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NO BIRD DATABASE IS PERFECT:
CITIzEN SCIENCE AND PROFESSIONAL DATASETS

CONTAIN DIFFERENT AND COMPLEMENTARy
BIODIVERSITy INFORMATION

LAS BASES DE DATOS DE CIENCIA CIUDADANA
y PROFESIONALES POSEEN INFORMACIÓN DIFERENTE

y COMPLEMENTARIA SOBRE LA AVIFAUNA

Sofía GALVÁN1 *, Rafael BARRIENTOS2 and Sara VARELA1, 3

SUMMARy.—Citizen science has become a powerful tool for collecting big data on biodiversity.
However, concerns have been raised about potential biases in these new datasets. We aimed to test
whether citizen science bird databases have more biases than professional scientific databases. Our
hypotheses were 1) citizen science databases will have more data on “easy to spot” species, that are
widely distributed and have large body sizes; whereas 2) professional databases will have more en-
dangered species and species of special interest for research. We analysed six Spanish bird databases:
three professional, two citizen science and one mixed database. Our results show that, in general,
occurrences in citizen science databases are better explained by the studied variables than professional
databases, but no clear differences were found when analysed individually. Both citizen science and
professional databases contain invaluable information on biodiversity but every database comes with a
particular history and its stored data is the result of years of field sampling with heterogeneous goals,
sampling methods and sampling effort. Consequently, raw observations should not be used directly as
an ideal survey of the distribution or abundance of birds. We need to uncover these biases and develop
new methods to properly incorporate the extensive and heterogeneous biodiversity data that is readily
available to research.—Galván, S., Barrientos, R. & Varela, S. (2022). No bird database is perfect:
citizen science and professional datasets contain different and complementary biodiversity information.
Ardeola, 69: 97-114.

Key words: big data, biodiversity monitoring, birdwatching, citizen science, macroecology, orni-
thology, sampling biases.
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INTRODUCTION

The study of patterns in nature, such as
the distribution or abundance of organisms,
often requires large-scale approaches (Bon-
ney et al., 2009). Consequently, data must
be collected over long periods of time and
at large spatial scales (Kelling et al., 2009).
Unfortunately, this often involves an effort
that is logistically or economically unfeasible
for individual research teams, which usually
have limited financial and human resources.
To address these limitations, different initia-
tives have been carried out. For example, the
Global Biodiversity Information Facility
(GBIF) aggregates multiple scientific data-
bases from museums and collections around
the world (https://www.gbif.org). Other pro-
jects, like the New and Old Worlds (NOW)
database or PaleobioDB, collect records of
fossil occurrences from scientific publica-
tions and make them available for further
research (https://nowdatabase.org/; https://
paleobiodb.org). Another way of collecting

large amounts of information on biodiversity
is through amateur naturalists. These citizen
science projects allow the participation of
the lay public in the observation, classifi-
cation and collection of data, which can be
used for research by scientists (Kullenberg
& Kasperowski, 2016).

Birds are mostly diurnal, abundant and be-
haviourally and morphologically conspicuous
(Sullivan et al., 2009). In addition, applying
a phylogenetic species concept, there are
about 18,000 species (Barrowclough et al.,
2016) occupying all ecosystems on Earth,
making them an ideal group for citizen science
projects. This collaborative data gathering is
already an established global tool used to
record changes in species’ ranges, migration
patterns, population trends and impacts of
processes such as climate change (Dickinson
et al., 2010). In fact, the number of records
of species occurrences in citizen science
databases are now larger than those in mu-
seum or scientific collections. For instance,
eBird, an international birdwatching data-
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RESUMEN.—La ciencia ciudadana se ha convertido en una poderosa herramienta para recopilar datos
sobre biodiversidad. Sin embargo, a pesar de su disponibilidad para ser utilizados en investigaciones
científicas, sus posibles sesgos se encuentran bajo continuo debate. Por ello, en este trabajo preten-
demos comprobar si estas bases de datos sobre avifauna de España presentan mayores sesgos que
aquellas científico-profesionales. Nuestras hipótesis son: 1) las bases de datos ciudadanas recogerán
un mayor número de aves “fáciles de detectar” (ampliamente distribuidas y con mayores tamaños cor-
porales), mientras que 2) las bases de datos profesionales recogerán preferentemente especies en peli-
gro de extinción o con algún interés científico específico. Para comprobarlo, analizamos seis bases de
datos: tres profesionales, dos ciudadanas y una mixta. Nuestros resultados mostraron que, en general,
las variables estudiadas explican mejor las observaciones de las bases de datos ciudadanas en compa-
ración con aquellas de las bases de datos profesionales, aunque no se encontraron diferencias claras
cuando se analizaron individualmente. Así, tanto las bases de datos ciudadanas como las profesionales
poseen una información muy valiosa sobre biodiversidad, aunque cada una de ellas posee una historia
particular y su información es el resultado de años de muestreo con objetivos, métodos y esfuerzos
heterogéneos. En consecuencia, sus observaciones no deben utilizarse directamente como un reflejo
ideal de la distribución o la abundancia de estas aves. Así, es necesario detectar estos sesgos y desarro-
llar nuevos métodos para incorporar esta gran cantidad de datos sobre biodiversidad en futuras inves-
tigaciones.—Galván, S., Barrientos, R. y Varela, S. (2022). Las bases de datos de ciencia ciudadana y
profesionales poseen información diferente y complementaria sobre la avifauna. Ardeola, 69: 97-114.

