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A B S T R A C T

Maps of soil pH are an important tool for making decisions in sustainable forest management. Accurate pH
mapping, therefore, is crucial to support decisions by authorities or forest companies. Soil pH values typically
exhibit a distinct distribution characterized by two frequently encountered pH ranges, wherein aluminium
oxides (Al2O3) and carbonates (CaCO3) act as the primary buffer agents. Soil samples with moderately acid
pH values (pH CaCl2 of 4.5-6) are less commonly observed due to their weaker buffering capacity. The different
strength of buffer agents results in a distinct bimodal distribution of soil pH values with peaks at pH of around
4 and 7.5. Commonly used approaches for spatial mapping neglect this often observed characteristic of soil pH
and predict unimodal distributions with too many moderately acid pH values. For ecological map applications
this might result in misleading interpretations.

This article presents a novel approach to produce pH maps that are able to reproduce pedogenic processes.
The procedure is suitable for bimodal responses where the response distribution is naturally inherent and
needs to be reproduced for the predictions. It is model-agnostic, namely independent from the used statistical
prediction method. Calibration data is optimally split into two parts corresponding each to a data culmination,
i.e. for soil pH values belonging to the ranges of the two principal buffer agents (Al2O3 and CaCO3). For each
subset a separate model is then built. In addition, a binary model is fitted to assign every new prediction
location a probability to belong either to Al2O3 or CaCO3 buffer range. Predictions are combined by weighted
mean. Weights are derived from probabilities predicted by the binary model. Degree of smoothness is chosen
by sigmoid transform which allows for optimal continuous transition of the pH values between Al2O3 and
CaCO3 buffer ranges. For each location uncertainty distributions may be combined by using the same weights.

We illustrated application of the new approach to a medium and strong bimodal distributed response
(1) pH in 0–5 cm and (2) pH in 60–100 cm of forest soils in Switzerland (2 530 calibration sites). While
model performance measured at 354 validation sites slightly dropped compared to a common modelling
approach (drop of R2 of 0.02–0.03) distributional properties of the predictions are much more meaningful
from a pedogenic point of view. We were able to demonstrate the benefits of considering specific distributional
properties of responses within the prediction process and expanded model assessment by comparing observed
and predicted distributions.
1. Introduction

Soil pH is critical for a wide range of applications and stake-
holders. Besides providing information on relative acidity and alka-
linity, pH is an indication of nutrient availability and has an impact
on physical structure, metal dissolution, decomposition processes or
(micro-)biological activity (Blume et al., 2016, Sec. 5.6). Spatial in-
formation on soil pH supports soil function assessments like acidity

∗ Corresponding author.
E-mail address: madlene.nussbaum@bfh.ch (M. Nussbaum).

of arable land to plan liming (Bolan et al., 2003), acidity status of
forests (Zimmermann et al., 2011) or to assess filtering or binding
and decomposition capacity of contaminants or pollutants (Bechler and
Toth, 2010; Greiner et al., 2017) .

Soil pH datasets commonly exhibit a characteristic bimodal distri-
bution observed at local (Baltensweiler et al., 2020), regional (Vaysse
et al., 2017), national (Baltensweiler et al., 2021; Helfenstein et al.,
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Fig. 1. Density plots of soil pH (CaCl2 extraction) in 0–5 and 60–100 cm depth for
omplete 2019 snapshot of the World Soil Data Base (WoSIS, Batjes et al., 2019, n:
umber of observations). Topsoil pH (dotted grey) exhibits weak and pH in deeper soil
ayers (solid red) strong bimodal distribution.

022) or global level (Fig. 1) with often more pronounced bimodality
ith increasing depth (Mulder et al., 2016). During soil development
atural acidification takes place in the course of which pH value
ascades down the soil profile according to the effective buffering pro-
esses. In carbonate parent materials or carbonate-bearing mixed rocks,
arbonates (CaCO3) buffer incoming acids very efficiently (Blume et al.,
016, Sec. 5.6.4). After carbonates get depleted mainly silicates and
he cation exchangers become buffer agents (pH CaCl2 range between
.5 and 6.5). Silicates are often present in large quantities. However,
heir buffer efficiency is limited because buffer reactions are kinetically
low. Exchange kinetics of cation exchangers are very fast, but capacity
f exchangers is limited. Overall, buffer efficiency is limited in the pH
ange between 4.5 and 6.5 due to kinetic inhibition or limited buffer
apacity. The pH value of fine earth of a horizon, therefore, passes
hrough this range relatively quickly during acidification and only few
oil samples are found with a moderately acid pH value. As soon as
uffering by aluminium oxides (Al2O3) becomes dominant, buffering
fficiency is significantly larger, since there are abundant oxides in
he soil and the buffering reactions are not kinetically inhibited. This
eads to a bimodal pH value distribution with a maximum of values in
he pH ranges efficiently buffered by CaCO3 and Al2O3 (Sparks et al.,

2023, chap. 9). Although bimodality is for above reasons to be expected
in many pH datasets it might not always be present, i.e. in datasets
with a large share of arable land that is artificially kept at pH levels
between 5.5–6.5 by application of lime (Bolan et al., 2003) or if alkaline
conditions are rare as found by Roudier et al. (2020) for New Zealand.

Producing maps of basic soil properties by digital soil mapping is
an established practice (Malone et al., 2017). Mapping of soil pH has
been of interest for a long time (Laslett et al., 1987; Makungwe et al.,
2021). According to GlobalSoilMap specification soil pH is among the
relevant soil properties to be mapped globally (Arrouays et al., 2014b).
In recent national to continental digital soil mapping efforts pH was
among the most frequently predicted properties just after soil organic
carbon and texture (Chen et al., 2022). SoilGrids, a global pH soil map,
was recently updated (version 2.0, Poggio et al., 2021).

