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A B S T R A C T

The demand for transportation asset digitalisation has significantly increased over the years. For this purpose, 
mobile mapping systems (MMSs) are among the most popular technologies that allow capturing high precision 
three-dimensional point clouds of the infrastructure. In this paper, a multimodal deep learning methodology is 
presented for panoptic segmentation of the railway infrastructure. The methodology takes advantage of image 
rasterisation of the point clouds to perform a rough segmentation and discard more than 80% of points that are 
not relevant to the infrastructure. With this approach, the computational requirements for processing the 
remaining point cloud are highly reduced, allowing the process of dense point clouds in short periods of time. A 
90 km-long railway scenario was used for training and testing. The proposed methodology is two times faster 
than the current state-of-the-art for the same point cloud density, and pole-like object segmentation metrics are 
improved.   

1. Introduction

Owing to the current degree of globalisation, transport infrastructure
is essential in modern society. In particular, railroads are among the 
main transportation modes for goods and people [1,2]. Therefore, the 
preservation of railway infrastructure has a direct impact on citizens’ 
quality of life. To ensure the proper functioning of this infrastructure, it 
is necessary to perform maintenance operations that may involve pre-
dictive or corrective decision-making [3–6]. However, the large” scale of 
railway infrastructure and its distance to urban areas are barriers to 
carrying out maintenance in a cost-effective and efficient manner [7,8]. 

The emergence of digitalisation technologies can ease predictive 
maintenance as they enable automated or semi-automated monitoring 
of infrastructure assets [9]. This automation allows performing the tasks 
more productively and securely [10,11], preventing possible accidents, 
and reducing the operation times due to inspection operations. 

For the digitalisation of infrastructure, building information model-
ling (BIM) is among the most widely used solutions, which helps 
improve the efficiency and integration of the information of large con-
struction projects [12,13]. Furthermore, there are examples in the 
literature that promote BIM applications in railway infrastructure 
[14–16]. However, a major difficulty in creating as-is BIM models of the 

existing infrastructure is obtaining the required data [17,18]. 
To do this, mobile mapping systems (MMSs) are a technology that 

allows recording 3D geometric and radiometric data from built transport 
infrastructures in short periods of time, generating a massive amount of 
information [19–21]. These systems may be equipped with several types 
of sensors to capture data from different sources. In particular, light 
detection and ranging (LiDAR) sensors are useful for recording the ge-
ometry of infrastructures. LiDAR technology allows the capture of 3D 
data of the environment with high accuracy and speed [22–24], pre-
senting the data as unorganised 3D point clouds. A point cloud is defined 
as a series of points in a 3D coordinate system that represents the sur-
faces of the objects around the scanning device. The recorded points can 
also provide information about additional attributes such as the in-
tensity attribute, which represents the reflectance where a point is 
found, colour of the surface, number of returns of the laser, and other 
fields related to the capture, such as the sensor angle and timestamp. 

The raw 3D point clouds recorded by LiDAR sensors do not include 
any semantic information; thus, the point clouds must be segmented to 
identify and characterise the assets under study. Segmentation can be 
semantic or by instance. While semantic segmentation aims to assign 
categorical labels to the individual points that constitute a point cloud 
[25], instance segmentation assigns different labels for separate 
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instances of objects belonging to the same class [26]. Kirillov et al. [27] 
referred to panoptic segmentation as a task that combines both semantic 
and instance segmentation. 

Segmentation tasks on point clouds are rather heavy [28], and 
because of the massive nature of railway infrastructure, it is not viable to 
do it manually. Consequently, automatic algorithms for point cloud 
segmentation (both semantic and instance) are essential for the digi-
talisation of the infrastructure. 

The use of deep learning methods as a solution for automatic point- 
cloud processing has grown over the years. These methods have mainly 
been used for classification, segmentation, and object detection. 
Regarding segmentation tasks, these methods can be divided into [29] 
1) projection-based methods, 2) discretisation-based methods, 3) point- 
wise methods, and 4) hybrid methods. 

Regarding the automatic segmentation of railway infrastructure 
point clouds, two different trends have been found in the literature. 

The first trend relies on heuristic algorithms that are designed to 
detect the most relevant infrastructure assets. With this objective, Oude 
et al. [30] presented a method that can detect the rail tracks in the 
infrastructure. In addition, a more complete work was presented by 
Arastounia, where the author also segmented cables, masts, and canti-
levers from a 550 m long rural railway line [31]. As an improvement, in 
our previous work [32], we presented a robust methodology applied to a 
90 km long railway track. The methodology was used to segment pole- 
like and linear objects. Signs and masts are examples of such pole-like 
objects. In contrast, linear objects include rails and cables. 