Palabras clave: ciencia ciudadana, macrodatos, macroecología, observación de aves, ornitología,
seguimiento de la biodiversidad, sesgos de muestreo.
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base (https://ebird.org), already has over 100
million records; whereas the Natural History
Museum (UK) has ~750,000 records and
the Museo Nacional de Ciencias Naturales
(Spain) has ~3,000 (via GBIF, searched in
April 2021). This difference will continue to
grow, as natural history collections are not
expanding at the same rate as volunteer bird-
watching projects.

Despite their size and utility, the quality
of the data stored in citizen science databases
has been questioned. It has been noted that
their inequalities in sampling intensity over
time, spatial coverage and sampling effort,
and their uneven detection of rare species,
could bias the data they contain (Isaac et al.,
2014). Some studies show that volunteers
easily identify common or iconic species
but have more difficulty identifying rare spe-
cies (Crall et al., 2011; Kelling et al., 2015;
Swanson et al., 2016). Also, amateur ob-
servers are more successful at identifying
those birds with easily recognisable songs
but are less successful with inconspicuous
species or those only present in certain, rela-
tively inaccessible, habitats (Kelling et al.,
2015). In addition, records are mostly aggre-
gated in readily accessible/urban zones and
in protected areas, showing a marked prefer-
ence for observations of threatened species
(Ferrer et al., 2006). For that reason, this in-
formation needs to be carefully analysed and
validated in order to generate high-quality
datasets for scientific purposes (Crall et al.,
2011; Isaac et al., 2014; Johnston et al., 2019;
Swanson et al., 2016).

We aimed to compare citizen science data-
bases with professional databases. In particu-
lar, we studied six available databases of
Spanish avifauna: three professional, two
citizen science and one mixed. We expected
that databases collected by citizen science
projects (citizen databases) would contain a
large proportion of records of species: a) with
extensive geographical ranges, as they are
widespread (Kelling et al., 2015; Swanson

et al., 2016); b) of larger size, as they are
more easily detected (Kamp et al., 2016),
and 3) from habitats closer to human settle-
ments (e.g. farmlands) or from frequently
visited biodiversity hotspots, such as wetlands
(Ferrer et al., 2006; Kelling et al., 2015). We
also expected that databases compiled by
scientists, specialists or professionals (pro-
fessional databases) would have a greater
representation of threatened species, as scien-
tists often focus on endangered taxa (Ferrer
et al., 2006).

METHODS

Databases

We used three professional databases
(Estación Biológica de Doñana, Museo Na-
cional de Ciencias Naturales and Inventario
Español de Especies Terrestres), two citizen
science databases (eBird and Proyecto AVIS)
and one mixed; the ringing database of
the Spanish Ornithological Society (SEO/
BirdLife), that includes contributions from
both professional and amateur ringers. All
data were downloaded in January 2020. The
Proyecto AVIS database was obtained from
its official website (https://proyectoavis.
com/) and the remainder from the GBIF por-
tal (https://gbif.org).

The Estación Biológica de Doñana (here-
after “EBD”) collection contains bird speci-
mens collected between 1930 and 2007
(Cezón, 2018a), with 4,515 records belonging
to 116 species. The database of the Museo
Nacional de Ciencias Naturales (MNCN) is a
collection of 2,980 records corresponding to
206 species, with records from 1841 to 2003
(Cezón, 2018b). The Inventario Español de
Especies Terrestres (IEET) contains a total
of 414,108 records of 331 bird species. Data
were recorded between 2004 and 2012, based
on a systematic record of occurrences in
10km2 UTM grids throughout Spain (Villares,
2018).
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The eBird database is a programme
launched by the Cornell Lab of Ornithology
and the National Audubon Society in 2002,
which allows any user to enter data on bird
observations using a standardised protocol
(Sullivan et al., 2009; https://ebird.org/).
The subset for Spain contained, when down-
loaded, 5,095,285 observations, comprising
589 species records collected from 1901 to
2020 (Levatich & Padilla, 2019). Proyecto
AVIS is also a collaborative project on
Spanish avifauna with a standardised proto-
col (Varela et al., 2014a). It had 106,694
observations of 426 species in January 2020,
and its records range from 1973 to the present
(https://proyectoavis.com).

