
© 2023. Joachim Tankoano. This research/review article is distributed under the terms of the Attribution-NonCommercial
NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this article if parts of
the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: H
Information & Technology
Volume 23 Issue 2 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

By Joachim Tankoano
 University of Joseph Ki-Zerbo

Abstract- The inability of pure relational DBMSs to meet the new requirements of the applications
that have emerged on the web has led to the advent of No SQL DBMSs. In the last few years,
significant progress has been made in integrating into relational DBMSs the features that are
essential to consider those new requirements that primarily concern flexibility, performance,
horizontal scaling, and very high availability. This paper focuses on the features that can enable
relational DBMSs to provide applications with the flexibility to work with various non-relational
data models while providing the guarantees of independence, integrity, and performance of
query evaluation.

Keywords: ANSI/SPARC architecture of the DBMSs’ schemata, database design and models,
relational data model, non-relational data models, virtual databases.

GJCST-H Classification: LCC Code: QA76.9.D3

ProvidinginRDBMSstheFlexibilitytoWorkwithVariousNonRelationalDataModels

Strictly as per the compliance and regulations of:

Providing in RDBMSs the flexibility to Work with Various Non-
Relational Data Models

Providing in RDBMSs the Flexibility to Work with
Various Non-Relational Data Models

Joachim Tankoano

Abstract- The inability of pure relational DBMSs to meet the
new requirements of the applications that have emerged on
the web has led to the advent of No SQL DBMSs. In the last
few years, significant progress has been made in integrating
into relational DBMSs the features that are essential to
consider those new requirements that primarily concern
flexibility, performance, horizontal scaling, and very high
availability. This paper focuses on the features that can enable
relational DBMSs to provide applications with the flexibility to
work with various non-relational data models while providing
the guarantees of independence, integrity, and performance of
query evaluation.
Keywords: ANSI/SPARC architecture of the DBMSs’
schemata, database design and models, relational data
model, non-relational data models, virtual databases.

I. Introduction
ata models are used in database technology: (1)
To define the logical structure of the content of a
database, (2) To provide DBMSs with the

capability to maintain the integrity of that content, and
(3) To provide an abstract language for the manipulation
of that content.

[1] considers that each data model
characterizes, using four sets (T, S, O, C) of its own, a
virtual machine with which the users of the database
interact, where: T is a set of data types, S is a set of data
structure types, O is a set of data operation types, and
C is a set of integrity constraint types.

Conceptual models (such as UML [2] and the
entity-relationship model [3]) and the pure relational
model [4] are those that have been the subject of many
theoretical studies about their set C. Consequently,
those data models are the ones that offer the most
possibilities to guarantee data quality and reliability
thanks to the simple and complex types of integrity
constraints contained in C [5-6].

In exchange, the pure relational model stores
data in tabular relations made of rows where each
column contains an atomic value. While such rigidity is
very suitable for structured data describing non-complex
entities in the real world, such rigidity is inappropriate for
structured, semi-structured, unstructured, or hybrid data
describing complex entities [5] or for data organized as
a graph.

The other commonly used data models are
alternative models of the pure relational model. Among
them are [7-10] the nested relational model, the object-
oriented model, the document-oriented model (XML [11]
and JSON [12], for example), the graph-oriented model,
the column-oriented model, and the key/value-oriented
model. Those data models have been introduced in
database technology with the primary purpose of
providing greater flexibility than the pure relational model
thanks to the kinds of data types, data structure types,
and data operation types contained in T, S, and O, on
the one hand, for describing the data structure of the
complex entities and, on the other hand, for handling the
variability in the data types and the data structure types
due to data source diversity [9].

In exchange (see paragraph 3), those data
models sacrifice data independence and typically
consider only a subset of the simplest integrity
constraint types of the pure relational model, such as
primary, unique, and referential keys. Additionally, some
of those data models induce other integrity constraint
types, such as the integrity constraints on the
materialization of relationships that most DBMSs ignore.
Those data models, therefore, lead the DBMSs to
sacrifice the guarantees of independence and integrity.

The guarantees, other than the guarantee of
integrity, on which purely relational DBMSs have also
focused concern: (1) Data independence, (2)
Confidentiality, (3) Simultaneous access to data, (4)
Data security after an incident, (5) Performances in
terms of possibilities of handling high volumes of data
and in terms of data access speed, (6) The adequacy of
the access interface for data manipulation according to
the relational approach.

After the adoption of those purely relational
DBMSs, new types of applications with new
requirements that those purely relational DBMSs are
unable to satisfy have emerged on the web.

Indeed [9], to guarantee data consistency and
to avoid storage anomalies, the primary purpose of the
techniques used in the design of a pure relational
database is to eliminate, through a normalization
process, any possibility of redundancy at the data level.
For those new types of applications, it is, on the contrary
essential to use redundancy and distribution to
guarantee, on the one hand, the availability of the data
whenever a failure happens and, on the other hand, the

D

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

1

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

Author: Université Joseph Ki-Zerbo – Bp 10048 Ouaga Zogona,
Ouagadougou, Burkina Faso. e-mail: tankoanoj@gmail.com

horizontal scaling of the services that the DBMSs offer to
those applications.

In addition, to avoid the occurrence of
anomalies generated on the data by the concurrency of
the execution of the transactions and to ensure that
recovery is possible whenever an incident occurs, pure
relational DBMSs provide transactions with a runtime
environment whose properties ensure ACIDity, i.e.,
Atomicity, Consistency, Isolation, and Durability. When
the data are duplicated and distributed, DBMSs should,
instead, provide a runtime environment with properties
to ensure Consistency (C), Availability (A) for reads and
writes, and tolerance for Network Partitioning (P).
Brewer's CAP theorem states that a NoSQL DBMS can
simultaneously provide only two properties [10].

As a result, new types of DBMSs (the object-
oriented DBMSs [8] and the NoSQL DBMSs [9]), purely
non-relational, have been designed to provide an
adequate response to the rigidity of the pure relational
model and those new requirements by relying on the
alternative data models of the pure relational model and
by moving away from its strengths in favor of the
improvement of performances, of the scaling, and of the
availability.

Simultaneously, an evolutionary approach has
also emerged. The ambition of that approach is to
integrate new features in the relational DBMSs to
consider the requirements relating to the logical
structure of databases [13,14] as well as the
requirements relating to performances, scaling, and very
high resistance to failures [15,16] while preserving the
benefits of the pure relational model.