The second trend for semantic segmentation of railway infrastructure 
is based on the use of deep learning techniques. This is yet to be 
established, but it has shown promising results. In [33], the authors 
presented a projection-based method for segmenting railway tracks. A 
more specific application was presented in [34], where the authors used 
Pointnet++ [35] for ballast railway fastener inspections. Subsequently, 
in [36], the neural networks Pointnet [37] and KPConv [38] were used 
to segment railway tunnels. In our previous work [39], we proposed a 
modified version of Pointnet++ to segment all relevant objects found in 
a railway infrastructure semantically. Finally, Eickeler et al. [40] trained 
KPConv using existing CAD data to improve the semantic segmentation 
results in railway environments. 

Despite the promising results presented in the literature, all these 
deep learning methods segment the point clouds semantically. However, 
it would be interesting to achieve instance segmentation for pole-like 
objects, such as masts, signs, and traffic lights. This improvement 
would ease the digitalisation of infrastructure. In addition, because of 
the massive nature of railway infrastructure, point clouds contain mil-
lions of points, so they need to be subsampled and cropped to feed the 
neural networks owing to computational limitations. In addition, the 
amount of data increases processing runtimes. 

As a follow-up to these works, intending to overcome the drawbacks 
previously presented, this paper proposes a high performance deep 
learning methodology based on a multimodal approach that merges 
projection-based methods with point-wise methods to obtain panoptic 
segmentation of the railway environment. The main contributions of 
this study are as follows. 

1. It offers panoptic segmentation. This is achieved by instance seg-
mentation for pole-like objects while preserving the semantic seg-
mentation of linear assets.  

2. It provides results with the original point-cloud density to preserve 
the details of the objects for further processing. In addition, it pro-
cesses point clouds with the same point density faster than other 
methods in the literature. 

The remainder of this paper is organised as follows. Section 2 pre-
sents the case study, Section 3 describes the methodology and the steps 
followed to obtain the panoptic segmentation, Section 4 presents the 
results obtained using the methodology, and Section 5 discusses the 

results. Finally, the conclusions of this study are presented in Section 6. 

2. Case study 

The scenario used for this study consists of a 90 km railway track, as 
shown in Fig. 1. This scenario was presented in [41]. The survey was 
conducted using a LYNX Mobile Mapper by Optech [42]. Two LiDAR 
sensors equipped on an MMS provided an average point cloud density of 
980 points/m2 and a range precision of 5 mm. The dataset was divided 
into 450 georeferenced point clouds, each 200 m in length. The total 
dataset contained more than 2 billion points. The points were charac-
terised by their Euclidian position, intensity, scan angle, number of 
returns, and GPS time. 

The results obtained in [32] using the heuristic methodology were 
used as the ground truth for the classification attribute. This method-
ology can produce misclassifications; however, the misclassifications 
have been studied in depth, and in most cases, they are small and iso-
lated errors that could also be present in the case of manual 
classification. 

2.1. Assets to be detected 

The assets that comprise the railway infrastructure can be divided 
into pole-like and linear assets. Pole-like assets are placed at discrete 
locations along the railroad, and those detected using this methodology 
are as follows:  

• Informative signs. Small signs are used to show the kilometres of 
the railway where the signs are found. An example is shown in Fig. 2 
(a).  

• Masts. An example is shown in Fig. 2 (b).  
• Traffic lights. An example is shown in Fig. 2 (c).  
• Traffic signs. Speed restriction and related signs, they have high- 

intensity values. An example of this is shown in Fig. 2 (d). 

The linear assets to detect are the following:  

• Cables. Includes all the cables except for the droppers.  
• Droppers. These are vertical structural wires that join the catenary 

with the contact wires. The cables and droppers are shown in Fig. 2 
(e).  

• Rails. Includes all rails. Shown in Fig. 2 (f). 

Finally, another label denominated background represents all the 
points that do not belong to any of the classes described above. 

3. Methodology 

This section presents a methodology designed for the panoptic seg-
mentation of point clouds from the railway infrastructure. The proposed 
method is end-to-end, having raw point clouds as input, and returning 
classification values for the individual points of the clouds. The meth-
odology is based on a multimodal approach that relies on image and 
point cloud data. A summary of these steps is shown in Fig. 3. 

This methodology breaks down the task into simpler steps, consid-
erably reducing the computational complexity of the work while 
maintaining the high quality of the original point cloud. 