The largest error in quantitative mapping of pH for a given site
results among other error sources (e.g. spatial accuracy of location,
measurement method, pedotransfer functions) from the spatial predic-
tion (Libohova et al., 2019). To our best knowledge no mapping study
specifically addressed bimodality of soil pH datasets in their prediction
approach. Some authors discussed bimodality of their datasets (Mulder
2

et al., 2016; Baltensweiler et al., 2021; Helfenstein et al., 2022), but for
Fig. 2. Density of predictions computed for the validation data not used for modelling
(n = 325, Section 3.4) by a variety of methods fitted to response pH in 60–100 cm
in Swiss forest soils (calibration data n = 2357) compared to the density of original
bserved validation data (solid line with grey fill, densities cropped at minimum and
aximum value; for details on methods and their application see Baltensweiler et al.,
021).

ost studies it remains unclear if their pH data set was bimodal or not.
ven if a study focused mainly or solely on soil pH (e.g. Adhikari et al.,
014; Wang et al., 2019; Lu et al., 2023) reported descriptive statistics
f moments were not able to reveal such a distributional feature nor
as it mentioned or shown in corresponding graphs.

If no covariate is able to distinguish the underlying processes of
he two data peaks, unimodal approaches have difficulty reproducing
he original distribution. Even models with relaxed assumptions on
rror distribution such as random forest (RF) or gradient boosted trees
ail to predict the original distribution (Fig. 2). Neglecting bimodality
ay result in maps with unimodal distributions (Fig. 2) with a large
umber of predictions in a soil pH range where only few horizons were
bserved. As a result strongly acid soil horizons may be represented as
oderately acid (i.e. not yet in the Al2O3 buffer range) and alkaline
orizons as slightly acidic (i.e. already beyond CaCO3 buffer capacity
nd prone to faster acidification). Subsequent map interpretations for
xample for ecological applications may then result in misleading con-
lusions. Moreover, ignoring bimodal response distribution may result
n over-pessimistic prediction intervals (Helfenstein et al., 2022).

Bimodal or multimodal distributions of response variables are not
imited to soil pH. Styc and Lagacherie (2021) reported bimodal
istributed plant available soil water capacity in deeper soil depth,
ikely due to uneven particle size distribution resulting in two size
evels of soil pores (Zhang and Chen, 2005). Rawlins et al. (2009)
nd de Brogniez et al. (2015) found bimodal soil organic carbon
SOC) data because of large areas of peat within their area of focus
Northern Ireland, Europe). de Brogniez et al. (2015) used a default
nimodal modelling approach, but concluded that this might have been
he cause for their underestimation of large SOC contents. Rawlins
t al. (2009) dealt with bimodality by splitting the study area into
ineral, organo-mineral and peat according to an existing soil map

nd fitted separate geostatistical models to each sub-dataset. To deal
ith a bimodal response in econometrics (Gostkowski and Gajown-

czek, 2020) adapted quantile regression forest (QRF) with performance
ased weights for each tree with minor benefit in reproducing bimodal
rediction distribution compared to default QRF.

Using soil pH we illustrate how to introduce knowledge on soil
edogenic processes into digital soil mapping (Wadoux et al., 2021)
nd how to retain the specific distributional feature of bimodality of a
esponse within predictions.
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Fig. 3. Flowchart of hierarchical three step approach to model bimodal distributed responses by splitting response data, building three predictive models and then combining
predictions by weighted means (k: tuning parameter of sigmoid function controlling smoothness to combine predictions of model 2.1 and 2.2. Parameter 𝑗0 allows to shift function
nflection in vertical direction which is not illustrated in the figure).
s
r

We demonstrate

1. how to compute hierarchical predictions considering underly-
ing soil pH buffering processes and at the same time deriving
relevant model building decisions from the present dataset;

2. how to quantify and validate uncertainty of such hierarchical
predictions;

3. how to include degree of reproduction of observed response dis-
tribution into model building and validation by using a goodness-
of-fit statistic to complement commonly used accuracy measures
such as R2.

First, we formalize the hierarchical model building approach (Sec-
ion 2). Thereafter, we apply the presented framework to a medium
nd strong bimodal distributed dataset from pedogenic highly variable
orest soils of Switzerland (Section 3) and present and discuss the
esults based on these example datasets (Sections 4 and 5).

. Hierarchical prediction of bimodal distributed responses

Predictions for bimodal distributed responses may be modelled in a
ierarchical two step approach (Fig. 3). Calibration data is split at the
ocal minimum between peaks in its density function ideally resulting
n nearly Gaussian distributed subsets. Models are built for each subset
3

eparately. To assign predictions from each model within the study
egion a binary classification is used. Response 𝑌 (𝐬) at location 𝐬 needs

to be split and predictions reunited in an optimal way as follows:

1. Divide the calibration data 𝑌 (𝐬) into two groups by a threshold
𝑡 that minimizes variance within and maximizes variance in-
between the groups. 𝑡 is estimated by minimizing the sum of
squares

