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Resting-state networks 
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Resting-state functional magnetic resonance imaging (rsfMRI) has been 
widely applied to investigate spontaneous neural activity, often based on its 
macroscopic organization that is termed resting-state networks (RSNs). Although 
the neurophysiological mechanisms underlying the RSN organization remain 
largely unknown, accumulating evidence points to a substantial contribution 
from the global signals to their structured synchronization. This study further 
explored the phenomenon by taking advantage of the inter- and intra-subject 
variations of the time delay and correlation coefficient of the signal timeseries 
in each region using the global mean signal as the reference signal. Consistent 
with the hypothesis based on the empirical and theoretical findings, the time 
lag and correlation, which have consistently been proven to represent local 
hemodynamic status, were shown to organize networks equivalent to RSNs. The 
results not only provide further evidence that the local hemodynamic status could 
be the direct source of the RSNs’ spatial patterns but also explain how the regional 
variations in the hemodynamics, combined with the changes in the global events’ 
power spectrum, lead to the observations. While the findings pose challenges to 
interpretations of rsfMRI studies, they further support the view that rsfMRI can 
offer detailed information related to global neurophysiological phenomena as 
well as local hemodynamics that would have great potential as biomarkers.
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1. Introduction

Resting-state functional magnetic resonance imaging (rsfMRI) is a method of investigating 
spontaneous neural activity, often based on its macroscopic organization characterized by the 
coherence of the activity. The spatial patterns identified as areas with synchronous oscillation of 
the blood oxygenation level–dependent (BOLD) signal are termed resting-state networks (RSNs; 
Fox et al., 2005). These networks are closely related to the anatomical connectivity among the 
neural subsystems that have been revealed by a wide variety of visual, sensorimotor, and 
cognitive task paradigms (Vincent et  al., 2007; Zhang et  al., 2010). However, the 
neurophysiological mechanism underlying the synchronization within the RSNs remains to 
be elucidated.

On the other hand, accumulating evidence points to a substantial contribution from the 
global physiological signals to the generation of structured synchronization within the RSNs 
(Amemiya et al., 2023); Tong et al. were the first to show that the time lag or delay of the 
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low-frequency fMRI signal can give rise to spatial patterns similar to 
those of the RSNs (Tong et al., 2015). The time lag was computed 
voxel-wise by employing a data-driven recursive approach applied to 
the fMRI data or by setting the middle finger vascular signal as the 
reference signal. Such extracranial signals measured with near-
infrared spectroscopy have been shown to correlate well with the 
signal from the cerebrovascular system (Tong and Frederick, 2010, 
2012, 2014a,b; Tong et al., 2011, 2012, 2013, 2019; Tong and Hocke, 
2014). An equivalent time lag map can be obtained by setting the 
global mean signal as the reference signal, which has been shown to 
share similar spatiotemporal characteristics with cerebrovascular 
perfusion (Lv et al., 2013; Amemiya et al., 2014, 2016, 2022; Tong 
et al., 2017) or hemodynamic responses to an acetazolamide challenge 
(Nishida et al., 2019) and a carbon dioxide challenge (Yao et al., 2021). 
The contribution of the time lag to the generation of RSN 
synchronization was also confirmed in our study examining the 
spatiotemporal characteristics of the resting-state global signals 
identified by using temporal independent component analysis (ICA; 
Amemiya et al., 2019). More recently, Chen et al. also showed that 
regional variability of the hemodynamic response functions to 
physiological events such as respiration and heartbeat leads to the 
generation of the “physiological networks” corresponding to those of 
the RSNs (Chen et al., 2020). All these findings consistently support 
the view that the global physiological events triggering the 
hemodynamic responses can cause local networks similar to the RSNs. 
In line with these studies, we also confirmed that the regional variation 
of the signal time lag patterns are similar regardless of whether the 
assumed source of the component is physiological events (global 
mean signal), spontaneous neural activity (RSN signals), or 
simultaneous neural stimulation (visual task fMRI signals; Amemiya 
et al., 2020). Such observations indicating that the regional variation 
of the hemodynamics is a non-specific source of a similar time lag 
pattern in fMRI lead to a corollary question regarding the specificity 
of the source of each RSN signal component. More specifically, 
seemingly independent RSN signals that are supposed to reflect local 
neural activity specific to each network might be distilled into a single 
set of global phenomena.