The ringing database of the SEO/BirdLife
NGO (SEO) contains 9,435,714 records
belonging to 533 species, from 1905 to the
present (SEO/BirdLife, 2020).

Data pre-processing

Datasets with several taxa were filtered
to extract only bird records. For those data-
bases containing records from more than
one country (EBD and eBird), we selected
those from Spain. We filtered the databases
to select terrestrial breeding species following
D’Amico et al. (2019), thus excluding win-
tering, non-breeding, invasive and marine
species. The information comprising the
resulting databases is shown in Table A1
(Supplementary Material).

Morphological and ecological variables

We used the following explanatory vari-
ables from D’Amico et al. (2019): 1) “geo-
graphical distribution” i.e., percentage of
10km2 UTM grids where the species is
present; 2) “weight” (in grams) and 3)
“wingspan” (in centimetres), used as proxies
of body size; 4) total number of “nesting
habitats” (farmland, agroforest, forest, scrub-

land, wetland and cliffs) where the species
can breed (species can select more than one
habitat, so percentage totals may exceed
100%) and 5) “conservation status”, with the
CR, EN and VU categories (according to
the IUCN Red List criteria; IUCN Standards
and Petitions Committee, 2019) grouped to-
gether as “threatened”.

Descriptive statistics

We first described the spatio-temporal and
taxonomic coverage of the databases. We
used a Venn diagram to show the taxonomic
uniqueness of each database and, for the
spatio-temporal coverage, we utilised the year
of collection and the geographical coordi-
nates of each observation (EBD and MNCN
databases do not include coordinates, so we
excluded them for these tests). In addition,
we carried out a case study aimed to explore
the record density in each database along
Spain for two species: the evenly-distributed
and highly-abundant House Sparrow Passer
domesticus and the Spanish Sparrow Passer
hispaniolensis (which ranges throughout the
peninsular Southwest and the Canary Islands,
with higher abundance in Extremadura
region) (Carrascal & Weykam, 2006; Martí
& del Moral, 2003). To do so, we performed
a 2D kernel density estimation (Silverman,
1986), using the stat_density_2d function of
the ggplot2 version 3.3.5 package for build-
ing the maps (this function uses the kde2d
function from the MASS library (Venables &
Ripley, 2002; Wickham, 2016).

We then used univariate descriptive statis-
tics (boxplots and histograms) to show the
distribution of the target continuous variables
(geographical distribution, weight and wing-
span) and calculated the percentage distribu-
tion for the categorical ones (nesting habitat
and conservation status). We log-transformed
weight and wingspan for visualisation pur-
poses.
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We built generalized linear models (GLMs)
to link the number of observations per species
with species’ traits and to complement the
analyses aimed to understand the differences
between databases. We included geographical
distribution, weight and conservation status
(in binary terms: threatened/non-threatened),
and we excluded wingspan as it is correlated
with weight (r = 0.82). From the nesting habi-
tats, we selected only wetland and ‘accessible
habitats’ (containing agroforest and farmland
variables) as binary variables (yes/no), as
they were the most selected habitats and also
adequate for testing our hypothesis regarding
the accessibility/proximity and attractive-
ness of these habitats for birdwatchers. As
our explanatory variable “geographical dis-
tribution” was directly based on the second
Atlas of Breeding Birds of Spain (Martí &
del Moral, 2003), we excluded the IEET
database from this analysis.

Finally, we used decision trees (“Regres-
sion trees”) to identify the explanatory vari-
ables that best predict the number of observa-
tions per species in each database, including
interactions between them. This recursive par-
tition algorithm (Steinberg, 2009) allowed
us to classify information on the different
databases based on our explanatory variables;
in our case, species traits. For this analysis,
we transformed nesting habitat and conser-
vation status into binary variables (yes/no;
threatened/non-threatened), and we excluded
the IEET database for the same reason as
above. We built decision trees using the rpart
version 4.1-15 and rpart.plot version 3.0.8
packages (Milborrow, 2019; Therneaeu et
al., 2019).

All analyses were performed using R
version 3.6.2 (R-Core-Team, 2019), and
the largest databases (SEO and eBird) were
loaded using the data.table version 1.12.8
package (Dowle et al., 2019). R scripts for
data filtering and analyses are available at
https://github.com/SofiaGalv/SpanishBird
Databases.git.