The method starts with a previous segmentation of the railway 
tracks. The track includes the ground, rails, ballasts, and sleepers. This 
topic is not addressed in this work because it has been studied by many 
researchers in the literature [43–46]; in this case, we follow the 
approach previously presented by Lamas et al. [32] because it has been 
tested in the same railway environment. 

The track-segmentation approach is based on voxelisation. Consid-
ering an adequate voxel size, it can be assumed that voxels that belong to 
the track do not have neighbours under or over them. Consequently, 

J. Grandio et al.                                                                                                                                                                                                                                 



Automation in Construction 150 (2023) 104854

3

voxels that fulfil this requirement and are under the trajectory followed 
by the surveying vehicle are considered track points. 

The first step of the methodology involves generating raster images 
[47] from the original point clouds to reduce the computational 

complexity of the task. These images are used to segment rails and cables 
and identify regions of interest (ROIs) where pole-like objects may be 
found. Image data provide a simpler representation of the point cloud, 
but in exchange geometrical characteristics can be lost. However, cables 
and rails were identified in the images, and ROIs for pole-like objects 
were also generated. 

The second part of the methodology separately processes rails, ca-
bles, and pole-like assets. First, the ROIs were generated from the raster 
images. The points belonging to the ROI pixels were loaded, and sub- 
point clouds were generated for the individual ROIs. Finally, the sub-
point clouds were classified using Pointnet++ [35] to identify the type 
of object to which they belong. Because the ROIs are just a small per-
centage of the original clouds, the computational complexity was 
significantly reduced compared with working directly with the entire 
raw point cloud. Regarding the rails, points of the track that belong to 
pixels classified as rails were classified as a given asset. Finally, points 
that did not belong to the track and were identified as cables were 
retrieved. The points were then segmented to remove noise and separate 
droppers. 

The results obtained for rails, cables, and pole-like assets were 
combined to obtain the point cloud segmentation. 

3.1. Image processing 

Each of the individual point clouds that constitute the dataset com-
prises an average of 4.5 million points. This amount of data is too large 
to feed directly to a neural network owing to computational limitations; 
therefore, the point clouds need to be broken down into smaller point 
clouds and subsampled. In addition, the number of points increases the 
runtime of the task. However, in the case of railway infrastructure, 
surroundings irrelevant to the infrastructure accounted for more than 

Fig. 1. Railway infrastructure surveyed for the case study.  

Fig. 2. Assets to be detected.  

Fig. 3. Summary of the methodology.  
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80% of the points. 
Considering this, the methodology used 2D raster images for the first 

processing step. By using images instead of the original point clouds, the 
computational complexity was significantly reduced, and several point 
clouds could be processed simultaneously. This step removed most of the 
unnecessary data and achieved a faster processing. Finally, the final 
segmentation of the rails was obtained. 

3.1.1. Raster generation 
The input data for the method is a raw point cloud, PNx4 = [x,y,z, I], 

where N is the number of input points contained in the point cloud, (x,y, 
z) represents the Euclidian coordinates, and I corresponds to the in-
tensity values of the points. Because the track was segmented in a prior 
step, the points belonging to the track were denominated Pt, and the rest 
were Pnt. The point clouds were converted into image data by rastering 
them. The rasters were generated based on the top perspectives of the 
point clouds to generate horizontal views. Both the points belonging to 
the track and others were used to generate two individual images. Two 
different images were created instead of one because it is a simple 
operation, and a better representation of the original point cloud was 
obtained. 

To preserve the information of the original point cloud, a new vector 
RNx1 was created when building raster images. This vector R indicates 
the pixel of the raster image where each of the original points is found. 
Thus, the information obtained from the raster images could be applied 
directly to the original point cloud. 

The generated raster images contained three channels, each of which 
represented certain characteristics of the point cloud.  

• The first channel of the image was based on the intensity values of 
the points. The values of pixels Ip were calculated as the average 
intensity values of all the points contained in the given pixel. 

Ip =

∑n

i=0
Ii

n    

• The second channel provided information regarding the density of 
points on the z-axis. The pixel values were calculated as the number 
of points from the original point cloud contained in each pixel. 
Consequently, the pixel values tend to be high when vertical objects 
are found. 

ρp = n    

• The last channel provided information regarding the maximum 
height on the z-axis. The pixel values were assigned with the z- 
coordinate of the highest point found in them. This field helps 
visualise objects above the ground, such as cables. 

hp = zmax   

An example of the raster image generated is presented in Fig. 4. 
While some objects such as masts, rails, and cables are easily inter-
pretable by humans, smaller objects, such as informative signs, are not. 