In relation to this point, several previous studies have explored the 
spatiotemporal characteristics of the rsfMRI signals by examining or 
decomposing the global rsfMRI signal time lag (Mitra et al., 2015; 
Amemiya et al., 2016; Bolt et al., 2022). The use of the time lag has 
advantages in rsfMRI studies, in which it is difficult to know the time 
course of the neural activity or to extract precise hemodynamic 
response functions to neural events in each region. Even in such a 
case, time lag analysis can provide information if we can assume a 
common condition for either the stimuli or hemodynamic response 
function. However, the factors affecting the signal time lag in rsfMRI 
studies have not been fully examined in previous studies, leaving room 
for ambiguity about the complete picture of what is happening in the 
resting brain.

This study aims to address these issues by examining the 
spatiotemporal patterns of the rsfMRI global signal component, 
taking advantage of the inter- and intra-individual variation of the 
signal time delay. We  hypothesized that such measurements add 
complemental information as to the spatiotemporal pattern of the 
rsfMRI signals to the previous studies that are based on the average 
time lag or the average hemodynamic response functions. The 
theoretical rationale was that the hemodynamics or the hemodynamic 

response functions are empirically known to be non-homogenous 
across the brain or the subjects and are non-stationary over time. 
Regional variations of the vascular architecture or anatomy that 
determine the diameter and density of the local arterioles and 
capillaries (Harrison et al., 2002; Weber et al., 2008; Kim and Ogawa, 
2012) or the duration and intensity of the stimulus triggering the 
arterial dilation (Logothetis et  al., 2001; Martindale et  al., 2005; 
Kennerley et al., 2012; Martin et al., 2013) all affect the hemodynamic 
response function. These variations giving rise to the inter- and intra-
subjects variability of the hemodynamic response function (Aguirre 
et al., 1998; Handwerker et al., 2004; Amemiya et al., 2012) might 
explain why some RSNs do not manifest as a single network even 
though their hemodynamic responses are supposed to be overlapping 
based on their (for example, symmetric) anatomical location. 
Another point was that, as we will show in the theory section, the 
regional variability of the hemodynamic response function, combined 
with the temporal changes in a shared stimulus function, can 
theoretically give rise to variations in the signal time lag. Therefore, 
even if the hemodynamic response functions were stable across time 
in each region, the regional variation of the hemodynamic response 
function can theoretically lead to temporal changes in the time lag 
along with the temporal changes in the shared stimulus function, 
thereby directly affecting the spatiotemporal patterns and its 
dimensionality of the rsfMRI signal induced by a single set of 
global phenomena.

To test these hypotheses, we examined the spatial patterns of the 
inter- and intra-subject variability of the time lag computed voxel-wise 
by setting the global mean signal as the reference signal. For the intra-
subject variability, multiple time lag maps were computed for each 
subject by using a sliding window approach. Since temporal 
correlation is highly sensitive to the signal time lag and signal-to-noise 
ratio, in addition to the time lag, it has also been proven to be a good 
marker of hemodynamic changes in patients undergoing 
revascularization surgery (Amemiya et  al., 2022). Therefore, in 
addition to the time lag, maps of the correlation coefficients between 
the global mean signal and each voxel’s signal were also subjected to 
the same analyses.

2. Theory

In this section, we describe how the time lag  Δt that minimizes 
the Euclidean distance between the two time series X t( ) and ′( )X t  
that are generated by the same stimulus function u t( ) convolved with 
the different hemodynamic response functions h t( ) and ′( )h t changes 
depending on the stimulus function and response functions.

