
© 2023. Deepak Prajapat & Aishwarya. This research/review article is distributed under the terms of the Attribution-Non
Commercial NoDerivatives 4.0 International (CC BYNCND 4.0). You must give appropriate credit to authors and reference this
article if parts of the article are reproduced in any manner. Applicable licensing terms are at https://creativecommons.org/
licenses/by-nc-nd/4.0/.

Global Journal of Computer Science and Technology: H
Information & Technology
Volume 23 Issue 2 Version 1.0 Year 2023
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

The Study and use of Dynamic Programming
By Deepak Prajapat & Aishwarya

 University of Ajeenkya D.Y. Patil
Abstract- When learning algorithms for the first time, dynamic programming is one area that is
not well understood, but it is also a part that should be studied. It has been used effectively in
numerous fields, such as controlling human movement, distributing hydroelectric resources, and
gene sequencing. The dynamic programming principle is explained in detail in this article.
Comparing it to other algorithms at the same time, we are able to comprehend dynamic
programming's nature, as well as its benefits and drawbacks when compared to alternative
techniques for problem-solving. On the basis of pertinent application examples, it then explores
the dynamic programming problem-solving techniques and stages.

Keywords: knapsack problem, memory recursion, and dynamic programming.

GJCST-H Classification: FOR Code: 280212

TheStudyanduseofDynamicProgramming

Strictly as per the compliance and regulations of:

The Study and use of Dynamic Programming
Deepak Prajapat α & Aishwarya σ

Abstract-

When learning algorithms for the first time, dynamic
programming is one area that is not well understood, but it is
also a part that should be studied. It has been used effectively
in numerous fields, such as controlling

human movement,
distributing hydroelectric resources, and gene sequencing.
The dynamic programming principle is explained in detail in
this article. Comparing it to other algorithms at the same time,

we are able to comprehend dynamic programming's nature,

as well as its benefits and drawbacks when compared to
alternative techniques for problem-solving.

On the basis of
pertinent application examples, it then explores the dynamic
programming problem-solving techniques and stages.

Keywords:

knapsack problem, memory recursion, and
dynamic programming.

I.

Introduction

sing the dynamic programming technique, it is
possible to solve the optimal solution problem
for multi-stage decision-making.

Not as
"dynamic" as the name would imply. When attempting to
resolve a practical issue,

it establishes the starting point
and breaks the large problem into smaller ones.

The
prior subproblem can be used to solve the current sub

problem.

The relationship between the present and
previous subproblems, also known as the state
transition equation, is the center of this problem and the
source of its difficulty.

After determining the equation for
the state transition, the sub-solution problem is
gradually between the bottom and the top of the
problem's original state in order to resolve the larger
overall issue.

II.

Essential Concept of Dynamic
Programming

Check to see if the situation at hand has ideal
substructure features first,

overlapping subproblem
characteristics, and absence of consequences,

this
determines whether dynamic programming may be
used to solve the issue.

The term "optimal substructure"
refers to the property that the best solution to a problem
also incorporates the best solutions to all of its
subproblems. When the problem is divided into sub-
problems, [1]; the overlapping sub-problem indicates
that

no aftereffect denotes that after the state of a
specific stage is established, once some of the sub-

problems formed each time are repeated, the
subsequent decisions made by this state won't have an
impact on it [2]. Dividing a task into several stages is
the fundamental concept of using dynamic
programming to solve problems, thus a stage can have
more than one state. These states can be used to
determine the outcome of this stage as well as the
values of each state in the following stage. And so on,
until the solution of the last stage is found, that is, the
solution to the problem.

Generally speaking, when considering the
issue, our approach should be top-down. We must
resolve the issue with the earlier stage of the first issue
in order to address the initial issue, while the earlier
stage has a number of states. The selection of any one
of these could be the answer to the initial issue. Which
is what the transfer equation needs to assess, and
these states are determined by the final step. repeat this
process till the starting state. Yet the way the
calculations are done is bottom-up. Beginning with the
initial situation, Calculations are made to determine
each state's solution during the first stage.
Subsequently, using these conclusions, the states of
the subsequent step can be determined until the
conclusion of the previous stage's solution.