The guarantees pursued in that evolutionary
approach concern: (1) Data independence, (2) Flexibility
to work with various non-relational data models, (3) Data
consistency, (4) Efficiency of data physical access, (4)
Application scaling, (6) Availability for read and write
operations, (7) Resistance to network partitioning
whenever an outage happens.

In this paper, we focus on the ANSI/SPARC
architecture [17] on which that evolutionary approach
should rely to allow relational DBMSs to offer each
application the flexibility to work with its preferred non-
relational data model without sacrificing the guarantees
of independence, integrity, and efficiency of evaluating
queries on the database.

The explicit adoption of the restrictions of this
ANSI/SPARC architecture of the schemata by a DBMS
leads applications to manipulate a database by relying
on a non-relational model, whereas the data model used
to model that database internally is the pure relational
model.

Take the view that data mapping means:
redefining, using another data model, the data
representation defined by relying on a given data model.
The contribution of this paper is that it shows that with
this ANSI/SPARC architecture of the schemata, it is

possible to implement a process of data mapping that
allows applications to manipulate a database according
to the approach they prefer, whereas internally, that
database is manipulated at the logical and physical
levels as if it was a nested-relational database, with all
the resulting benefits on the independence, integrity,
and query evaluation efficiency guarantees. That
process of data mapping is performed by relying on a
relational database organized at the logical and physical
levels for fast access to the abstract data that describe
the complex real-world entities and by reusing the
frameworks developed as part of relational database
technology, thus preserving the results of investments
made around that technology since its advent in 1970.

In the following, we address successively: (1)
For illustration purposes, the rules commonly used to
redefine the representation of a database, defined by
relying on the UML conceptual model, using, on the one
hand, the pure relational model as described in SQL2,
and on the other hand, the object-relational and XML
models as described in SQL3, while focusing on the
consequences on the integrity of relationships, (2) The
logic behind the ANSI/SPARC architecture of schemata
on which evolutionary approaches must rely, (3) The
mapping of the data that this architecture allows to
implement at the logical and physical levels, (4) The
comparison of that architecture where the database
used at the logical level is modeled using the pure
relational model to architectures where it is modeled
using an extended relational model, XML, JSON, or a
data model that leads to a logical implementation using
the nested relational model.

II. RULES FOR TRANSFORMING A CONCEPTUAL

SCHEMA INTO A RELATIONAL LOGICAL SCHEMA

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

2

 (

)
Y
e
a
r

20
23

H
Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

Fig.1 outlines the essential rules commonly
used to derive a relational logical schema from the UML
conceptual schema of a database [18]. In those
derivation rules, the materialization of the relationships
of the conceptual schema and the materialization of the
deductible integrity constraints of their cardinalities, as
well as the materialization of inheritance relationships,
are carried out using foreign keys whose semantics
allow the DBMSs to ensure the data integrity as defined
by the conceptual schema.

In those rules, foreign keys are underlined and
marked with the symbol "*" when they must respect the
unique integrity constraint or the symbol "+" otherwise.

A relational logical schema derived from those
rules describes the perception that enables database
manipulation according to the relational approach and
the perception required to guarantee data indepen-
dence and integrity.

III. Rules for Transforming a Conceptual Schema into an Object-Relational or XML
Logical Schema

Fig. 1: Main Rules for Transforming a UML Conceptual Schema to a Relational Logical Schema

In those rules of Fig. 2:

1. "Ri (ria, rib, ...)" should be interpreted as denoting an
object-relational table named "Ri" characterized by
its atomic, composed, or relation-valued attributes
named "ria, rib, ... ".

2. "RiTuple (ria, rib, ...)" should be interpreted as
denoting a composed attribute characterized by its
atomic, composed, or relation-valued attributes
named "ria, rib, ... ".

3. "RiTupleSet (ria, rib, ...)" should be interpreted as
denoting a relation-valued attribute containing a set
of tuples characterized each by its atomic,
composed, or relation-valued attributes named "ria,
rib, ... ".

4. "RiRef" should be interpreted as denoting an atomic
attribute containing a reference to an object of the
object-relational table "Ri", i.e., a logical pointer to
that object.

5. "RiRefSet (:RiRefType)" should be interpreted as
denoting a relation-valued attribute containing a set

of references to the objects of the object-relational
table "Ri", i.e., a set of logical pointers to those
objects, where the type of those logical pointers is
denoted by "RiRefType".

6. "rik*" should be interpreted as denoting a foreign
key corresponding to the primary key of the table
"Ri" that respects the uniqueness integrity constraint.

7. "rik+" should be interpreted as denoting a foreign
key corresponding to the primary key of the table
"Ri" that does not respect the uniqueness integrity
constraint.

8. "RiRefSet (rik)" should be interpreted as denoting a
relation-valued attribute containing a set of tuples
where each tuple contains a value of the foreign key
"rik" corresponding to the primary key of the table
"Ri".

The rules based on foreign keys are applicable
for deriving an XML logical schema from a conceptual
schema, as defined in SQL3 [14], by considering that
the tags of the XML elements and attributes have been

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

3

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

The main rules [18], based on the semantics of the new concepts of SQL3 [13], for transforming a UML
conceptual schema into an object-relational schema are defined in Fig.2. Rules that involve logical pointers are
surrounded. Those rules are intended to facilitate the manipulation of the database according to the object-oriented
approach.

omitted for each XML document. In addition, it should
also be considered that for an object-relational table
named "Ri", the type of an attribute can be XMLTYPE
and thus contain an XML document stored (as an
atomic value) with all its tags in the binary format of XML

and managed using the technology of the document-
oriented DBMSs. Therefore, in an object-relational table,
the content of an object or attribute can be, respectively,
an XML document shredded in several attributes, or an
XML document stored in a single attribute.

Fig. 2: Main Rules for Transforming a UML Conceptual Schema to an Object-Relational or XML Logical Schema

Those rules depict that the object-relational
model and the XML model give the possibility of
materializing each relationship by a set of pairs of
unidirectional semantic links where in each pair, each
link must be the inverse of the other, despite that the
semantics of the concepts used, namely the concepts
of logical pointer and foreign key, does not say how
DBMSs should do to ensure the integrity of those links.