𝑡 = arg min
𝑡

⎧

⎪

⎨

⎪

⎩

∑

𝑖∈{𝑌 (𝐬)|𝑌 (𝐬𝑖)≤𝑡}
(𝑌 (𝐬𝑖) − 𝑌1)2 +

∑

𝑖∈{𝑌 (𝐬)|𝑌 (𝐬𝑖)>𝑡}
(𝑌 (𝐬𝑖) − 𝑌2)2

⎫

⎪

⎬

⎪

⎭

(1)

with 𝑌1 and 𝑌2 being the mean of each group
{

𝑌 (𝐬)|𝑌 (𝐬𝑖) ≤ 𝑡
}

and
{

𝑌 (𝐬)|𝑌 (𝐬𝑖) > 𝑡
}

, respectively. Splitting by optimal threshold
𝑡 allows to form three responses:

𝐺(𝐬) = 𝐼(𝑦 ∈
{

𝑌 (𝐬)|𝑌 (𝐬𝑖) ≤ 𝑡
}

) (2)

𝑌𝑎(𝐬) = 𝑦 ∈
{

𝑌 (𝐬)|𝑌 (𝐬𝑖) ≤ 𝑡
}

(3)

𝑌𝑐 (𝐬) = 𝑦 ∈
{

𝑌 (𝐬)|𝑌 (𝐬𝑖) > 𝑡
}

(4)

𝐺(𝐬) represents a binary outcome for each location to belong

either to aluminium oxide (1) or carbonate buffer range (0) while
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𝑌𝑎(𝐬) and 𝑌𝑐 (𝐬) contain the observed values below and above
threshold 𝑡, respectively.

2. Build predictive models with new responses 𝐺(𝐬), 𝑌𝑎(𝐬) and 𝑌𝑐 (𝐬)
including tuning of model parameters or selection of relevant
covariates as e.g.

𝑌𝑎(𝐬) = 𝑓 (𝑋(𝐬)) + 𝜖 (5)

with environmental covariates 𝑋(𝐬) at locations 𝐬. From the clas-
sification model fitted to the binary response 𝐺(𝐬) probabilities
𝐽 (𝐬+) = 𝑃𝑟𝑜𝑏(𝑌 (𝐬+) = 1|𝑋(𝐬+)) are predicted for all 𝐬+ location
in the study region. For the two numeric responses standard
predictions 𝑌𝑎(𝐬+) and 𝑌𝑐 (𝐬+) are computed.

3. Predictions 𝑌𝑎(𝐬+) and 𝑌𝑐 (𝐬+) are combined by weights

𝑌 (𝐬+) = �̃� (𝐬+) 𝑌𝑎(𝐬+) + (1 − �̃� (𝐬+)) 𝑌𝑐 (𝐬+). (6)

Weights vector �̃� (𝐬+) is determined by transforming predicted
probabilities 𝐽 (𝐬+) for each prediction location 𝐬+ by sigmoid
function

�̃� (𝐬+) =
1

1 + 𝑒−𝑘(𝐽 (𝐬+)−𝑗0)
(7)

where 𝑘 determines the width of the function and hence the
strengths of transformation of 𝐽 (𝐬+). If 𝑘 = 0 equal weights of
0.5 are used for all locations 𝐬+. For very large 𝑘 probabilities
𝐽 (𝐬+) become close to 0 for 𝐽 (𝐬+) ≤ 𝑗0 and close to 1 for 𝐽 (𝐬+) >
𝑗0 resulting in either 𝑌𝑎(𝐬) or 𝑌𝑐 (𝐬) predictions with potential
crisp transitions in-between. 𝑗0 refers to the inflection point
of the sigmoid function and allows to optimize the probability
threshold which is used to assign a location to either Al2O3 or
CaCO3 buffer range.
Optimal values for 𝑘 and 𝑗0 are estimated by a grid search
from the calibration data by minimizing prediction variance
measured as mean squared error skill score SSmse and distribu-
tional deviation of observed 𝑌 (𝐬) and predicted 𝑌 (𝐬) measured
by Kolmogorov–Smirnov test statistic D (Kolmogorov, 1933;
Smirnov, 1939)

{�̃�, 𝑗0} = arg min
{𝑘,𝑗0}

{

SSmse + D
}

. (8)

SSmse (Wilks, 2011; Nussbaum et al., 2017) is defined as

SSmse = 𝑅2 = 𝑀𝐸𝐶 = 1 −
∑𝑛

𝑖=1
(

𝑌 (𝐬𝑖) − 𝑌 (𝐬𝑖)
)2

∑𝑛
𝑖=1

(

𝑌 (𝐬𝑖) −
1
𝑛
∑𝑛

𝑖=1 𝑌 (𝐬𝑖)
)2

, (9)

and also called 𝑅2 or model efficiency coefficient (MEC, e.g.
Helfenstein et al., 2022), with SSmse = 1 for perfect predictions,
SSmse = 0 if predictions have the same variance as the observed
data and SSmse < 0 for predictions with larger variance.
D is defined as distance between empirical cumulative distri-
bution functions (ECDF) of 𝑌 (𝐬) and 𝑌 (𝐬) and takes the largest
absolute difference between the two distribution functions across
all 𝑋 of the ECDF. D ranges from 0 to 1.

Optimal response splitting and merging of predictions is estimated
from the data. The approach is model agnostic, i.e. it can be applied to
any predictive method given the method allows to model continuous
responses and binary responses with probability predictions.