RESULTS

Taxonomic, spatial and temporal
heterogeneity in the databases

The distribution of the species collected in
each database is shown in Figure 1A. Only
32 species are included in all databases,
whereas the greater number (n = 137) corre-
sponds to species gathered in all databases
except the EBD. Similarly, there are 30 spe-
cies shared between all databases except for
EBD and MNCN, indicating the taxonomic
uniqueness of these two databases.

Temporally, the MNCN database includes
the oldest records (median = 1981, inter-
quartile range = 1934-1995, N = 2,829)
(Figure 1B; Supplementary Material, Table
A2 and Figure A4), followed by EBD (me-
dian = 1980, interquartile range = 1978-1986,
N = 3,888) and with their most recent records
in 2003 and 2007, respectively. On the other
hand, IEET information was mainly recorded
around 2004 (N = 404,210). Lastly, observa-
tions in the remaining databases are mainly
post- 2000 up to the present (2019), with the
eBird database standing out as collecting the
most modern information (SEO: median =
2004, interquartile range = 1997-2010, N =
8,583,541; eBird: median = 2017, inter-
quartile range = 2016-2018, N = 4,434,772;
AVIS: median = 2008, interquartile range =
2006-2012, N = 98,468).

In the spatial context, our case study
pointed out that the distribution of records
is different in each database (Figure 2). In
the case of the House Sparrow (which is
evenly-distributed and shows high abun-
dance throughout the Iberian Peninsula), in
general, the highest density of observations
is concentrated in the centre (Madrid) and
the south (Andalucía) in all databases. How-
ever, the SEO database shows high density
on the Mediterranean coast, whereas the
eBird database also shows concentrations in
the north (mainly País Vasco and Navarra).
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FIG. 1.—Taxonomic and temporal heterogeneity between databases. (A) Taxonomic coverage shared
between databases. The central figure in each circle represents the number of species shared between
the databases indicated in parenthesis. (B) Median ± first and third quartiles, with whiskers at 1.5 times
interquartile range (IQR) for collection years in each database. Professional databases in black (MNCN,
EBD and IEET), citizen databases in light grey (eBird and AVIS) and mixed database in dark grey
(SEO).
[Heterogeneidad taxonómica y temporal entre bases de datos. (A) Cobertura taxonómica compartida
entre las bases de datos. En cada círculo se representa el número de especies compartidas entre las
bases de datos indicadas entre paréntesis. (B) Mediana ± primer y tercer cuartiles, con bigotes a 1,5
veces el rango intercuartílico (RIQ) para los años de recolección de las observaciones. Las bases de
datos profesionales se muestran en negro (MNCN, EBD y IEET), las ciudadanas en gris claro (eBird
y AVIS) y la base de datos mixta en gris oscuro (SEO).]
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FIG. 2.—Maps of observations high-density zones for four databases (MNCN, SEO, eBird and AVIS)
and two species (Passer domesticus and Passer hispaniolensis). Legends represent the product of the
Kernel density estimate and the number of observations in each group.
[Mapas de las zonas con alta densidad de observaciones para cuatro bases de datos (MNCN, SEO,
eBird y AVIS) y dos especies (Passer domesticus y Passer hispaniolensis). Las leyendas representan el
producto de la estimación de densidad Kernel y el número de observaciones en cada grupo.]
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In the case of the less-widespread species
(the Spanish Sparrow), observations are
equally aggregated in the centre and the
south of Spain, although eBird and AVIS
also showed a marked density of observations
in Extremadura and in Córdoba province
(Andalucía), respectively. The IEET and
eBird databases also show concentrations of
Spanish Sparrow observations in the Canary
Islands. In summary, all databases tend to
accumulate observations in certain zones of
the Spanish territory. Finally, we detected
a peak in the abundance of occurrences in
the limits between UTM zones in the IEET
map. UTM is the original coordinate system
of this database, and the overlap between
UTM zones in Iberian Peninsula (29, 30 and
31) after conversion to latitude-longitude
might not have been taken into considera-
tion when uploading this database to GBIF
(Figure 2).

Description of species traits
in the databases

Preliminary exploration of the data showed
that no database fulfils normality and ho-
moscedasticity assumptions and that each
has its own particular frequencies of species
traits (Supplementary Material, Figure A1-
A4), which prevented any statistic testing to
compare them directly.

Most records in the databases are of birds
that are widely distributed in Spain, covering
around 60% of the territory (Figure 3A; Sup-
plementary Material, Table A2; MNCN: me-
dian = 58.3%, N = 2,829; IEET: median =
64.4%, N = 404,210; SEO: median = 65.1%,
N = 8,583,541; eBird: median = 61.2%, N =
4,434,772; AVIS: median = 53.3%, N =
98,468). In particular, the SEO and IEET
databases have a larger number of records
of widely distributed species (SEO: inter-
quartile range = 30.7%-91.5%, IEET: inter-
quartile range = 40.8%-83.9%). However, the

EBD database includes birds with narrower
geographical distributions (median = 3.7%,
N = 3,888).