Furthermore, the data’s logical structure based
on the object-relational and XML models arises from
design decisions that depend on both the data’s
semantics and the ways the user’s applications intend
to process those data but not only on the data’s
semantics, as for data’s logical structure based on the
relational model. After a change in the hierarchical
structure of the data in the logical schema, the
developer may be forced to modify the application logic
accordingly [19].

IV. The Logic Behind the Architecture
of the Schemata in the Evolutionary

Approach

Fig. 3 schematizes the ANSI/SPARC architecture
of the schemata on which evolutionary approaches
should rely. One of the key features of that architecture
is that it forces to decouple, on the one hand, the
description concerning the perception that aims at

facilitating data manipulation by applications and, on the
other hand, the description of the perception induced by
the database used internally for ensuring independence
and integrity.

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

4

 (

)
Y
e
a
r

20
23

H
Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

Fig. The ANSI/SPARC Architecture of the Schemata, Which Provides Integrity and Independence Guarantees

Since the pure relational model is the one where
T, S, O, and C offer the most possibilities to guarantee
independence and integrity, that architecture leads to
doing so that the perception induced by the database
used internally to ensure independence and integrity
can only be described using a pure relational logical
schema.

As for the perception that aims to facilitate the
manipulation of the database by an application, that
architecture makes it only possible to describe that
perception by relying on an external logical schema and
using a data model where T, S, O, and C offer the
required flexibility to model and manipulate the
database used internally according to the approach that
the application prefers, regardless of the possibilities
provided by C.

Depending on the query, data manipulated by
that application according to its preferred approach are
determined dynamically and efficiently (see paragraphs
6 and 8) from the data stored in the pure relational
database used internally to guarantee independence
and integrity.

That ANSI/SPARC architecture of the schemata
then leads to data mappings at the logical and physical
levels. Those data mappings are required: (1) when
designing the relational overall logical schema of the
database, (2) when designing a physical database, (3)
when designing the external logical schema of an
application, (4) and when generating and optimizing the
logical execution plan of a query.

V. Data Mapping in the Design Process
of the Overall Relational Logical

Schema

The overall relational logical schema that
defines a database used internally intended to be
manipulated according to non-relational approaches
can be derived simply from an overall conceptual
schema by bringing out in that conceptual schema the
whole-part relationships arising from the perception of
the real-world’s complex entities. For each real-world’s
complex entity denoted by "E1", all the other entities
whose existence of their instances depends on an
instance of “E1" must be identified by relying, as
proposed in [3], on the concept of "existence
dependency" of one entity on another and the concepts
of "regular” (entity/relationship) and "weak" (entity/
relationship).

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

5

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

 3:

Let's take the real-world’s entities "Employee"
and "Child" as examples. Each instance of "Child"
depends on the existence of one instance of
"Employee". Therefore, the entity "Child" is a weak entity.
In an overall relational logical schema derived from an
overall conceptual schema, the tabular relations derived
from the existence dependency of "Child" on "Employee"
must be "Employee (E-no, E-name, E-age, …)' and
"Child (E-no+, Child-name, Child-age, …)' where "E-no"
in the tabular relation denoted by "Child" is a foreign key.
Notice that in Fig.1, this is a variant of the first of the two
transformation possibilities defined by rule b, where the

foreign key is part of a primary key. That rule allows us
to describe, in the relational logical schema, the data
about each complex entity of the real world using a
hierarchy of tabular relations linked by foreign keys,
where each abstract data that describes one instance of
that complex entity must be stored in a hierarchy of rows
distributed in those tabular relations.

The purpose of that rule, which says how to
map each instance of a complex entity in the relational
database used internally, is to result, as described in the
next paragraph 6, in a physical organization of that
database, which can guarantee fast access to each
abstract data that describes an instance of a complex
entity.

VI. Data Mapping in the Design Process
of the Physical Database

To achieve this, the two leading families of

techniques developed within the framework of the pure
relational DBMSs for the data physical storage
structures on the disks can be reused and improved,
i.e., physical clustering and indexes.

a) Physical Clustering
The main choices, which can make fast

physical access to each abstract data describing one
instance of a complex entity, are:

1. Creating a table cluster for each regular (entity/
relationship) defined in the conceptual schema. The
role of such a cluster is to group all the tabular
relations connected by foreign keys, where the
abstract data about the instances of that regular
(entity/relationship) must be stored.

2. Storing each abstract data made of a hierarchy of
rows (scattered across those tabular relations) in
one or more contiguous pages of that cluster. That
storage renders unnecessary the need to perform
join operations for grouping those rows, which
reduces to a strict minimum the average time to
access all or part of each complex abstract data.

3. Implementing logically and physically those table
clusters using the nested relational model [7]. The
main benefit of that implementation is that this data
model expands the sets T, S, and O of the relational
model to overcome its limitations. As a result, this
data model allows: (i) to describe each complex
entity of the real world using a not decomposed
complex abstract data (defined as a whole-part), (ii)
to define a simple nested expression to recursively

apply the selection and projection operators to
attributes nested at any level in the structure of that
abstract data, (iii) to simplify that nested expression
logically, and (iv) to evaluate, at the lowest possible
cost, the resulting optimized nested expression,
without any join operations.

When evaluating a query, those choices allow
us to manipulate logically the database used internally
as if it was a nested relational database where each
table cluster is represented using a single nested
relational table where the content of each row is a
logical implementation of an abstract data stored in a
hierarchy of rows of the tabular relations of the relational
database, with all the benefits resulting in terms of
performance.

To physically store in one or more contiguous
pages of a cluster one abstract data consisting of a
hierarchy of rows distributed in the tabular relations of
that cluster and logically implemented in a row of a
nested relational table representing that cluster, it is
possible to logically group those rows in a data structure
corresponding to a tree-like data structure having the
same hierarchical organization as that hierarchy of rows,
by following the data organization rules of the nested
relational model. In doing so, each node of that tree
must contain the pointers to its parent, children, and
siblings and the corresponding row in this hierarchy of
rows. This leads to a physical implementation (based on
the nested relational model) of each abstract data about
an instance of a complex entity in one or more
contiguous pages.

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

6

 (

)
Y
e
a
r

20
23

H

and sibling nodes for easing navigation.

Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

The primary purpose of the design process of a
physical database is to make explicit how each abstract
data describing the instance of one complex entity
should be organized and stored on the physical storage
device to make physical access to that abstract data
fast. As we saw in paragraph 5, each abstract data is
stored in a hierarchy of rows distributed in tabular
relations connected by foreign keys.

Fig. 4.a contains as an example the conceptual
schema, defined using the entity-relationship model [3],
of a complex regular entity denoted by "rx" on which
depend the weak entities denoted by "ry", "rz", and "rw".

The schemata of the tabular relations of the
cluster, required for storing the abstract data about the
instances of that entity "rx", are ' rx (A), ry (A+, B), rz
((A, B)+, C), rw (A+, D, E)'. As for the schema of the
nested relational table that represents that cluster
according to the syntax proposed in [7], it can be
defined as follows: rx (A, ry (B, rz (C)), rw (D, E)).

Fig. 4.b schematizes, as an example, in one
page of that cluster, the data layout of one abstract data
about an instance of that entity "rx". This figure depicts
that this instance of that complex entity "rx" is described
by a hierarchy of rows consisting of one row from the
tabular relation "rx", two rows from the tabular relation
"ry", three rows from the tabular relation "rz", and two
rows from the tabular relation "rw", connected by foreign
keys. This figure also depicts that those rows are stored
in a tree-like data structure according to the rules of the
nested relational model. Each node contains a row
consisting of atomic columns, subsets of pointers to
child nodes where each subset corresponds to a
relation-valued column, and pointers to the parent node

access using an index to all or part of one abstract data

stored inside a page within a tree-like data structure can
be achieved, on the one hand, by creating a dictionary
of table clusters containing, for each table cluster, the
identifier of each table of that cluster, the type of that
table (regular or weak), and its primary key, and

on the

other hand, by allocating, in the header of each page,
an entry for each row within that page containing the
identifier of the concerned table, the value of the primary
key of that row, and its beginning address within that
page.

Fig.4: Illustration of the Storage Structure in a Disk Page of Data about a Complex Entity Stored Logically in a

Relational Database

b) Indexes
Depending on a query complexity on a virtual

database, its evaluation in an efficient way may require
at the physical level to access the tabular relations
where data are stored by following combinable different
approaches:
1) A sequential approach allowing to traverse the rows

of a tabular relation in a predetermined order.
2) An associative approach allowing access in a

tabular relation to a set of rows qualified by the
values of a subset of columns.

3) A navigational approach, allowing navigation from
one row of a tabular relation towards rows in other
tabular relations related in some way.

4) An approach, path expression oriented, allowing for
each given path "Ti.a1.a2….an. x", derived from a
hierarchy of class (or user-defined structured type)
attributes, as that hierarchy is defined in [20], to
determine either the set of rows of the tabular
relation "Ti" or the set of the instances (either partial
or not) of that path, related in the two cases to a
given value of the attribute "x".

At the physical level, many techniques for
creating access paths to tabular relations have been
defined to fulfill those needs. The best known are join
indexes [21] (essential for dynamically materializing
relationships of complex entities or for performing table
cluster joins efficiently), pointer chains [22], secondary
indexes based on B+ trees [23] and dynamic hashing
[24-25], and bitmap indexes [26].

An expression of the nested relational algebra
derived from a query (as that derivation is described in
paragraph 8) can be executed efficiently thanks to, on
the one hand, the physical organization of the database
described in this paragraph, and on the other hand,
extended frameworks of the relational DBMSs.
VII. Data Mapping in the Design Process

of the External Logical Schema of
an Application

When a DBMS adheres to the ANSI/SPARC
architecture of schemata, which is schematized in Fig.3,
the key role of the external logical schema of each
application is to define a virtual database to allow that
application to work with the data model it prefers. That
virtual database is defined by creating, using a user-
defined structured type, a custom-typed view for each
regular (entity/relationship) defined in the conceptual
schema, by following the derivation rules of Fig. 2.

To make it possible to manipulate that virtual
database as if it was a nested relational virtual
database, each of those typed views must be redefined
using a schema that extends the schema of the nested
relational table representing the cluster created at the
physical level for the corresponding regular (entity/
relationship). The extension of that schema is carried out
by adding the necessary attributes for the materialization
of relationships.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

7

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

Physical storage of the rows of the relational
database used internally inside the pages of the
physical storage devices by following that approach is
an improvement of the traditional approach. In that
approach, rows are not stored only sequentially
(ordering them or not). Rows are also logically
organized within the pages in terms of tree-like data
structures for rows that concern complex abstract data
and linear data structures for rows that concern the
same tabular relation.

The indexing of a tabular relation as well as

Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

Each cluster can therefore be considered as
being the materialization of a typed view without the
materialization of the relationships defined in the
conceptual schema.

Consequently, the instances of a typed view in a
virtual database do not have real existence as in the
typed tables of a non-relational database. Those
instances are derived dynamically from the tabular
relations of the relational database used internally to
ensure independence and integrity by relying on the
data physical organization that results from using cluster
and index concepts to make required computing fast.

More concretely, the data mapping in the
design process of an external logical schema of an
application is carried out by the database’s
administrator through the SELECT statements defining
the typed views of the virtual database of that
application. The SELECT statement defining a typed
view must indicate how each instance of that typed view
should be calculated dynamically using the relevant
data stored in the relational database used internally for
ensuring data independence and integrity. The role of
triggers associated with a typed view must be to
dynamically support the update operations of the
instances of that typed view ("INSERT", "UPDATE",
"DELETE") when the means put in place do not allow the
DBMS to provide that support because this involves
several tabular relations.

To facilitate the work of the databases’
administrators, DBMS providers should instead consider
offering the following possibility: indicating equivalently
using new clauses or annotations in specification
statements of the user-defined structured types, how for
each user-defined structured type the value of each
attribute of its instances must be calculated from the
data stored in the relational database used internally for
ensuring data independence and integrity, mainly
concerning the relationships materialization. When
evaluating a query formulated on a virtual database, the
information contained in those specifications must
provide the DBMS with the same possibilities as the
SELECT statements and triggers associated with the
typed views of that virtual database. This kind of
approach for the definition of data mapping is followed,
for example, in the object-relational mapper of Hibernate
[27] and for storing shredded XML documents into
object-relational tables [30] or relational tables [31].

