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Electromagnetic imaging is a technique that has been employed and perfected
to investigate the Earth subsurface over the past three decades. Besides
the traditional geophysical surveys (e.g., hydrocarbon exploration, geological
mapping), several new applications have appeared (e.g., characterization of
geothermal energy reservoirs, capture and storage of carbon dioxide, water
prospecting, and monitoring of hazardous-waste deposits). The development
of new numerical schemes, algorithms, and easy access to supercomputers
have supported innovation throughout the geo-electromagnetic community.
In particular, deep learning solutions have taken electromagnetic imaging
technology to a different level. These emerging deep learning tools have
significantly contributed to data processing for enhanced electromagnetic
imaging of the Earth. Herein, we review innovative electromagnetic imaging
technologies and deep learning solutions and their role in better understanding
useful resources for the energy transition path. To better understand this
landscape, we describe the physics behind electromagnetic imaging, current
trends in its numerical modeling, development of computational tools
(traditional approaches and emerging deep learning schemes), and discuss some
key applications for the energy transition. We focus on the need to explore
all the alternatives of technologies and expertise transfer to propel the energy
landscape forward. We hope this review may be useful for the entire geo-
electromagnetic community and inspire and drive the further development of
innovative electromagnetic imaging technologies to power a safer future based
on energy sources.
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1 Introduction

The energy transition concerns the shift from fossil-based fuels
(e.g., oil, natural gas, andcoal) to renewable energy sources (e.g.,
wind, solar, hydrogen, bio-energy, carbon capture and storage, and
geothermal) to reduce CO2 emissions. This type of transition is not
new: coal in the middle of the 19th century, oil in the middle of the
20th, and nuclear power for civil purposes in the 1970s, all brought
about significant changes in the energy mixes, although back then,
the different sources did not supplant one another, but were more
complimentary (Steg et al., 2015).

Innovation and competitiveness in the energy transition entail
the capacity to produce and use affordable, reliable, and accessible
green energies through clean technologies to compete in energy
technology markets and benefit the economy and people. In
2015, the United Nations General Assembly (UNGA) adopted
the 2030 Agenda for Sustainable Development and its Sustainable
Development Goals (SDGs (SDG, 2019)), which include a dedicated
and stand-alone goal on energy, SDG 7: ”Ensure access to affordable,
reliable, sustainable and modern energy for all. Energy lies at
the heart of both the 2030 SDGs and the Paris Agreement
on Climate Change (PACC (United-Nations, 2015)), which aims
to ensure access to affordable, reliable, sustainable and modern
energy.

With the European Green Deal (EGD (Fetting, 2020)), the
European Union (EU) aims to become the first climate-neutral
continent by 2050. This vision was enshrined into legislation with
the European Climate Law, which transformed the EU’s climate-
neutrality pledge into a binding obligation and increased the EU’s
2030 emissions reductions target from 40{%} to at least 55{%}
compared to 1990s levels. To deliver on this climate target, the EU
must pursue one main goal: make its energy sector climate neutral.
But change will not happen overnight. Should the previous climate
target be successfully achieved, the following challenges need to be
addressed by 2050:

1) Reduce energy mix and import dependency: In 2022, the EU
imported 57.5{%} of the energy it consumed as its production
and satisfied only 42.5{%} of its needs. Russia is the EU’s leading
natural gas, oil, and coal supplier (Eurostat, 2022).

2) Decarbonization of the energy sector: the production and use
of energy across economic sectors account for more than 75{%}
of the EU’s greenhouse gas (GHG) emissions. Today, almost
three-quarters of the EU energy system relies on fossil fuels.
Oil dominates the EU energy mix (with a share of 35{%}),
followed by natural gas (24{%}) and coal (14{%}) (Eurostat,
2022).

3) Improve performance and reliability of geo-resources: ensure
a reliable pre-drilling assessment of geo-energy to increase the
production rates with reduced operational and maintenance
costs that allow widespread and cost-effective exploitation of
them.

4) Accelerate the deployment of renewable sources: despite
renewables growing in share, they still play a limited role of
14{%} and account for no more than 5{%} of the renewables
market (Eurostat, 2022). It is critical to extend renewable energy
uses to complex and untested geological conditions and reduce
its environmental impact.

5) Increase citizen engagement: generating actionable knowledge
to draw a complete understanding of renewable energy’s
environmental and social impacts.

Geophysical imaging technologies can be applied to face the
mentioned issues. Through in silico methods (mathematics,
physics, geophysics, computer science, artificial intelligence), these
technologies address two key questions related to geo-resources for
the energy transition and a high-tech society:

1) Where to find the geo-resources that we need today and in the
future?

2) How to access those geo-resources most sustainably?

Electromagnetic (EM)methods are among themost important tools
for exploring the subsurface (Andreis and MacGregor, 2008). EM
imaging technologies have been used for hydrocarbon exploration
for several decades, but lately, worldwide recognition of the
importance of the method has significantly increased (Wang et al.,
2021). Its widespread applications range from regional-scale geo-
energy studies (Kana et al., 2015; Castillo-Reyes et al., 2021) and
mineral exploration to mapping thin shallow layers (Guo Z. et al.,
2020) or characterization of unexploited groundwater reservoirs
(Weymer et al., 2018). Becausematurity of numericalmethods, deep
learning (DL) schemes, and exponential growth in the performance
of computers, the development of increasingly sophisticated EM
imaging software solutions, which, when combined with high-
quality data, have become a right-hand man to geophysicists and
have produce impressive results. With a growing world population
and incremental use of sophisticated technologies, the demand for
geo-energy and raw materials to sustain the current energy needs is
steadily (Perez and Perez, 2022). For example, the minerals required
to develop battery components are scarce but fundamental for
an electrified mobility model. At the same time, the conventional
dependence on fossil fuels and the high-access cost to many
resources are currently major challenges (Khan et al., 2021). EM
imaging technologies are one viable approach to provide mapping
solutions to address these problems on a global scale (since the
technology is software-based, it is not geographically restricted).
In light of this, we believe EM imaging solutions (both traditional
and DL-based) will be a crucial technology in the future and likely
one of the most important investigative methods for exploring
and managing geo-energy resources with reduced costs and risks
(Newman, 2014; Castillo-Reyes et al., 2021).

Numerical methods, DL schemes, and computational strategies
are in a symbiotic relationship for EM imaging. These methods
and approaches have developed so rapidly that even among
scientists and professionals, only a few have a complete overview
of the state of EM imaging technologies and their applicability
for the transition to renewable energies. This knowledge gap gives
disjointed development to the detriment of the three areas, which is
something we hope to help mend with this work. This review aims
to provide the reader with an overview of EM data for enhanced
imaging of the Earth and identify the opportunity to transfer
expertise from coal energies to renewable sources. Many numerical
and computational strategies, including traditionalmethods, andDL
schemes for processing EMdata, are reviewed and summarized. Our
review shows great potential to use numerical and computational
strategies to move from traditional to zero-carbon energy systems.

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2023.1159910
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Castillo Reyes et al. 10.3389/feart.2023.1159910

The rest of the paper is organized as follows. In Section 2, we
introduce EM data for subsurface imaging, followed by an overall
view of its applications. In Section 3, we assess the knowledge
transfer potential from coal energies to renewable sources. In
Section 4, we discuss the key applications, potentials, and limitations
of EM imaging for the energy transition. In Section 5, we review
DL technologies as a solution to the challenges faced by traditional
EM imaging technologies. Finally, in Section 6, we provide summary
remarks and conclusions.