Assuming that the BOLD signal is the output of a linear time-
invariant system (Boynton et al., 1996), we can express the expected 
signal X t( ) and ′( )X t  with the convolution operator ⊗  as follows:

 
X t u h t u h t d( ) ⊗{ }( ) = ( ) −( )

−∞

∞

∫ τ τ τ
 

(1)
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−∞

∞

∫X t u h t u h t d τ τ τ
 

(2)

https://doi.org/10.3389/fnins.2023.1220848
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Amemiya et al. 10.3389/fnins.2023.1220848

Frontiers in Neuroscience 03 frontiersin.org

Then, the difference between Eq. (1) and (2), with the latter lagged by  
Δt, is described as follows:
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If we  define the difference between the two response functions 
as follows:

 ( ) ( ) ( )r t h t t t h t− ∆′ ∆ −

 (4)

then, Eq. (3) is described as follows:
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By taking the integral of the square of Eq. (5), we have
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Let U , R, and D be the Fourier transform   of u , r, and d, respectively, 
as follows:

 
U f u f( ) { }( ) 

 (7)
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According to the convolution theorem,

 
 u r t U f R f⊗{ }( )  = ( ) ( ).

 (10)

From Eqs. (5), (9), and (10), we derive

 
D f U f R f( ) = ( ) ( ).

 (11)

Using Parseval’s theorem,
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From Eqs. (11) and (12), we have
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This is transformed into
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Therefore, the time lag Δt that minimizes the difference between 
the two time series varies depending on the integral of the product of 
the power spectrum of the stimulus function u t( ) and that of the 
difference of the response functions h t( ) and ′( )h t .

3. Materials and methods

3.1. Dataset

The dataset was originally from the WU-Minn human 
connectome project (HCP) young healthy adults (ages 22–35) S1200 
release1 acquired over consecutive days (day 1 and 2), which is the 
same as the one we used in our previous studies (Amemiya et al., 
2019, 2020; Amemiya et  al., 2022). A total of 200 runs from 50 
subjects (50 subjects × 2 phase-encoding directions × 2 days, 32 
women; average age: 29.4 ± 3.3 years) who underwent 15-min 3.0-T 
rsfMRI sessions (with a repetition time [TR] of 0.72 s, 1,200 volumes/
run) without quality control issues, whose mean framewise 
displacement was less than 0.2 mm, which had been minimally 
processed, (Glasser et  al., 2013) were subjected to the 
following analyses.

3.2. Time delay and correlation maps

The time delay (TD) and temporal correlation (Pearson’s 
correlation coefficient: R) were computed for each voxel by 
setting the global mean signal (average whole-brain gray matter 
signal time series) as the reference signal as in previous studies 
(Amemiya et al., 2014, 2016, 2019, 2020, 2022; Figure 1); briefly, 
after spatial smoothing with a Gaussian kernel with a full-width 
at half-maximum of 8 mm, linear trend removal, and band-pass 
filtering at 0.01–0.1 Hz, TD was computed as the relative time lag 
t that gives the best positive fit between each voxel’s time series 
and the time-shifted (± 6 s or ±8.3 TR) reference signal using 
cross-correlation analysis (Amemiya et  al., 2014, 2016, 2019, 
2020). All data were up-sampled to a resolution of 0.14 s (1/5 TR) 
for the analysis (Tong et al., 2017). For intra-subject variability, 
multiple TD and R maps were acquired using a sliding-window 
approach (window length/step size = 200/40 volumes, 26 
maps/run).

1 https://www.humanconnectome.org/study/hcp-young-adult
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3.3. ICA of time delay and correlation maps

Spatial ICAs were performed on multi-subject and single-subject 
datasets, respectively, to extract the local hemodynamic networks 
represented in the TD and R maps. ICA assumes that observed data 
x i ni , ,..,=1  can be modeled as linear combinations of independent 
components s j mj , ,..,=1  with some unknown coefficients aij , which 
can be described as:

 x A s= .

where A represents the mixing matrix that collects the coefficients aij  
(Hyvärinen, 1999). In this case, xi corresponds to the measured TD 
and R maps, and i n=1,..,  are different observations (runs, subjects, 
and sliding windows), whereas s j corresponds to estimated 
hemodynamic networks and aij  represents the mixing weight.

