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Abstract: The mathematics used in physical chemistry has changed greatly in the past forty years
and it will certainly continue to change more quickly. Theoretical chemists and physicists must have an
acquaintance with abstract mathematics if they are to keep up with their field, as the mathematical
language in which it is expressed changes. Thinking about it, in this article, we want to show some
of the most important concepts of Mathematical Analysis involved in obtaining analytical functions
to represent the potential energy interaction for diatomic systems. A basic guide for the construction
of a potential based on Dunham’s coefficients and an example of a new potential obtained from this
methodology is also presented.

keywords: Mathematical Analysis; Analytical potential energy functions; Born-Oppenheimer Approxi-
mation; Dunham coefficients; Morse-type potential.

Resumo: A matemática usada na físico-química mudou muito nos últimos quarenta anos e certamente
continuará a mudar mais rapidamente. Químicos e físicos teóricos devem ter um conhecimento da
matemática abstrata se quiserem manter-se atualizados em seu campo à medida que a linguagem
matemática na qual ela é expressa muda. Pensando nisso, neste artigo, queremos mostrar alguns dos
conceitos mais importantes da Análise Matemática envolvidos na obtenção de funções analíticas para
representar a interação de energia potencial para sistemas diatômicos. Também é apresentado um guia
básico para a construção de um potencial baseado nos coeficientes de Dunham e um exemplo de um
novo potencial obtido a partir desta metodologia.

Palavras-chave: Análise Matemática; Funções de energia potencial analíticas; Aproximação de
Born-Oppenheimer; coeficientes de Dunham; potenciais tipo-Morse.

Classification MSC: 70-11; 81Q05

1 Introduction

The Born-Oppenheimer approximation is a cornerstone for molecular systems in the
study of quantum mechanics. It introduces the concept of the molecular potential
energy surface (PES). The molecular potential energy surface is the potential energy
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that determines the motion of nuclei. In the Born-Oppenheimer Approximation (BOA)
the electrons adjust their positions instantaneously to follow any movement of the nuclei
so that the potential energy surface can be equally thought of as the potential for the
movements of atoms within a molecule or atoms in collision with each other. The motion
with this characteristic is called adiabatic, where the dynamic of the system is associated
with a single potential energy surface [1].

Considering an isolated molecular system composed of electrons and atomic nuclei,
the time-dependent Schrödinger equation is given by:

iℏ
∂

∂t
Φ({ri}, {RI}, t) = H Φ({ri}, {RI}, t) (1)

where H is the Hamiltonian:

H = −∑
I

ℏ2

2MI
∇2

I −∑
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2me

∇2
i + 1

4πϵ0
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(2)

for the electronic {ri} and nuclear {RI} degrees of freedom. In Eq. (2), MI and ZI are
mass and atomic number the I th nucleus; me and −e are electron mass and charge; and
ϵ0 is the vacuum permittivity. Naming:

Vn−e({ri}, {RI}) = 1
4πϵ0

∑
i<j

e2

|ri − rj|
+ − 1

4πϵ0

∑
I,i

e2ZI

|RI − ri|
+ 1

4πϵ0

∑
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e2ZIZJ

|RI −RJ |
(3)

and replacing in Eq. (2), we then have:

H = −
∑

I

ℏ2

2MI
∇2

I −
∑

i

ℏ2

2me

∇2
I + Vn−e({ri}, {RI}). (4)

Calling
He({ri}, {RI}) = −

∑
i

ℏ2

2me

∇2
i + Vn−e({ri}, {RI}) (5)

we get
H = −

∑
I

ℏ2

2MI
∇2

I + He({ri}, {RI}). (6)

Since for each nuclei configuration {RI(t)}, the time-independent Schrödinger equation
for a given k electronic state

He({ri}, {RI})Ψk = Ek({RI})Ψk({ri}, {RI}) (7)

is solving for fixed nuclei in all configurations {RI}, and the adiabatic eigenfunctions are
knowing at all possible nuclear configurations, the total wave function can be expanded
as:

Φ({ri}, {RI}, t) =
∞∑

l=0
Ψl({ri}, {RI})χl({RI}, t) (8)
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in terms of the complete set of eigenfunctions {ψl} of He and time dependent nuclear
wave functions {χl}.