2 Electromagnetic data for enhanced
imaging of the Earth

Imaging of the Earth’s subsurface is of great societal value
since this process is fundamental to earthquake prediction
and seismic hazard estimation, mine detection, prospecting of
energy (hydrocarbons, geothermal) and water reservoirs, seismic
monitoring, and management of CO2 sequestration, among others
(Etgen et al., 2009). Several diverse methods, such as seismic, EM,
well-logging, magnetic, and gravity, generate high-quality Earth’s
subsurface maps. Each of these techniques obtains a corresponding
data type that must be analyzed and interpreted by experts in the
field to determine the expected profitability of the region of interest.
Complex computational tools carry out this assessment.

Over the last three decades, EM methods have become
fundamental research tools in geophysics exploration (Um and
Alumbaugh, 2007; Constable, 2010; Castillo-Reyes et al., 2018).
By using EM methods, Maxwell’s diffusive equations in the time-
domain or frequency-domain are solved to obtain a prediction

of the EM signature. The behavior of the response depends
on the excitation source type (natural or artificial) and the
distribution of geological properties. From this input-response
dependence, it is possible to build accurate 3D resistivity maps of
the Earth’s subsurface. These EM data are useful for enhanced Earth
imaging and de-risk any applications that exploit the associated
geo-resources.

Since EM methods can display resistivity/conductivity
variations concerning their surrounding materials, EM imaging
has greatly complemented seismic methods (sensitive to subsurface
structure). As a result, EM imaging technologies have been applied
in different areas of geophysics such as off-shore hydrocarbon
(Newman and Alumbaugh, 1997; Eidesmo et al., 2002; Avdeev,
2005; Constable, 2006; Srnka et al., 2006; Orange et al., 2009;
Constable, 2010; Wirianto et al., 2010; Castillo-Reyes et al., 2018;
Castillo-Reyes et al., 2019; Castillo-Reyes et al., 2022b), mineral
and resource mining (Sheard et al., 2005; Yang and Oldenburg,
2012), crustal conductivity studies (Hördt et al., 1992; Hördt et al.,
2000), CO2 storage characterization (Chen et al., 2007; Girard et al.,
2011; Vilamajó et al., 2013; Zhdanov et al., 2013; Vilamajó et al.,
2016; Park et al., 2017; Tveit et al., 2020), geothermal reservoir
imaging (Kana et al., 2015; Coppo et al., 2016; Darnet et al.,
2018; Omisore et al., 2020; Castillo-Reyes et al., 2021), and water
prospecting (Palacky et al., 1981; McNeill, 1990; Nabighian and
Macnae, 1991; Palacky, 1993; Nobes, 1996; Chang et al., 2019).
Regardless of the application context, the authors stand out on
the potential of EM methods for exploration, appraisal, and soil
characterization. The literature also highlights that EM imaging is
one of the most cost-effective geophysical data and its transversality
for soil characterization and energy reservoir monitoring. Figure 1

FIGURE 1
Application mapping of EM imaging technologies.
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shows the summary of the most relevant applications for EM
imaging. In additionFurthermore, Table 1 shows an overview of
the literature reviewed. Furthermore, Table 2 provides a summary
of applications discussed in the paper, listing the input features (data
used as input for the EM imaging process) and the output features
(information obtained as a result of the imaging process).

Although over the last years, a significant effort has been made
in the EM imaging community to build 3D resistivity maps of
the Earth’s subsurface, additional work is still needed to improve
the accuracy and efficiency of computational tools. Also, the
development of workflows that combine different geophysical data
(e.g., seismic and EM data) and computational techniques (e.g.,
artificial intelligence and DL) is required to improve geophysical
exploration tasks. In the following sections, we focus on completing
our revision in these relevant aspects and applications.

3 Expertise transfer from coal energies
to renewable sources

Climate change and current geopolitical developments call for a
revamp of our strategies regarding primary resources and energy in
a carbon-neutral future (United-Nations, 2015; SDG, 2019; Fetting,
2020). The subsurface of the Earth holds substantial reservoirs of
green energy (e.g., geothermal), freshwater, and storage space to
sequester carbon dioxide. The characterization of such reservoirs
can provide untapped resources of local nature that can assist the
environmental and economic sustainability of the next generations.
Furthermore, the ores required to develop battery components
are scarce but fundamental to achieving a zero-carbon electrified
mobility model (Xu et al., 2020).

EM surveys, aerial and ground-based, are among the most
widely used methods for subsurface exploration. The EM imaging
technology has been developed and perfected for hydrocarbon
exploration, as it can detect conductivity contrasts caused by changes
in lithology or fluids. Several works and experiments demonstrated
the potential of EM imaging for detecting hydrocarbon-rich
zones (Eidesmo et al., 2002; Edwards, 2005; Sheard et al., 2005;
Srnka et al., 2006; Newman and Commer, 2009; Gray et al., 2012;
Chung et al., 2014; Cai et al., 2017; Castillo-Reyes et al., 2018).
Furthermore, the literature reviews by Andreis and MacGregor
(2008), Constable (2010), Newman (2014), and Wang et al. (2021)
detailed the journey of EM methods and its applicability in the
hydrocarbon industry. However, the same technological basis can
be deployed to detect fluids or minerals or monitor their migration.
Combined with the exponential growth in the performance of
computers in the last decade, our capacity to transform EM data
into subsurface models can now be massively deployed. As data
acquisition is inexpensive and has a small footprint on the terrain,
exploring vast territory regions can become routine in the current
decade.

Regarding applications, integrated approaches, including EM
data, have been used on different scales and with diverse objectives.
Still, there is a shortage of studies targeting carbon-neutral energy
options. Significant developments can be made with an enormous
impact on primary resources for the clean energy transition. The
design of more affordable, secure, and sustainable energy systems
will demand expertise transfer and data sharing. Therefore, by

tapping into EM imaging expertise transfer from the hydrocarbon
sector to carbon-neutral systems, the energy industry can pave a
more intelligent, efficient, and resilient route for exploring non-
conventional energy resources. In this sense, we identify three
expertise topics with high transfer potential: physical behavior,
numerical methods, and computational strategies. Below we
discuss the most relevant aspects of each one. In addition, Figure 2
depicts a summary of the technological ecosystem for EM imaging.

3.1 Physical behavior

For the diversity of remote sensing techniques deployed in the
past century, EM methods seem to be less important than seismic
techniques in the hydrocarbon sector. However, the activity in EM
imaging for exploration has been present, and in the 1970s and
1980s, improved equipment and increasing data-processing power
led to extensive development. The achievements of EM imaging and
its physical behavior have recently been reviewed in comprehensive
papers (Avdeev, 2005; Chopra et al., 2007; Um and Alumbaugh,
2007; Constable, 2010; Chave et al., 2017a,b; Eide and Carter, 2020).

Three elements describe the EM properties of a medium:
the electric permittivity or dielectric constant (ϵr), magnetic
permeability (μ), and electric conductivity (σ) or its reciprocal
called electric resistivity (1/σ). EM techniques investigate the Earth’s
subsurface usingEMsignals generated by artificial or natural sources
in both land and marine environments. Analyzing differences
between the conductivity/resistivity of the various subsurface strata
enables us to map geological bodies. Because of the ability to
map significant variations between electric material properties, EM
methods are very useful for detecting hydrocarbon locations since
they exhibit different resistivities from the surrounding rocks (Li and
Key, 2007). However, EM measurements and their analysis can also
be applied to other environmental and engineering applications such
as mining, carbon capture/storage, and water reservoir prospecting
(Evans, 2007; Weymer et al., 2018). As a result, these engineering
sectors can benefit from all the knowledge and experience developed
by the hydrocarbon industry.