The networks were obtained by using the multi-subject datasets, 
each of which was composed of 100 maps of TD and R (50 subjects x 
2 phase-encoding directions) that were subjected to spatial ICA using 
Multivariate Exploratory Linear Optimized Decomposition into 
Independent Components (MELODIC) 3.15 (Beckmann and Smith, 
2004), part of FMRIB’s Software Library (FSL; https://www.fmrib.
ox.ac.uk/fsl) with the dimensionality set to 30, respectively. The 
networks were also obtained for each subject using 104 TD and R 
maps (26 maps × 4 runs) that were similarly concatenated and 
subjected to spatial ICA with the dimensionality set to 30, respectively.

3.4. Resting state networks

A conventional multi-session temporal concatenation multi-
subject spatial ICA was performed on each of the corresponding 
preprocessed datasets. The dimensionality was set to 30. For each 
dataset, template matching was performed to identify 10 independent 

components (ICs) that best correlate with 10 RSN templates (Smith 
et al., 2009). The templates are considered the major representative 
functional networks corresponding to the medial, lateral, and occipital 
visual areas, default mode network (visuospatial system), auditory 
system, sensory-motor system, frontoparietal networks (dorsal visual 
stream), executive control, and cerebellum, respectively (Beckmann 
et al., 2005; Smith et al., 2009). These RSNs were compared with the 
ICA components obtained by decomposing the TD and R maps to 
examine if RSNs are represented as the networks of hemodynamics.

3.5. Statistical analyses

The similarity between the maps was evaluated with Pearson’s 
correlation coefficients within a gray matter mask that was created by 
thresholding the gray matter tissue map at a ≥30% probability of being 
gray matter. Statistical analyses were performed using MATLAB 
version 9.12.0 (MathWorks, Natick, MA). p values less than 0.05 were 
considered statistically significant. Correlation coefficients were 
Fisher’s Z transformed to be subjected to a one-sample t-test against 
the null hypothesis of no correlation. In addition to the main ICAs, 
we also examined the inter- and intra-subject standard deviations of 
the TD and R to infer the source of the variations. The effect of motion 
on the variability of the TD and R measurement for each RSN was also 
examined for each run, using the mean frame-wise displacement that 
was computed following (Power et al., 2012).

4. Results

4.1. Variability of The time delay and 
correlation measurements

The average and inter- and intra-subject standard deviation maps 
of TD and R are shown in Figure 2 and Supplementary Figure S1. The 
average TD images showed a spatiotemporal pattern related to the 

FIGURE 1

Schematic of the Data Analysis. In both the multi-subject and single-subject analyses, cross-correlation analysis was applied to the preprocessed 
rsfMRI data to compute the time delay (TD), giving the maximum correlation coefficient (R) voxel-wise by setting the global mean signal as the 
reference. For the single-subject analysis, a sliding window approach was used to acquire 26 TD and R maps for a run. The multiple TD and R maps for 
each group (Day 1 and Day 2 or D1 and D2) or for each subject (Subj 1…50 or S1…S50) were subjected to the spatial independent component analysis 
(sICA) to acquire TD and R networks (TDNs and RNs), respectively. The similarity between the TDNs/RNs and the resting-state network (RSN) maps 
acquired by directly applying ICA to the corresponding original dataset was compared within the gray matter.
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perfusion TD, as in previous studies (Lv et al., 2013; Amemiya et al., 
2014, 2016, 2022; Christen et al., 2015; Siegel et al., 2016; Tong et al., 
2017; Nishida et al., 2019; Yao et al., 2021), while the correlation R 
images showed a positive correlation across the gray matter that was 
relatively small in the basal frontal areas where the susceptibility effect 
is considered larger. The correlation coefficients between the intra-
subject standard deviation map of TD and R were 0.69 ± 0.06 
(p < 0.001, t = 53.0). The correlation coefficients between the mean R 
and the intra-subject standard deviation maps of TD and R were TD, 
−0.47 ± 0.08 (p < 0.001, t = −35.7); R, −0.07 ± 0.12 (p < 0.001, 
t = −4.15), respectively.

