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Abstract- The inability of pure relational DBMSs to meet the 
new requirements of the applications that have emerged on 
the web has led to the advent of No SQL DBMSs. In the last 
few years, significant progress has been made in integrating 
into relational DBMSs the features that are essential to 
consider those new requirements that primarily concern 
flexibility, performance, horizontal scaling, and very high 
availability. This paper focuses on the features that can enable 
relational DBMSs to provide applications with the flexibility to 
work with various non-relational data models while providing 
the guarantees of independence, integrity, and performance of 
query evaluation. 
Keywords: ANSI/SPARC architecture of the DBMSs’ 
schemata, database design and models, relational data 
model, non-relational data models, virtual databases. 

I. Introduction 
ata models are used in database technology: (1) 
To define the logical structure of the content of a 
database, (2) To provide DBMSs with the 

capability to maintain the integrity of that content, and 
(3) To provide an abstract language for the manipulation 
of that content. 

[1] considers that each data model 
characterizes, using four sets (T, S, O, C) of its own, a 
virtual machine with which the users of the database 
interact, where: T is a set of data types, S is a set of data 
structure types, O is a set of data operation types, and 
C is a set of integrity constraint types. 

Conceptual models (such as UML [2] and the 
entity-relationship model [3]) and the pure relational 
model [4] are those that have been the subject of many 
theoretical studies about their set C. Consequently, 
those data models are the ones that offer the most 
possibilities to guarantee data quality and reliability 
thanks to the simple and complex types of integrity 
constraints contained in C [5-6]. 

In exchange, the pure relational model stores 
data in tabular relations made of rows where each 
column contains an atomic value. While such rigidity is 
very suitable for structured data describing non-complex 
entities in the real world, such rigidity is inappropriate for 
structured, semi-structured, unstructured, or hybrid data 
describing complex entities [5] or for data organized as 
a graph. 
 

   
 

The other commonly used data models are 
alternative models of the pure relational model. Among 
them are [7-10] the nested relational model, the object-
oriented model, the document-oriented model (XML [11] 
and JSON [12], for example), the graph-oriented model, 
the column-oriented model, and the key/value-oriented 
model. Those data models have been introduced in 
database technology with the primary purpose of 
providing greater flexibility than the pure relational model 
thanks to the kinds of data types, data structure types, 
and data operation types contained in T, S, and O, on 
the one hand, for describing the data structure of the 
complex entities and, on the other hand, for handling the 
variability in the data types and the data structure types 
due to data source diversity [9].   

In exchange (see paragraph 3), those data 
models sacrifice data independence and typically 
consider only a subset of the simplest integrity 
constraint types of the pure relational model, such as 
primary, unique, and referential keys. Additionally, some 
of those data models induce other integrity constraint 
types, such as the integrity constraints on the 
materialization of relationships that most DBMSs ignore. 
Those data models, therefore, lead the DBMSs to 
sacrifice the guarantees of independence and integrity. 

The guarantees, other than the guarantee of 
integrity, on which purely relational DBMSs have also 
focused concern: (1) Data independence, (2) 
Confidentiality, (3) Simultaneous access to data, (4) 
Data security after an incident, (5) Performances in 
terms of possibilities of handling high volumes of data 
and in terms of data access speed, (6) The adequacy of 
the access interface for data manipulation according to 
the relational approach. 

After the adoption of those purely relational 
DBMSs, new types of applications with new 
requirements that those purely relational DBMSs are 
unable to satisfy have emerged on the web. 

Indeed [9], to guarantee data consistency and 
to avoid storage anomalies, the primary purpose of the 
techniques used in the design of a pure relational 
database is to eliminate, through a normalization 
process, any possibility of redundancy at the data level. 
For those new types of applications, it is, on the contrary 
essential to use redundancy and distribution to 
guarantee, on the one hand, the availability of the data 
whenever a failure happens and, on the other hand, the 
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horizontal scaling of the services that the DBMSs offer to 
those applications.  

In addition, to avoid the occurrence of 
anomalies generated on the data by the concurrency of 
the execution of the transactions and to ensure that 
recovery is possible whenever an incident occurs, pure 
relational DBMSs provide transactions with a runtime 
environment whose properties ensure ACIDity, i.e., 
Atomicity, Consistency, Isolation, and Durability. When 
the data are duplicated and distributed, DBMSs should, 
instead, provide a runtime environment with properties 
to ensure Consistency (C), Availability (A) for reads and 
writes, and tolerance for Network Partitioning (P). 
Brewer's CAP theorem states that a NoSQL DBMS can 
simultaneously provide only two properties [10]. 

As a result, new types of DBMSs (the object-
oriented DBMSs [8] and the NoSQL DBMSs [9]), purely 
non-relational, have been designed to provide an 
adequate response to the rigidity of the pure relational 
model and those new requirements by relying on the 
alternative data models of the pure relational model and 
by moving away from its strengths in favor of the 
improvement of performances, of the scaling, and of the 
availability. 

Simultaneously, an evolutionary approach has 
also emerged. The ambition of that approach is to 
integrate new features in the relational DBMSs to 
consider the requirements relating to the logical 
structure of databases [13,14] as well as the 
requirements relating to performances, scaling, and very 
high resistance to failures [15,16] while preserving the 
benefits of the pure relational model. 

The guarantees pursued in that evolutionary 
approach concern: (1) Data independence, (2) Flexibility 
to work with various non-relational data models, (3) Data 
consistency, (4) Efficiency of data physical access, (4) 
Application scaling, (6) Availability for read and write 
operations, (7) Resistance to network partitioning 
whenever an outage happens. 