3.2 Numerical strategies

Rigorous interpretation of EM data in complex geological
setups requires accurate and efficient numerical strategies. The
industrial needs, mainly those related to the oil sector, encouraged
tremendous advances in numerical schemes for EM imaging. Börner
(2010) presented a review of numerical method developments for
the discrete solution of the EM problem in geophysics, which is
governed by Maxwell’s equations (Zhdanov, 2009).

The numerical techniques for solving these fundamental
equations are based on four strategies: integral equations (IE,
(Raiche, 1974; Wannamaker et al., 1984; Wannamaker, 1991; Xiong
and Tripp, 1997)), finite differences (FD (Mackie et al., 1994;
Newman and Alumbaugh, 2002; Davydycheva et al., 2003)), finite
volumes (FV (Hermeline, 2009; Jahandari and Farquharson, 2014)),
and finite elements (FE (Jin et al., 1999; Key and Ovall, 2011;
Um et al., 2013;Castillo-Reyes et al., 2019)). Eachnumerical scheme
could have advantages or disadvantages depending on the input
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TABLE 1 Summary of articles selected in the literature review organized by numerical method, application context, and year of publication.

Numerical method Application Paper Data type Parallelism DL

FD

Hydrocarbon

Mackie et al. (1994) Synthetic No No

Newman and Alumbaugh (1997) Synthetic Yes No

Newman and Alumbaugh (2002) Synthetic No No

Davydycheva et al. (2003) Synthetic No No

Geothermal

Ward (1983) Synthetic No No

Thanassoulas (1991) Synthetic No No

Didana et al. (2017) Synthetic No No

Gas hydrate
Weitemeyer et al. (2010) Experimental No No

Newman et al. (2010) Synthetic/Experimental Yes No

CO2

Bhuyian et al. (2012) Synthetic No No

Puzyrev et al. (2017) Synthetic/Experimental Yes No

Waste disposal

Tezkan et al. (1996) Experimental No No

Zacher et al. (1996) Experimental No No

Eigenberg et al. (1998) Synthetic/Experimental No No

Tezkan (1999) Experimental No No

Water reservoir Attias et al. (2021) Experimental No No

FE

Hydrocarbon

Zyserman and Santos (2000) Synthetic Yes No

Wilt and Alumbaugh (2003) Synthetic/Experimental Yes No

Plessix et al. (2007) Synthetic No No

Orange et al. (2009) Synthetic No No

Key and Ovall (2011) Synthetic Yes No

Schwarzbach et al. (2011) Synthetic Yes No

Ren et al. (2013) Synthetic No No

Um et al. (2013) Synthetic No No

Chung et al. (2014) Synthetic Yes No

Cockett et al. (2015) Synthetic/Experimental Yes No

Grayver and Kolev (2015) Synthetic Yes No

Zhang and Key (2016) Synthetic Yes No

Cai et al. (2017) Synthetic Yes No

Castillo-Reyes et al. (2018), Castillo-Reyes et al. (2019) Synthetic Yes No

Rochlitz et al. (2019) Synthetic Yes No

Castillo-Reyes et al. (2022a) Experimental Yes No

Geothermal

Spichak and Manzella (2009) Synthetic/Experimental No No

Streich et al. (2010) Synthetic No No

Um et al. (2015) Synthetic Yes No

Bretaudeau et al. (2017) Synthetic No No

Castillo-Reyes et al. (2021),Castillo-Reyes et al. (2022a) Experimental Yes No

Bretaudeau et al. (2021) Experimental No No

Gas hydrate
Weitemeyer et al. (2010) Experimental No No

Attias et al. (2018) Experimental No No

(Continued on the following page)
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TABLE 1 (Continued) Summary of articles selected in the literature review organized by numerical method, application context, and year of publication.

Numerical method Application Paper Data type Parallelism DL

Tharimela et al. (2019) Synthetic/Experimental No No

Schwalenberg et al. (2020) Experimental No No

Kannberg and Constable (2020) Experimental No No

CO2

Bailey (1994) Synthetic/Experimental No No

Commer and Newman (2009) Synthetic No No

Streich et al. (2010) Synthetic No No

Börner et al. (2015) Synthetic No No

Vilamajó et al. (2015) Synthetic/Experimental No No

Um et al. (2022) Synthetic/Experimental Yes Yes

Waste disposal

Pellerin and Alumbaugh (1997) Synthetic No No

Doll et al. (2000) Synthetic No No

Auken et al. (2006) Synthetic/Experimental No No

Di et al. (2014) Experimental No No

Deidda et al. (2022) Experimental No No

Waste reservoir

Andreis and MacGregor (2008) Synthetic No No

Lien and Mannseth (2008) Experimental No No

Weymer et al. (2018) Experimental No No

Ishizu and Ogawa (2021) Synthetic No No

IE
Hydrocarbon Kohnke et al. (2018) Synthetic Yes No

CO2 Vilamajó et al. (2013) Synthetic/Experimental No No

FV Hydrocarbon

Heagy et al. (2017) Synthetic/Experimental Yes No

Werthmüller (2017) Synthetic/Experimental Yes No

Heagy and Oldenburg (2022) Synthetic Yes No

DNN
Hydrocarbon

Shahriari et al. (2020b) Synthetic Yes Yes

Zhu et al. (2020) Synthetic No Yes

Alyaev et al. (2021) Synthetic/Experimental Yes Yes

Rammay et al. (2022) Synthetic Yes Yes

Yan et al. (2022) Synthetic No Yes

Water reservoir Li et al. (2021) Synthetic/Experimental No Yes

CNN

Hydrocarbon

Oh et al. (2018), Oh et al. (2020) Synthetic No Yes

Colombo et al. (2020) Experimental No Yes

Li and Yang (2021) Synthetic Yes Yes

CO2

Puzyrev (2019) Synthetic/Experimental Yes Yes

Um et al. (2022) Synthetic/Experimental Yes Yes

RNN Mineral mining Bang et al. (2021) Synthetic/Experimental Yes Yes

EM problem. The use of, IE, discretizations results in a dense
linear system of equations (LSE) that can be solved efficiently
for simplified layered models (e.g., models with flat and few
resistivity layers). However, if the model complexity increases
(e.g., models with several resistivity layers), the computational
cost (e.g., runtime and memory needs) can be prohibitive for

modest computational architectures (Avdeeva et al., 2015). The
FD method is one of the most used in EM imaging. The
popularity of FD schemes is due to their easy computational
implementation. Nevertheless, its main disadvantage is the inability
to work with unstructured meshes. Thus, to approximate complex
subsurface bodies, a stair-case grid approach is required. Like
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TABLE 2 Main applications of electromagnetic imaging in renewable energy transition.