III. Connectedother Algorithms

a) Greedy Method
Using greedy concepts is another highly

effective approach to solving the optimal problem, in
addition to dynamic programming. Therefore, in order to
use a greedy method to address the problem, the issue
must meet the criteria for greedy selection, that is,
compared to the application of dynamic programming,
local optimal selection [3] is more stringent., and can
yield the overall best solution. The dynamic
programming approach can typically solve the issues
that can be resolved by the greedy technique, yet the
greedy method might not be able to tackle all the issues
that the dynamic programming method solves. It seems
sensible to think about greed as a unique instance of
dynamic programming. Greedy just consider the here
and now, whereas dynamic programming also
considers the past.

U

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

29

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

Author α: Dept. School of Engineering Ajeenkya D.Y. Patil University
Pune, Maharashtra, India. e-mail: deepak27prajapat@gmail.com
Author σ: Dept. School of Engineering. Ajeenkya D.Y. Patil University
Pune, Maharashtra, India. e-mail: Aishwayra@inurture.co.in

mailto:deepak27prajapat@gmail.com�
mailto:Aishwayra@inurture.co.in�

Fig. 1: Example of Greedy Method

b) Divide and Conquer
The dynamic programming algorithm is

essentially a variation of the divide and conquers
strategy. They each break down a major problem into
smaller ones and deal with each one separately. The
dynamic programming method differs in that a sub-
problem may occur many more than once. Due to the
fact that the sub-problems overlap, solving the latter
problem also necessitates solving the first. Hence, we
considered storing these subproblems so that we could
easily access their solutions while tackling larger
subproblems, eliminating redundant calculations to

improve algorithm efficiency; the divide-and-conquer
strategy works better with autonomous subproblems.
When the subproblems are recursively solved one at a
time and then combined to answer the main problem,
However, The efficiency of the algorithms won't be as
high as that of dynamic programming. approach. The
issue with dynamic programming can also be solved
with it. As a result, the divide and conquer strategy may
be used to understand the dynamic programming
approach.

Fig. 2: Example of Divide and Conquer

c) Memory Recursion
Memory recursion is also utilized to tackle the

problem with the concept of the space-for-time
algorithm, similar to the dynamic programming
approach, and they actually have the same essence.
Yet, the dynamic programming approach works from
the bottom up whereas the memory recursion solves
problems from the top down. The two can typically be
used interchangeably. The cache in memory recursion
is analogous to the dp table in dynamic programming,

thus in dynamic programming, the state transition
equation is the same as a recursive calling.

The
conversion between the two is somewhat comparable
to that between recursion and loop.

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

30

 (

)
Y
e
a
r

20
23

H
The Study and use of Dynamic Programming

IV. Application

a) Steps for Resolving Issues
Once an issue arises, the first thing we must

consider is if dynamic programming can be used to
address it. Considering if the answer is optimal is
necessary if dynamic programming can be used to
resolve the issue. Dynamic programming can be used
to solve the problem if it meets the prerequisites of the
ideal sub-structure, the similarity of sub-problem
characteristics, and the absence of a consequence. We
are now considering if it is best to employ dynamic
programming to resolve this issue. Assume that there
are n phases to this problem, and each stage contains
m states. Recursion can be used to solve this problem
This issue can be resolved using the greedy method
when m is equal to 1if each stage's ideal state is derived
from the optimal state of the stage before it; Dynamic
programming can be used to address this problem if a
state from a previous step serves as the foundation for
the ideal condition at each level.

Once it has been determined that this problem
can be solved using dynamic programming, it is broken
down into many steps based on its specific
characteristics. We must employ various states to reflect
the problem's current objective reality once it reaches a
given level of development. The transition equation, or
link between a stage's current state and its predecessor
stage's current state, is what we need to discover. Prior
to that, we must first determine the beginning state and
make sure the state we choose has no consequences.
Find the best solution at each level in accordance with
the transfer equation, and then locate the answer to the
initial problem by finding the best solution at the last
stage.

b) Application Examples
A well-known issue with dynamic programming

is the 0-1 knapsack problem, which is also worthwhile
understanding because it may be used to solve a
variety of other problems. The issue is described in the
following way: Given a rucksack with a capacity of W, n
objects with weights w1, w2, and wn and values v1, v2,
vn are present. Create a strategy for choosing a few of
these goods to put in the rucksack. Either one of the
items is chosen or not. The chosen goods must have
the highest worth in addition to being able to fit in the
rucksack. The first thought that comes to mind is
typically a pretty violent recursive one. There are two
options for each item: either place it in the backpack or
do not place it in the backpack. This gives us the
occurrence: f (n, W)=max (f (n-1,W), f (n-1, W-wn)+Vn).
The largest value that is possible after packing the first n
things into a bag with a W-liter capacity is represented
by f(n, W) among them. We have made decisions for
each recursive stage, including whether to select, which

V.