In this paper, we focus on the ANSI/SPARC 
architecture [17] on which that evolutionary approach 
should rely to allow relational DBMSs to offer each 
application the flexibility to work with its preferred non-
relational data model without sacrificing the guarantees 
of independence, integrity, and efficiency of evaluating 
queries on the database. 

The explicit adoption of the restrictions of this 
ANSI/SPARC architecture of the schemata by a DBMS 
leads applications to manipulate a database by relying 
on a non-relational model, whereas the data model used 
to model that database internally is the pure relational 
model. 

Take the view that data mapping means: 
redefining, using another data model, the data 
representation defined by relying on a given data model. 
The contribution of this paper is that it shows that with 
this ANSI/SPARC architecture of the schemata, it is 

possible to implement a process of data mapping that 
allows applications to manipulate a database according 
to the approach they prefer, whereas internally, that 
database is manipulated at the logical and physical 
levels as if it was a nested-relational database, with all 
the resulting benefits on the independence, integrity, 
and query evaluation efficiency guarantees. That 
process of data mapping is performed by relying on a 
relational database organized at the logical and physical 
levels for fast access to the abstract data that describe 
the complex real-world entities and by reusing the 
frameworks developed as part of relational database 
technology, thus preserving the results of investments 
made around that technology since its advent in 1970. 

In the following, we address successively: (1) 
For illustration purposes, the rules commonly used to 
redefine the representation of a database, defined by 
relying on the UML conceptual model, using, on the one 
hand, the pure relational model as described in SQL2, 
and on the other hand, the object-relational and XML 
models as described in SQL3, while focusing on the 
consequences on the integrity of relationships, (2) The 
logic behind the ANSI/SPARC architecture of schemata 
on which evolutionary approaches must rely, (3) The 
mapping of the data that this architecture allows to 
implement at the logical and physical levels, (4) The 
comparison of that architecture where the database 
used at the logical level is modeled using the pure 
relational model to architectures where it is modeled 
using an extended relational model, XML, JSON, or a 
data model that leads to a logical implementation using 
the nested relational model. 

II. RULES FOR TRANSFORMING A CONCEPTUAL 

SCHEMA INTO A RELATIONAL LOGICAL SCHEMA 
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Fig.1 outlines the essential rules commonly 
used to derive a relational logical schema from the UML 
conceptual schema of a database [18]. In those 
derivation rules, the materialization of the relationships 
of the conceptual schema and the materialization of the 
deductible integrity constraints of their cardinalities, as 
well as the materialization of inheritance relationships, 
are carried out using foreign keys whose semantics 
allow the DBMSs to ensure the data integrity as defined 
by the conceptual schema.

In those rules, foreign keys are underlined and 
marked with the symbol "*" when they must respect the 
unique integrity constraint or the symbol "+" otherwise.

A relational logical schema derived from those 
rules describes the perception that enables database 
manipulation according to the relational approach and 
the perception required to guarantee data indepen-
dence and integrity.



III. Rules for Transforming a Conceptual Schema into an Object-Relational or XML 
Logical Schema 

 

 
 

 

Fig. 1: Main Rules for Transforming a UML Conceptual Schema to a Relational Logical Schema 

In those rules of Fig. 2: 

1. "Ri (ria, rib, ...)" should be interpreted as denoting an 
object-relational table named "Ri" characterized by 
its atomic, composed, or relation-valued attributes 
named "ria, rib, ... ". 

2. "RiTuple (ria, rib, ...)" should be interpreted as 
denoting a composed attribute characterized by its 
atomic, composed, or relation-valued attributes 
named "ria, rib, ... ". 

3. "RiTupleSet (ria, rib, ...)" should be interpreted as 
denoting a relation-valued attribute containing a set 
of tuples characterized each by its atomic, 
composed, or relation-valued attributes named "ria, 
rib, ... ". 

4. "RiRef" should be interpreted as denoting an atomic 
attribute containing a reference to an object of the 
object-relational table "Ri", i.e., a logical pointer to 
that object. 

5. "RiRefSet (:RiRefType)" should be interpreted as 
denoting a relation-valued attribute containing a set 

of references to the objects of the object-relational 
table "Ri", i.e., a set of logical pointers to those 
objects, where the type of those logical pointers is 
denoted by "RiRefType". 

6. "rik*" should be interpreted as denoting a foreign 
key corresponding to the primary key of the table 
"Ri" that respects the uniqueness integrity constraint. 

7. "rik+" should be interpreted as denoting a foreign 
key corresponding to the primary key of the table 
"Ri" that does not respect the uniqueness integrity 
constraint. 

8. "RiRefSet (rik)" should be interpreted as denoting a 
relation-valued attribute containing a set of tuples 
where each tuple contains a value of the foreign key 
"rik" corresponding to the primary key of the table 
"Ri". 

The rules based on foreign keys are applicable 
for deriving an XML logical schema from a conceptual 
schema, as defined in SQL3 [14], by considering that 
the tags of the XML elements and attributes have been 
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The main rules [18], based on the semantics of the new concepts of SQL3 [13], for transforming a UML 
conceptual schema into an object-relational schema are defined in Fig.2. Rules that involve logical pointers are 
surrounded. Those rules are intended to facilitate the manipulation of the database according to the object-oriented 
approach.



omitted for each XML document. In addition, it should 
also be considered that for an object-relational table 
named "Ri", the type of an attribute can be XMLTYPE 
and thus contain an XML document stored (as an 
atomic value) with all its tags in the binary format of XML 

and managed using the technology of the document-
oriented DBMSs. Therefore, in an object-relational table, 
the content of an object or attribute can be, respectively, 
an XML document shredded in several attributes, or an 
XML document stored in a single attribute. 

