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CERTAIN TOPOLOGICAL INDICES AND RELATED POLYNOMIALS

FOR POLYSACCHARIDES

V. LOKESHA1∗, V. R. KULLI2, S. JAIN1, A. S. MARAGADAM1, §

Abstract. A polysaccharide is a large molecule made of many smaller monosaccha-
rides. Monosaccharides are simple sugars, like glucose. Special enzymes bind these small
monomers together creating large sugar polymers or polysaccharides. A polysaccharide
is also called a glycan. Starch, glycogen, and cellulose are examples of polysaccharides.
Depending on their structure, polysaccharides can have a wide variety of functions in
nature. Some polysaccharides are used for storing energy, some for sending cellular mes-
sages, and others for providing support to cells and tissues. In the present work, we
focus on the polysaccharides, namely, amylose and blue starch-iodine complex. Several
topological indices and polynomials are determined in view of edge dividing methods.
Also, depict their graphic behavior.
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1. Introduction

Polysaccharides, particularly of plant origin, are prominent components in the diets are
herbivores and omnivores. Amylose is a polysaccharide used in various industries as a
functional biomaterial. It is mainly a linear component consisting of about 100− 10, 000
glucose monomers linked by α(1→ 4) bindings.

Amylose are used in permanent textile finishes, plastics, film making and paper pulp
fibre bonding. High amylose starches have been used together with an instant starch
or food gum as a binder to provide a crisp coating for french fries which also reduces
oil absorption. Used as starches in the usage of sausage casings and food wrappers,
incorporation into bread crusts and pasta for more uniform heating in the microwave.
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They are also used in foods legumes and beans, whole grains, vegetables and starchy
fruits, rice and potatoes.

In 1814, Colin and Claubry discovered the starch-iodine reaction, which is well renowned
to any chemist from basic courses in qualitative and quantitative analysis.

A topological index, which is a graph invariant it does not depend on the labeling or
pictorial representation of the graph, is a numerical constant mathematically obtain from
the graph structure. In Chemistry, topological indices have been found to be useful in dis-
crimination, chemical documentation, structure property relationships, structure activity
relationships and pharmaceutical drug design [4]. There are few main classes of topological
indices, namely Wiener index, first and second Zagreb indices, forgotten index, Symmet-
ric division degree index etc., that have been very often studied and investigated by the
researchers [15, 16, 17, 18].

The first and second zagreb indices were introduced by Gutman and Trinajstic [9] which
are defined as,

M1(G) =
∑

uv∈E(G)

[d(u) + d(v)].

M2(G) =
∑

uv∈E(G)

[d(u)d(v)].

In 2015, Ediz, S. [6] defined reverse vertex degree and reverse Zagreb indices of a simple
connected graphs. The reverse vertex degree of a vertex v of a simple connected graph G
defined as;

cv = ∆− dv + 1.

where ∆ denotes the largest of all degrees of vertices of G and dv denotes the number of
edges incident to v.
The first reverse Zagreb beta index [7] of a graph G defined as;

CMβ
1 (G) =

∑
uv∈E(G)

cu + cv.

And the second reverse Zagreb index of a simple connected graph G defined as;

CM2(G) =
∑

uv∈E(G)

cucv.

The concept of Sombor index was recently introduced by Gutman [8] in the chemical
graph theory. It is a vertex-degree-based topological index and defined as;

SO(G) =
∑

uv∈E(G)

√
d2u + d2v.

Inspired by work on Sombor indices, V. R. Kulli, introduced the Nirmala index [11] of
a graph G as follows;

N(G) =
∑

uv∈E(G)

√
du + dv.

The irregularity index was introduced by Albertson [2] in and defined as;

Mi(G) =
∑

uv∈E(G)

|du − dv|.
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Recently, minus F -index [12] of a graph G is introduced by V. R. Kulli, and defined as;

MF (G) =
∑

uv∈E(G)

|d2u − d2v|.

Square F -index is defined as;

QF (G) =
∑

uv∈E(G)

(d2u − d2v)2.

V. R. Kulli defined the first Gourava index [13] of a graph G is defined as;

GO(G) =
∑

uv∈E(G)

(du + dv + dudv).

Inspired by the works of Zagreb indices, Deepika T. introduced the V L index [5] of a
graph G is defined as;

V L(G) =
1

2

∑
uv∈E(G)

[de + df + 4].

where de = du + dv− 2 and df = (du× dv)− 2, such that du and dv are the degree vertices
of u and v in G respectively.

Alameri et.al., in 2020, introduced Y -index [1] defined as;

Y (G) =
∑

u∈E(G)

(d3(u) + d3(v))

Numerous graph polynomials have been developed for measuring structural information
of molecular graphs. Graphs polynomial of found applications in Chemistry in connec-
tion with the molecular orbital theory of unsaturated compounds and also an important
source of structural descriptors used in developing structure property models. Degree
based graph polynomials are useful because they contain a wealth of information about
topological indices.