For short illustrative purposes, by relying on a
subset of rules presented in paragraphs 2 and 3, this
can be achieved by specifying, for example.

1. For each user-defined structured type "R1"
concerned: the type of the corresponding entity or
relationship (regular or weak) in the conceptual
schema, the name of the main table "T1p" of the
overall relational logical schema, which is used for
the derivation of its instances.

2. For each atomic-valued attribute "ai" of that user-
defined structured type "R1", whose type is a basic
scalar type: the name of the column corresponding
to it in the main table "T1p".

3. For each atomic-valued attribute "ai" of that user-
defined structured type "R1", which is used to
materialize a "1-1" relationship between "R1" and
"R2" and whose type is a logical pointer type
"R2RefType": the type of the relationship concerned,
the name of the main table "T2p", which is used for
the derivation of the instances of the structured type
"R2", the name of the foreign key in "T1p", which
refers to the main table "T2p" and which is used to
calculate the value of that attribute "ai"
corresponding to a logical pointer to an instance of
"R2".

4. For each atomic-valued attribute "ai" of that user-
defined structured type "R1", which is used to
materialize an "N-1" relationship between "R1" and
"R2" and whose type is a logical pointer type
"R2RefType": the type of relationship concerned, the
name of the main table "T2p", which is used for the
derivation of instances of the structured type "R2",
the name of the foreign key of "T1p", which refers to
the main table "T2p" and which is used to calculate
the value of that attribute "ai" corresponding to a
logical pointer to an instance of " R2".

5. For each relation-valued attribute "ai" of that user-
defined structured type "R1", which is used to
materialize a "1-N" relationship between "R1" and
"R2" and whose type "R2RefSetType" is a collection
type of values of logical pointers: the type of
relationship concerned, the name of the main table
"T2p", which is used for the derivation of the
instances of the structured type "R2", the name of
the foreign key in "T2p", which refers to the main
table "T1p" and which must for each instance of
"R1" be used for the derivation of the value of that
attribute "ai" corresponding to a collection
consisting of logical pointers to the instances of
"R2", which point back to that instance of "R1".

6. For each relation-valued attribute "ai" of that user-
defined structured type "R1", which is used to
materialize a "1-N" relationship corresponding to a
composition relationship between "R1" and "R2" and
whose type "R2TupleSetType" is a collection type of
the instances of the structured type "R2": the type of
the relationship concerned, the name of the main
table "T2p", which is used for the derivation of the
instances of the structured type "R2", the name of
the foreign key in "T2p", which is part of its primary
key and which refers to the main table "T1p" and
which must for each instance of "R1" be used to
calculate the value of that attribute "ai"
corresponding to a collection consisting of the
instances of the structured type "R2" linked to that
instance of "R1".

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

8

 (

)
Y
e
a
r

20
23

H
Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

7. For each relation-valued attribute "ai" of that user-
defined structured type "R1", which is used to
materialize an "N-M" relationship between "R1" and
"R2" (using the user-defined structured type "R3")
and whose type "R3RefSetType" is a collection type
of values of logical pointers: the type of the
relationship concerned, the names of the main
tables "T2p" and "T3p", which are used for the
derivation of the instances of the structured types
"R2" and "R3", the name of the foreign key in "T3p"
being part of its primary key, which refers to the
main table "T1p", as well as that of the foreign key in
"T3p" being part of its primary key, which refers to
the main table "T2p", which both must be used for
each instance of "R1" to calculate the value of that
attribute "ai" corresponding to a collection
consisting of the logical pointers to the instances of
"R3", which point back to that instance of "R1".

This approach gives the DBMS the capability to
play its role fully.

1. By ensuring the consistency of those specifications
when creating a user-defined structured type in its
catalog.

2. By ensuring, when creating each typed view, the
automatic generation of the nested expression,
which calculates the instances of its structured user-
defined type from the tabular relations of the overall
relational logical schema (including for each
relationship concerned the calculation of its
semantic links by ensuring that each link has an
inverse link).

3. By ensuring, when executing the update operations
of the instances of a typed view ("INSERT",
"UPDATE", "DELETE")), the transformation of those
operations into processes of updating the tabular
relations from which those instances are derived.

VIII. DATA MAPPING WHEN GENERATING AND

OPTIMIZING QUERY LOGICAL EXECUTION

PLAN

Paragraphs 6 and 7 showed that it is possible at
the logical and physical levels to represent a virtual
database (defined by the external logical schema of an
application) using the nested relational model. This
paragraph shows how that possibility enables fast
execution of queries formulated on that virtual database.
Formulating a SQL query for dynamic calculation of the
instances of a typed view, as described in paragraph 7,
may require using the various possibilities that SQL
offers for nesting other queries, particularly in the
SELECT clause but also in the FROM and WHERE
clauses [28].

As [32] shows, DBMSs can represent this kind
of SQL query containing nested queries by an
expression of the nested relational algebra that defines
a logical execution plan that uses tabular relations.

Conceptually, each instance of a typed view calculated
using this kind of expression of the nested relational
algebra can be manipulated as if it was stored in a
nested relational table, even though the value of each of
its attributes is determined dynamically from values
contained in the tabular relations used internally to
ensure independence and integrity guarantees.

Depending on its type, by applying the
transformation functions provided for this purpose to the
value of each attribute determined dynamically, those
instances of a typed view can be perceived and
manipulated by the developer as structured abstract
data corresponding either to objects or to XML
documents, for example.

Consider as an example the SQL statements in
row 1 of Table 1 about the creation in the catalog of an
Oracle DBMS [28] of the tabular relations
"CUSTOMERS" and "ORDERS", corresponding to
regular entities.

The SQL statements [29] for creating the
object-relational typed view "CUSTOMERS_VOR" on the
regular entity "CUSTOMERS" can be defined as in row 2
of Table 1.

The expression in row 3 of Table 1 is a nested
expression derived for illustrative purposes from the
SELECT statement that defines that typed view.

That expression is a logical execution plan for
dynamically calculating all objects in the typed view
named "CUSTOMERS_VOR". It calculates each instance
of that typed view so that that instance can be perceived
as if it was stored in a nested relational table. The values
of the atomic-valued attributes named "CUSTNO" and
"CUSTNAME" of that instance are defined as being the
values of the columns having the same name in a row
about a customer in the tabular relation named
"CUSTOMERS". As for the value of its relation-valued
attribute named "CUSTORDERS", it is defined as the
result of projecting on column "ORDERNO" all the rows
about that customer, selected in the tabular relation
"ORDERS".