 

Fig. 2: Main Rules for Transforming a UML Conceptual Schema to an Object-Relational or XML Logical Schema 

Those rules depict that the object-relational 
model and the XML model give the possibility of 
materializing each relationship by a set of pairs of 
unidirectional semantic links where in each pair, each 
link must be the inverse of the other, despite that the 
semantics of the concepts used, namely the concepts 
of logical pointer and foreign key, does not say how 
DBMSs should do to ensure the integrity of those links. 

Furthermore, the data’s logical structure based 
on the object-relational and XML models arises from 
design decisions that depend on both the data’s 
semantics and the ways the user’s applications intend 
to process those data but not only on the data’s 
semantics, as for data’s logical structure based on the 
relational model. After a change in the hierarchical 
structure of the data in the logical schema, the 
developer may be forced to modify the application logic 
accordingly [19]. 

IV. The Logic Behind the Architecture 
of the Schemata in the Evolutionary 

Approach 

Fig. 3 schematizes the ANSI/SPARC architecture 
of the schemata on which evolutionary approaches 
should rely. One of the key features of that architecture 
is that it forces to decouple, on the one hand, the 
description concerning the perception that aims at 

facilitating data manipulation by applications and, on the 
other hand, the description of the perception induced by 
the database used internally for ensuring independence 
and integrity. 
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Fig. The ANSI/SPARC Architecture of the Schemata, Which Provides Integrity and Independence Guarantees 

Since the pure relational model is the one where 
T, S, O, and C offer the most possibilities to guarantee 
independence and integrity, that architecture leads to 
doing so that the perception induced by the database 
used internally to ensure independence and integrity 
can only be described using a pure relational logical 
schema. 

As for the perception that aims to facilitate the 
manipulation of the database by an application, that 
architecture makes it only possible to describe that 
perception by relying on an external logical schema and 
using a data model where T, S, O, and C offer the 
required flexibility to model and manipulate the 
database used internally according to the approach that 
the application prefers, regardless of the possibilities 
provided by C. 

Depending on the query, data manipulated by 
that application according to its preferred approach are 
determined dynamically and efficiently (see paragraphs 
6 and 8) from the data stored in the pure relational 
database used internally to guarantee independence 
and integrity. 

That ANSI/SPARC architecture of the schemata 
then leads to data mappings at the logical and physical 
levels. Those data mappings are required: (1) when 
designing the relational overall logical schema of the 
database, (2) when designing a physical database, (3) 
when designing the external logical schema of an 
application, (4) and when generating and optimizing the 
logical execution plan of a query. 

V. Data Mapping in the Design Process 
of the Overall Relational Logical 

Schema 

The overall relational logical schema that 
defines a database used internally intended to be 
manipulated according to non-relational approaches 
can be derived simply from an overall conceptual 
schema by bringing out in that conceptual schema the 
whole-part relationships arising from the perception of 
the real-world’s complex entities. For each real-world’s 
complex entity denoted by "E1", all the other entities 
whose existence of their instances depends on an 
instance of “E1" must be identified by relying, as 
proposed in [3], on the concept of "existence 
dependency" of one entity on another and the concepts 
of "regular” (entity/relationship) and "weak" (entity/ 
relationship). 
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 3:

Let's take the real-world’s entities "Employee" 
and "Child" as examples. Each instance of "Child" 
depends on the existence of one instance of 
"Employee". Therefore, the entity "Child" is a weak entity. 
In an overall relational logical schema derived from an 
overall conceptual schema, the tabular relations derived 
from the existence dependency of "Child" on "Employee" 
must be "Employee (E-no, E-name, E-age, …)' and 
"Child (E-no+, Child-name, Child-age, …)' where "E-no" 
in the tabular relation denoted by "Child" is a foreign key. 
Notice that in Fig.1, this is a variant of the first of the two 
transformation possibilities defined by rule b, where the 



foreign key is part of a primary key. That rule allows us 
to describe, in the relational logical schema, the data 
about each complex entity of the real world using a 
hierarchy of tabular relations linked by foreign keys, 
where each abstract data that describes one instance of 
that complex entity must be stored in a hierarchy of rows 
distributed in those tabular relations. 

The purpose of that rule, which says how to 
map each instance of a complex entity in the relational 
database used internally, is to result, as described in the 
next paragraph 6, in a physical organization of that 
database, which can guarantee fast access to each 
abstract data that describes an instance of a complex 
entity. 

VI. Data Mapping in the Design Process 
of the Physical Database 

 
To achieve this, the two leading families of 

techniques developed within the framework of the pure 
relational DBMSs for the data physical storage 
structures on the disks can be reused and improved, 
i.e., physical clustering and indexes. 

a) Physical Clustering 
The main choices, which can make fast 

physical access to each abstract data describing one 
instance of a complex entity, are: 

1. Creating a table cluster for each regular (entity/ 
relationship) defined in the conceptual schema. The 
role of such a cluster is to group all the tabular 
relations connected by foreign keys, where the 
abstract data about the instances of that regular 
(entity/relationship) must be stored. 

2. Storing each abstract data made of a hierarchy of 
rows (scattered across those tabular relations) in 
one or more contiguous pages of that cluster. That 
storage renders unnecessary the need to perform 
join operations for grouping those rows, which 
reduces to a strict minimum the average time to 
access all or part of each complex abstract data.   