In relation to weight (Figure 3B; Supple-
mentary Material, Table A2), professional
databases (MNCN and IEET) collect birds
with low body weights (MNCN: median =
152.0g, interquartile range = 22.9g-315.5g,
N = 2,829; IEET: median = 40.5g, inter-
quartile range = 18.6g-204.0g, N = 404,210).
The mixed-database (SEO) contains records
for the specimens with the lowest body
weights (median = 18.6g, N = 8,583,541),
while citizen database medians are 77.6g for
eBird (interquartile range = 18.9g-502.7g,
N = 4,434,772) and 180.5g for AVIS (inter-
quartile range = 22.6g-828.5g, N = 98,468).
Finally, the EBD database stands out with
respect to the other datasets as it has heavier
than average birds (median = 946.2g, inter-
quartile range = 615.7g-2,750.0g, N = 3,888).

Regarding wingspan (Figure 3C; Supple-
mentary material, Table A2), SEO has the
smallest individuals (median = 23.3cm,
interquartile range = 21.0cm-27.8cm, N =
8,583,541), followed by IEET (median =
33.3cm, interquartile range = 23.8cm-58.0cm,
N = 404,210). On the other hand, eBird has
a median of 40.0cm (interquartile range =
24.3cm-77.5cm, N = 4,434,772). MNCN and
AVIS databases show identical medians,
although the species collected by AVIS are
larger (MNCN: median = 52.5cm, inter-
quartile range = 26.0cm-85.5cm, N = 2,829;
AVIS: median = 52.5cm, interquartile range =
26.5cm-110.5cm, N = 98,468). The EBD
database has the largest birds (median =
120.5cm, interquartile range = 77.0cm-
152.5cm, N = 3,888).

Lastly, our analyses indicate that most of
the records in the non-citizen databases are
of species that breed in agroforest habitats
(Table 1, MNCN: 74.5%, IEET: 74.2%,
SEO: 70.3%). In contrast, most records in
the EBD database correspond to wetland
species (71.2%). In citizen databases, obser-
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vations mainly comprise agroforest-breeding
species (eBird: 63.0%, AVIS: 64.7%). Lastly,
the percentage occurrence of threatened
species is lowest in IEET, SEO and eBird
(5.5%, 6.0% and 6.7%, respectively), has
intermediate values in MNCN and AVIS
(9.2% and 8.0%, respectively) and is highest
in the EBD database (34.3%).

Explained variance

Our GLMs show that models performed
with citizen datasets are able to explain the
highest percentage of total variance, with
55.2% for eBird and 54.8% for AVIS (Table
2). However, the same variables explained
less than 30% of variance in professional
databases, with the EBD model being the
least explanatory (only 14.0%). Positive
coefficients were obtained for weight, geo-
graphical distribution, wetlands and acces-
sible systems in all databases except for
SEO (where species’ weight is negatively
correlated with the number of records). In
the case of conservation status, all coeffi-
cients were negative or not significant except

for EBD (where records of threatened spe-
cies are positively correlated with the total
number of records).

Types of records in the databases

Regression trees show that, regarding
professional databases, most records in the
MNCN database are related to weight and
geographical distribution (involving mainly
large species with extensive distribution
areas; Supplementary Material, Figure A5A),
while the EBD records are mostly explained
by conservation status and, for non-threat-
ened species, by wingspan (Supplementary
Material, Figure A5B). The mixed SEO tree
also includes geographical distribution and
weight, as does the MCMN database, but the
second variable focuses on low weight spe-
cies (< 20.2 grams) instead of large species
(Supplementary Material, Figure A6). Re-
garding citizen databases, eBird has the most
complex tree (Supplementary Material,
Figure A7A), showing divisions based on
geographical distribution, weight, wetlands
as breeding habitat and conservation status.
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TABLE 1

Proportion of nesting habitats selected by the species occurring in each database. The highest value is
highlighted in bold.
[Proporción de hábitats de nidificación seleccionados por las especies recogidas en cada base de datos.
Se resalta el valor más alto.]