Application Input data Output data

Hydrocarbon exploration EM waveforms, resistivity, magnetic field data Subsurface geological structures

Geological mapping EM waveforms, resistivity, conductivity data Geomorphological features, rock properties

Geothermal energy EM waveforms, resistivity, temperature data Geothermal reservoir characterization

CO2 storage EM waveforms, resistivity, porosity data Subsurface CO2 plume distribution

Groundwater prospecting EM waveforms, conductivity, water content data Subsurface water resources

Hazardous-waste monitoring EM waveforms, conductivity, contaminant data Contaminant plume detection

FIGURE 2
Overview of the EM imaging ecosystem.

the FD strategy, the FV method is simple in terms of numerical
formulation and computational implementation. Furthermore, the
FV scheme can be applied to unstructured meshes, allowing us
to represent geometrically complex models. However, when grids
with similar features are compared, the numerical accuracy of
FV solutions is generally inferior to FD or FE computations
(Bondeson et al., 2012; Jahandari et al., 2017). The FE scheme
employs fully unstructured meshes, avoiding the above-mentioned
geometrical representation issue. Furthermore, the numerical
accuracy of FE computations can be improved by employing

tailored mesh refinement techniques (both in h− and p− spaces)
(Plessix et al., 2007; Key and Ovall, 2011; Schwarzbach et al.,
2011; Ren et al., 2013; Grayver and Kolev, 2015; Zhang and
Key, 2016; Castillo-Reyes et al., 2019). Recently, Castillo-Reyes et al.
(2022) and Castillo-Reyes et al. (2022a) evaluated the benefits and
computational cost of goal-oriented mesh refinement for diverse
geophysical exploration setups (hydrocarbons, geothermal energy,
and mining). The analysis of these numerical experiments confirms
that adaptive meshing is beneficial for building high-quality 3D
resistivity images.
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The study and improvement of these numerical methods
in terms of quality discretization (both in time and space),
numerical stability, convergence, meshing, and computational cost,
have resulted in many diverse EM imaging technologies for
the hydrocarbon sector. All this knowledge base is valuable for
appraising new and eco-friendly energy sources.

3.3 Computational strategies

The last two decades have been a period of the rapid growth
of heterogeneous computing systems. These architectures offer
tremendous potential for performance and efficiency in numerous
and diverse large-scale applications for science and engineering.
In particular, High-performance Computing (HPC) systems play
a fundamental role in solving actual and the next-generation
of real-life geoscience problems that usually are challenging and
computationally demanding (Osseyran and Giles, 2015). Advances
in software and hardware for HPC architectures have decisively
contributed to the maturity of EM imaging technologies. Below we
discuss the most relevant advancements in terms of computational
strategies for EM imaging of the subsurface.

Developing and improving fast and efficient algorithms
and numerical strategies is a constantly evolving task. These
computational and numerical schemes in EM imaging were initially
programmed using commercial software (e.g., MATLAB) and
executed in single-core architectures. This approach effectively
addresses the topic of validation (proof of concept). As a result,many
proprietary codes for geophysical applications have been developed
(Li andOldenburg, 1996; Li andOldenburg, 1998; Li andKey, 2007).
These modeling tools are adapted and adequate for a particular
application. However, the proprietary features of these codes make
it hard for other researchers to assess whether their underlying
formulation and algorithmics suit whichever computational
architecture those tools are deployed on. The latter issue motivated
the development of EM imaging technologies based on an open-
source paradigm, which allows for a complete exploration of its
underlying formulation and algorithmics. Furthermore, this feature
facilitates its efficient deployment on diverse computing platforms.
Themost relevant EM imaging projects under open source initiatives
are that developed by Cockett et al. (2015), Heagy et al. (2017),
Rücker et al. (2017), Werthmüller (2017), Castillo-Reyes et al.
(2018), Befus (2018), and Rochlitz et al. (2019).

In realistic configurations, the LSE resulting from the numerical
discretization of Maxwell’s equations is large, sparse, and highly
ill-conditioned. Consequently, solving the large-scale LSE is the
most critical and expensive phase of the overall EM imaging work.
Several numerical methods have been developed to solve these
linear systems of equations, which can be classified into two groups:
direct and iterative methods. Both groups have pros and cons,
and the choice of a given method is generally problem-dependent.
The main advantage of iterative methods is their low-storage
requirement, which resolves the memory issue of direct methods.
However, since linear systems are usually ill-conditioned, iterative
approaches are susceptible to numerical instability, which results in
poor convergence rates. Several ad hoc preconditioning techniques
have been proposed to face this poor convergence performance
(Axelsson, 1996; Um et al., 2013; Grayver and Kolev, 2015).

On the other hand, direct solvers are a robust solution to the LSE
with highly ill-conditioned matrices. Despite its numerical stability
benefits, direct solvers can be memory-consuming and prohibitive
(especially for large-scale simulations). Although expensive, the
use of direct solvers has gained momentum due to numerical
advancements and the maturity of HPC technologies. Pioneer
works in the context of HPC for EM imaging are presented
by Alumbaugh et al. (1996), Newman and Alumbaugh (1997),
Oristaglio and Spies (1999), Zyserman and Santos (2000), Key
and Ovall (2011), Grayver et al. (2013), Grayver and Kolev (2015),
Heagy et al. (2017), Castillo-Reyes et al. (2018), Castillo-Reyes et al.
(2019), and Rochlitz et al. (2019).

Regardless of the chosen numerical scheme and target
application, the state-of-art remarks that parallel computing
technologies are fundamental for enhanced EM imaging of the
Earth’s subsurface. The positive impact of HPC approaches on
EM imaging has been recently reviewed by Newman (2014)
and Osseyran and Giles (2015). Here, we identify two valuable
HPC contributions to the geo-electromagnetic community. First,
given the high computational cost of the solver computations,
heterogeneous HPC technologies (general purpose processors and
graphics processing units) can provide electrical resistivity maps in
a feasible run-time. Second, HPC algorithms can help us work on
the Frontier of geo-computing knowledge. In particular, it allows us
to design and simulate increasingly realistic models in terms of scale
and physical parameters.

4 Role of EM imaging for energy
transition

The energy landscape forward requires, among other
things, rethinking its value chain: exploration, exploitation, and
monitoring. This reinvention process is crucial to designing
energy transition routes and understanding their impacts. Several
technological solutions are available to characterize and monitor
new energy resources. In this section, we identify current trends
in the field of EM imaging for critical applications in the energy
transition. We also discuss some of the key associated potentials and
limitations.

4.1 CO2 sequestration and storage

Geological sequestration of CO2 provides a temporary solution
for reducing GHG emissions to the atmosphere (Vilamajó et al.,
2013). This technique involves the capture of CO2 emissions
produced from industrial and power generation sources, followed
by transport to underground geological storage sites and long-term
isolation from the atmospheric system. We need to characterize and
monitor sites suitable for CO2 sequestration and storage for safety
and operational reasons. EM imaging technologies are commonly
used to characterize such storage sites by electrical resistivities
distinctly different from those of the surrounding sediments.

Among the wide options of EM techniques, active-source
methods may be particularly suitable to identify and characterize
suitable sites for CO2 storage. In this regard, we identify three
advantages of active-source EM methods. First, it can resolve
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both electrically resistive and conductive geological structures.
Second, in comparison with passive-source schemes, active-source
methods offer better noise control and thus facilitate campaigns
in regions with high cultural noise levels. Third, its penetration
deep range is accessible by drilling, a useful feature to address the
topic of validation through a direct comparison between synthetic
and experimental data. With recent numerical and technological
developments, the logistical challenges and the high computing cost
for EM data processing have gradually been mitigated, and EM
imaging for CO2 sequestration and storage gained traction. One of
the first EM imaging attempts for CO2 storage dates to the 1990s,
when Bailey (1994) and Fisher et al. (1994) analyzed the potential
of EM data to characterize carbon storage sites in South America.
Later, several numerical and computational techniques for EM
imaging ofCO2 applicationswere developed. Commer andNewman
(2009) presented joint EM experiments (active-source and passive-
source) to significantly improve the delineation of a CO2 plume, thus
avoiding false assumptions about plume geometries. Streich et al.
(2010) investigated the feasibility of EM techniques for exploring
and monitoring different reservoir types (gas shales, geothermal
reservoirs, and CO2 storage sites). Numerical experiments of
CO2 reservoir models with varying configurations of resistivity
provided valuable insights about the potential and limitations of
EM methods to detect and monitor reservoirs. Bhuyian et al. (2012)
conducted active-source EM experiments to map anomalies in CO2
sequestration sites with shallow traps. Analysis of numerical results
warns of CO2 migration for the proposed models. A study about
physico-chemical interaction and the spectral electrical properties
of CO2 sites was presented by Börner et al. (2015). This study
also provides an empirical relationship for the impact of CO2
storage on pore water conductivity. Impressive EM studies in real
scenarios have been proposed by Ogaya et al. (2013), Vilamajó et al.
(2013), and Ogaya et al. (2016). Here, the authors investigated the
geoelectrical baseline model of the Hontomín site (Spain) for CO2
geological storage in a deep saline aquifer.