Predictive distribution 𝐹+(𝑌 (𝐬)) for each new location 𝐬+ may be
formed by combining the predictive distributions 𝐹+(𝑌𝑎(𝐬)) and
𝐹+(𝑌𝑐 (𝐬)) of the two numerical models. Random sampling is done from
pooled distribution with inclusion probabilities

𝑃𝑟𝑜𝑏
(

𝐹+(𝑌𝑎(𝐬)) ∈ 𝐹+(𝑌 (𝐬))
)

= �̃� (𝐬) (10)

𝑃𝑟𝑜𝑏
(

𝐹+(𝑌𝑐 (𝐬)) ∈ 𝐹+(𝑌 (𝐬))
)

= 1 − �̃� (𝐬) (11)

according to weights �̃� (𝐬) of Eq. (7). Full distribution of prediction
errors from the two numerical models are hence merged based on the
4

Fig. 4. Forested area of Switzerland with locations used for model calibration (black
dots, n = 2530) and validation (orange triangles, n = 354) for pH in 0–5 cm soil depth.

same weights used to combine mean predictions. Two-sided prediction
intervals for 𝛼, for example, are then derived from resulting combined
distributions by selecting 𝛼

2 and 1 − 𝛼
2 quantiles as

[

𝐹+(𝑌 (𝐬)) 𝛼2 ; 𝐹+(𝑌 (𝐬))1− 𝛼
2

]

. (12)

3. Case study – materials and methods

3.1. Study region

Our study focused on forest soils of Switzerland (Nussbaum et al.,
2014; Baltensweiler et al., 2021). Delineation of forests was done
as by the definition of the national forest inventory (NFI, version
11.2017). With an area of 13 200 km2 forests cover roughly 32% of
Switzerland (Brändli et al., 2020).

Due to the high variability of topography, climate, and geology,
Switzerland has strong environmental gradients compared to its small
area. Soils formed on very diverse lithology, altogether yielding high
spatial variability of soil properties such as soil pH. Low soil pH values
prevail mostly in topsoils and on silicate parent materials whereas
high pH values are found predominantly in deeper soil layers on
parent material consisting of calcareous rocks or containing calcareous
fractions (Walthert et al., 2010).

3.2. Data

3.2.1. Observed soil pH data
We assembled data from several sources:

• WSL soil data base (1833 sites where 67 profiles were included
from data sources of Cantons),

• Swiss soil dataset (1051 locations, Service center NABODAT,
2018).

There was a total of 2884 soil profile locations with pH measure-
ments for soil depth of 0–5 cm available (Fig. 4) of which 2682 also
had pH measurements in 60–100 cm depth. Soil samples were taken
from genetic horizons, dried and sieved to 2 mm. Soil pH was measured
potentiometrically in 0.01 M CaCl2 with a solid-extractant ratio of
1:2 (Thomas, 1996). Soil pH values were transferred to two fixed depth
intervals by weighted mean where weights were derived according to
thickness of each horizon fully or partly included within the depth
interval (Baltensweiler et al., 2021). pH in 0–5 cm and pH in 60–
100 cm were selected because the former had weak and the latter
strong bimodal distribution (see red shaded density plots in bottom row
of Fig. 5). Observed pH ranged from 2.6 to 8.0 in 0–5 cm and from 3.0
to 8.6 in 60–100 cm.
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Fig. 5. Scatterplots of predicted vs. observed pH values computed for the validation data in 0–5 cm and 60–100 cm soil depth each for the standard non-hierarchical and the
hierarchical modelling approach (top row). Colours in scatterplots for hierarchical predictions indicate weights used to combine 𝑌𝑎(𝐬) and 𝑌𝑐 (𝐬) predictions according to Eq. (6).
Bottom row displays density plots of observed validation data (solid black line), predictions computed for the validation locations (dotted yellow line) and prediction computed for
all map pixels for forest soils of Switzerland (dashed blue line). Density plots have been cropped at their respective minimum and maximum value and rugs (short black vertical
lines) were plotted for observed values.
r

3.2.2. Explanatory covariates
To represent soil forming conditions, spatial datasets from 18 dif-

ferent data sources were available. Used covariates and data sources
were detailed in Baltensweiler et al. (2021). We used climate maps with
monthly resolution from different climatic periods (1961–1990, 1981–
1990, 1981–2010, 1975–2010) modelled at different spatial resolution
(25 m, 100 m, 250 m, 2 km, total 53 climate covariates).

Terrain attributes (TA) were derived from 5 and 25 m resolution
elevation models and smoothed by 2D convolutional filters with a
Gaussian weighing scheme to represent different spatial scales (radii
15–200 m). Calculation of TA was done with following main computa-
tional functions: convexity, curvature, flow accumulation, flow length,
flow path, slope, specific catchment area, ruggedness, stream power,
topographic position index, topographic wetness index and valley depth
(total of 86 terrain covariates).

Parent material and partitioning of the landscape was broadly
represented by several overview maps: last Glacial Maximum (map
scale 1:500 000), Hydrogeological Map (1:500 000), Geotechnical Map
(1:200 000), a landscape classification (1:200 000) and the large-scaled
Swiss Soil Suitability Map (1:200 000, with attributes like soil depth
or nutrient storage capacity). To latter, median pH per map unit was
assigned from a poor-quality pH dataset of 10 865 topsoil observations.
In addition to Baltensweiler et al. (2021) a map representing the
distance to the nearest rock outcrop (Swisstopo, 2022) was used (total
of 93 covariates).

Vegetation was represented by satellite image derivatives from
Sentinel-2 (10 m resolution) and Landsat time series by averaging over
years 1985–2015 (30 m resolution). Different indices like green and
default normalized difference vegetation indices or pigment specific
5

simple ratio were computed. Besides, a canopy height model (25 m
resolution), biogeographic regions (1:200 000) and the proportion of
coniferous trees was used (total of 37 vegetation covariates).