4.2. ICA of the time delay and correlation 
maps of the global signal component

4.2.1. Multi-subject datasets
For each of the 10 RSNs (acquired from each group dataset), 

similar ICs were identified by applying spatial ICA to the global mean 
signal TD and R maps (Figure  3; Supplementary Figure S2; 
Supplementary Table S1). The maximum correlation coefficient 
between the RSNs and TD and R components for the day 1 and day 2 
datasets were TD, day 1, 0.29–0.56, day 2, 0.26–0.69; R, day 1, 0.21–
0.70, day 2, 0.22–0.66, respectively (Supplementary Table S1). The 
correlation coefficients between the RSNs with the template RSNs 
were day 1, 0.50–0.81; day 2, 0.46–0.79, respectively (Figure  4; 
Supplementary Figure S3).

4.2.2. Single-subject datasets
For each of the 10 RSNs (acquired from each individual dataset), 

similar ICs were identified by applying spatial ICA to the global mean 
signal TD and R maps (Figure  5; Supplementary Table S1). The 
maximum correlation coefficient between the RSNs and TD and R 
components were all statistically significant (p < 0.001, TD, t = 16.0–
23.1; R, t = 16.3–25.9); TD, visual (medial), 0.43 ± 0.14; visual 

(occipital), 0.35 ± 0.13; visual (lateral), 0.45 ± 0.13; default mode, 0.36 
± 0.11; cerebellum, 0.27 ± 0.08; sensorimotor, 0.43 ± 0.15; auditory, 
0.37 ± 0.12; executive control, 0.33 ± 0.10; right frontoparietal, 0.38 
± 0.10; left frontoparietal 0.38 ± 0.11; R, visual (medial), 0.49 ± 0.15; 
visual (occipital), 0.38 ± 0.15; visual (lateral), 0.51 ± 0.13; default 
mode, 0.43 ± 0.14; cerebellum, 0.32 ± 0.10; sensorimotor, 0.46 ± 0.14; 
auditory, 0.41 ± 0.11; executive control, 0.36 ± 0.09; right 
frontoparietal, 0.48 ± 0.14; left frontoparietal 0.44 ± 0.13 
(Supplementary Table S1). Figure  6 shows how the TD and 
correlation between the RSNs’ average signal and the global mean 
signal vary in each RSN (cumulative plot of 26 windows × 2 runs × 
50 subjects’ data). The correlation coefficient between the RSNs with 
the template RSNs were all statistically significant (p < 0.001, t = 
19.7–45.0); visual (medial), 0.69 ± 0.09; visual (occipital), 0.55 ± 0.15; 
visual (lateral), 0.56 ± 0.08; default mode, 0.53 ± 0.08; cerebellum, 
0.30 ± 0.09; sensorimotor, 0.43 ± 0.06; auditory, 0.47 ± 0.08; executive 
control, 0.46 ± 0.10; right frontoparietal, 0.56 ± 0.08; left frontoparietal 
0.56 ± 0.09, respectively. There was no significant positive correlation 
between the motion index and the intra-subject standard deviation 
of the average TD and R measurement in each RSN (TD, −0.085 ± 
0.061; R, −0.11 ± 0.12, Figure  7; Supplementary Figure S5; 
Supplementary Table S2).