Wetland         Farmland         Agroforest         Forest         Scrubland         Cliffs
    MNCN             15.8                 51.8                   74.5                52.4                31.9               14.7
    EBD                 71.2                 15.7                   27.6                28.2                2.7               5.1
    IEET                13.9                 53.1                   74.2                52.9                40.8               17.7
    SEO                 22.6                 40.7                   70.3                58.7                42.8               6.7
    eBird                31.7                 48.1                   63.0                44.8                31.1               17.0
    AVIS                32.7                 48.5                   64.7                46.1                26.9               16.6
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TABLE 2

GLM for the number of observations according to: weight, geographical distribution, conservation
status, wetlands and accessible habitats. The assigned coefficient, the F-value and its significance are
shown for each variable in each database. ‘***’ = p < 0.001, ‘**’ = p < 0.01, ‘*’ = p < 0.05, ‘.’ = p < 0.1,
NS = not significant. For each model, the percentage of explained variance is indicated.
[Modelo lineal generalizado para el número de observaciones en función de: peso, distribución geo-
gráfica, estado de conservación, humedales y sistemas accesibles. El coeficiente asignado, el valor F y su
significación se muestran para cada variable en cada base de datos. ‘***’ = p< 0,001, ‘**’ = p< 0,01,
‘*’ = p< 0,05, ‘.’ = p< 0,1, NS = no significativo. Se indica el porcentaje de varianza explicada en
cada modelo.]

Variable                  Coefficients     F-value     p-value             Explained variance
Weight 1.4e-4                 9.4         ***        Null deviance: 3,064.5
Geographical distribution           0.017                20.5         ***        Residual deviance: 2,185.1

  MNCN     Conservation status                  –0.021 –0.3          NS
Wetland 0.061                  1.1          NS                Explained variance: 879.4
Accessible habitats                     0.34                    6.2         *** 28.7%
Weight 9.3e-5                 9.5         ***        Null deviance: 3,782.2
Geographical distribution           0.015                15.5         ***        Residual deviance: 3,253.3

  EBD         Conservation status                    0.14                    3.5         ***
Wetland 0.87                  19.5         ***               Explained variance: 528.9
Accessible habitats                     0.26                    5.9         *** 14.0%
Weight –0.0016          –834.6         ***        Null deviance: 24,603,284
Geographical distribution           0.025            1726.5         ***        Residual deviance: 17,219,211
Conservation status                  –0.18 –117.4         ***

  SEO         Wetland 0.56                587.1         ***        Explained variance: 7,384,073
Accessible habitats                     0.023                22.8         *** 30.0%
Weight 2.1e-4             473.4         ***        Null deviance: 4,958,574
Geographical distribution           0.026            1247.3         ***        Residual deviance: 2,220,601

  eBird        Conservation status                  –0.61 –292.3         ***
Wetland 0.85                683.6         ***        Explained variance: 2,737,973
Accessible habitats                     0.040                29.5         *** 55.2%
Weight 3.3e-4             144.0         ***        Null deviance: 125,230
Geographical distribution           0.025              176.3         ***        Residual deviance: 56,660

  AVIS        Conservation status                  –0.70 –51.2         ***
Wetland 1.0                  124.0         ***             Explained variance: 68,570
Accessible habitats                     0.29                  32.2         *** 54.8%



This database is best explained in terms of
species with wide geographical distributions
that select wetlands for nesting. Finally, the
AVIS tree splits first based on geographical
distribution, and then on weight and wing-
span (Supplementary Material, Figure A7B).
In this case, the species with more observa-
tions are those with extensive geographical
distributions and large body weights.

In summary, our results do not fully sup-
port the hypotheses presented. Occurrences
in citizen science databases are better ex-
plained by the studied variables but there are
no clear differences in species traits between
the groups when analysed individually. Thus,
the particularity of each database does not
seem to be related to the group in charge of
collecting the data, whether professionals or
volunteers.

DISCUSSION

Biodiversity data has been stored in mu-
seum collections for well over a hundred
years, and facilities like GBIF now enable
researchers to easily access and download
these datasets. Furthermore, so-called citizen
science projects, a new way of collecting in-
formation, have gained importance in recent
decades. Today, there are numerous initia-
tives, such as Proyecto AVIS at national scales
(Varela et al., 2014a) and Vertnet or eBird
at global scales (http://vertnet.org/; https://
ebird.org/). Citizen science platforms have
already overtaken the amount of data col-
lected by professionals and museums (Figure
1B; Supplementary Material, Figure A4;
Spear et al., 2017), which means that key in-
formation on recent biodiversity changes may
not have been collected by professionals.

Studies of biases in citizen science data
have found that volunteers make similar
mistakes to professionals (Kosmala et al.,
2016). However, biases in professional data-
bases have rarely been discussed. Here,

we explored six databases of Spanish birds
(three professional, two citizen-science based
and one mixed) to understand their poten-
tial problems and strengths. We started by
showing the differences between databases
regarding their taxonomic, temporal and
spatial coverage. We then tested whether
bird records differ between databases on the
bases of species’ ranges, body sizes, habitat
types or conservation status.