Recently, Righetti et al. (2020) recognized CO2 sequestration
and storage technologies as a key component to stabilizing
atmospheric GHG concentrations to reach the European
Commission’s 55{%} emissions reduction target by 2030. However,
the progress of EM imaging technologies for CO2 applications has
been slow, partially because CO2 storage will facilitate the continued
use of carbon energy sources fuels. Then, new EM technologies
(modeling and inversion) will need to be developed and validated to
characterize and monitor existing and new CO2 infrastructures.
In this regard, experimental data is fundamental to verify the
robustness of the EM imaging technologies.

4.2 Geothermal reservoirs

Geothermal energy is one of the most promising alternatives
for switching from conventional to renewable energy sources. It is
making its way worldwide as an energy alternative to other fossil
fuels, offering as advantages its renewable and innate nature of the
land. Geothermal energy has zero emissions, and its continuous
production is 24 h a day, 365 days a year. Also, its manageable
nature makes it relevant in improving the grid stability of the
renewables mix. However, geothermal energy is still immature, and

several geothermal anomalies still need to be explored. By exploring
these geothermal fields, we will understand the potential of its
environmentally friendly energy source and its application to key
social and industrial sectors. Later issues encourage researchers
to develop technologies around geothermal energy. Most of these
efforts aimed to develop models to appraise geothermal systems
in an integrated way with greater accuracy, thereby maximizing
the success rate and reducing the cost of drilling associated with
geothermal projects. In addition, such accuratemodels would lessen
any potential environmental impact.

EM imaging has proven to be a fundamental tool for scrutinizing
the subsurface. In geothermal energy environments, EM techniques
provide electrical resistivity distribution maps of great value. One
of the first EM imaging attempts for geothermal applications dates
to the 1980s/1990s, when Ward (1983) and Thanassoulas (1991)
investigated synthetic EM responses for typical-form geothermal
sites. Later, diverse and several impressive studies demonstrated
the value of EM data sets for the detection, characterization, and
monitoring of 2D/3D geothermal reservoirs (Spichak and Manzella,
2009; Streich et al., 2010; Peacock et al., 2013; Munoz, 2014;
Bretaudeau et al., 2017;Didana et al., 2017;Darnet et al., 2019; 2020;
Bretaudeau et al., 2021). All the aforementioned studies showed that
EM surveys provide complementary and valuable information for
the assessment of geothermal resources. Furthermore, it has been
observed that high-quality EM data play a critical role in reducing
the cost, risks, and uncertainty associated with the appraisal of
geothermal sites.

Despite previous advancements, geothermal reservoir
development with EM imaging technologies is still in its infancy.
The study of EM measurements in the presence of metallic
infrastructures (telephone networks, pipelines, railways, industrial
facilities, and wells, among others) is of particular interest because
the target areas are usually urbanized. Although numerically
challenging, several studies have been performed in this regard,
revealing a direct relationship between the presence of metallic
artifacts and signal-to-noise ratio in EM responses (Um et al.,
2015; Vilamajó et al., 2015; Wilt et al., 2020; Castillo-Reyes et al.,
2021; Heagy and Oldenburg, 2022). The aforementioned authors
remark on the importance of studying this behavior to avoid the
misinterpretation of EM maps. Furthermore, careful survey design
(synthetic data), dedicated data acquisition (experimental data),
and robust numerical and computational techniques are required to
build high-quality EM maps in geothermal regions (low, medium,
and high enthalpy).

4.3 Gas hydrate

Several articles have reviewed fossil energy exploration
using EM imaging technologies (Unsworth, 2005; Constable,
2006; Key and Ovall, 2011). In particular, the controlled-source
electromagnetic (CSEM) technique has been widely used to
explore hydrocarbon reservoirs since 2002 (Eidesmo et al., 2002;
Ellingsrud et al., 2002). However, under increasing pressure to
reduce its carbon footprint, the energy sector must develop and
optimize its technology portfolios to enhance long-term value.

Clean energy plays a key role in the world’s low-carbon
development, since it provides power for economic growth and
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social progress with less GHG emissions than carbon-based energy
sources (Lin and Li, 2022). Gas hydrate is a clean, efficient,
and promising environmentally friendly energy source (Makogon,
2010). Gas hydrate consists of natural gas molecules (the chief
constituent of natural gas: methane) enclosed within a solid lattice
of water molecules. Gas hydrate sources are of interest primarily for
three reasons:

1) Potential as a clean energy source: Recently, have been
recognized that there are huge amounts of natural gas, mainly
methane, tied up in gas hydrate globally. Thus, gas hydrates are a
potential energy resource (Boswell et al., 2020).

2) Role in climate change: methane is a potent GHG, so its escape
to the atmosphere from natural gas hydrate could result in global
warming (Boswell et al., 2020).

3) Production risks: Gas hydrate is a hazard in conventional
hydrocarbon exploration. Hydrates may affect climate because
when warmed or depressurized, they decompose and dissociate
into water and methane gas, one of the GHG that warms the
planet (Hunter et al., 2013), and even lead to geological disasters
(Mienert et al., 2005; Pei et al., 2022).

On top of that, the exploration of gas hydrate reservoirs has become
a hot spot nowadays, and EM imaging technologies could be
applied to face the mentioned issues significantly. Gas hydrate is
electrically resistive (ranging from hundreds to thousands of Ωm)
compared to the surrounding water-saturated sediments (ranging
from few to tens of Ωm) (Max, 2003). This electrical resistivity
contrast provides the physical basis for exploring gas hydrates
using EM techniques and obtaining information about gas hydrate
distribution.

The CSEM technique has been widely recognized as one
of the most effective methods for gas hydrate exploration
(Schwalenberg et al., 2005; Zach and Brauti, 2009). One of the first
attempts to introduceCSEM into gas hydrate exploration dates to the
1990s (Edwards, 1997). From that date, several CSEM experiments
have been carried out to accurately infer the existence of gas hydrate
resources and improve its drilling success rate (Weitemeyer et al.,
2006; Evans, 2007; Newman et al., 2010; Weitemeyer et al., 2010;
Key, 2016; Attias et al., 2018; Tharimela et al., 2019; Kannberg
and Constable, 2020; Schwalenberg et al., 2020). EM imaging
technologies can also estimate the hydrate saturation and
concentration, providing valuable information for assessing this
energy resource.