Fig. 4. Images generated from a point cloud rasterised according to the parameters listed in Table 2. (a) Track image raster that is fed to the neural network; (b) no 
track raster fed to the neural network; (c) labels for rail prediction, (d) labels for cable predictions; and (e) labels for the ROIs. 
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However, even when not interpretable by humans, convolutional neural 
networks (CNNs) have proven to work well in detecting them. 

These images are useful for segmenting rails, cables, and ROIs where 
pole-like objects may be found. However, these ROIs may overlap with 
rails and cables along the z-axis. To avoid this issue, the segmentation 
task was divided into three steps: 1) ROI segmentation, 2) rail seg-
mentation, and 3) cable segmentation. Consequently, along with the 
raster images, three different mask images were also created as the 
ground truth, each of which corresponded to an asset to study. These 
images had a single binary channel, with zeros in the pixels where no 
assets were present and ones in the pixels that contained points that 
belonged to any of the assets. An example of a mask generated for a point 
cloud is found in Fig. 4 (c), (d), and (e). 

3.1.2. Image segmentation 
Once the images were available, they were segmented to remove 

their surroundings. It is well known that CNNs achieve state-of-the-art 
results for computer vision tasks [48]. Consequently, the task of seg-
menting ROIs, rails, and cables was delegated to neural networks. U-Net 
[49] is one of the best-known classical CNN architectures for semantic 
segmentation, and many state-of-the-art semantic segmentation CNNs 
are based on U-shaped architectures [50]. Consequently, this type of 
architecture was designed for the task. 

The input of the neural network includes raster images of both the 
track (with its three channels) and the remaining points (with three 
channels). Consequently, the input of the neural network must have six 
channels, and thus, the input dimensions are (Image height, image 
width,6). Taking all the information presented into account, the archi-
tecture of the neural network designed for the task is shown in Fig. 5. 

One raster image was created for each of the 200 m-long point clouds 
of the case study. Because only 450 point clouds are available and 20% 
of them are left out for testing, the number of training images is lower 
than 400, which is a considerably low quantity for CNN image seg-
mentation training. This issue was addressed by performing data 
augmentation during training. The preprocessing steps applied to the 
training images were as follows:  

• Rescale values: The pixel values were rescaled to (0,1). In addition, 
to eliminate possible outliers in the number of points and height 
rasters, the maximum values of the pixels were limited to the value of 
the 99th percentile of each point cloud.  

• Noise: Each time an image was sampled for training, random noise 
with a standard deviation of 0.05 was added to each channel of the 
image.  

• Random Flip: Each time an image was sampled, it had a 50% 
probability of being flipped horizontally. This allowed for greater 
diversity in the training data. 

Because most of the image labels belong to the surroundings, the 
CNN may be biased to label all points as the background. To solve this 
problem, two approaches were used for the loss function. The first was 
using Jaccard loss. However, with this loss, informative signs were 
discarded in most cases. The second solution consisted of using binary 
cross-entropy loss with weights to increase the loss when points 
belonging to ROIs were misclassified. The weights were calculated using 
the following equation: 

wi =
1

log
(
1.2 + ni

N

)

where wi is the weight of class i, ni is the number of pixels in the image 
belonging to class i, and N is the total number of pixels in the image. 

3.2. Point cloud processing 

The prediction masks generated by the trained CNN removed the 
surroundings of the infrastructure; therefore, these points did not 
require further processing. However, the segmentation of rails, cables, 
and ROIs was given on the 2D raster image plane; therefore, further 
processing was required to provide the final results. 

Owing to the differences between the three types of assets, they were 
processed individually, and the results were combined to achieve the 
final panoptic. 

3.2.1. Rails 
In the case of rails, the implementation is rather simple, as shown in 

Fig. 5. Neural network architecture used for image segmentation.  
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Fig. 6. 
Because the track of the point clouds had been previously segmented 

using the methodology of Lamas et al. [32], the points that belonged to 
rail pixels and track Pt simultaneously were segmented as rails. This 
condition was used to ensure that only points that belonged to the track 
were considered, whereas points that overlapped in the z-axis with the 
rails were not incorrectly classified as rails. Fig. 7 shows an example of 
points retrieved as rails in a random point cloud. 

3.2.2. Cables 
Cable postprocessing involves two tasks: i) recovering points that 

have been labelled as cables by the CNN, and ii) separating droppers and 
noise from the rest of the cables. A summary of the procedure is shown in 
Fig. 8. 