From adiabatic approximation, the wave function Φ({ri}, {RI}; t): can be decoupled
as a single product of an electron and a nuclear wave equation:

Φ({ri}, {RI}; t) ≈ Ψk({ri}, {RI}) · χk({RI}; t). (9)

and from Born-Oppenheimer approximation, the Schödinger equation Eq. (1) becomes(
−
∑

I

ℏ2

2MI
∇2

I + Ek({RI})
)
χk = iℏ

∂

∂t
χk (10)

that is what will lead to the decoupling of the nuclear and electronic movements, allowing
to calculate them separately.

Now, it is easy to see that nuclei can be approximated to classical point particles. For
this, it is necessary to extract the semi-classical mechanic from the quantum mechanic
(for more details see Ref. [2]) to obtain the differential equation involving the effective
potential V BO

k

MIR̈I(t) = −∇IV
BO

k ({RI(t)}). (11)

Thus, within the Born-Oppenheimer approximation, the nuclei move according to
the classical mechanics on an effective potential V BO

k , given by the PES Ek obtained
from solving, for each nuclei configuration {RI(t)}, the time-independent Schrödinger
equation for a given k electronic state.

This potential for time-local interaction of many bodies due to quantum electrons is
a function of the set of all classical nuclear positions at a time t.

We are interested in the case of two bodies, where the potential will depend only on
the internuclear distance R. The construction of an accurate analytical potential energy
function satisfying the Born-Oppenheimer Approximation for diatomic systems from
experimental data is still an important problem in chemistry and molecular physics.

In recent work[3], we have reviewed and compared fifty analytical representations
of potential energy interaction for diatomic systems, proposed from 1920 to 2020.
They can be gathered into two groups: those directly obtained from the spectroscopic
constants, and those depending upon parameters fine-tuned to reproduce ab initio
energies. Functions containing a product of an exponential by a polynomial (with its
variations) are, in general, the best representation of the potential energy functions.
The studied cases have shown that a function that escapes this configuration hardly
provides accurate results [3].

Thus, this work aims to show that functions composed of a product of an exponential
and a polynomial are the main candidates for describing accurate diatomic potentials.
For such, concepts of Mathematical Analysis Theory have been followed.

The conditions of differentiability, continuity, and convergence of the functions were
the first to be verified, since these are necessary to obtain the spectroscopic parameters
and to evaluate the system dissociation process, respectively. Then, we have shown
some examples of well-known potentials that satisfy these conditions, and others, such
as Dunham and Morse, that produce inaccuracies in some required ranges. Next, a
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step-by-step to build a potential based on the exponential-polynomial model is suggested.
A methodological pathway for obtaining coefficients from experimental data is also
provided.

We expect readers will also be able to build their analytical functions depending only
on experimental data and considering all the necessary physical criteria. Perhaps it is
not a generalized potential, but one that meets the researcher’s needs. In addition, our
proposal may assist in obtaining surfaces for certain diatomic systems that have accurate
data described in the literature, yet without accurate theoretical calculations. For these
cases, a function that depends uniquely on experimental data becomes indispensable.

The manuscript is categories into different subsections. Section 2 covers the basic
criteria that every potential energy function satisfying the BOA must satisfy. Section 3
presents definitions and important results of Mathematical Analysis that will be useful to
support the construction of functions. Section 4 some of the most used potentials in the
literature for their accuracy are presented, highlighting the mathematical characteristics
that they have in common. Section 5, a method to construct correct potential energy
functions is described. Finally, in Section 6 a potential that was obtained using the
described methodology can be seen, followed by the conclusions in Section 7.

2 The choice of functions

To our knowledge, there is not an analytical representation of potential energy capable
to accurately describing all diatomic systems so far studied. Some models describe
satisfactorily the energy of interaction for a reasonable number of systems, mainly in
their ground electronic state. However, for excited states, there are few precise analytical
models and, in general, these can be applied to a minimal number of diatomics (see our
Review [3] where we discussed in detail).

In general, the more accurate and physically well-behaved potentials have some
mathematical characteristics in common: they are sums and/or products of exponential
functions and polynomials (or functional rational) involving spectroscopic constants and
the distance R.