Another tool to investigate gas hydrate resources is the bottom
simulating reflector (BSR), which is an essential presence mark of
gas hydrate in seismic profiles (Singh et al., 1993; Majumdar et al.,
2016). BSR usually indicates the bottom interface of the gas
hydrate stability zone (BHSZ). Its seismic imaging corresponds
to the wave impedance interface between the hydrate layer and
the underlying free gas layer (Hillman et al., 2017). Therefore, it is
common to use BSR as an indicator of gas hydrate stable zones
(McConnell and Kendall, 2002; Mosher, 2011; Boswell et al., 2012;
Monteleone et al., 2022). However, identifying BSR patterns from
massive seismic data is remarkably challenging. The recognition
of BSR signatures is usually obtained from visual interpretations
of seismic images, such as biased judgments (Souza et al., 2019).
Besides, recognizing weak, discontinuous, and absent BSR is
another challenge (Chenin and Bedle, 2020). DL is a helpful

tool for solving the above image identification problems, and its
application to recognize BSR has been increasing rapidly. Geng and
Wang (2020) proposes SeismicPatchNet, an efficient and resource-
saving convolutional neural network for BSR identification. Chenin
and Bedle (2020) developed an unsupervised machine-learning
solution that combines multiple seismic attributes to improve BSR
characterization. From these studies, the authors concluded that EM
imaging andDL solutions could reveal helpful information about the
gas hydrate reservoir and its content.

4.4 Environmental applications

EM imaging can also be applied to environmental applications.
Examples which is most likely to lead to significant improvements
are in the field of buried waste deposits and water reservoir
characterization. Locating, delineating, and characterizing such
areas requires accurate 3D subsurface models.

Waste disposal is one of the current and future environmental
problems. It causes air and water pollution, enhances GHG
emissions, produces hazardous gases and leachates, promotes
massive land use, and exposure to dangerous chemicals (El-
Fadel et al., 1997). Despite this, waste deposits in landfills remain
the most economical and attractive disposal path for solid waste.
In Europe, 2151 million tonnes of waste were generated in 2020
(Eurostat, 2020). 31.3{%} of this waste quantity was landfilled in
2020 (Eurostat, 2020). These waste disposals constitute a severe
problem for the region. Unfortunately, these settings remain poorly
understood and explored by geophysical strategies. EM imaging
technologies are an effective and faster option for obtaining detailed
information about the extent and electric distribution of such
waste deposits. Pioneer works about waste disposal characterization
through EM techniques were presented by Tezkan et al. (1996),
Zacher et al. (1996), and Pellerin and Alumbaugh (1997).

Furthermore, Tezkan (1999), Eigenberg et al. (1998), and
Auken et al. (2006) revised the potential of EM imaging for
hazardous-waste characterization studies. Recently, case studies
about the electrical conductivity of such waste disposals were
reported (Doll et al., 2000; Zhang et al., 2011; Di et al., 2014;
Deidda et al., 2022). All these experiments were carefully designed
to investigate waste disposals in industrialized regions and have
confirmed the potential of EM techniques for the exploration and
characterization of waste sites.

EM imaging technologies have also been applied for
groundwater applications. Specifically, EM imaging has been
used to reveal and understand the distribution of freshwater
reservoirs because the electrical resistivity in these water resources
is mainly controlled by the porosity and salinity of the pore water
(Evans, 2007). Impressive case studies demonstrate the use of
EM measurements for detecting and characterizing freshwater
deposits (Andreis and MacGregor, 2008; Lien and Mannseth, 2008;
Weymer et al., 2018; Attias et al., 2021; Ishizu and Ogawa, 2021).
The aforementioned scientific works showed that EM imaging is a
promising technique for imaging freshwater resistivity reservoirs
in semi-arid and coastal areas. Finally, excellent literature reviews
about EM techniques for near surface applications in freshwater and
environmental applications were given by Pellerin (2002), Reynolds
(2011), and Cassiani et al. (2020).
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5 Deep learning in EM imaging

EM subsurface imaging aims to produce large-scale high-
resolution soil maps that can provide essential information for
geo-resources (e.g., energy, water). The rigorous generation of EM
subsurface images requires solving the direct problem and the
inverse problem (Chen, 2018). In the direct problem, also referred
to as forward modeling, synthetic EM fields of the subsurface are
computed. Then in the inverse problem, forward modeling EM
responses are iteratively approximated to the real EM data. EM
forward modeling is a non-linear mapping, and EM inversion
is a non-linear approximation, which belongs to mathematical
regression problems.

DL is very suitable for solving regression problems, and it has
shown the potential in EM imaging (Puzyrev, 2019;Moghadas, 2020;
Oh et al., 2020; Li et al., 2020; Shahriari et al., 2020a,b). As the first
successful case of applying DL for EM inversion, Puzyrev (2019)
pointed out that DL methods may open a new era for computational
geosciences. In this section, we first elaborate on the application
scenarios of DL in EM imaging, and then we identify the different
types of coupled physics-DL, DL architectures and procedures in
EM imaging. The suitability and accuracy of DL models are also
presented. Finally, we discuss the potential and challenges of DL
solutions in EM imaging in the future.

5.1 Application scenarios

DL has a wide application range for EM imaging, including
onshore (Puzyrev, 2019; Li et al., 2021; Liu et al., 2021), offshore
(Oh et al., 2018; 2020; Oh and Byun, 2021), induction (Moghadas,
2020; Zhu et al., 2020; Li et al., 2022), airborne (Li et al., 2020;
Noh et al., 2020; Bang et al., 2021; Wu X. et al., 2022), and borehole
(Shahriari et al., 2020a; Shahriari et al., 2020b; Shahriari et al., 2021;
Shahriari et al., 2022). DL inversion methods can be flexibly applied
to different EMdata typesmainly due to its complete standardization
framework, which covers three stages: data generation, model
training, and model prediction.

DL inversion methods have been demonstrated to effectively
solve the computational difficulties caused by the complexity and
multiplicity of available parameters and maximize the integration
of multiple data while ensuring consistency. Recently, Wu S. et al.
(2022) discussed several factors that affect DL inversion results,
such as dimension, noise level, sample richness, and prior
information. Notice that these factors are present in all DL inversion
methods.

In comparison with traditional inversion methods (e.g.,
deterministic and probabilistic physics-based solutions), DL-based
inversion routines require less computational effort (Puzyrev,
2019). Furthermore, DL inversion methods support near real-time
reconstruction of subsurface resistivity distribution while ensuring
numerical accuracy (Bai et al., 2020; Puzyrev and Swidinsky, 2021).
Real-time DL inversion techniques also have the potential to
perform statistical or probabilistic inversion processes (Alyaev et al.,
2021). Real-time DL probabilistic inversion greatly improves
the practicability of data-driven forward modeling in practical
applications (Rammay et al., 2022). In addition, DL inversion
methods also have great application potential in geophysical

monitoring (Puzyrev, 2019). Real-time monitoring is an essential
and challenging task for geophysical methods, especially for
reservoir characterization studies (Colombo et al., 2020). Recently,
Li and Yang (2021) successfully applied DL technologies to the
real-time monitoring of fracturing fluid flow and solved the EM
imaging problem with remarkable accuracy and computational
efficiency.

5.2 Coupled physics-deep learning

DL in EM imaging is mainly based on data-driven strategies,
avoiding the direct solution to the physical process of EM responses,
thus significantly reducing the complexity of the non-linear solution.
However, entirely data drive is heavily dependent on the EM
data itself. In other words, the training process is absolutely
divorced from physics, which may lead to DL results that do
not satisfy Maxwell’s theory. Therefore, when the data set is
incomplete, a common situation in EM imaging, the best solution
is to couple DL with the physical process. This approach can
fully use DL advantages and provide numerical approximations
that meet EM physics. Recently, Guo et al. (2022) classified and
summarized the coupled physics-DL strategies in EM imaging.
Three types of physics-embeddedmodels for EM imaging have been
identified:

1) Learning after physics processing: This aims to add physical
information before the model training process. Almost all the
work mentioned in Subsection 5.1 belongs to this type.