3. Implementing logically and physically those table 
clusters using the nested relational model [7]. The 
main benefit of that implementation is that this data 
model expands the sets T, S, and O of the relational 
model to overcome its limitations. As a result, this 
data model allows: (i) to describe each complex 
entity of the real world using a not decomposed 
complex abstract data (defined as a whole-part), (ii) 
to define a simple nested expression to recursively 

apply the selection and projection operators to 
attributes nested at any level in the structure of that 
abstract data, (iii) to simplify that nested expression 
logically, and (iv) to evaluate, at the lowest possible 
cost, the resulting optimized nested expression, 
without any join operations. 

When evaluating a query, those choices allow 
us to manipulate logically the database used internally 
as if it was a nested relational database where each 
table cluster is represented using a single nested 
relational table where the content of each row is a 
logical implementation of an abstract data stored in a 
hierarchy of rows of the tabular relations of the relational 
database, with all the benefits resulting in terms of 
performance. 

To physically store in one or more contiguous 
pages of a cluster one abstract data consisting of a 
hierarchy of rows distributed in the tabular relations of 
that cluster and logically implemented in a row of a 
nested relational table representing that cluster, it is 
possible to logically group those rows in a data structure 
corresponding to a tree-like data structure having the 
same hierarchical organization as that hierarchy of rows, 
by following the data organization rules of the nested 
relational model. In doing so, each node of that tree 
must contain the pointers to its parent, children, and 
siblings and the corresponding row in this hierarchy of 
rows. This leads to a physical implementation (based on 
the nested relational model) of each abstract data about 
an instance of a complex entity in one or more 
contiguous pages. 
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The primary purpose of the design process of a 
physical database is to make explicit how each abstract 
data describing the instance of one complex entity 
should be organized and stored on the physical storage 
device to make physical access to that abstract data 
fast. As we saw in paragraph 5, each abstract data is 
stored in a hierarchy of rows distributed in tabular 
relations connected by foreign keys.

Fig. 4.a contains as an example the conceptual 
schema, defined using the entity-relationship model [3], 
of a complex regular entity denoted by "rx" on which 
depend the weak entities denoted by "ry", "rz", and "rw".

The schemata of the tabular relations of the 
cluster, required for storing the abstract data about the 
instances of that entity "rx", are ' rx (A), ry (A+, B), rz 
((A, B)+, C), rw (A+, D, E)'. As for the schema of the 
nested relational table that represents that cluster 
according to the syntax proposed in [7], it can be 
defined as follows: rx (A, ry (B, rz (C)), rw (D, E)).

Fig. 4.b schematizes, as an example, in one 
page of that cluster, the data layout of one abstract data 
about an instance of that entity "rx". This figure depicts 
that this instance of that complex entity "rx" is described 
by a hierarchy of rows consisting of one row from the 
tabular relation "rx", two rows from the tabular relation 
"ry", three rows from the tabular relation "rz", and two 
rows from the tabular relation "rw", connected by foreign 
keys. This figure also depicts that those rows are stored 
in a tree-like data structure according to the rules of the 
nested relational model. Each node contains a row 
consisting of atomic columns, subsets of pointers to 
child nodes where each subset corresponds to a 
relation-valued column, and pointers to the parent node 



 

 
access using an index to all or part of one abstract data 

stored inside a page within a tree-like data structure can 
be achieved, on the one hand, by creating a dictionary 
of table clusters containing, for each table cluster, the 
identifier of each table of that cluster, the type of that 
table (regular or weak), and its primary key, and

 
on the 

other hand, by allocating, in the header of each page, 
an entry for each row within that page containing the 
identifier of the concerned table, the value of the primary 
key of that row, and its beginning address within that 
page.

 
 

 

 
Fig.4:  Illustration of the Storage Structure in a Disk Page of Data about a Complex Entity Stored Logically in a 

Relational Database

b) Indexes 
Depending on a query complexity on a virtual 

database, its evaluation in an efficient way may require 
at the physical level to access the tabular relations 
where data are stored by following combinable different 
approaches: 
1) A sequential approach allowing to traverse the rows 

of a tabular relation in a predetermined order. 
2) An associative approach allowing access in a 

tabular relation to a set of rows qualified by the 
values of a subset of columns. 

3) A navigational approach, allowing navigation from 
one row of a tabular relation towards rows in other 
tabular relations related in some way. 

4) An approach, path expression oriented, allowing for 
each given path "Ti.a1.a2….an. x", derived from a 
hierarchy of class (or user-defined structured type) 
attributes, as that hierarchy is defined in [20], to 
determine either the set of rows of the tabular 
relation "Ti" or the set of the instances (either partial 
or not) of that path, related in the two cases to a 
given value of the attribute "x". 

At the physical level, many techniques for 
creating access paths to tabular relations have been 
defined to fulfill those needs. The best known are join 
indexes [21] (essential for dynamically materializing 
relationships of complex entities or for performing table 
cluster joins efficiently), pointer chains [22], secondary 
indexes based on B+ trees [23] and dynamic hashing 
[24-25], and bitmap indexes [26]. 

An expression of the nested relational algebra 
derived from a query (as that derivation is described in 
paragraph 8) can be executed efficiently thanks to, on 
the one hand, the physical organization of the database 
described in this paragraph, and on the other hand, 
extended frameworks of the relational DBMSs. 
VII. Data Mapping in the Design Process 

of the External Logical Schema of 
an Application 

When a DBMS adheres to the ANSI/SPARC 
architecture of schemata, which is schematized in Fig.3, 
the key role of the external logical schema of each 
application is to define a virtual database to allow that 
application to work with the data model it prefers. That 
virtual database is defined by creating, using a user-
defined structured type, a custom-typed view for each 
regular (entity/relationship) defined in the conceptual 
schema, by following the derivation rules of Fig. 2. 