Categorical polygon based maps with crisp boundaries (e.g. soil
and geology maps, biogeographic regions) were transferred to their
indicator representation (1: inside unit, 0: outside unit, for 𝑛 categories
esulting in 𝑛 − 1 new raster layers). To account for the uncertainty of

unit boundaries we computed the mean within a moving rectangular
window whose size was determined by the scale of the original map
product to correspond to 2–4 mm if the map were printed (i.e. 800 m
for map scale of 1:200 000).

To represent relative position, we additionally added oblique coor-
dinate axis with rotations of 30◦ and 60◦ (Møller et al., 2020) resulting
in 274 covariates in total. Covariates were all resampled to a pixel
width of 5 m by bilinear interpolation regardless the original resolution.

3.3. Statistical analysis

Steps 1 to 3 detailed in Section 2 were applied to pH values in
0–5 and 60–100 cm soil depth separately (2.5D approach, Ma et al.,
2021, 3.2.1). To model the three constructed responses (step 1) for
each variable to be mapped we used random forest (RF, Breiman,
2001). RF performed best on a smaller data set for the same study
area (Baltensweiler et al., 2021).

RF algorithm establishes a large number of fully grown classification
or regression trees (CART). Individual trees are decorrelated by two
resampling procedures: (1) for each tree only a random subset of
observations is used and (2) for each node only m > 𝑝 randomly
try
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selected covariates are tested as candidates for binary splitting. Final
predictions are means of predictions produced by all ntree trees.

We first reduced the large number of covariates by sequential
ecursive backward elimination (Brungard et al., 2015) based on node-
mpurity covariate importance (Hastie et al., 2009, Sect. 15.3.2). We
emoved 5 to 10 covariates at each step fitting models with 5, 10, 15,… ,
100, 110,… , 170, 𝑝 covariates. Covariates were further decorrelated by
limiting degree of correlation 𝜖 (Hertzog, 2017; Baltensweiler et al.,
2021). For covariate removal we used default mtry = 𝑝

3 . To find
ptimal mtry for the final covariate set we minimized out-of-bag RMSE
y iterating through mtry = 1, 2,… , 𝑝. Number of trees ntree and
inimal number of observations remaining in each tree end node n𝑚𝑖𝑛
ere left on default values (ntree: 500, nmin: 5 for regression and 10

or classification to predict probabilities). Model selection was done
inimizing out-of-bag Gini index for classification (binary response

ccording Eq. (2) in Section 2) and mean squared error for regression
responses according Eqs. (3) and (4) in Section 2).

Prediction intervals were computed by quantile regression for-
st (QRF, Meinshausen, 2006).

.4. Model validation

Soil data was split into a calibration (88%) and a validation set
12%) used only to compute the model performance statistics. We used
ocations with measured pH of the same validation dataset as in previ-
us analysis (Hertzog, 2017; Baltensweiler et al., 2021, sec 2.3). Vali-
ation locations were chosen by a stratified weighted random selection.
nclusion probability was proportional to the area of physiographic
nits (strata) of the Swiss soil suitability map (SSSM, FSO, 2000). To
void overrepresentation of validation points in spatial clusters with a
arge profile density, validation points were sampled (without replace-
ent) with probability weights corresponding to the forest area in the
oronoi polygons. The selected validation data therefore represents a
road approximation for a true design-based validation sample (Brus
t al., 2011).

To evaluate overall predictive model performance we computed
ias, RMSE, SSmse (Eq. (9)) and Lin’s concordance correlation coeffi-
ient (Lin, 1989) for all continuous predictions and bias ratio, percent
orrect and pierce skill score (PSS, Wilks, 2011) for class predictions
Eq. (2)).

All analysis was done in R (R Core Team, 2022) using pack-
ges ranger (Wright and Ziegler, 2017) to fit RF, sf (Pebesma, 2018)
nd raster (Hijmans, 2022) for spatial data analysis and manage-
ent, twosamples (Dowd, 2022) to compute D statistic, DescTools for
CC (Signorell, 2023) and verification (NCAR, 2015) for PSS.

. Results

.1. Models for pH in 0–5 cm and 60–100 cm soil depth

Table 1 reports model parameters selected to compute final predic-
ions. The optimal threshold for data splitting into Al2O3 and CaCO3
uffer ranges (resulting in 𝑌𝑎(𝐬) and 𝑌𝑐 (𝐬)) was slightly larger for pH
esponse in 60–100 cm (pH 5.25 vs. pH 5.86). For both responses,
idth of sigmoid function was narrow (large �̃�) leading to large weights

or 𝑌𝑎(𝐬) and small weights for 𝑌𝑐 (𝐬) predictions and vice-versa. Hence,
uffer ranges are clearly assigned in the final result with only little
moothing in between the 𝑌𝑎(𝐬) and 𝑌𝑐 (𝐬) prediction maps.

Calibration data was imbalanced especially for pH in 0–5 cm (35.2%
f observations in CaCO3 vs. 64.8% in Al2O3 buffer range) and less for
H in 60–100 cm (41.5% in CaCO3 and 58.5% in Al2O3 buffer range). A

strategy to consider imbalanced data is to estimate optimal thresholds
to convert probability predictions into classes. Thresholds 𝑡 are chosen

ith calibration data by iterating e.g. through 0, 0.01, 0.02, .., 0.99, 1 and
inimizing a categorical measure like PSS. The chosen threshold 𝑡 is

hen applied to transfer probabilities to classes for the validation set
6

nd predictions for new locations. For imbalanced data thresholds often
learly deviate from midpoint of 0.5 (e.g. Nussbaum et al., 2017, Table
). In the presented approach thresholds are constituted by the inflec-
ion point of the sigmoid function (𝑗0 in Table 1). Although calibration
ata was imbalanced optimal selection of inflection points were close to
.5 and did not exhibit the need to correct for the imbalanced setting.