An appropriate non-repulsive potential of Born Oppenheimer V (R) satisfies three
criteria:

(i) dV
dR

∣∣∣∣∣∣
R=Re

= 0, i. e., V (R) has a minimum at R = Re ;

(ii) V(R) come asymptotically to finite value as R → ∞, in general 0 or −De, where
De is the depth of the well ;

(iii) If R → 0, then V(R)→ ∞.

How do choose such functions? Although we are talking about a function that
describes a physical problem, we will find the answer first in mathematics. Let us begin
our discussion with the primordial Dunham potential.
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3 Mathematical theory

This section includes mathematical aspects considered as fundamentals for the topics
covered in this paper.

Dunham obtained relationships to calculate the most important spectroscopic pa-
rameters, and these depend on derivatives of potential. Then, the “ideal” potential
energy function must satisfy some mathematical properties related to differentiability
and continuity. Although derivatives of an order greater than 4 are hardly necessary,
the ideal is to guarantee that the potential energy functions are of class C n (at least in
some points), as defined below.

While it is chronologically more obvious to define continuity before differentiability,
we are going to reverse the order here. Soon it will be clear why this.

The most significant spectroscopic parameters ke, αe, ωexe and ωe are obtained from
derivatives of the potential at Re, the equilibrium distance (for more details see Ref. [3]).

Definition Consider V : X → R and a ∈ X ∩X ′, where X ′ is the set of accumulation
points of x (for more details see Ref. [4], p.52). The derivative of function V at point a
is given by

V ′(a) = lim
x→a

V (x) − V (a)
x− a

= lim
h→0

V (a+ h) − V (a)
h

. (12)

Theorem For the function V : X → R to be differentiable at point a, it is necessary
and sufficient that there is c ∈ R so that a+ h ∈ X ⇒ V (a+ h) = f(a) + c · h+R(h),
where limh→0 R(h)/h = 0. In this case, c = V ′(a).

Corollary A function is continuous at points at which it is differentiable.

This is a relevant result of the Theory of Mathematical Analysis. It is important
to highlight that, the reciprocal is not true, i.e., not all continuous functions are
differentiable (e.g. the function f(x) = |x|).

Definition Consider an open range I on R and a function V : I → R. Let n be a
non-negative integer. The function V is said to be of class C n if it is n times differentiable
on I, and if all its derivatives are continuous [4].

Then, the first mathematical requirement to start building a potential candidate: the
function must be differentiable n times at Re ∈ I. We could demand that the potential
function is of class C n for all points in I, ensuring that the function (and its derivatives)
are also continuous at all these points. Although this (the continuity) to be necessary
for every interatomic distance R, the condition of being differentiable for all of them is
strong.

Thus, the second fundamental characteristic is the continuity of the potential function,
defined below.

Definition A function V : X → R, defined in set X ⊂ R, is called continuous at point
a ∈ X, if for all ϵ > 0 given arbitrary, it is possible to obtain δ > 0 so that x ∈ X and
|x− a| < δ ⇒ |V (x) − V (a)| < ϵ [4].
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Theorem For the function V : X → R to be continuous at point a, it is necessary
and sufficient that, for all sequence of points xn ∈ X with lim xn = a, implies in
V (xn) = V (a) [4].

Corollary If V, U : X → R are continuous at point a ∈ X, then the functions
V + U, V · U : X → R are continuous at same point. Furthermore, if U(a) ̸= 0, the
function V/U : X → R is continuous at a [4].

This corollary is essential to support the possible combinations with the exponential
functions and polynomial expansions that we will suggest next for the construction of
the potential energy function.

From the results above, we can state:

Statement All polynomial p : R → R is a continuous function. All rational function
p(x)/q(x) (quotient of two polynomials) is continuous in its domain, which is the set of
points x such that q(x) ̸= 0.

Statement All exponential function e : R → R∗, where R∗ denotes R − {0}, is conti-
nuous and differentiable for all x ∈ R.

Now, a third (and perhaps one of the most important) characteristic that the potential
function must satisfy is related to convergence. We knew that one of the characteristics
of the BO potential energy function is that V (R) should assume a finite value as R → ∞,
in general, 0. In contrast, the potential must also satisfy V (R) → ∞, as R → 0.

It is important to note that, if one does not impose correct asymptotic behavior at
infinity the potential will be useless for studying atomic collisions, or even for high-energy
rotation-vibration states of the system [1].