For a simply connected graph G, the first Zagreb beta polynomial [14] is defined as;

CMβ
1 (G, x) =

∑
uv∈E(G)

xcu+cv .

The Second reverse Zagreb polynomial of a simple connected graph G defined as;

CM2(G, x) =
∑

uv∈E(G)

xcucv .

This paper is organized as follows. Section 1 consists of a brief introduction and lit-
erature review which is essential for the development of main results. Forthcoming two
sections, we shall give the topological indices, polynomials of the amylose and blue starch-
iodine complex. Also, depict their graphic behavior. Section 4 consists conclusion of this
work.
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2. Amylose

In this sector calculated the many standard topological indices and related polynomials
for amylose by using the edge partition technique. Here, also obtained graphic comparison
of topological indices of amylose.

Amylose was discovered in 1940, by Meyer and his co-workers found that properties
were different from those of native maize starch. It is found in algae and other lower forms
of plants. It is a spread polymer of around 6000 glucose deposits with branches on 1 in
each 24 glucose ring. It plays an important role in the storage of plant energy and as
plants do not require glucose to explode, its dense structure and slow breakdown features
are under plant’s growth [10].
The reader can find the molecular structure and molecular graphs of amylose in [3].

Theorem 2.1. For all n ≥ 2, let A be the structure of amylose, then

1. SO(A) = 43.55n− 0.8865.
2. N(A) = 26.71n− 8.472.
3. V L(A) = 67n− 4.
4. Mi(A) = 10n+ 2.
5. MF (A) = 44n+ 6.
6. GO(A) = 134n− 8.
7. CM2(A) = 26n+ 2.

8. CMβ
1 (A) = 36n+ 2.

9. QF (A) = 262n+ 3.
10. Y (A) = 456n− 18.

.

Proof. Here we noticed that in the graph of amylose vertices have degrees 1, 2 or 3. The
number of the edges of types are given bellow.

E1 = {uv ∈ E(A) : dA(u) = 1, dA(v) = 2}.
E2 = {uv ∈ E(A) : dA(u) = 1, dA(v) = 3}.
E3 = {uv ∈ E(A) : dA(u) = 2, dA(v) = 3}.
E4 = {uv ∈ E(A) : dA(u) = 3, dA(v) = 3}.

One can calculate easily that |E1(A)| = n, |E2(A)| = 2n+ 2, |E3(A)| = 5n− 2 , |E4(A)| =
4n.

Let, SO(G) =
∑

u,v∈E(G)

√
d(u)2 + d(v)2

SO(A) = | E(1,2) |
∑

u,v∈E(1,2)(A)

√
d(u)2 + d(v)2+ | E(1,3) |

∑
u,v∈E(1,3)(A)

√
d(u)2 + d(v)2

+ | E(2,3) |
∑

u,v∈E(2,3)(A)

√
d(u)2 + d(v)2+ | E(3,3) |

∑
u,v∈E(3,3)(A)

√
d(u)2 + d(v)2

SO(A) = 43.55n− 0.8865.

Similarly, using the definitions of topological indices we obtain the results. �
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Figure 1. 3D plot of topological indices of amylose a) Sombor index
b) Nirmala index c) VL index d) irregularity index e) minus F -index f)
Gourava index g) Second zagreb index h) first zagreb beta index i) square
F index j) Y index .

Theorem 2.2. let A be the structure of amylose, then

1. SO(A, x) = nx
√
5 + (2n+ 2)x

√
10 + (5n− 2)x

√
13 + 4nx

√
18.

2. N(A, x) = nx
√
13 + (2n+ 2)x

√
4 + (5n− 2)x

√
5 + 4nx

√
6.

3. V L(A, x) = n
2x

5 + (n+ 1)x7 + (5n−2)
2 x11 + 2nx15.

4. Mi(A, x) = (6n− 2)x+ (2n+ 2)x2 + 4n.
5. MF (A, x) = n

x3
+ 2n+2

x8
+ 5n−2

x5
+ 4n.

6. GO(A, x) = (6n− 2) + (2n+ 2)x7 + (5n− 2)x11 + 4nx15.
7. CM2(A, x) = nx6 + (2n+ 2)x3 + (5n− 2)x2 + 4nx1.

8. CMβ
1 (A, x) = nx5 + (2n+ 2)x4 + (5n− 2)x3 + 4nx2.

9. QF (A, x) = nx9 + (2n+ 2)x64 + (5n− 2)x25 + 4n.
10. Y (A, x) = nx9 + (2n+ 2)x16 + (5n− 2)x25 + 4nx36.

.

Proof. Using the information given in Theorem 1 and definition of Sombor polynomial,
we have

Let, SO(G, x) =
∑

u,v∈E(G)

x
√
d(u)2+d(v)2

SO(A, x) = | E(1,2) |
∑

u,v∈E(1,2)(A)

x
√
d(u)2+d(v)2+ | E(1,3) |

∑
u,v∈E(1,3)(A)

x
√
d(u)2+d(v)2

+ | E(2,3) |
∑

u,v∈E(2,3)(A)

x
√
d(u)2+d(v)2+ | E(3,3) |

∑
u,v∈E(3,3)(A)

x
√
d(u)2+d(v)2

SO(A, x) = nx
√
5 + (2n+ 2)x

√
10 + (5n− 2)x

√
13 + 4nx

√
18.