If measured by RMSE and SSmse out-of-bag validation resulted in
lightly inferior model performance for hierarchical models (Table 1)
hile CCC showed opposite conclusion. Comparing the resulting dis-

ributions by D, however, indicated a closer fit for both hierarchical
odels compared to their non-hierarchical counterparts.

.2. Validation of predicted pH value with independent data

Class predictions to assign each location of the independent valida-
ion data set to either Al2O3 or CaCO3 buffer range resulted in no bias
bias ratio close to one). With about 80% percent correct and PSS of
.55 and 0.61 for pH in 0–5 and 60–100 cm, respectively, classification
esulted in satisfactory predictions (Table 2).

None of the final pH models showed a bias (Table 3). The final pre-
ictions combined from three hierarchical models according to Eq. (6)
esulted in somewhat larger RMSE and lower SSmse compared to non-
ierarchical predictions with CCC again showing an opposite trend.
Smse dropped by 2.1 percent points for pH in 0–5 cm and by 2.6 for
H in 60–100 cm.

Distribution of errors was quite different for non-hierarchical and
ierarchical predictions. Overall absolute errors were clearly smaller
or hierarchical predictions with their median being 0.56 for pH in
–5 cm and 0.42 for pH in 60–100 cm. Non-hierarchical models had
edians of absolute errors of 0.68 and 0.64, respectively. Evident from

alidation scatterplots (top row in Fig. 5) some locations were wrongly
ssigned by the first step of the hierarchical modelling. Therefore, there
as a slight increase in very large differences between predicted and
bserved: non-hierarchical models resulted in 17 and 21 locations with
rrors larger than 2 pH units for 0–5 and 60–100 cm while hierarchical
odels had 30 and 37 such large deviations, respectively.

Distributions of hierarchical predictions themselves were closer to
he observed validation data resulting in smaller deviation as measured
y D (7.4 percent points for topsoil and 9.3 for pH in 60–100 cm).
imodal distributions were reproduced much closer if density plots
re compared (Fig. 5, bottom row). Weak bimodal distribution as in
H 0–5 cm resulted in nearly unimodal predictions from a conven-
ional non-hierarchical approach. For stronger bimodal distribution
s observed in 60–100 cm, non-hierarchical predictions resulted in
eak bimodal predictions, but a large number of locations were still
redicted within a pH range that is rarely observed. Overall, hier-
rchical models displayed pH prediction frequencies in pedologically
eaningful ranges, although peaks of bimodal distributions are slightly

hifted towards the median. In addition, upper and especially lower
ails were poorly predicted for any of the approaches.

.3. Validation of prediction intervals

Prediction intervals were evaluated by comparing their nominal
robabilities to their coverage of observed values in the validation
ata set (Fig. 6a–d). Non-hierarchical models predicted intervals that
ere too wide, i.e. too pessimistic, compared to the observed data.
overage was even more pessimistic for the more pronounced bimodal
istributed pH in 60–100 cm soil depth. For a 90%-prediction interval
his results in only 4.3% of the observations being outside the intervals
nstead of the expected 10% (Fig. 6, panel e).

Interval coverage for hierarchical models showed a nearly exact fit
or medium bimodal distributed pH in 0–5 cm and became slightly too
essimistic for pH in 60–100 cm with a coverage of 8.6% for the 90%-
rediction intervals. Fig. 6 (panels e and f) show clear reduction of
ncertainty for pH predicted smaller than 4.5 and a slight reduction for
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Table 1
Optimal model parameters and validation statistics computed with out-of-bag predictions of the data used for model calibration (n: number of calibration locations with observed
pH for given soil depth; 𝑡: threshold to split data set before model fit; �̃�: smoothness to merge predictions/width of sigmoid function; 𝑗0: binarisation threshold/inflection of
sigmoid function; p: number of covariates in the final model; mtry: number of randomly selected covariates to test at each split, given for 3 hierarchical models in order: binary
classification, Al2O3 buffer and CaCO3 buffer range; bias: negative mean error; RMSE: root mean squared error; SSmse : mean squared error skill score aka. R2; CCC: concordance
correlation coefficient; D: Kolmogorov–Smirnov test statistic).

𝑡 �̃� 𝑗0 p mtry bias RMSE SSmse CCC D

pH 0–5 cm (n = 2530) Non-hierar. 50 14 0.132 0.957 0.559 0.692 0.228
Hierarchical 5.25 14.2 0.52 90/15/12 9/4/7 −0.082 0.970 0.547 0.726 0.157

pH 60–100 cm (n = 2357) Non-hierar. 39 11 0.001 1.029 0.550 0.690 0.244
Hierarchical 5.86 12.6 0.48 20/29/20 5/5/2 −0.085 1.057 0.525 0.719 0.191
Table 2
Confusion matrix and validation statistics for binary classification model to divide between Al2O3 and CaCO3 buffer ranges computed for the independent validation dataset. To
convert probability predictions optimal thresholds 𝑗0 were used (pH 0–5 cm: 0.52, pH 60–100 cm: 0.48, see Table 1, n: number of validation locations with observed pH for given
soil depth; bias: bias ratio, with 1 = no bias, <1 = presence of Al2O3 buffer range is underpredicted, >1 = Al2O3 range is overpredicted; PC: percentage correct; PSS: Pierce Skill
Score with −1 = opposite prediction, 0 = random prediction, 1 = perfect prediction).