2) Learning with physics loss: This type embeds the forward
operator into the network parameter optimization. Then,
the regularization of non-physical solutions is performed as
composite loss functions. Physics-informed neural network
(PINN) (Raissi et al., 2019; Gong and Tang, 2022) is one the
most representative coupled physics-DL solutions. Recently,
Liu et al. (2022) embeds the forward operator into the network
architecture. However, the loss of the partial differential equation
is calculated by a traditional EM forward modeling scheme
instead of the automatic differentiation of the neural network
proposed by PINN. Thus, reducing its applicability to complex
geological models with experimental data.

3) Learning with physics models: This aims to surrogate models by
directly solving the EM responses (Shahriari et al., 2020a). This
type is the most complex since it resolves the entire EM physical
phenomena (Guo et al., 2022).

After examining these coupled physics-DL strategies in EM imaging,
one can see that substantial potential exists for EM imaging
(Bording et al., 2021; Yan et al., 2022). However, additional effort
is still needed to design, implement, and validate DL schemes for
EM imaging. Such progress must address increasing performance
and accuracy of different DL-based solutions (e.g., deep neuronal
networks (DNN), recurrent neural networks (RNN), convolutional
neural network (CNN), physics-informed generative adversarial
network (GAN)) (Chen et al., 2020). In this regard, Colombo et al.
(2021a), Colombo et al. (2021b) has proposed a hybrid workflow for
embedding physics into an inversion routine with a DNN kernel. In
this regard, Figure 3 shows an overview of modern DL-based work
flow for EM imaging.
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FIGURE 3
Overview of DL-based work flow for EM imaging.

TABLE 3 DL architectures in EM imaging.

DL architecture Description Employed by

CNN Utilizes convolutional layers to extract spatial features from EM data and learn representations for
imaging tasks

Oh et al. (2018), Oh et al. (2020), Colombo et al.
(2020), Li et al. (2021)

RNN Suited for sequential EM data processing, capturing temporal dependencies in the signals Bang et al. (2021)

DNN Quickly approximate complex physical system (i.e., Maxwell equations), which is traditionally
modeled by partial differential equations

Shahriari et al. (2020b), Zhu et al. (2020),
Alyaev et al. (2021)

GAN Enables the generation of synthetic EM data to augment training datasets or for data reconstruction Puzyrev et al. (2022)

Autoencoder Unsupervised learning approach that learns a compact representation of EM data for denoising or
dimensionality reduction

Wu et al. (2021), Yu et al. (2023)

5.3 DL architectures and procedures

The DL architectures used in EM imaging are summarized in
Table 3. These architectures have been employed to extract spatial
and temporal features from EM data, learn representations, and
enhance the imaging performance (Chen et al., 2020). In particular,
CNN have demonstrated effectiveness in capturing spatial features,
while RNN are suitable for processing sequential EM data and
capturing temporal dependencies. GAN have been utilized for
generating synthetic EM data to augment training datasets or
for data reconstruction. Autoencoders, as unsupervised learning
approaches, have shown potential in denoising EM data and
reducing dimensionality.

On the other hand, Table 4 provides an overview of the DL
procedures employed in EM imaging. These procedures encompass
several stages of the workflow, including data preprocessing,
model training, model evaluation, comparison with baselines, and
considerations of computational resources (Hestness et al., 2019;
Hestness et al., 2020; Hestness et al., 2021a) Data preprocessing
techniques are applied to enhance the quality of EM data through
noise reduction, normalization, and augmentation. Model training
involves the optimization of DL models using specific algorithms
and hyperparameter tuning. Model evaluation metrics, such as

mean squared error (MSE), accuracy, or F1 score, are utilized to
assess the performance of DL models. Comparison with baselines
involves comparing the performance of DL models with traditional
methods or existing state-of-the-art techniques in EM imaging.
Computational resources, including hardware (e.g., GPUs, HPC
systems) and software libraries, play a crucial role in facilitating the
training process of DL models in EM imaging.

5.4 Suitability and accuracy of DL models

DL techniques have demonstrated their efficacy in a wide
range of fields, including EM imaging. When considering the
suitability of data for DL in EM imaging, several technical aspects
come into play (Hestness et al., 2019; Hestness et al., 2022).
Firstly, the availability of large and diverse datasets is crucial
for training accurate DL models (Alzubaidi et al., 2021). These
datasets should encompass a broad spectrum of EM signals,
representing different frequencies, polarizations, and propagation
characteristics. Additionally, including corresponding ground
truth information, such as geological formations or subsurface
features, enhances the learning process and enables more precise
imaging.
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TABLE 4 DL procedures in EM Imaging.

Procedure Description

Data preprocessing Techniques for noise reduction, data normalization, and data augmentation to enhance training effectiveness

Model training Details on the training process, optimization algorithms, and hyperparameter tuning for DL models

Model evaluation Evaluation metrics used to assess the performance of DL models, such as mean squared error (MSE), accuracy, or F1 score

Comparison with baselines Comparison of DL models with traditional methods or existing state-of-the-art techniques in EM imaging

Computational resources Information on the hardware (e.g., GPUs, HPC systems) and software libraries utilized for DL training

TABLE 5 Input and output features for DL solutions.

DL architecture Application References Input Output

CNN

Hydrocarbon

Oh et al. (2018), Oh et al. (2020) EM images by forward modeling Image of the subsurface resistivity distribution

Colombo et al. (2020) EM images by forward modeling Images of underground resistivity distribution

Li and Yang (2021) Images of the amplitude and the azimuthal angle of the
electric field

Image of fluid distribution

CO2

Puzyrev (2019) Images of difference in the amplitude of the inline
component of the electric field at two lines of receivers

CO2 distribution and saturation images

Um et al. (2022) EM data by borehole-to-surface acquisition
configuration

CO2 distribution images

RNN Mineral mining Bang et al. (2021) Vertical magnetic fields data Image of underground resistivity distribution

DNN
Hydrocarbon

Shahriari et al. (2020b) Borehole resistivity measurements data Subsurface electrical, geological structure

Zhu et al. (2020) EM data (phase difference and voltage) by forward
modeling

Subsurface electrical, geological structure

Alyaev et al. (2021) Model parameters (resistivity, position, angle) Subsurface electrical, geological structure

Rammay et al. (2022) Model parameters (resistivity, position, angle) Subsurface electrical, geological structure

Yan et al. (2022) Resistivity, distance, angle data, model images Model classification

Water reservoir Li et al. (2021) EM data by forward modeling Subsurface electrical and geological structure

Fortunately, the geo-electromagnetic community has made
significant strides in generating extensive datasets over the past
three decades. Traditional geophysical surveys have contributed to
these datasets, covering applications like hydrocarbon exploration
and geological mapping Yu and Ma, 2021. Furthermore, emerging
areas such as geothermal energy reservoir characterization,
CO2 capture and storage, water prospecting, and monitoring of
hazardous-waste deposits have enriched the available data. These
datasets, accumulated from diverse sources and applications, offer
valuable resources for training DL models in EM imaging. In this
context, Table 5 depicts the input and output features for DL-based
EM imaging solutions.

In parallel with the availability of comprehensive datasets,
advancements in numerical schemes, algorithms, and access toHPC
systems have revolutionized the development of innovative EM
imaging technologies (Shams et al., 2017). Sophisticated numerical
techniques, such as FD and FE methods, have been refined to
accurately model the complex interactions between EM waves and
subsurface structures. Additionally, novel algorithms have been
devised to optimize the performance of DL models in processing
EM data. The proliferation of HPC systems has provided the
computational power necessary for handling large datasets and
training complex DL architectures.