Firstly, it is important to emphasise that,
although we categorised the databases into
three groups, the divisions between them are
diffuse. In this regard, IEET is the result of a
structured survey, while citizen science pro-
jects, usually based on more informal data
collection (Kelling et al., 2019), can also
incorporate certain protocols to refine the
uploaded data. For example, projects such as
eBird, and AVIS to a less extent, could be
considered semi-structured because they in-
corporate information for controlling some
of the possible biases related to volunteer-
based programs (date, time, location or ob-
servation period) (Sullivan et al., 2009; Varela
et al., 2014a). eBird also presents other op-
tions to improve data collection, by gathering
information on species absence or distance
travelled by the observer, passing data through
an automated filter and incorporating valida-
tion to detect unusual (e.g. out of range) spe-
cies records (Sullivan et al., 2009).

Temporally, MNCN and EBD databases
are based on museum collections dating back
to the early 1900s (Figure 1B). This means
that, for historical records of species presence,
it is necessary to explore museum collections.
However, nowadays, museums and research
centres are not updating their collections, and
citizen science projects are the main and
sometimes the only source of information
about species occurrence and abundance. In
addition, although museum collections are
available on online platforms like GBIF,
important information such as geographical
coordinates may be not included, which pre-
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FIG. 3.—Median ± first and third quartiles, with whiskers at 1.5 times interquartile range (IQR) and
notches (+/–1.58 IQR/sqrt(N)), for (A) geographical distribution (%), (B) weight (grams) (log-trans-
formed) and (C) wingspan (centimetres) (log-transformed). Professional databases in black (MNCN,
EBD and IEET), citizen databases in light grey (eBird and AVIS) and mixed database in dark grey (SEO).
[Mediana ± primer y tercer cuartiles, con bigotes a 1,5 veces el rango intercuartílico (RIQ) y muescas
(+/–1,58 RIQ/raíz(N)) para (A) la distribución geográfica (%), (B) el peso (gramos) (log-transformado)
y (C) envergadura (centímetros) (log-transformado). Las bases de datos profesionales se muestran en
negro (MNCN, EBD y IEET), las ciudadanas en gris claro (eBird y AVIS) y la base de datos mixta en
gris oscuro (SEO).]
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vents their use in numerous scientific studies.
The taxonomic uniqueness of museum col-
lections was also detected (Figure 1A), which
has been related to a narrower geographical
coverage of their records (Boakes et al.,
2010). This could not be tested due to the
lack of coordinates, although the low geo-
graphical coverage of the species recorded
in the EBD database seems to support this
(Figure 3A).

The spatial analysis of the data from citi-
zen and mixed databases also shows marked
record concentration in some Spanish regions
(Figure 2). Whereas this could be due to
changes in species density, this may also re-
flect greater birdwatching activity or a higher
impact of citizen science projects in these
areas: the Madrid urban area, ornithological
destinations such as Andalucía (Doñana Na-
tional Park) or main cities on the east coast.
These results agree with previous studies
showing a prevalence of birdwatching in
urban, high human population density or
protected areas (Ferrer et al., 2006; Martin et
al., 2012; Reddy & Dávalos, 2003; Sumner
et al., 2019), as well as with results showing
the habitat preferences of the species recorded
(Table 1). Thus, all the above points and the
potential spatial biases of the open access
biodiversity databases need to be taken into
account when using these data for research.
For example, one specific use of big data
on biodiversity is forecasting species distri-
butions across time. In this case, biases in
species occurrences can modify the output
of niche models (van Eupen et al., 2021;
Varela et al., 2014b).

Analysing databases separately, our mod-
els also show that the selected species traits
(weight, geographical distribution, conserva-
tion status, wetland and accessible habitats)
can better explain the number of records per
species in citizen science databases than in
professional databases (Table 2). This could
indicate that there are other constraints than
general detectability/interest and common-

ness explaining the number of records per
species stored in the historical bird collec-
tions at research institutions. This result can
also indicate that bird occurrences in citizen
science databases may be more homoge-
neous and predictable than those stored in
historical collections.