In the similar method we also obtain results for other polynomials. Hence the Proof. �
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3. Blue starch - iodine complex

In this sector calculated the many standard topological indices and related polynomials
for blue starch - Iodine Complex by using the edge partition technique. Here, also obtained
graphic comparison of topological indices of blue starch - iodine complex.

The main structure of amylose are cyclic degradants known as cyclodextrins. They
are obtained enzymatically and may be considered as single turns of the helix of amylose
imploding into a circular path. In all of these complexes, cyclodextrin molecules are posi-
tioned in front to form dimers and they are piled together to generate large cylinders that
resemble the amylose helix in its global structure.

The reader can find the molecular structure and molecular graphs of blue starch - iodine
complex in [3].

Theorem 3.1. For all n ≥ 3, let B be the structure of Blue starch - Iodine Complex, then

1. SO(B) = 12.397n2 + 10.986n+ 1.773.
2. N(B) = 7.708n2 + 7.0817n+ 0.944.
3. V L(B) = 18.25n2 + 71.75n+ 8.
4. Mi(B) = 4n2 − 4.
5. MF (B) = 19n2 − 7n− 12.
6. GO(B) = 36.5n2 + 24.5n+ 40.
7. CM2(B) = 7.5n2 + 14.5n− 4.

8. CMβ
1 (B) = 11n2 + 13n− 4.

9. QF (B) = 107n2 + 114n− 156.
10. Y (B) = 119n2 + 117n+ 28.

.

Proof. Let B be a blue starch - iodine complex graph. We have five partitions of the edge
set E(B) as follows:

E1 = {uv ∈ E(B) : dB(u) = 1, dB(v) = 2}.
E2 = {uv ∈ E(B) : dB(u) = 1, dB(v) = 3}.
E3 = {uv ∈ E(B) : dB(u) = 2, dB(v) = 2}.
E4 = {uv ∈ E(B) : dB(u) = 2, dB(v) = 3}.
E5 = {uv ∈ E(B) : dB(u) = 3, dB(v) = 3}.

One can calculate easily that |E1(B)| = 2n, |E2(B)| =
∑n−1

i=1 (n + 2) − 2, |E3(B)| = n,

|E4(B)| = 4n., |E4(B)| =
∑n−1

i=1 (6n− 2) + 2, |E5(B)| = 4n. The proof technique is similar
as theorem 1. �
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Figure 2. 3D plot of topological indices of blue starch - iodine complex
graph a) Sombor index b) Nirmala index c) VL index d) irregularity index
e) minus F -index f) Gourava index g) Second zagreb index h) first zagreb
beta index i) square F index j) Y index.

Theorem 3.2. let B be a blue starch - iodine complex graph, then

1. SO(B, x) = 2nx
√
5 + (n2+3n−8)

2 x
√
10 + nx

√
8 + (3n2 − 5n+ 4)x

√
10 + 4nx

√
18.

2. N(B, x) = 2nx
√
13 + n2+5n−8

2 x2 + (3n2 − 5n+ 4)x
√
5 + 4nx

√
6.

3. V L(B, x) = nx5 + n2+3n−8
4 x7 + 3n2−5n+4

2 x11 + 2nx15 + nx8.

4. Mi(B, x) = 5n+ (3n2 − 3n+ 4)x+ n2+3n−8
2 x2.

5. MF (B, x) = 5n+ 2nx−3 + n2+3n−8
2 x−8 + (3n2 − 5n+ 4)x−5.

6. GO(B, x) = 2nx5 + n2+3n−8
2 x7 + nx8 + (3n2 − 5n+ 4)x11 + 4nx15.

7. CM2(B, x) = 2nx6 + (n
2+3n−8

2 x3 + nx4 + (3n2 − 5n+ 4)x3 + 4nx.

8. CMβ
1 (B, x) = 2nx5 + (n

2+5n−8
2 x4 + (3n2 − 5n+ 4)x3 + 4nx2.

9. QF (B, x) = 5n+ 2nx9 + n2+3n−8
2 x64 + (3n2 − 5n+ 4)x25.

10. Y (B, x) = 2nx9 + n2+3n−8
2 x28 + nx16 + (3n2 − 5n+ 4)x25 + 4nx54.

.

The proof technique is similar as theorem 2.

4. Conclusion:

It is important to calculate topological indices of amylose and blue starch-iodine complex
because it is a proved fact that topological indices help to predict many properties without
going to the wet lab. In the present work we evaluate some topological indices of the
amylose and blue starch-iodine complex. First, we obtain degree based indices then recover
some polynomial of the structures. Also, the findings are interpreted graphically.
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