To make it possible to manipulate that virtual 
database as if it was a nested relational virtual 
database, each of those typed views must be redefined 
using a schema that extends the schema of the nested 
relational table representing the cluster created at the 
physical level for the corresponding regular (entity/ 
relationship). The extension of that schema is carried out 
by adding the necessary attributes for the materialization 
of relationships. 
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Physical storage of the rows of the relational 
database used internally inside the pages of the 
physical storage devices by following that approach is 
an improvement of the traditional approach. In that 
approach, rows are not stored only sequentially 
(ordering them or not). Rows are also logically 
organized within the pages in terms of tree-like data 
structures for rows that concern complex abstract data 
and linear data structures for rows that concern the 
same tabular relation.

The indexing of a tabular relation as well as 

Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models



Each cluster can therefore be considered as 
being the materialization of a typed view without the 
materialization of the relationships defined in the 
conceptual schema. 

Consequently, the instances of a typed view in a 
virtual database do not have real existence as in the 
typed tables of a non-relational database. Those 
instances are derived dynamically from the tabular 
relations of the relational database used internally to 
ensure independence and integrity by relying on the 
data physical organization that results from using cluster 
and index concepts to make required computing fast. 

More concretely, the data mapping in the 
design process of an external logical schema of an 
application is carried out by the database’s 
administrator through the SELECT statements defining 
the typed views of the virtual database of that 
application. The SELECT statement defining a typed 
view must indicate how each instance of that typed view 
should be calculated dynamically using the relevant 
data stored in the relational database used internally for 
ensuring data independence and integrity. The role of 
triggers associated with a typed view must be to 
dynamically support the update operations of the 
instances of that typed view ("INSERT", "UPDATE", 
"DELETE") when the means put in place do not allow the 
DBMS to provide that support because this involves 
several tabular relations. 

To facilitate the work of the databases’ 
administrators, DBMS providers should instead consider 
offering the following possibility: indicating equivalently 
using new clauses or annotations in specification 
statements of the user-defined structured types, how for 
each user-defined structured type the value of each 
attribute of its instances must be calculated from the 
data stored in the relational database used internally for 
ensuring data independence and integrity, mainly 
concerning the relationships materialization. When 
evaluating a query formulated on a virtual database, the 
information contained in those specifications must 
provide the DBMS with the same possibilities as the 
SELECT statements and triggers associated with the 
typed views of that virtual database. This kind of 
approach for the definition of data mapping is followed, 
for example, in the object-relational mapper of Hibernate 
[27] and for storing shredded XML documents into 
object-relational tables [30] or relational tables [31]. 

For short illustrative purposes, by relying on a 
subset of rules presented in paragraphs 2 and 3, this 
can be achieved by specifying, for example. 

1. For each user-defined structured type "R1" 
concerned: the type of the corresponding entity or 
relationship (regular or weak) in the conceptual 
schema, the name of the main table "T1p" of the 
overall relational logical schema, which is used for 
the derivation of its instances. 

2. For each atomic-valued attribute "ai" of that user-
defined structured type "R1", whose type is a basic 
scalar type: the name of the column corresponding 
to it in the main table "T1p". 

3. For each atomic-valued attribute "ai" of that user-
defined structured type "R1", which is used to 
materialize a "1-1" relationship between "R1" and 
"R2" and whose type is a logical pointer type 
"R2RefType": the type of the relationship concerned, 
the name of the main table "T2p", which is used for 
the derivation of the instances of the structured type 
"R2", the name of the foreign key in "T1p", which 
refers to the main table "T2p" and which is used to 
calculate the value of that attribute "ai" 
corresponding to a logical pointer to an instance of 
"R2". 

4. For each atomic-valued attribute "ai" of that user-
defined structured type "R1", which is used to 
materialize an "N-1" relationship between "R1" and 
"R2" and whose type is a logical pointer type 
"R2RefType": the type of relationship concerned, the 
name of the main table "T2p", which is used for the 
derivation of instances of the structured type "R2", 
the name of the foreign key of "T1p", which refers to 
the main table "T2p" and which is used to calculate 
the value of that attribute "ai" corresponding to a 
logical pointer to an instance of " R2". 

5. For each relation-valued attribute "ai" of that user-
defined structured type "R1", which is used to 
materialize a "1-N" relationship between "R1" and 
"R2" and whose type "R2RefSetType" is a collection 
type of values of logical pointers: the type of 
relationship concerned, the name of the main table  
"T2p", which is used for the derivation of the 
instances of the structured type "R2", the name of 
the foreign key in "T2p", which refers to the main 
table "T1p" and which must for each instance of  
"R1" be used for the derivation of the value of that 
attribute "ai"  corresponding to a collection 
consisting of logical pointers to the instances of 
"R2",  which point back to that instance of "R1". 

