1)/n P
/ Tin (u)zw(u)du — 0.
0
Analogously it can be seen that

(n—1)/n P
/ Top () w(u)du — 0.
0
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From Theorems 2.1 and 3.2.1 in Csorg6 (1983), it follows that

n

—1 —1 -1 1 ) -1
SHET ) = F ) f(F (u))—ﬁz[l{xla ) —u]

i=1

a.s.

sup — 0.

0<u<"n;l

Notice that the convergence in (37) holds foreach u € [0, 1]. Since w («) is acontinuous
function, it follows that such convergence is uniform on the interval [0, 1]. Therefore,

=/ X < Flat—u | ,
/0 {T3n(u) — % ; FF ) ww) g w(u)du — 0.

Summarizing, it has been shown that
1 n
V(R )+ Ron () + R3y (u) — R(u)} = N D Yi(w) + ra(w),
i=1

(n—1)/n P
f ran () w(u)du — 0.
0

The same steps given in the proof of Theorem 6 to show that /1 R4, (1) = op(1) can

be used to see that fo("_l)/" n Ry (u)?wu)du i> 0. This completes the proof. O

Proof of Corollary 2 Define

s o | Yiwifuel, =0, (n—1)/n],
Yl(“)—{o ifue((n—1)/n, 1],

L<i <noand W) = = 30 Vi), u € [0, 10
From Theorem 7, we have that

1 1
n/ {R,(u) — Rw)}* w(u)du =/ W, (u) 2w (u)du
0 0

1
+n/ Rw)>w)du +op(1). (41)
(n—1)/n

_ We first see that ?1 € L%(w). With this aim we write Yl (n) = ?ll(u) - ?12(u) +
Y13(u), with

Vi) =2{X; — F @) f(X)1w e ,),  Yia(w) = 2Ru)1(u € I,),

and

X; < F'w)—u

M3 = ==

p)l(u € Iy).
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In the proof of Theorem 4 we saw that R, {X| — F~Y(u)}T € L?;since f is bounded,
we also have that Y11, Y12 € L2(w). As for Y}3,

1 - 2 1
/ Y@ w(u)du =/ [I{Xl < Flw)) - u] pAwydu < / p?(w)du < oo,
0 I, 0

because u(u) < M, Yu € [0, 1], since f is bounded. Thus, Y1 e L%(w).
From the central limit theorem in Hilbert spaces and the continuous mapping the-
orem,

1
L
f W, (0 w(w)du —> ||Z|3,. (42)
0
Since R is a decreasing function with h?ll R(u) = 0, and w is bounded
u

1 1
0< n/ Rw)*w(u)du < Mn/ R(u)*du < MR*((n — 1)/n) — 0.
(n—1)/n (n—1)/n
43)

The result follows from (41)—(43). O
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