Each instance calculated using that expression
is matched to an object of the typed view
"CUSTOMERS_VOR" simply by applying the ORACLE
transformation function "MAKE_REF()" to each element
of the relation-valued attribute named "CUSTORDERS".

Each query formulated using the data
manipulation language of the data model used to
describe a virtual database can be translated by the
kernel of the DBMS to a logical execution plan based on
nested relational algebra, using techniques comparable
to those developed for standard SQL.

For example, consider the query in row 4 of
Table 1 formulated using the extended SQL language of
the object-relational model on the virtual database
containing the typed view "CUSTOMERS_VOR".

The expression in row 5 of Table 1 is an
optimized expression of the nested relational algebra

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

9

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

derived from that query that uses only the typed views of
that virtual database.

The substitution in that expression of
"CUSTOMERS_VOR", which denotes the name of a
typed view of that virtual database, by the expression in
row 3 of Table 1, which represents the SELECT
statement of that typed view, leads to the expression in
row 6 of Table 1, which uses only the tabular relations of
the relational database used internally.

Simplifying that expression results in the
expression of row 7 of Table 1, which corresponds to
the optimized logical execution plan of the initial query,
generated by considering the internal representation in
tabular relations of the abstract data perceived and
manipulated by the developer in his query as being
objects.

IX. RELATED

WORK

We exclude from the scope of our analysis the

object-relational mapping [27] that the deployment
technologies of the web applications perform, outside
the DBMS, to ensure, from a program, the persistence
of the objects in a relational database. That very popular
data mapping is a functionality of those technological
offerings and not of the technology of the databases.
Non-relational databases are intended to render
obsolete the need for this mapping which is detrimental
to performance.

 The following compares the architecture of the
schemata of Fig.3, where the model at the logical level
is the pure relational model, to four broad categories of
architectures where the model at the logical level is: (i)
an extended relational model where in the tables the
relation-valued columns contain nested tables, (ii) an

types required by different applications is an uphill task.

The second school developed recently at the
same time as NoSQL DBMSs. In that school, the
database is modeled at the same time as the design of
an application by relying on a flexible data model, such
as the document-oriented model, to consider the
specific needs of that application in terms of data
organization as soon as they appear or are

challenged.
That school is best suited for an application when
handling the variability in data types and data structure
types is an uphill task.

extended relational model where in the tables the
relation-valued columns contain XML documents or
JSON documents, (iii) XML or JSON, (iv) leads to a
logical implementation using nested relational tables.

In our comparison, we focus on the following
three aspects: (i) the guarantee of independence, (ii) the
guarantee of integrity, (iii) and the guarantee of
performance when evaluating a query on the database.

a) The Guarantee of Independence
The approaches to designing a database

commonly used are based on two major schools of
thought.

In the first stage of the oldest school, the
database is modeled independently of the individual
perception of applications. In this first stage, the
designer’s primary objective is to define, using a
conceptual model, the perception of the actors of the
enterprise independently of any technological choice.
That school is best suited when integrity is a
fundamental requirement and handling the difference
between data types and data structure

Table 1: Examples of Paragraph 8 for Illustrating the Transformation of a Query to a Logical Execution Plan

1 CREATE TABLE CUSTOMERS (CUSTNO NUMBER (5) PRIMARY KEY, CUSTNAME VARCHAR2 (30) NOT NULL) ;
CREATE TABLE ORDERS (ORDERNO NUMBER (8) PRIMARY KEY, ORD_CUSTNO NUMBER (5) NOT NULL
REFERENCES CUSTOMERS (CUSTNO)) ;

2 CREATE TYPE CUSTOMER_T ;
CREATE OR REPLACE TYPE ORDER_T AS OBJECT (ORDERNO NUMBER (8), ORDERCUST REF CUSTOMER_T) ;
CREATE OR REPLACE TYPE ORDER_T_LIST AS TABLE OF REF ORDER_T ;
CREATE OR REPLACE TYPE CUSTOMER_T AS OBJECT (CUSTNO NUMBER (5), CUSTNAME VARCHAR2 (30),
CUSTORDERS ORDER_T_LIST) ;
CREATE OR REPLACE FORCE VIEW CUSTOMERS_VOR OF CUSTOMER_T
WITH OBJECT IDENTIFIER (CUSTNO)
AS SELECT c.CUSTNO, c.CUSTNAME,
 CAST (MULTISET (SELECT MAKE_REF (ORDERS_VOR, o.ORDERNO)

 FROM ORDERS o WHERE o.ORD_CUSTNO = c.CUSTNO) AS ORDER_T_LIST)
 AS CUSTORDERS
 FROM CUSTOMERS c ;

3 π [CUSTNO, CUSTNAME, π [ORDERNO] (σ[ORD_CUSTNO = CUSTNO] (ORDERS)): CUSTORDERS](CUSTOMERS)
4 SELECT c.CUSTNO, c.CUSTNAME FROM CUSTOMERS_VOR c WHERE c.CUSTNO = 100;
5 π [CUSTNO, CUSTNAME] (σ[CUSTNO =100] (CUSTOMERS_VOR))
6 π [CUSTNO, CUSTNAME] (σ [CUSTNO=100] (π [CUSTNO, CUSTNAME, π [ORDERNO] (σ[ORD_CUSTNO=CUSTNO]

(ORDERS)): CUSTORDERS] (CUSTOMERS)))
7 π [CUSTNO, CUSTNAME] (σ[CUSTNO=100] (CUSTOMERS))

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

10

 (

)
Y
e
a
r

20
23

H
Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

 The architectures of categories (i), (ii), (iii), and (iv).
Data mapping is typically accomplished in two

steps within those architectures.
 In the first step, data mapping consists of

deriving the perception that facilitates the manipulation
of the database according to the preferred non-
relational approach from the conceptual schema or the
kind of use case concerned. The designer’s primary
objective is to meet the requirements of developers by
eliminating the drawbacks that arise from impedance
mismatches and by adapting the data logical structure
to how the processing is conducted.