This can be a problem when dealing with infinite expansions in the power series of
some types. However, there are many results of Analysis to ensure the convergence of
such functions, so that it will guide us in choosing the terms of the expansion.

Definition A power series is a function given by [4]

V (x) =
∞∑

n=0
an(x− x0)n = a0 + a1(x− x0) + · · · + an(x− x0)n + · · · . (13)

These functions are considered the most important functions of Analysis and are a
natural generalization of polynomials [4]. The set of values to which this series converges
is a range centered at x0.

Definition A series ∑ an is absolutely convergent if ∑ |an| converges.

Theorem A power series
∞∑

n=0
an(x − x0)n, or converges only to x = 0, or there is r,

with 0 < r < ∞, such that the series converges absolutely in the open range (−r, r),
and diverges outside the closed range [−r, r]. At the extremes, −r and r, the series can
converge or diverge. The number r is called convergence radius.
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Theorem Suppose that r is the convergence radius of power series
∞∑

n=0
an(x−x0)n. The

function V : (−r, r) → R, defined by V (x) =
∞∑

n=0
an(x − x0)n, is differentiable, with

V ′(x) =
∞∑

n=0
n an(x−x0)n−1, and the power series of V ′(x) still has a convergence radius

equal to r.

This theorem ensures that if the candidate function has a convergence radius r, it will
then be automatically differentiable of class C ∞. Therefore, the choice of a function
that has a good convergence radius is fundamental, because, consequently, this will
ensure that the other required properties are also satisfied.

The following theorem presents a necessary condition, but not enough to investigate
the convergence of a power series.

Theorem The general term of a convergent series has a limit equal to zero.

Note that this theorem ensures that if the general term of a power series is not zero,
then it diverges. However, if the general term is zero, we can´t ensure the convergence
of the power series.

Statement The power series
∞∑

n=0

xn

n! , (14)

converges for all x ∈ R, then the function V : R → R, defined by V (x) =
∞∑

n=0
xn

n! is of
class C ∞. Deriving term by term, we have V ′(x) = V (x). Now, as V (0) = 1, it follows
that V (x) = ex for all x ∈ R, and then

ex = 1 + x+ x2

2! + x3

3! + · · · . (15)

Therefore, the choice of polynomial and exponential functions is not arbitrary, since
in most cases both are expansions in series of powers.

4 Discussion

The Dunham [5] potential given by

VD = a0[(R −Re)/Re]2
{

1 +
∞∑

i=1
an[(R −Re)/Re]n

}
, (16)

is a power series expansion, and we can easily verify that this is differentiable and
therefore continuous for all R ∈ R. Although the Dunham potential has correct behavior
in the spectroscopic region (R ≤ Re), the potential does not converge for very large
values of R.

Thus, in general, a series of powers alone is not enough to provide the appropriate
potential energy for interaction for diatomic systems.
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The same occurs with potentials that involve only exponentials. The well known
Morse [6] potential

VMOR(R) = Dee
−2a(R−Re) − 2Dee

−a(R−Re) (17)

is an example of this.
The functional form to describe diatomic potentials is quite adequate to represent

atoms forming a chemical bond, providing greater precision in the region of the minimum
potential. Besides, this function is differentiable and continuous for all R. However, note
that when R → 0, VMOR(R) assumes the finite value De(e2aRe − 2eaRe), and then does
not satisfy the criterion (iii). Furthermore, the Morse potential does not have a correct
asymptotic behavior for many systems, where his function is too negative at large R.

We chose the potential of Dunham and Morse as a reference because they are the
most widely known diatomic potentials. Furthermore, they have the characteristics of
potentials that we want to unite: one is composed only by exponential and the other by
a series of powers.