Conclusions
 Using the recursive solution

approach, finding
the transfer equation, which is the same as the recursive
formula, is the main objective of the dynamic
programming approach.

This article presents the
fundamental concepts, steps for solving problems, and
examples of applications of the

dynamic programming
method,

and specifically explains how the dynamic
programming approach differs from other approaches
in terms of conversion relations is discussed.

The
essence of dynamic programming is evaluated and
taken into consideration through comparison with other
algorithms: apply the solutions to old issues to solve
new ones.

 References Références Referencias

1.

Rethinking algorithm design and analysis, Ananya
Levitin. 2019, 32

(1): 14-20.

 2.

Ulrich Pferschy and Rosario Scatamacchia. Results
of improved dynamic programming and approxi-
mation for the setups knapsack problem. 2017, 25

 (2): 677-662.

 3.

D. B.

Dereventsov and V. F. Temlyakov. a
methodical approach to studying several greedy
algorithms 2022, 227

(12):

69-54.

 4.

Teaching Algorithms. SIGACT News, 36 (December
2015), 58–56. Baeza-Yates, R.

 5.

Programming Pearls, by J. Bentley, Addison-
Wesley, 2016.

 6.

Fundamentals of algorithms, by G. Brassard and P.
Bratley, Prentice-Hall, 2016.

 7.

Algorithms: An Introduction, T. Cormen et al. MIT,

 1992.

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

31

 (

)
H

Y
e
a
r

20
23

© 2023 Global Journals

The Study and use of Dynamic Programming

means Citing the case of each decision. Recursively go

through each node on the solution set tree to find the 0-
1 knapsack problem's proper answer.

In reality, there are many repeated answers,
therefore we came up with the idea In order to avoid
having to repeat each recursive solution in the future,
we created a two-dimensional array to store the results.
The memory recursion approach looks like this.

Actually, dynamic programming and the
memory recursion method are pretty similar. As was
already mentioned, the two vary in that one is bottom-
up and the other is top-down. In fact, they may also be
thought of as the way recursion and looping interact.
Theoretically, loop and recursion are interchangeable.
Consequently, the dynamic programming method's
solution can be reached by turning with a two-
dimensional array and the dynamic transfer equation
that was previously memorized, turning the recursive
process into a loop. Each item's choice can be viewed
as a stage in the dynamic programming problem.

8. Computer Algorithms, 2019, Computer Science
Press, Horowitz et al.

© 2023 Global Journals

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
X
III

 I
ss
ue

 I
I
V
er
sio

n
I

32

 (

)
Y
e
a
r

20
23

H
The Study and use of Dynamic Programming

9. Programming Practice, by B. Kernigan and R. Pike.
2005, Addison-Wesley.

10. Should we teach the correct algorithm design
techniques? Levitin, A. 179–183 in Proc. SIGCSE '99
(March 2013).

11. Foundations of Algorithms, by R. Neapolitan and K.
Naimipour. Jones and Bartlett, 1997, second
edition.

12. How to Solve It, by G. Polya, Princeton University
Press, 2015.

13. Compared To What? : an Introduction to the Study
of Algorithms, J. Rawlins. 2019, Comp. Sc. Press.
[14] Algorithms, R. Sedgewick, 2020, Addison-
Wesley.

14. The Algorithm Design Manual by Skiena, S. 1997,
Springer Verlag.

15. The maximal rectangle problem. Dr. Dobb's Journal,
23 (April 2021), 28–32. Vandervooerde, D.

	The Study and use of Dynamic Programming
	Author
	Keywords
	I. Introduction
	II. Essential Concept of Dynamic Programming
	III. Connected other Algorithms
	a) Greedy Method
	b) Divide and Conquer
	c) Memory Recursion

	IV. Application
	a) Steps for Resolving Issues
	b) Application Examples
	V. Conclusions
	References Références Referencias