 In this first step, the way the database can be
perceived and manipulated is captured using user-
defined structured types that allow the information
system to be perceived as being made of abstract data
describing instances of complex entities in the real
world, optionally by using flexible schemata, easy to
modify.

 In the second step, data mapping consists of
deriving from the user-defined structured types a
storage structure for a logical implementation

of the

instances of those user-defined structured types that
can facilitate a physical implementation on the storage
devices.

For architectures where the model at the logical
level is an extended relational model, XML or JSON, this
amounts in the first step to defining a non-relational
logical schema and in the second step to implementing
each non-relational table using a set of tabular relations
where all columns are atomic-valued, optionally by
storing in a binary format the XML and JSON
documents. As in

the architecture of Fig.3, this amounts

to storing the data about each instance of a complex
entity in several tabular relations connected by foreign
keys. As a result, this makes it possible to reuse the
frameworks of the pure relational DBMSs for query
optimization and evaluation. When XML and JSON
documents are stored in binary format, it is also
possible to rely on a hybrid system that integrates the
required features for modeling the complex data
concerned according to the approach of the second
school.

 For architectures where the model at the logical
level leads to a logical implementation using nested
relational tables, this comes down in the first step to
defining a non-relational logical schema that meets the
developers' requirements and in the second step to
derive a nested relational database from that non-
relational logical schema.

 Therefore, in those architectures

of categories

(i), (ii), (iii), and (iv), the logical schema of the database
always stems from the perception required for a
particular application

and can make it more complex for

another application to manipulate that database.

b)

The Guarantee of Integrity

Among the architectures considered in this
paragraph, the most common are those of categories
(i), (ii), and (iii) that implement SQL3 and those of
category (iii) used by document-oriented NoSQL
DBMSs. Those architectures do not allow to guarantee
the integrity of relationships defined in conceptual
schemata when those relationships are materialized
using pairs of semantic links where in each pair, each
link must be the inverse of the other. The reason for that
significant drawback is that the semantics of the
concepts used for materializing those relationships,
namely the concepts of foreign key and logical pointer,
do not indicate how DBMSs can guarantee the integrity
of those relationships. To overcome that shortcoming,
the architecture presented in that paper materializes
those relationships in a virtual database. The resulting
calculation is achieved (using rules that can be
predefined and played by the DBMSs) using relevant
data from the relational database used internally to
ensure independence and integrity. The alternatives are:
(i) either to materialize each relationship using in the
logical schema two functions, such as each is defined
as the inverse function of the other [8], (ii) or to define
and implement path constraints [33].

Furthermore, the set of types of simple and
complex integrity constraints that may be defined in a
pure relational logical schema is a superset of each set
of the types of integrity constraints that can be defined
in a logical schema of an architecture of the categories
(i), (ii), (iii), and (iv). One of the main benefits of the
architecture of Fig.3 is that it allows the designer to

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

11

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

The architecture where the database is modeled
internally using the relational model.

As far as this architecture is concerned, it is
instead the derivation of the database used internally
that is carried out first from the conceptual schema
before the derivation for each application of the
perception that facilitates the manipulation of that
database according to the required approach. The
primary goal is to define, regardless of the individual
perception of the applications, the data logical
organization, the integrity constraints, and the data
physical organization that can guarantee fast access to
each abstract data that describes one instance of a
complex entity in the real world. It is more in line with the
key objective of the ANSI/SPARC architecture of the
schemata, which is to allow DBMSs to provide data
independence guarantees. As a result, compared to
architectures where the data model used internally is an
extended relational model, XML, or JSON, that
architecture ensures greater data independence.
Additionally, that architecture allows partitioning the
database into datasets, for which the best school for the
design can be considered independently.

define the custom view of an application by relying on
any data logical model on which the architectures of the
categories (i), (ii), (iii), and (iv) rely and by enforcing

X.

CONCLUSION

In this paper, we focused on the features that
should be built into relational DBMSs so they can
provide applications with the flexibility to work with the
non-relational data model they prefer without sacrificing

References Références Referencias

1.

Eessaar, E.: Using Meta-modeling in order to
Evaluate Data Models. Proceedings of the 6th
WSEAS Int. Conf. on Artificial Intelligence,
Knowledge Engineering and Data Bases, Corfu
Island, Greece.

February 16-19, 2007.

2.

Object Modeling Group: Unified Modeling Language
Specification. Version 2.5. October 2012.

3.

Chen, P., P-S.:

The entity-relationship model -
toward a unified view of data. ACM TODS Volume 1,
Issue 1. pp 9–36. March 1976.

4.

Codd E. F.: The relational model for database
management. Second Edition. Addison-Wesley
Publishing Company, Inc., 1990.

5.

Date, C.J.: An Introduction to Database Systems, 8th
Edition. Pearson Education, Inc, July 2003.

6.

Vidaković, J., & al:

Extended Tuple Constraint Type
as a Complex Integrity Constraint Type in XML Data
Model – Definition and Enforcement. Computer
Science and Information Systems. Oct. 2018.

15

(3):

821-843. DOI: 10.2298/CSIS123456789X.

7.

SCHEK, H.-J., & al: The relational model with
relation-valued attributes. Information Systems,
Volume 11, Issue 2. pp 137–147. 1986. DOI:
10.1016/0306-4379

(86)

90003-7.

8.

Cattell, R. G. G., & al: The Object Data Standard:
ODMG 3.0. Edited by R.G.G. Cattell and al
Publishers, 1st edition

(February 2, 2000)

9.

Wajid, A., & al: Comparison between SQL and
NoSQL Databases and Their Relationship with Big
Data Analytics. Asian Journal of Computer Science
and Information Technology

· October 2019. DOI:
10.9734/AJRCOS/2019/v4i230108.

10.

Changlin, H.: Survey on NoSQL Database
Technology. Journal of Applied Science

and
Engineering Innovation, Vol.2 No.2. 2015.

11.

W3C Recommendations:

XML TECHNOLOGY.
https://www.w3.org/standards/xml/

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

12

 (

)
Y
e
a
r

20
23

H
Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

types of integrity constraints that this data logical model
does not consider thanks to the overall relational logical
schema of Fig. 3. For some use cases, this is an
alternative to extending the set C of the non-relational
data logical models with complex integrity constraint
types that are difficult to express and enforce.

c) The Guarantee of Performance when Evaluating a
Query on the Database

One of the main benefits of the schemata
architecture of Fig. 3 is that it allows applications to
manipulate the data according to the approach they
prefer, whereas internally, that data is manipulated at the
logical and physical levels as if it were stored in nested
relational tables. In other words, this allows at the logical
and physical levels to manipulate as efficiently as
possible the data that describe the complex entities in
the real world as if they have not been broken down and
distributed in tabular relations.