The history [3] and recent comparative studies [7] have shown that, in general, accurate
analytical potential energy functions are obtained by joining both functions. We can
list the following functions as good examples of accurate analytical potentials:

() Extended Rydberg [8, 9]

VER(R) = De(1 + a1(R −Re) + a2(R −Re)2 + a3(R −Re)3)e−γ(R−Re). (18)

() Varshni III [10]

VV ARIII
(R) = De

{
1 − Re

R
exp [−β(R2 −R2

e)]
}2

(19)

() Levine [11]

VLEV (R) = De

{
1 − Re

R
exp [−a(Rp −Rp

e)]
}2
. (20)

The Extended Rydberg is still considered one of the most accurate analytical potenti-
als [3]. The Levine function can be considered a modified version of VV ARIII

.
The Hulburt-Hirschfelder [12] potential

VHH(R) = De[(1 − e−x)2 + (1 + bx)cx3e−2x] (21)

does not appear in this list, in turn, it corresponds to the type of function we are
searching for. This potential is considered a Morse modified function, being the repulsive
branch of the potential multiplying by a polynomial in (R−Re). However, the attractive
branch is not modified and therefore does not produce significant improvements over
the Morse potential.

Now, we can also list some functions that are sums and/or product of exponential by
polynomials, and in this case, they have adjustable parameters:
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(i) EHFACE2U [13]
VEHF ACE2U = VEHF + Vdc (22)

where
VEHF (R) = −DRα

(
1 +

3∑
i=1

air
i

)
exp(−γr), (23)

and
Vdc = −

∑
n=6,8,10,···

CAB
n χn(R)R−n (24)

(ii) Aguado and Paniagua [14]

VAP
(2)(RAB) = Vshort

(2) + Vlong
(2) (25)

where
Vshort

(2) = c0e−αABRAB

RAB
(26)

and
Vlong

(2) =
N∑

i=1
ciρ

i
AB (27)

with
ρAB = RABe−βAB

(2)RAB , βAB
(2) > 0. (28)

Both potentials satisfy all the criteria described in Section 3. These are two of the
most well-known and used functions for fitting potential energy curves to ab initio points.
Very flexible, these functions can be used for many different diatomic systems in their
fundamental and excited electronic states (see more details in Ref [3]).

5 Proposed Methodology

In this section, we will describe a methodology for building potential, based on
Dunham’s function.

1. First, two functions that satisfy all the criteria described in Section 3 must be
chosen, one being a polynomial expansion and the other an exponential one;

2. Make the product of the chosen functions. Remember that one must satisfy the
short-range while the other satisfies R large. To verify this, do the test with R → 0
and R → ∞ using the complete function;

3. The function can be given, for example, by:

V (R) = b0G
2(R)F 2(R)

(
1 +

N∑
i=1

bnG
n(R)

)
(29)

or even by

V (R) = b0G
2(R)

(
1 +

N∑
i=1

bnG
n(R)F n(R)

)
. (30)
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where F (R) is a exponential-type function involving powers of R and Re, such as
those presented in Section 4, G(R) is a polynomial term (in general (R −Re) and
its variations) and N must be truncated in some satisfactory value;

4. In the region of its convergence, the Dunham potential converges to the RKR [15–
17] potential derived from the energy levels (see Ref. [18]). Then, for the corres-
ponding property to hold for the new expansion V (R), it must be equal to the
Dunham expansion in the region where both series converge:

b0G
2(R)F 2(R)

(
1 +

N∑
i=1

bnG
n(R)

)

= a0[(R −Re)/Re]2
{

1 +
∞∑

i=1
an[(R −Re)/Re]n

} (31)

or
b0G

2(R)
(

1 +
N∑

i=1
bnG

n(R)F n(R)
)

= a0[(R −Re)/Re]2
{

1 +
∞∑

i=1
an[(R −Re)/Re]n

} (32)

by considering Eq. Eq. (30).

5. The coefficients bn can be straightforwardly obtained, taking the derivatives of
both sides of Eqn. 32 regarding to R and equated them at R = Re;

6. Then, a series of expressions relating the new potential coefficients bn and the
Dunham coefficients an is obtained, providing the full potential.

This method, although simple and illustrative, can be used to obtain potential energy
surfaces. One of the difficulties that may arise concerns the Dunham’s coefficients ai.
These are not widely available in the literature and in general, for i > 6, they are quite
inaccurate and difficult to obtain (some of them can be obtained from Refs. [19, 20]).
Thus, to use this method, the function must not have a degree greater than 8.