For this process, the first step consisted of taking only the points 
tagged as cables that were above the ground Pnt, and an example of this 
is shown in Fig. 9. As depicted in the image, the resulting point cloud 
was populated by noisy areas that overlapped with the cables. To 
remove this noise and segment droppers as their own classes, two ap-
proaches have been proposed. 

The first approach consists of voxelising the point cloud and calcu-
lating voxel dispersion along the z-axis. Because droppers are known to 
have a vertical geometry, voxels with high dispersion values on the z- 
axis are labelled as droppers. This approach provides acceptable results 
and is simple. However, the results were partially noisy. In addition, 
some points that may overlap with real cables were not removed. 

To overcome this drawback, a semantic segmentation neural 
network is proposed. The neural network segmented the points into 
three classes: cables, droppers, and noise. Thus, the droppers were 
properly identified, and the noise could be removed. An architecture 
based on Pointnet ++ [35] was adopted to perform segmentation. This 
architecture was selected over others, such as KPConv [38] or Point 
Transformer [51] because these provide similar results but longer 
runtimes. 

The number of points classified by the CNN as cables was just a small 
percentage compared with the original point cloud; therefore, the 
workload of the neural network was highly reduced, and whole point 
clouds could be processed simultaneously. In addition, computational 
complexity can be further reduced by applying voxelisation prior to 
segmentation. For this study, a voxelisation of 0.11 m was proposed. 
This value was selected because, with this voxelisation, the point clouds 
did not lose geometrical information. In addition, 65,536 input points 
were fed to the network because, in all cases, the total number of 
remaining points after voxelisation was below that value, and a lower 
number would leave out points in some cases. 

To train the neural network used to segment cables, it is necessary to 
generate training data. These training data were obtained from the cable 
mask CNN training dataset. The following preprocessing steps were 
applied to the data:  

• Scale coordinates. The coordinates were centred and scaled to 
values of (0,4). These values were taken because the range on the z- 
axis was smaller than the range on x and y, and hence other trans-
formations would result in excessively small values on the z-axis.  

• Random rotation. Random rotation along the z-axis was applied 
before feeding the network.  

• Fixed number of points. For this, the points were resampled until 
65,536 input points were reached. The resampled points were 
ignored when computing the loss during training. 

In addition, a weighted loss function was applied for training, 
increasing the loss values when the least-populated classes were mis-
classified. The approach adopted in [35] was used for this purpose. 

Finally, the cross-entropy loss function and Adam optimiser were 
used with the following hyperparameters: learning rate = 0.001 and 
batch normalisation momentum = 0.1. 

3.3. Regions of interest 

The ROIs predicted by the CNN were used to generate new subpoint 
cloud candidates to be pole-like objects. Consequently, these new sub-
point clouds must be classified to assign them a pole-like object class or 
remove them. A summary of ROI processing is shown in Fig. 10. 

First, subpoint clouds were created from the ROIs. For this, points 
that did not belong to track Pnt and had been predicted as ROIs were 
obtained. An example of the subpoint clouds obtained from the ROIs of a 
full-point cloud is shown in Fig. 11. This figure shows how ROIs are 
spatially distant and easy to separate. In addition, small sections of ca-
bles that overlapped with ROIs were retrieved. 

Because the objective is to achieve panoptic segmentation, single 
objects must be separated. Spatial clustering algorithms are well-fitted 
for this task. In this case, DBSCAN [52] clustering with a minimum 
distance of 0.4 m and a minimum number of three points was applied. 
These parameters were selected considering the size of railway assets 
and the separation between them. Thus, individual subpoint clouds were 
generated. 

3.3.1. Classification of regions of interest 
Once the individual subpoint clouds are available, they must be 

classified. For this purpose, an artificial neural network with an archi-
tecture based on Pointnet++ [35] was proposed. In all cases, these 
networks operate only with the coordinates of the point cloud, leaving 
aside the other attributes available in .las data files. 

As was done when training the CNN, the labels from the heuristic 
method [32] were used to generate the training data. Thus, point clouds 
containing individual objects were generated. These point clouds were 
also manually verified to remove possible misclassifications from the 
heuristic method. In addition, a new class, called noise, was added. This 
new class was created to remove possible errors from the image seg-
mentation. Therefore, in the case of noisy data, such as parts of trees, 
bushes, or other noise that overlapped with real objects, they were 
ignored. 

Because there were no samples of noise available, the mis-
classifications from the heuristic methods were labelled as noise. In 
addition, to add more variability to the dataset, a version of the image- 
segmentation CNN was applied to the training data, which generated 
new ROIs for training. The ROIs obtained from the CNN were clustered 
and labelled according to the heuristic results. Some data were dupli-
cated using the boundaries of the CNN when choosing the ROIs, and 
objects misclassified by the CNN were added to the noise class. 