Regression trees allow us to see inter-
actions between variables, and here suggest
that both weight and wingspan are key pre-
dictors of the number of observations in all
databases and not only in citizen science
ones (Supplementary Material, Figure A5-
A7); although the trend is more pronounced
for these. Thus, in general, records of large
species are more likely than those of smaller
birds, with the exception of the SEO data-
base (based on ringing records). Mist nets
are the most widespread sampling method
for ringing birds, allowing bird-ringers to
record small species. However, these species
are not so easy to collect/observe with the
observational methodologies used in other
databases, explaining this pattern. In general,
there are no clear differences between citizen
and professional databases for species’ size
(Figure 3B-3C). However, other studies de-
tected some discrepancies, as they found that
citizen science data tended to be less precise
in capturing trends in small-sized birds (Kamp
et al., 2016). This pattern also occurs with
other taxa; for example, in a study on road-
killed mammals, citizens recorded heavier
species than trained groups (Périquet et al.,
2018). The exception to this pattern was the
EBD database (Figure 3B-3C; Supplemen-
tary Material, Figure A5B). This database
is managed by a research centre located
in a Spanish national park, which includes
wetlands as one of its more representative
biotopes. Thus, waterfowl and herons (i.e.
heavy species of conservation concern) are
strongly represented in their database.

The ubiquity of common species can in-
crease the likelihood of being recorded by
volunteers (Horns et al., 2018). However,
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even if our analyses show the importance of
geographical coverage in predicting the num-
ber of observations (Table 2; Supplementary
Material, Figure A5-A7), this pattern is not
restricted to citizen databases, but applies to
all database types (except EBD) (Figure 3A).
EBD has a high number of large, narrow-
range, endangered species; setting this data-
base apart (Figure 3, Table 1). Thus, in general,
species are more frequently recorded simply
because they are common or abundant. Con-
versely, species with restricted distributions
may be less detected and may even need to
be proactively tracked in some cases, which
may explain the scarcity of their records and
may sometimes lead to underestimation of
their abundance (Bird et al., 2014).

Volunteers and professional ornithologists
tend to record similar numbers of endangered
species (after excluding EBD) (see Results).
It might be expected that a group of volun-
teers with varying skills would register fewer
threatened species, but amateur birdwatchers
seem to detect endangered species in a similar
ratio to professional ornithologists (Cordell
& Herbert, 2002; Galloway et al., 2006; Snäll
et al., 2011). This was also noted by Ferrer et
al. (2006), who found that preferred areas for
birdwatchers were those where endangered
species were most likely to be spotted.

Finally, the general trend to include birds
from more accessible and nearby habitats, as
well as those more attractive to tourists, was
confirmed in all databases (Table 1, Table 2).
Birds from agroforest systems, defined as a
set of wooded areas embedded in an agricul-
tural matrix, had more records in all data-
bases, with the exception of EBD. Hetero-
geneous habitats can potentially support a
greater number of species (Kelling et al.,
2015) and higher abundances (Pickett &
Siriwardena, 2011). Nevertheless, these dif-
ferences may also reveal biases, suggesting
that these areas may have been better ex-
plored due to their greater accessibility. In a
study on the delimitation of priority conser-

vation areas, researchers detected a marked
trend towards sampling near cities (Reddy &
Dávalos, 2003). Similarly, other authors have
found a preference by people to remain close
to inhabited areas, natural parks, research fa-
cilities and tourist destinations (Ferrer et al.,
2006; McKinley et al., 2017).

In summary, our results indicate that none
of the databases is perfect. In this way, data-
bases such as EBD, which contains species
with unique characteristics, are extremely
useful for local studies on wetland species
in southern Spain. On the other hand, other
databases such as the IEET can be particularly
useful for developing maps and distribution
models, because it uses a standardised pro-
tocol to cover the entire Spanish territory.
However, all databases may underestimate
the presence of certain species in the ecosys-
tems. In conclusion, amateur and professional
ornithologist databases may have different
biases in relation to the geographical cover-
age of their records (e.g. towards common or
rare species or towards species with limited
ranges) and to species traits (e.g. biases to-
wards large or small species). The sampling
method (e.g. mist nets), or the opportunities
to observe certain species (e.g. accessibility
to hotspots of wetlands diversity in the EBD
dataset), result in some databases storing a
disproportionally large amount of “rare” oc-
currences. Thus, none of these databases can
be used as a realistic sample of the composi-
tion or abundance of species, and analysing
their raw data without clear knowledge on
sampling methods or potential taxonomic/
trait biases could lead to a misestimation
of the actual patterns of biodiversity. Solu-
tions to mitigate these biases include, for
instance, designing stratified sub-sampling
(e.g. Rosenberg et al., 2019) or standardised
protocols, training volunteers (Frigerio et
al., 2018), filtering the data (Wiggins et al.,
2011) or using other statistical tools such as
modelling methods (Bird et al., 2014; Isaac
et al., 2014).
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We are now entering a new paradigm for
studying life on Earth, where we can use big
data techniques to explore biodiversity pat-
terns and gain knowledge on the processes
that regulate life. To do this, we will increas-
ingly need to combine data collected by citi-
zen scientists and professional ornithologists
and to overcome associated biases to build
adequate training sets for answering our
questions reliably.
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