6 Results

The following function was obtained from the methodology described in the previous
section, and this new potential is published in Ref. [21], and is given by:

V (R) =


8∑

n=2
cn

[(
1 + e−2β(R−Re

Re
)
) (

R−Re

R

)]n

, R ≤ Re

De

[
(1−e−2α(R−Re))
(1+e−γα(R−Re))

]2
, R > Re

(33)

where β = 1
3α with α the Morse [6] parameter, γ is a fine-tuning parameter 1 ≤ γ ≤ 3,

to be fixed by direct comparison with RKR data. The cn, n = 2, · · · , 8 are coefficients
related with the Dunham [5] coefficients, as can be seen below.
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The potential Eq. (33) presents accuracy in the spectroscopic region and the correct
asymptotic behavior, being given by two distinct functions. The function chosen to
represent the short-range is Dunham type. Although the Dunham potential [5] is
accurate around the minimum, it does not have adequate asymptotic behavior.

Thus, the Morse-type function De

[
(1−e−2α(R−Re))
(1+e−γα(R−Re))

]2
, at R > Re was introduced, ensu-

ring by construction, that the potential has an asymptotically correct form.
Note that as we commented in Section 4, Dunham-type functions describe the

spectroscopic region well, but in general, do not describe the asymptotic region well.
On the other hand, Morse-type functions describe the asymptotic region well, but fail
in the short range. Thus, to obtain the ”ideal” potential, it was necessary to join the
two potentials to guarantee convergence, without forgetting also to verify the continuity
in the coupling of the two functions in Re.

The coefficients cn have been obtained using items 4 and 5 described in Section 5,
from the following procedure:

a) Calculating the second derivative of V (R) (at R ≤ Re) and of Dunham’s poten-
tial Eq. (16) at R = Re, we obtain:

d2

dR2

[ 8∑
i=2

cn

[(
1 + e−2β(R−Re

Re
)
)(

R −Re

R

)]n
]

R=Re

= 8 · c2

R2
e

(34)

d2

dR2

[
a0[(R −Re)/Re]2

{
1 +

∞∑
i=1

an[(R −Re)/Re]n
}]

R=Re

= 2 · a0

R2
e

(35)

Then,
8 · c2

R2
e

= 2 · a0

R2
e

(36)

⇒ c2 = 1
4a0.

b) Calculating the third derivative of V (R) (at R ≤ Re) and of Dunham’s poten-
tial Eq. (16) at R = Re, we obtain:

d3

dR3

[ 8∑
i=2

cn

[(
1 + e−2β(R−Re

Re
)
)(

R −Re

R

)]n
]

R=Re

= 48[c3 − c2(1 + β)]
R3

e

(37)

d3

dR3

[
a0[(R −Re)/Re]2

{
1 +

∞∑
i=1

an[(R −Re)/Re]n
}]

R=Re

= 6 · a0 · a1

R3
e

(38)

Then,
48[c3 − c2(1 + β)]

R3
e

= 6 · a0 · a1

R3
e

(39)

⇒ c3 = 1
8 [a0a1 + 8(1 + β)c2] .
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c) Calculating the fourth derivative of V (R) (at R ≤ Re) and of Dunham’s poten-
tial Eq. (16) at R = Re, we obtain:

d4

dR4

[ 8∑
i=2

cn

[(
1 + e−2β(R−Re

Re
)
)(

R −Re

R

)]n
]

R=Re

=

= 96[4c4 − 6c3(1 + β) + c2(3β2 + 4β + 3)]
R4

e

(40)

d4

dR4

[
a0[(R −Re)/Re]2

{
1 +

∞∑
i=1

an[(R −Re)/Re]n
}]

R=Re

= 24 · a0 · a2

R4
e

(41)

Then,
96[4c4 − 6c3(1 + β) + c2(3β2 + 4β + 3)]

R4
e

= 24 · a0 · a2

R4
e

(42)

⇒ c4 = 1
16
[
a0a2 + 24(1 + β)c3 − 4(3β2 + 4β + 3)c2

]
.