The data available for the training are listed in Table 1. As can be 
observed, there was a predominant class, the masts, whereas the rest of 
the classes contained fewer samples. 

The first approach to solve this problem is to use weighted loss. This 
technique is not sufficient for solving unbalanced data issues. Conse-
quently, a data augmentation approach was adopted. The second 
approach consists of duplicating less-frequent objects. These point 
clouds were not only duplicated, but some geometric transformations 
were also applied.  

• Noise: Random normal noise with a standard deviation of 0.05 was 
applied to all the coordinates in the three axes.  

• Random Rotation: The clouds were randomly rotated on the z-axis 
and rotated at a random angle of up to 15◦ on the x and y axes. 

Although these transformations are rather simple, they were Fig. 6. Rail extraction diagram.  
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sufficient for this case. In other environments with more flexible objects, 
it would be necessary to consider changes in the pose of the objects; in 
this case, because objects were rigid, only changes in the orientation 
were needed. 

Finally, the Pointnet++ neural network was trained for 200 epochs 
using the categorical cross-entropy loss and Adam optimiser with a 
learning rate of 0.01. In addition, to prevent overfitting, early stopping 
was used when the validation loss stopped decreasing. 

An example of the complete labelled point cloud is shown in Fig. 12. 

4. Results 

As explained in Section 2, 90 km of railway data were available. 
These data were first split into training and test datasets, containing 80% 
of the training dataset. Then, 80% of the data were split into five folds to 
perform 5-fold cross-validation when training the neural networks, 
thereby ensuring the robustness of the methodology [53]. 

Fig. 7. Rails processed from image segmentation.  

Fig. 8. Cable processing diagram.  

Fig. 9. Raw cables points obtained from image segmentation.  

Fig. 10. ROI point clouds processing.  
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4.1. Image segmentation 

First, the performance of the image segmentation step is studied 
individually. This performance is not only affected by the training of the 
CNN, but also by the quality of the raster images generated for the task. 

The parameters used to create the rasters are listed in Table 2. The grid 
size represents the size (in meters) of the pixels in the raster images. The 
images had irregular sizes depending on the point cloud; therefore, they 
were resized using the bilinear interpolation method to a given width 
and height. Finally, because of interpolation, some pixels of the labelled 
images have values between (0,1), and they must be rounded or ceiled. 

As mentioned earlier, to ensure the robustness of the method used, 5- 
fold cross-validation was carried out. The metric used to evaluate the 
quality of the image segmentation CNN was the intersection over union 
(IoU). The IoUs obtained over the five folds are presented in Table 3. 
Values of IoU higher than 0.75 were obtained in all the cases. The 5-fold- 
cross validation metrics were consistent, which proved that the trained 

Fig. 11. ROIs obtained from image segmentation.  

Table 1 
Assets available for ROI classification training.   

Informative Signs Traffic Lights Traffic Signs Masts 

Samples 708 158 93 4017  

Fig. 12. Point cloud segmented using the proposed methodology.  
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model was robust, and the higher value obtained for the test set ensured 
that there was no overfitting during training. 

The segmentation results obtained over the test set were used in the 
following steps to obtain the results regarding individual assets. 

4.2. Cable segmentation 

The Pointnet ++ neural network used to segment the cables was 
trained using 5-fold cross-validation. In all the cases, the folds used were 
the same as those used for training the CNN. Table 4 lists the results 
obtained during training of the validation folds. The accuracy of the 
droppers was lower than that of the other assets, and the network 
trained on Fold 5 was used for testing. The testing accuracy is not 
included in the table because it is presented in Table 6 with the global 
results. 

4.3. Classification of regions of interest 

The Pointnet ++ neural network used to classify the ROIs was 
trained using 5-fold cross-validation. Table 5 lists the accuracy values 
obtained for each fold on the validation sets. In most cases, the values 
were greater than 90%. Thus, it can be inferred that the method adopted 
for the task was sufficiently robust. The network trained with Fold 3, 
which provided the highest mean accuracy, was used to classify the ROIs 
from the test set retrieved by the CNN. 

4.4. Global results 

Finally, once all assets were processed, the results were combined to 
obtain a panoptic segmentation. Using these results, a study on the 
global performance of the methodology was conducted. For this pur-
pose, both the metrics and prediction runtimes were studied. 