It should be noted, however, that for the
architectures where the model at the logical level is the
pure relational model, an extended relational model,
XML, or JSON, when the XML or JSON documents are
stored internally in the binary format, the resulting
performance benefits are those recognized for
document-oriented DBMSs such as MongoDB.

The architectures where the model at the logical
level leads to a logical implementation using nested
relational tables make it possible to use nested relational
algebra for better logical optimization of queries. Those
architectures also lead to an implementation of the
nested relational tables on the storage devices by
storing each row of those tables (corresponding to one
abstract data describing an instance of a complex
entity) in one or more contiguous pages using a format
close to that of the nested relational model. This
ensures efficient query evaluation but requires
implementing a new manager of abstract data (i.e., a
new complex storage engine) responsible for providing
an interface for manipulating those complex abstract
data at the logical level and managing their physical
storage using clustering techniques.

guarantees of independence and integrity, as well as the
guarantee of query performance. One of the most
critical aspects of the features that have been integrated

into the relational DBMSs in recent years to meet the
requirements of horizontal scaling and very high
availability [15, 16] concerns the resulting level of
performance when evaluating queries that require a
considerable number of join operations. This aspect can
be addressed more effectively by dynamically applying
the sharding and distribution techniques to table
clusters instead of directly applying those techniques to
tabular relations. That choice would allow extended
relational DBMSs to give applications the flexibility to
work with their preferred data storage models without
sacrificing any benefit of the technology of the
databases.

12. Bourhis, P., & al: JSON: Data model, query
languages and schema specification. The 36th ACM
SIGMOD-SIGACT-SIGAI Symposium, May 2017.

In the architectures where the model at the
logical level is an extended relational model, XML, or
JSON, when the data describing complex entities in the
real world are stored internally in several tabular
relations, on the contrary, this makes query evaluation
inefficient because of the join operations that can result.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

13

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

Providing in RDBMSs the Flexibility to Work with Various Non-Relational Data Models

13. ANSI/ISO/IEC International Standard (IS): Database
Language SQL-Part 2: Foundation (SQL/
Foundation) «Part 2». September 1999.

14. ISO-ANSI Working Draft: Database languages, SQL,
Part 14: XML-Related Specifications (SQL/XML).
August 2002.

15. ORACLE: Oracle Database Using Oracle Sharding,
21c F32165-09. 2023.

16. MARIADB: Distributed SQL: the Architecture behind
MARIADB XPAND https://mariadb.com/products/
enterprise/xpand/. April 2021.

17. ANSI/X3/SPARC study group: The ANSI/X3/SPARC
DBMS framework report of the study group on
database management systems. Information
systems, volume 3, issue 3. pages 173-191. 1978.

18. Soutou, C.: Modeling relationships in object-
relational databases. Data & Knowledge
Engineering, Volume 36, Issue 1. Pages 79-107.
January 2001.

19. Codd, E., F.: A relational model of data for large,
shared data banks. CACM 13, No 6. Jun 1970.

20. Bertino, E., & al: Indexing Techniques for Queries on
Nested Objects. IEEE Transactions on Knowledge
and Data Engineering, 1 (2), pp 196 – 214, July 1989

21. Valduriez, P.: Join Indices. ACM TODS, Vol. 12, No.
2, Pages 218-246. June 1987.

22. Astrahan, M., M., & al: System R: Relational
Approach to Database Management. ACM TODS,
Vol. 1, No. 2., Pages 97-137, June 1976.

23. Comer, D.: The Ubiquitous B-Tree. Computing
Surveys, vol. 11, n° 2, June 1979.

24. Fagin R., & al: Extendible Hashing – A Fast Access
Method for Dynamic Files. ACM TODS, Vol. 4, No. 3,
Pages 315-344. September 1979 .

25. Litwin W.: Linear Hashing – A New Tool for File and
Table Addressing. 6th Very Large Data Bases,
Montreal, p. 224-232. October 1980.

26. Chan, C-Y., al.: Bitmap index Design and
Evaluation. ACM SIGMOD Intl. Conf., SIGMOD
Record V° 27, n° 2, Seattle, USA, 1998.

27. Hibernate: Hibernate ORM, Documentation 6.2.
https://hibernate.org/orm/documentation/6.2/

28. ORACLE: Oracle Database SQL Language
Reference 12c Release 1 (12.1). July 2017.

29. ORACLE: Oracle Database Object-Relational
Developer's Guide 12c Release 1 (12.1). August
2014.

30. ORACLE: Oracle XML DB Developer's Guide, 12c
Release 2 (12.2). April 2019.

31. IBM Corp.: DB2 10 for z/OS, SQL Reference.
October 13, 2017, edition.

32. Hölsch J., & al: Optimization of Nested Queries
using the NF2 Algebra. Proceedings of the 2016
International Conference on Management of Data -
SIGMOD ’16. doi:10.1145/2882903.2915241.

33. Peter Buneman, P., & al: Path Constraints in
Semistructured Databases. Journal of Computer and

System Sciences. 2000. doi:10.1006/jcss.2000.17
10.

	Providing in RDBMSs the flexibility to Work with Various Non-Relational Data Models
	Author
	Keywords
	I. Introduction
	II. Rules for Transforming A Conceptual schema into A Relational Logical Schema
	III. Rules for Transforming a Conceptual Schema into an Object-Relational or XMLLogical Schema
	IV. The Logic Behind the Architecture of the Schemata in the Evolutionary Approach
	V. Data Mapping in the Design Process of the Overall Relational Logical Schema
	VI. Data Mapping in the Design Processof the Physical Database
	a) Physical Clustering

	VII. Data Mapping in the Design Process of the External Logical Schema ofan Application
	VIII. Data Mapping when Generating And Optimizing Query Logical Executionplan
	IX.Related Work
	a) The Guarantee of Independence
	b) The Guarantee of Integrity
	c) The Guarantee of Performance when Evaluating a Query on the Database

	X. Conclusion
	References Références Referencias