6. For each relation-valued attribute "ai" of that user-
defined structured type "R1", which is used to 
materialize a "1-N" relationship corresponding to a 
composition relationship between "R1" and "R2" and 
whose type "R2TupleSetType" is a collection type of 
the instances of the structured type "R2": the type of 
the relationship concerned, the name of the main 
table "T2p", which is used for the derivation of the 
instances of the structured type  "R2", the name of 
the foreign key in "T2p", which is part of its primary 
key and which refers to the main table "T1p" and 
which must for each instance of "R1" be used to 
calculate the value of that attribute "ai" 
corresponding to a collection consisting of the 
instances of the structured type "R2"  linked to that 
instance of "R1". 
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7. For each relation-valued attribute "ai" of that user-
defined structured type "R1", which is used to 
materialize an "N-M" relationship between "R1" and 
"R2" (using the user-defined structured type "R3") 
and whose type "R3RefSetType" is a collection type 
of values of logical pointers: the type of the 
relationship concerned, the names of the main 
tables "T2p" and "T3p", which are used for the 
derivation of the instances of the structured types 
"R2" and "R3", the name of the foreign key in "T3p" 
being part of its primary key, which refers to the 
main table "T1p", as well as that of the foreign key in 
"T3p" being part of its primary key, which refers to 
the main table "T2p", which both must be used for 
each instance of "R1" to calculate the value of that 
attribute "ai"  corresponding to a collection 
consisting of the logical pointers to the instances of 
"R3", which point back to that instance of "R1". 

This approach gives the DBMS the capability to 
play its role fully. 

1. By ensuring the consistency of those specifications 
when creating a user-defined structured type in its 
catalog.  

2. By ensuring, when creating each typed view, the 
automatic generation of the nested expression, 
which calculates the instances of its structured user-
defined type from the tabular relations of the overall 
relational logical schema (including for each 
relationship concerned the calculation of its 
semantic links by ensuring that each link has an 
inverse link).  

3. By ensuring, when executing the update operations 
of the instances of a typed view ("INSERT", 
"UPDATE", "DELETE")), the transformation of those 
operations into processes of updating the tabular 
relations from which those instances are derived. 

VIII. DATA MAPPING WHEN GENERATING AND 

OPTIMIZING QUERY LOGICAL EXECUTION 

PLAN 

Paragraphs 6 and 7 showed that it is possible at 
the logical and physical levels to represent a virtual 
database (defined by the external logical schema of an 
application) using the nested relational model. This 
paragraph shows how that possibility enables fast 
execution of queries formulated on that virtual database. 
Formulating a SQL query for dynamic calculation of the 
instances of a typed view, as described in paragraph 7, 
may require using the various possibilities that SQL 
offers for nesting other queries, particularly in the 
SELECT clause but also in the FROM and WHERE 
clauses [28]. 

As [32] shows, DBMSs can represent this kind 
of SQL query containing nested queries by an 
expression of the nested relational algebra that defines 
a logical execution plan that uses tabular relations. 

Conceptually, each instance of a typed view calculated 
using this kind of expression of the nested relational 
algebra can be manipulated as if it was stored in a 
nested relational table, even though the value of each of 
its attributes is determined dynamically from values 
contained in the tabular relations used internally to 
ensure independence and integrity guarantees.  

Depending on its type, by applying the 
transformation functions provided for this purpose to the 
value of each attribute determined dynamically, those 
instances of a typed view can be perceived and 
manipulated by the developer as structured abstract 
data corresponding either to objects or to XML 
documents, for example. 

Consider as an example the SQL statements in 
row 1 of Table 1 about the creation in the catalog of an 
Oracle DBMS [28] of the tabular relations 
"CUSTOMERS" and "ORDERS", corresponding to 
regular entities. 

The SQL statements [29] for creating the 
object-relational typed view "CUSTOMERS_VOR" on the 
regular entity "CUSTOMERS" can be defined as in row 2 
of Table 1. 

The expression in row 3 of Table 1 is a nested 
expression derived for illustrative purposes from the 
SELECT statement that defines that typed view. 

That expression is a logical execution plan for 
dynamically calculating all objects in the typed view 
named "CUSTOMERS_VOR". It calculates each instance 
of that typed view so that that instance can be perceived 
as if it was stored in a nested relational table. The values 
of the atomic-valued attributes named "CUSTNO" and 
"CUSTNAME" of that instance are defined as being the 
values of the columns having the same name in a row 
about a customer in the tabular relation named 
"CUSTOMERS". As for the value of its relation-valued 
attribute named "CUSTORDERS", it is defined as the 
result of projecting on column "ORDERNO" all the rows 
about that customer, selected in the tabular relation 
"ORDERS". 

Each instance calculated using that expression 
is matched to an object of the typed view 
"CUSTOMERS_VOR" simply by applying the ORACLE 
transformation function "MAKE_REF()" to each element 
of the relation-valued attribute named "CUSTORDERS". 

Each query formulated using the data 
manipulation language of the data model used to 
describe a virtual database can be translated by the 
kernel of the DBMS to a logical execution plan based on 
nested relational algebra, using techniques comparable 
to those developed for standard SQL. 

For example, consider the query in row 4 of 
Table 1 formulated using the extended SQL language of 
the object-relational model on the virtual database 
containing the typed view "CUSTOMERS_VOR". 

The expression in row 5 of Table 1 is an 
optimized expression of the nested relational algebra 
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derived from that query that uses only the typed views of 
that virtual database. 

The substitution in that expression of 
"CUSTOMERS_VOR", which denotes the name of a 
typed view of that virtual database, by the expression in 
row 3 of Table 1, which represents the SELECT 
statement of that typed view, leads to the expression in 
row 6 of Table 1, which uses only the tabular relations of 
the relational database used internally. 

Simplifying that expression results in the 
expression of row 7 of Table 1, which corresponds to 
the optimized logical execution plan of the initial query, 
generated by considering the internal representation in 
tabular relations of the abstract data perceived and 
manipulated by the developer in his query as being 
objects. 