The metrics studied for the task were the precision, recall, and F1 
scores. Although some of the assets to study were individual objects, 
others such as cables and rails were continuous and could not be studied 
object-wise. Consequently, the metrics presented were studied in a 
point-wise manner. Table 6 presents the results obtained with the pro-
posed methodology, comparing them with those obtained by applying 
Pointnet++ in [39], which are discussed in the following section. This is 
the only comparison carried out because of the lack of implementation 
for railway scenarios. 

Further, the runtime of the methodology predicting new point clouds 
was also studied. Because several steps were applied in the cascade, 
different sections are presented in Fig. 13. First, the image processing 
runtime included the time spent reading the point cloud, creating ras-
ters, and performing image segmentation with the CNN. Second, the 
point cloud processing runtime included the time required for rail 
processing, cable segmentation, and ROI classification. At this point, all 
the classification values were available in the arrays. Although it is not a 
step from the proposed methodology, a final step in which the classifi-
cation values were applied to the original point cloud, which was saved 
in memory, was also considered for the runtime, as is the usual pro-
cedure. This step is referred to as cloud storage. Finally, the track 

segmentation runtime was considered. As explained earlier, this track 
segmentation was not developed in this study, as several valid ap-
proaches are available in the literature. 

The runtime for track segmentation is that presented in [32], and it 
accounts for 71.64% of the total runtime of the proposed methodology. 
Consequently, the real performance of the developed method is reflected 
by the total runtime without track segmentation, which is 0.0450 s/m. 
Table 7 presents the runtimes in seconds per meter, dividing the total 
runtime into the subtasks carried out, and comparing them with run-
times using Pointnet++ and the heuristic method presented in [32]. 

Finally, Table 7 lists the point density used by the methods, and 
presents the runtime of Pointnet ++ working with the original point 
density and a reduced one. Point density is one of the parameters that 
define the quality of the results, as these results can be used for other 
tasks such as object modelling. In relation to this, the proposed meth-
odology allows working with high-density point clouds with high- 
performance runtimes and maintains the original point cloud density, 
while Pointnet++ runtime is punished when working with the original 
point density of the point clouds. 

5. Discussion 

This section discusses the results obtained using the proposed 
method. Intermediate results, such as image segmentation, cannot be 
compared to any existing methodology, and they are not relevant to the 
task; therefore, they are obviated in this section. 

In this study, a multimodal methodology is proposed for the auto-
matic panoptic segmentation of relevant assets from railway infra-
structure. The methodology starts by generating images from raw point 
clouds to perform fast rough segmentation. Then, the point clouds ob-
tained from the segmentation are processed individually to obtain the 
final point-wise panoptic segmentation results. This methodology has 
the following characteristics: 1. It offers panoptic segmentation. This is 
an improvement over other deep learning methods that only achieve 
semantic segmentation: 2. It returns the results with the original point- 
cloud density while maintaining a high-performance runtime. Although 
other methodologies are punished by the output point density, this 
method preserves the original point density without a significant effect 
on the processing runtime. 

The results in Table 6 can be divided into two parts. On the one hand, 
pole-like objects show better performance for the proposed 

Table 2 
Raster images parameters.  

Grid size 
(m) 

Image height 
(pixels) 

Image width 
(pixels) 

Interpolation Labels 
pixels 

0.05 512 2048 Bilinear Round  

Table 3 
Image segmentation intersection over union (IoU).   

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Test 

IoU (%) 0.755 0.755 0.795 0.787 0.794 0.777 0.803  

Table 4 
Cable segmentation accuracies.   

Droppers Acc (%) Cables Acc (%) Noise Acc (%) Overall Acc (%) 

Fold 1 67.45% 79.98% 97.92% 95.33% 
Fold 2 69.40% 77.31% 97.35% 94.42% 
Fold 3 63.31% 84.36% 97.14% 94.75% 
Fold 4 66.23% 84.70% 97.47% 95.33% 
Fold 5 66.51% 83.11% 98.01% 95.34%  

Table 5 
ROI classification accuracies.   

Marks Acc 
(%) 

Masts Acc 
(%) 

Noise Acc 
(%) 

Signs Acc 
(%) 

Traffic Lights 
Acc (%) 

Fold 
1 

97.61% 97.13% 96.83% 94.92% 94.83% 

Fold 
2 

95.73% 98.18% 96.68% 84.09% 90.57% 

Fold 
3 

97.13% 97.55% 97.06% 100.00% 93.02% 

Fold 
4 

94.74% 94.88% 95.61% 95.24% 97.78% 

Fold 
5 

97.49% 96.56% 96.24% 94.74% 98.21%  
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methodology than Pointnet++. While it performs similarly regarding 
informative signs and masts, there is a clear improvement when working 
with traffic signs and lights. It is also relevant to highlight that this 
methodology achieves panoptic segmentation, whereas the methodol-
ogy presented in [39] provides only semantic segmentation. This is key 
because the separation of instances is required for further steps in the 
digitalisation of infrastructure. 