The combination of these technical advancements and the
availability of diverse data has created a conducive environment
for deploying DL models in EM imaging. DL models have
shown remarkable accuracy in numerous published papers, with
significant improvements over traditional approaches (Guo et al.,
2019; Guo et al., 2019; Guo R. et al., 2020; Guo et al., 2020; Guo
et al., 2021a; Guo et al., 2021b; Guo et al., 2021; Guo et al., 2021;
Guo et al., 2022). However, assessing the accuracy of DL models
in EM imaging requires careful consideration of various factors.
The complexity of the imaging problem, the quality and diversity
of the training data, the architectural choices, hyperparameter
tuning, regularization techniques, and the selection of appropriate
evaluation metrics all influence the performance of DL models.

To provide a comprehensive evaluation of DL models in EM
imaging, future studies should emphasize rigorous benchmarking.
This entails comparing DL models against existing methods
using standardized datasets and well-defined evaluation metrics.
Additionally, conducting thorough sensitivity analyses and
uncertainty quantification studies can shed light on the robustness
and reliability of DL models in different EM imaging scenarios.
These technical aspects contribute to a deeper understanding of the
capabilities and limitations of DLmodels in EM imaging, facilitating
further advancements in this field.
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5.5 Potential and challenges

Although images obtained from a single geophysical data type
can help to improve subsurface models, ambiguity often must be
addressed. An alternative strategy for reducing model ambiguities
is performing a joint inversion of two or more geophysical data
types to produce a singlemodel that unifies the relevant information
of the individual data sets. Therefore, the joint inversion can be
considered a multi-physics inversion method aiming to establish
the relationship between different physical parameters with higher
resolution than that obtained from a single geophysical data type.

Multi-physics inversion schemes have become popular
for building subsurface models that agree with data acquired
with different geophysical methods. Combining data sets with
complementary sensitivity and resolution properties in a joint
routine can mitigate problems related to the inverse modeling task,
such as limited resolution and non-uniqueness. Subsurface models
obtained from joint inversion techniques are inherently consistent
with multiple data types and can thus reduce ambiguities. These
advantages are essential for EM imaging, whose resolution is much
lower than seismic imaging.

From a computer science perspective, the multi-physics
inversion process is understood as complex algorithms trying
to find accurate solutions to highly challenging parameter-
dependent problems.Thus, inversemodeling in realistic applications
requires high computational effort and intensive human interaction
(Um et al., 2022). In this context, the use of DL technologies to
solve coupling relationships between different geophysical data
types is undoubtedly a highlight. DL methods can learn both prior
parameter relationships and structural similarity of the multi-
physics data sets. Therefore, the accuracy of EM imaging may
be greatly improved (Chen et al., 2022; Guo et al., 2022), and the
uncertainty of imaging could be reduced (Um et al., 2022). These
aspects are crucial for DL decision-making inversion and need
further study (Oh and Byun, 2021).

On top of that, DL for EM imaging is currently an active research
topic. For example, learning methods such as deep reinforcement
learning have been recently explored by Wang et al. (2022). Despite
its popularity, using DL to build EM subsurface maps is an
open topic and requires additional effort. Such progress could
address in three aspects. First, the initial problem of establishing
a complete EM data set has yet to be solved (Puzyrev, 2019).
Second, the generalization of DL solutions is widely questioned
due to data dependency. Although coupled physics-DL can reduce
the severe dependence on data to a certain extent, the research
on the portability of the trained DL models (e.g., transfer learning
mentioned in Puzyrev (2019); Puzyrev and Swidinsky (2021)) needs
to be further developed. Finally, the third aspect should focus on DL
technology development formulti-physics inversion, thus extending
its uses to complex and untested renewable energies in particular
and geo-resources in general.

6 Discussion and conclusions

In this paper, we have reviewed the literature in EM imaging
and DL to find the path for a sustainable transition from oil fuels
to renewable energies (United-Nations, 2015; SDG, 2019). The

analysis framework is formed by advances in numerical methods,
computational strategies (traditional and DL-based solutions), and
its relevant applications for the energy transition route. As modern
society is directed toward a future where geo-resources are a
dominant figure in the energy sector, the utilization of EM imaging
technologies is becoming a key factor for achieving the next step.
It became evident that incorporating such subsurface exploration
technologies in energy transition strategies is necessary to have
enough potential to completely submerge in zero-carbon energy
systems.

After examining the points raised in this review, one can see
that a substantial agenda exists for EM imaging and DL-based
solutions for the transition to renewable energies. Such progress
must address in increasing detail the geological complexity of geo-
resources and increasing target depths, fostering an unprecedented
EM imaging technological development for renewable fuels at
local and regional levels. The development, improvement, and
application of new EM imaging techniques coupled with innovative
simulation strategies will reduce the average cost for exploration
while increasing the drilling success rate. These EM imaging tools
can also be used to improve measurement precision and apply
faster analysis of acquired EM data to achieve a feasible model
of the target regions. In addition, such accurate models would
lessen any potential environmental impact. This article highlights
areas of progress, challenges, and opportunities to transfer expertise
from coal energies to renewable sources. Continued complexities in
zero-carbon energy pathways and the timeless nature of transitions
research underscore a genuine and ongoing need for innovative EM
imaging solutions.

Although over the last few years, a big effort has beenmade in the
EM imaging community to investigate the subsurface, an additional
effort is still needed to:

1) Obtain more detailed and better-resolved reconstructions of the
subsurface conductivity/resistivity in a wide range of geological
settings, enabling performance and reliability improvement of
shallow and deep energy geo-resources.

2) Reduce and quantify model ambiguities to ensure a reliable
pre-drilling assessment of geo-resources, thus reducing costs,
environmental impact, and risks.

3) Accelerate EM data processing and reduce its cost, enabling
renewable energy development in new regions and supporting
the assessment of new concepts for local energy supply.

4) Increase the maturity of HPC-enabled and DL-based EM
imaging solutions to face massive data sets with accuracy
and computational efficiency. Furthermore, studying emerging
technologies and their potential (e.g., quantum computing
(Piattini et al., 2020)) for EM imaging is critical for the near
future.

5) Generate actionable knowledge that increases social engagement
about energy efficient, environmentally sound, and economically
viable electricity generation and heating/cooling from renewable
resources.

The main limitation encountered in this analysis was data
dependence. Several included model studies dealt with idealized
complete global/regional-scale EM experiments using ad hoc EM
routines. In line with this, EM imaging development should be
conducted in such a way that it leads to analyzing the whole
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EM behavior of any realistic and relevant setup for the renewable
energy sector. In this regard, further research should be conducted
to identify how numerical methods, HPC technologies, and DL
solutions mark the development of EM imaging tools used for
geo-resources exploration and which features these have and need.
Furthermore, open access to codes and their input data must
be promoted. Doing so could enhance the exploitation of EM
imaging tools and allow for a more active engagement with a
broader audience that can actively contribute and enrich the
energy transition discussion by using imaging outcomes while also
validating the robustness of EM imaging technologies in real-world
scenarios.

In summary, this review sheds light on the current status,
challenges, and prospects of EM imaging technologies for building
a carbon-neutral future in the energy sector. However, to bridge
the gap between the zero-carbon energy rhetoric system and
reality, the urgent need to restructure global development systems
and protect geo-resources requires swift and collaborative actions
by researchers, policymakers, investors, and consumers around
the world, aiming at reducing GHG emissions and promoting
renewable energies development. Furthermore, the global scientific
and technological innovations that foster the green economy must
be financially and strategically rewarded to build a safer future based
on zero-carbon energy sources.
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