IX. RELATED
 
WORK

 
We exclude from the scope of our analysis the 

object-relational mapping [27] that the deployment 
technologies of the web applications perform, outside 
the DBMS, to ensure, from a program, the persistence 
of the objects in a relational database. That very popular 
data mapping is a functionality of those technological 
offerings and not of the technology of the databases. 
Non-relational databases are intended to render 
obsolete the need for this mapping which is detrimental 
to performance.

 The following compares the architecture of the 
schemata of Fig.3, where the model at the logical level 
is the pure relational model, to four broad categories of 
architectures where the model at the logical level is: (i) 
an extended relational model where in the tables the 
relation-valued columns contain nested tables, (ii) an 

 

 

  

 
 

types required by different applications is an uphill task.

 

The second school developed recently at the 
same time as NoSQL DBMSs. In that school, the 
database is modeled at the same time as the design of 
an application by relying on a flexible data model, such 
as the document-oriented model, to consider the 
specific needs of that application in terms of data 
organization as soon as they appear or are

 

challenged. 
That school is best suited for an application when 
handling the variability in data types and data structure 
types is an uphill task.

 
 

extended relational model where in the tables the 
relation-valued columns contain XML documents or 
JSON documents, (iii) XML or JSON, (iv) leads to a 
logical implementation using nested relational tables.

In our comparison, we focus on the following 
three aspects: (i) the guarantee of independence, (ii) the 
guarantee of integrity, (iii) and the guarantee of 
performance when evaluating a query on the database.

a) The Guarantee of Independence
The approaches to designing a database 

commonly used are based on two major schools of 
thought.

In the first stage of the oldest school, the 
database is modeled independently of the individual 
perception of applications. In this first stage, the 
designer’s primary objective is to define, using a 
conceptual model, the perception of the actors of the 
enterprise independently of any technological choice. 
That school is best suited when integrity is a 
fundamental requirement and handling the difference 
between data types and data structure 

Table 1: Examples of Paragraph 8 for Illustrating the Transformation of a Query to a Logical Execution Plan

1 CREATE TABLE CUSTOMERS (CUSTNO NUMBER (5) PRIMARY KEY, CUSTNAME VARCHAR2 (30) NOT NULL) ;
CREATE TABLE ORDERS (ORDERNO NUMBER (8) PRIMARY KEY, ORD_CUSTNO NUMBER (5) NOT NULL 
REFERENCES CUSTOMERS (CUSTNO)) ;

2 CREATE TYPE CUSTOMER_T ; 
CREATE OR REPLACE TYPE ORDER_T AS OBJECT (ORDERNO NUMBER (8), ORDERCUST REF CUSTOMER_T) ;
CREATE OR REPLACE TYPE ORDER_T_LIST AS TABLE OF REF ORDER_T ;
CREATE OR REPLACE TYPE CUSTOMER_T AS OBJECT (CUSTNO NUMBER (5), CUSTNAME VARCHAR2 (30),
CUSTORDERS ORDER_T_LIST) ;
CREATE OR REPLACE FORCE VIEW CUSTOMERS_VOR OF CUSTOMER_T
WITH OBJECT IDENTIFIER (CUSTNO)
AS SELECT c.CUSTNO, c.CUSTNAME,
                   CAST (MULTISET (SELECT MAKE_REF (ORDERS_VOR, o.ORDERNO)

                               FROM ORDERS o WHERE o.ORD_CUSTNO = c.CUSTNO) AS ORDER_T_LIST)
                   AS CUSTORDERS
      FROM CUSTOMERS c ;

3 π [CUSTNO, CUSTNAME, π [ORDERNO] (σ[ORD_CUSTNO = CUSTNO] (ORDERS)): CUSTORDERS](CUSTOMERS)
4 SELECT c.CUSTNO, c.CUSTNAME FROM CUSTOMERS_VOR c WHERE c.CUSTNO = 100;
5 π [CUSTNO, CUSTNAME] (σ[CUSTNO =100] (CUSTOMERS_VOR))
6 π [CUSTNO, CUSTNAME] (σ [ CUSTNO=100] (π [CUSTNO, CUSTNAME, π [ORDERNO] (σ[ ORD_CUSTNO=CUSTNO] 

(ORDERS)): CUSTORDERS] (CUSTOMERS)))
7 π [CUSTNO, CUSTNAME] (σ[CUSTNO=100] (CUSTOMERS))
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  The architectures of categories (i), (ii), (iii), and (iv). 
Data mapping is typically accomplished in two 

steps within those architectures. 
 In the first step, data mapping consists of 

deriving the perception that facilitates the manipulation 
of the database according to the preferred non-
relational approach from the conceptual schema or the 
kind of use case concerned. The designer’s primary 
objective is to meet the requirements of developers by 
eliminating the drawbacks that arise from impedance 
mismatches and by adapting the data logical structure 
to how the processing is conducted.

 In this first step, the way the database can be 
perceived and manipulated is captured using user-
defined structured types that allow the information 
system to be perceived as being made of abstract data 
describing instances of complex entities in the real 
world, optionally by using flexible schemata, easy to 
modify.

 In the second step, data mapping consists of 
deriving from the user-defined structured types a 
storage structure for a logical implementation

 
of the 

instances of those user-defined structured types that 
can facilitate a physical implementation on the storage 
devices. 