On the other hand, linear objects exhibit lower performance. The 
rails showed a very high recall; however, the precision was relatively 
low. This is because the labels used as ground truth consider only the top 
of the rails, whereas the proposed methodology considers the rails from 
the top to the ground. In summary, despite the low precision value, the 
quality of the rail results is good, and the low value originates from the 
way that the ground truth is labelled. Finally, the cable and dropper 
performance metrics are lower. 

Evaluating metrics only, the proposed methodology shows an 
improvement in pole-like objects, lower metrics but good quality in 
rails, and worse performance with cables. These results make sense 
because the methodology focuses on pole-like objects, whereas it is also 
applicable to linear assets that achieve acceptable performance. 

As for the runtimes, the results in Table 7 indicate that the meth-
odology developed in this study outperforms the other two approaches. 
When working with the same point density, the proposed methodology 
was twice as fast as Pointnet++. It is also necessary to highlight that 
track segmentation, which was not developed in this work, accounts for 

71% of the runtime of the methodology. Finally, Table 7 also indicates 
how the point density used with the proposed methodology is three 
times higher than that used by Grandio et al. [39] to achieve similar 
runtimes. 

In summary, by comparing our approach with the existing method-
ologies for point clouds in railway environments, our proposal improves 
the direct application of a neural network by providing i) panoptic 
segmentation, ii) faster runtime for similar results, and iii) higher met-
rics for pole-like objects. 

6. Conclusions 

This paper presents a multimodal deep learning methodology for the 
panoptic segmentation of assets found in 3D point clouds from railway 
infrastructure. An end-to-end pipeline was developed. The input data for 
the methodology consists of raw point clouds, and the point clouds are 
processed to obtain a point-wise classification while maintaining the 
original full point density for the result. Finally, full-instance segmen-
tation is achieved for pole-like objects, and semantic segmentation is 
obtained for linear objects to expand the methodology for cable and rail 
segmentation. 

This methodology shows how the instance segmentation of objects 
with certain characteristics can be divided into smaller steps that pro-
vide better quality results while reducing the computational complexity 
of the task. 

The results show that the method can segment both linear and pole- 
like objects for point clouds collected in a railway infrastructure. This 
method outperforms the current state-of-the-art deep-learning semantic 
segmentation in railway environments when working with pole-like 
objects. This improvement can be divided into three categories: (1) 
higher performance metrics, (2) panoptic segmentation over semantic 
segmentation, and (3) faster runtime. In addition, a relevant improve-
ment was achieved over heuristic methods by reducing runtimes by 
72%. 

This line of research achieved a significant improvement in the 
broader objective of digitalising railway infrastructure. The results ob-
tained can be used to build BIM infrastructure models. Future research 
may include the extraction of specific geometric details of the pole-like 
objects to be included in the model. 

Table 6 
General results with the proposed methodology and Pointnet++.   

Proposed methodology Pointnet ++

Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%) 

Informative signs 69.65% 71.94% 70.78% 56.64% 88.65% 69.12% 
Masts 86.88% 87.22% 87.05% 88.79% 87.09% 87.93% 
Background 99.70% 92.54% 95.98% 99.68% 99.04% 99.36% 
Traffic Signs 60.04% 97.89% 74.43% 52.07% 39.01% 44.60% 
Traffic lights 88.22% 88.09% 88.16% 57.12% 95.98% 71.62% 
Rails 31.38% 99.33% 47.69% 81.63% 95.75% 88.12% 
Cables 81.78% 89.72% 85.56% 91.13% 99.10% 94.95% 
Droppers 31.83% 65.29% 42.79% 81.19% 70.93% 75.72%  

Fig. 13. Runtime divisions.  

Table 7 
Prediction runtime and point density comparison.  

Methodology Section Time (s/ 
m) 

Total time 
(s/m) 

Point density 
(points/m2) 

Proposed 
Methodology 

Track 
segmentation 

0.1137 0.1587 980 

Image processing 0.0122 
Asset processing 0.0201 
Cloud storage 0.0127 

Heuristic Track 
segmentation 

0.1137 1.9600 980 

Segmentation 1.8463 
Pointnet ++ Point cloud 

processing 
0.1417 0.1417 327 

Pointnet ++ Point cloud 
processing 

0.3265 0.3265 980  
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