Predicted buffer range Observed buffer range Bias PC [%] PSS

Al2O3 CaCO3

pH 0–5 cm (n = 354) Al2O3 183 43 1.06 79.4 0.554
CaCO3 30 98

pH 60–100 cm (n = 325) Al2O3 126 37 1.07 80.6 0.615
CaCO3 26 136
Table 3
Validation statistics computed on predictions for the validation dataset not used in any step of model building (n: number of validation locations with observed pH for given soil
depth; bias: negative mean error; RMSE: root mean squared error; SSmse: mean squared error skill score aka. R2; CCC: concordance correlation coefficient; D: Kolmogorov–Smirnov
test statistic).

Bias RMSE SSmse CCC D

pH 0–5 cm (n = 354) Non-hierarchical 0.003 1.017 0.514 0.647 0.232
Hierarchical 0.090 1.038 0.493 0.688 0.158

pH 60–100 cm (n = 325) Non-hierarchical 0.097 1.046 0.529 0.663 0.311
Hierarchical −0.094 1.075 0.503 0.701 0.218
Fig. 6. Top row: Nominal probabilities plotted against the actual coverage of two-sided QRF prediction intervals compared to the independent validation samples (0–5 cm: n =
54, 60–100 cm: n = 325; dashed 1:1-line: ideal interval width where nominal equals actual coverage, solid line above 1:1-line: coverage too large/pessimistic, solid line below
:1-line: coverage too small/optimistic). Bottom row: Ordered predictions (grey circles) of pH in 60–100 cm along with 90%-prediction intervals (vertical grey lines). Observed pH
nside the intervals are plotted by open circles, those outside by red filled symbols.
7
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Table 4
Rating of uncertainties for pH of the validation data set according to GlobalSoilMap Tiers specification (Arrouays et al., 2014a, #: number of observations, %: percentage of
observations of validation data set, rating based on width of 90%-prediction interval smaller than or equal the value give in brackets). .

AAA (≤1) AA (≤2) A (≤3) None (>3)

# % # % # % # %

pH 0–5 cm (n = 354) Non-hierarchical 0 0 6 1.7 35 9.9 313 88.4
Hierarchical 0 0 56 15.8 119 33.6 179 50.6

pH 60–100 (n = 325) Non-hierarchical 0 0 9 2.8 19 5.8 297 91.4
Hierarchical 0 0 54 17.0 82 25.0 189 58.0
ig. 7. Map section of standard non-hierarchical (a) and hierarchical predictions (b) for soil pH in 0–5 cm with colour scale emphasizing on pH values around 5.5, i.e. between
l2O3 and CaCO3 buffer ranges. The section was chosen to illustrate an area with spatially clustered calibration points and larger surfaces away from calibration sites predicted

n intermediate pH range in (a). Validation locations are plotted with grey circles and their observed pH values is given. Arrows 1 to 3 and dashed ellipse are areas referred to
n the text.
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H predicted above 7.5. Within the intermediate pH range uncertainty
emains large also with the two-step approach proposed in the present
rticle.

The more accurate uncertainty prediction results in a substantial
mprovement regarding the so called Tiers according to Arrouays et al.
2014a, thresholds published in Helfenstein et al., 2022, Table A1).
ith standard non-hierarchical predictions the majority (88 and 91%)

f validation observations falls outside of the rating (Table 4). With the
ew approach this ratio can be reduced to 51% for pH in 0–5 cm and
8% for pH in 60–100 cm. AA rating is achieved for 16-17% percent
s compared to 2-3% for the standard predictions.

.4. Mapping of soil pH

As displayed in the density plots (Fig. 5, bottom row) pH in in-
ermediate range (pH 4.5–6) was predicted for much fewer pixels
sing the two-step hierarchical approach compared to a standard non-
ierarchical approach. Fig. 7 shows a detail map section emphasizing
n the differences in the intermediate pH range. Non-hierarchical
redictions (panel a) performed well for areas with locations with
alibration data (arrow 1). In areas with few or no calibration locations
arrow 2) there is a tendency towards an intermediate pH (pH 4.5–6).
he hierarchical predictions (panel b, arrow 2) were able to predict
mall and large pH also further away from calibration data locations.
8
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. Discussion

.1. Accuracy of predictions

Average prediction accuracy measured by SSmse was below the
edian of 0.6 reported by Chen et al. (2022, Fig. 9) for pH mapping

f large areas comparable to this study, but within the full range of
elow 0.1 to above 0.8. The difference between hierarchical and non-
ierarchical approach was only small. RMSE became dominated by
arge errors due to the misclassification of some observations in the
inary model. A similar outcome was observed by Rawlins et al. (2009).
nalogously to the binary model in the present study they used units
f an existing soil map to subsequently fit two models. A substantial
umber of observations were wrongly assigned by the soil map and
esulted in large absolute errors and thus large RMSE (Rawlins et al.,
009).

We are aware that conclusions from comparing density plots as
one in Fig. 5 are possibly biased. Validation data was not represented
y a design-based sample (Brus et al., 2011), but data splitting was
one to best approximate unbiased conclusions. We do not know of
ther studies that benchmarked goodness-of-fit of observed and pre-
icted distribution in digital soil mapping. For Mulder et al. (2016)
nd Helfenstein et al. (2022) it can be implied from their figures that
bserved bimodal distributions were not reproduced by the predictions.

statistic is however not provided. The Kolmogorov–Smirnov test
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statistic D used here was well able to detect deviations located at the
centre of the distribution. It might not be a suitable statistic for all
responses and foci of end-users. Especially to evaluate performance
of predictions towards the tails of a distribution, other goodness-of-
fit statistics like the Anderson–Darling two sample test (Scholz and
Stephens, 1987) are more reliable. While Anderson–Darling test statis-
tic is more sensitive to the tails, it lacks the convenient property of
ranging between 0 and 1.