Continuing with this procedure until the eighth derivative, we obtained the relations
for the function’s coefficients c2, · · · c8, in terms of the Dunham coefficients a0, · · · , a6:

c2 = 1
4a0; (43)

c3 = 1
8 [a0a1 + 8(1 + β)c2] (44)

c4 = 1
16
[
a0a2 + 24(1 + β)c3 − 4(3β2 + 4β + 3)c2

]
; (45)

c5 = 1
32 [a0a3 + 64(1 + β)c4 − 4(12β2 + 18β + 12)c3

+4
(

10
3 β

3 + 6β2 + 6β + 4
)
c2
]

;
(46)

c6 = 1
64 [a0a4 + 160(1 + β)c5 − 4(40β2 + 64β + 40)c4

+4 (18β3 + 36β2 + 36β + 20) c3

−4
(
3β4 + 20

3 β
3 + 9β2 + 8β + 5

)
c2
]

;

(47)

c7 = 1
128 [a0a5 + 384(1 + β)c6 − 4(120β2 + 200β + 120)c5

+4
(

224
3 β

3 + 160β2 + 160β + 80
)
c4

−4(22β4 + 54β3 + 72β2 + 60β + 30)c3

+4
(

34
15β

5 + 6β4 + 10β3 + 12β2 + 10β + 6
)
c2 ] ;

(48)
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c8 = 1
256 [a0a6 + 896(1 + β)c7 − 4(336β2 + 576β + 336)c6

+4
(

800
3 β

3 + 600β2 + 600β + 280
)
c5

−4
(

340
3 β

4 + 896
3 β

3 + 400β2 + 320β + 140
)
c4

+4
(

114
5 β

5 + 66β4 + 108β3 + 120β2 + 90β + 42
)
c3

−4
(

22
15β

6 + 68
15β

5 + 9β4 + 40
3 β

3 + 15β2 + 12β + 7
)
c2 ] .

(49)

The potential Eq. (33) fulfill the necessary continuity conditions in R = Re:

(a) Note that

lim
R→R−

e

8∑
i=2

cn

[(
1 + e−2β(R−Re

Re
)
)(

R −Re

R

)]n

= 0

lim
R→R+

e

De

[
(1 − e−2α(R−Re))
(1 + e−γα(R−Re))

]2

= 0.
(50)

(b) The same occurred with the first order derivatives,

lim
R→R−

e

d

dR

[ 8∑
i=2

cn

[(
1 + e−2β(R−Re

Re
)
)(

R −Re

R

)]n
]

= 0

lim
R→R+

e

d

dR

De

[
(1 − e−2α(R−Re))
(1 + e−γα(R−Re))

]2 = 0.
(51)

Furthermore, the new potential Eq. (33) satisfies the following necessary criteria [10]:

(i) dV
dR

∣∣∣∣∣∣
R=Re

= 0, i. e., V(R) has a minimum at R = Re ;

(ii) V(R) come asymptotically to finite value as R → ∞, and in this case V (∞) = De;

(iii) If R → 0, then V(R)→ ∞.

We have also added the condition, V (Re) = 0, which simply shifts the zero of potential,
without physically affecting its properties.

This potential function, obtained within the methodology here introduced, proved
to be accurate for 22 diatomic systems. Among them, for the ground electronic state
of the ion CO+, for CN and Na2 in their excited electronic states (A2Π) and (B1Π)
respectively. Furthermore, diatomic systems formed by heavier atoms and/or with many
electrons, such as I2, BiI, Cs2, Mg2, Na2 were also well described by this function (For
more details see Ref. [21]).
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7 Conclusions

We have described all the mathematical details to obtain good potentials. The search
for a correct functional form is not so simple, it also requires a lot of physical knowledge
to define the parameters that will compose the functional form and in which positions.
These difficulties were confirmed when we built our potential from the methodology
described here.

The five listed functions, with adjustable or not adjustable parameters, besides
involving exponential and polynomials, have another characteristic in common: the
correct asymptotic behavior of the potential for dissociation into atoms. This is a
necessary condition to obtain a potential that is satisfactory overall accessible values of
R [1].

Significants points were also observed to obtain a correct potential energy curve.
Firstly, we proposed only the function defined at R ≤ Re as being a function for all
R. However, we found that the behavior of this function at R → ∞ was not correct.
It providing non-zero values for such R. Then, we searched for functions that could
correct this asymptotic limit. Again, we obtained a function in terms of the exponential
function, as Morse-type potential.

Thus, to obtain correct potential energy functions, it is necessary to ensure convergence
and all other requirements described in Section 3 of this paper. In general, functions not
satisfying the aforementioned conditions will hardly represent the inter atomic potentials
accurately.
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