For architectures where the model at the logical 
level is an extended relational model, XML or JSON, this 
amounts in the first step to defining a non-relational 
logical schema and in the second step to implementing 
each non-relational table using a set of tabular relations 
where all columns are atomic-valued, optionally by 
storing in a binary format the XML and JSON 
documents. As in

 
the architecture of Fig.3, this amounts 

to storing the data about each instance of a complex 
entity in several tabular relations connected by foreign 
keys. As a result, this makes it possible to reuse the 
frameworks of the pure relational DBMSs for query 
optimization and evaluation. When XML and JSON 
documents are stored in binary format, it is also 
possible to rely on a hybrid system that integrates the 
required features for modeling the complex data 
concerned according to the approach of the second 
school.

 For architectures where the model at the logical 
level leads to a logical implementation using nested 
relational tables, this comes down in the first step to 
defining a non-relational logical schema that meets the 
developers' requirements and in the second step to 
derive a nested relational database from that non-
relational logical schema.

 Therefore, in those architectures
 
of categories 

(i), (ii), (iii), and (iv), the logical schema of the database 
always stems from the perception required for a 
particular application

 
and can make it more complex for 

another application to manipulate that database.
 

 

 

 

 
b)

 

The Guarantee of Integrity

 

Among the architectures considered in this 
paragraph, the most common are those of categories 
(i), (ii), and (iii) that implement SQL3 and those of 
category (iii) used by document-oriented NoSQL 
DBMSs.  Those architectures do not allow to guarantee 
the integrity of relationships defined in conceptual 
schemata when those relationships are materialized 
using pairs of semantic links where in each pair, each 
link must be the inverse of the other. The reason for that 
significant drawback is that the semantics of the 
concepts used for materializing those relationships, 
namely the concepts of foreign key and logical pointer, 
do not indicate how DBMSs can guarantee the integrity 
of those relationships. To overcome that shortcoming, 
the architecture presented in that paper materializes 
those relationships in a virtual database. The resulting 
calculation is achieved (using rules that can be 
predefined and played by the DBMSs) using relevant 
data from the relational database used internally to 
ensure independence and integrity. The alternatives are: 
(i) either to materialize each relationship using in the 
logical schema two functions, such as each is defined 
as the inverse function of the other [8], (ii) or to define 
and implement path constraints [33].

 

Furthermore, the set of types of simple and 
complex integrity constraints that may be defined in a 
pure relational logical schema is a superset of each set 
of the types of integrity constraints that can be defined 
in a logical schema of an architecture of the categories 
(i), (ii), (iii), and (iv). One of the main benefits of the 
architecture of Fig.3 is that it allows the designer to 
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The architecture where the database is modeled 
internally using the relational model.

As far as this architecture is concerned, it is 
instead the derivation of the database used internally 
that is carried out first from the conceptual schema 
before the derivation for each application of the 
perception that facilitates the manipulation of that 
database according to the required approach. The 
primary goal is to define, regardless of the individual 
perception of the applications, the data logical 
organization, the integrity constraints, and the data 
physical organization that can guarantee fast access to 
each abstract data that describes one instance of a 
complex entity in the real world. It is more in line with the 
key objective of the ANSI/SPARC architecture of the 
schemata, which is to allow DBMSs to provide data 
independence guarantees. As a result, compared to 
architectures where the data model used internally is an 
extended relational model, XML, or JSON, that 
architecture ensures greater data independence.
Additionally, that architecture allows partitioning the 
database into datasets, for which the best school for the 
design can be considered independently. 

define the custom view of an application by relying on 
any data logical model on which the architectures of the 
categories (i), (ii), (iii), and (iv) rely and by enforcing 



 
 

 

 
 

 

 
 

 

 

 

 

X.

 

CONCLUSION

 

In this paper, we focused on the features that 
should be built into relational DBMSs so they can 
provide applications with the flexibility to work with the 
non-relational data model they prefer without sacrificing 
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types of integrity constraints that this data logical model 
does not consider thanks to the overall relational logical 
schema of Fig. 3. For some use cases, this is an 
alternative to extending the set C of the non-relational 
data logical models with complex integrity constraint 
types that are difficult to express and enforce.

c) The Guarantee of Performance when Evaluating a 
Query on the Database

One of the main benefits of the schemata 
architecture of Fig. 3 is that it allows applications to 
manipulate the data according to the approach they 
prefer, whereas internally, that data is manipulated at the 
logical and physical levels as if it were stored in nested 
relational tables. In other words, this allows at the logical 
and physical levels to manipulate as efficiently as 
possible the data that describe the complex entities in 
the real world as if they have not been broken down and 
distributed in tabular relations.

It should be noted, however, that for the 
architectures where the model at the logical level is the 
pure relational model, an extended relational model, 
XML, or JSON, when the XML or JSON documents are 
stored internally in the binary format, the resulting 
performance benefits are those recognized for 
document-oriented DBMSs such as MongoDB.

The architectures where the model at the logical 
level leads to a logical implementation using nested 
relational tables make it possible to use nested relational 
algebra for better logical optimization of queries. Those 
architectures also lead to an implementation of the 
nested relational tables on the storage devices by 
storing each row of those tables (corresponding to one 
abstract data describing an instance of a complex 
entity) in one or more contiguous pages using a format 
close to that of the nested relational model.  This 
ensures efficient query evaluation but requires 
implementing a new manager of abstract data (i.e., a 
new complex storage engine) responsible for providing 
an interface for manipulating those complex abstract 
data at the logical level and managing their physical 
storage using clustering techniques.

guarantees of independence and integrity, as well as the 
guarantee of query performance. One of the most 
critical aspects of the features that have been integrated 

into the relational DBMSs in recent years to meet the 
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