Figs. 2 and 5 (bottom row) reveal that tails indeed were under- or
over-predicted by all approaches. This seems to be a general problem
of currently used predicting methods (Mulder et al., 2016; Wang et al.,
2019; Roudier et al., 2020). Smoothing behaviour around the lower and
upper margins of response distribution is typically pronounced with
RF when relationships between covariates and responses are rather
weak (Baltensweiler et al., 2021). RF predictions are computed by
averaging twice (mean of observations in terminal tree nodes, then
mean over all trees, Hastie et al., 2009) and are thus applying stronger
smoothing at the tails than other machine learning approaches (Fig. 2).

5.2. Performance of uncertainty quantification

A bimodal or multimodal distribution likely has a larger standard
deviation which then is propagated into predictive distributions ob-
tained by non-parametric bootstrap (e.g. QRF). Helfenstein et al. (2022)
and our study indeed observed too large prediction intervals by not
considering bimodality. By using the presented hierarchical approach
the problem could be removed or at least reduced.

Other studies often reported average coverage of 90% predic-
tion intervals which were accurate (Poggio et al., 2021), too pes-
simistic/large (coverage of 0.94–0.98, Padarian et al., 2017) or too opti-
mistic/small (0.76–0.86, Viscarra Rossel et al., 2015; 0.88–0.9, Mulder
et al., 2016). Not all publications used the same approach to quantify
uncertainty, hence it remains difficult to disentangle the effect of
bimodal response distribution on the reported interval coverage.

5.3. Evaluation of mapped pH patterns

Please note that only few validation samples were available and the
true soil pH remains unknown throughout the largest part of the map.
Moreover, small scale variability is considerably large and given the
observation density presented mapping remains on an overview scale.

The spatial pattern of the hierarchical predictions, however, fol-
lowed closer of what would be expected from a pedogenic point of
view. Large pH values in the lower plains as for example along river
Thur (Fig. 7, arrow 3) are feasible due to weakly weathered recent
alluvial deposits containing carbonates. Hilltops and plateaus in the
displayed map section are often strongly weathered with hardly any
erosion. Hence, small pH values are expected and spatial patterns
at arrow 2 in Fig. 7 appear to be more reliable predicted with the
hierarchical approach (panel b). On steep slopes falling from these
plateaus topsoils have often been eroded and show intermediate pH
or even alkaline conditions on very steep sites. Again, a more differ-
entiated pattern was predicted by the hierarchical approach while the
non-hierarchical predictions were likely not able to identify strongly
eroded areas with large pH above 6. The above mentioned pH patterns
predicted more accurately by the hierarchical approach were confirmed
for Irchel hill marked by an ellipse in Fig. 7 (written communication,
01.2023, construction directorate of Canton of Zurich, detailed survey
from 2018, data not public).

5.4. Applicability of approach

The present study used RF as prediction method, but the devel-
9

oped hierarchical approach is not limited to RF. Any other suitable
prediction method could be implemented if numeric responses can
be modelled and probabilities can be predicted for binary responses.
Moreover, the full predictive distribution needs to be established to
combine uncertainties. If a method does not provide an inherent boot-
strap procedure like QRF, a model-based or non-parametric bootstrap
may be used (Davison and Hinkley, 1997). In addition, all tuning
parameters are estimated from the data, limiting arbitrary choices.

A hierarchical two step approach is a more complex procedure with
larger implementation effort. Three models have to be fitted and three
maps have do be computed for the whole area. Further, three additional
tuning parameters need to be estimated (optimal data split 𝑡, 𝑘 and 𝑗0 of
sigmoid function). Moreover, it makes a bimodal distributed response
a special case. As soil function assessments are based on numerous
soil properties (Greiner et al., 2018) pedometricians often map more
than one soil property for multiple depth (Chen et al., 2022). If each
response needs its own consideration and specific modelling approach,
a substantial increase in workload is imposed. Bayes approaches allow-
ing to insert pedologically informed priors into the model would likely
resolve having multiple models to map one response.

6. Summary and conclusion

We presented a multi-step procedure to reproduce bimodal data
distributions in spatial predictions. Such data is often found for soil pH
and sometimes for soil organic carbon or properties relating to pore
size distribution. For each data culmination of the bimodal response
distribution a separate model is fitted. Another model is needed to
assign each new prediction location to either of the two modes. The
statistical approach for the three models required to be fitted may be
chosen by the data scientist. Some prediction errors might increase,
but overall the additional effort is rewarded by predictions being more
similar to the distribution of the originally observed values. In addition,
narrower and more accurate prediction intervals are to be expected.

The present article lets us conclude:

• Mean summary statistics (e.g bias, SSmse, RMSE) are not be the
sole measures to evaluate the quality of a predicted map. Map
validation should be extended by comparing goodness-of-fit of
observed and predicted distributions.

• Refinement of digital soil mapping should consider specific pedo-
genic characteristics of soil properties resulting in characteristic
data distributions (such as bimodal distributions).

• Additional effort in data analysis and collaboration among statisti-
cians and pedologists are needed to avoid misleading conclusions
by end-users.
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