5. Discussion

In this study, we examined the spatiotemporal patterns of the 
global signal by taking advantage of the inter- and intra-subject 
variations of the local signal time lag and temporal correlation to 
understand the mechanism giving rise to the rsfMRI spatiotemporal 
organization, including the RSN synchronization. Consistent with 
the hypothesis, the ICAs showed that the variations of the TD and R, 
which have consistently been proven to represent local hemodynamic 
status (Lv et  al., 2013; Amemiya et  al., 2014, 2016, 2020, 2022; 
Christen et al., 2015; Donahue et al., 2016; Siegel et al., 2016; Khalil 

FIGURE 2

The Average and Standard Deviation Maps of the Time Delay and Correlation. The upper rows show the average time delay (TD) and correlation 
coefficient (R) images. The middle rows are the inter-subject standard deviation maps of TD and R (day 1). The bottom rows are the intra-subject 
standard deviation maps of TD and R from 26 windows x 4 runs, averaged across 50 subjects. TD and R standard deviation maps showed a similar 
pattern in the gray matter. The areas with higher correlation (average R) tended to show smaller standard deviations of the TD and R within the gray 
matter.
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FIGURE 3

The Similarity between the Resting-State Networks and the Networks of the Inter-Individual Variability of the Time Delay and Correlation. The spatial 
correlation between the global signal networks (time delay [TD] and correlation [R]) and resting-state networks (RSNs) obtained from the same dataset. 
AUD, auditory; Cer, cerebellum; DMN, default mode network; EC, executive control; HCP, human connectome project; lFP, left frontoparietal; lVIS, 
lateral visual; mVIS, medial visual; rFP, right frontoparietal; oVIS, occipital visual; SM, sensorimotor.

FIGURE 4

The Similarity between the HCP Resting-State Networks and Templates. The spatial correlation between the resting state network (RSN) templates and 
RSN maps obtained by applying spatial independent component analysis to human connectome project (HCP) datasets. AUD, auditory; Cer, 
cerebellum; DMN, default mode network; EC, executive control; lFP, left frontoparietal; lVIS, lateral visual; mVIS, medial visual; oVIS, occipital visual; rFP, 
right frontoparietal; SM, sensorimotor.
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et al., 2017; Tong et al., 2017; Nishida et al., 2019; Yao et al., 2021) 
occur in the form of the spatial patterns equivalent to the RSNs. 
Specifically, while the group data ICA showed that the inter-subject 
variation of the local hemodynamics or the average hemodynamic 
response function organizes the RSN patterns, the intra-subject 
analysis revealed that a similar variation occurs within subjects across 
time. Despite the differences in strategy, all these results are in accord 
with the previous studies based on the average time lag or 
hemodynamic response function, further providing evidence that the 
variations in the local hemodynamics can be the direct source of the 
RSN spatial patterns (Tong et al., 2015; Amemiya et al., 2019; Chen 
et al., 2020).

For the intra-subject variation of the time lag, as described in the 
theory section, not only the changes in the local hemodynamic 
response functions themselves but also the changes in the power 
spectrum of the stimulus function (i.e., the prominence of each 
frequency range of stimuli) can cause changes in the time lag of the 
two time series generated by different hemodynamic response 
functions. In either case, this implies that a single set of global 
phenomena can cause local time lag variation, which is dependent on 
the average local time lag that is closely related to the hemodynamic 
status or hemodynamic response functions (Lv et al., 2013; Amemiya 
et al., 2014, 2016, 2022; Christen et al., 2015; Donahue et al., 2016; 
Siegel et al., 2016; Tong et al., 2017; Nishida et al., 2019; Yao et al., 

FIGURE 5

The Similarity between the Resting-State Networks and the Networks of the Intra-Individual Variability of the Time Delay and Correlation. The spatial 
correlation between the global signal networks (time delay [TD] and correlation [R],  A  and  B) and resting-state networks (RSNs) obtained from each 
subject.  (C)  shows the correlation between the RSN templates and RSN maps obtained by applying spatial independent component analysis to each 
individual dataset. Each row corresponds to each subject.  (D)  shows the average single-subject spatial correlation between the global signal networks 
(TD and R) and resting-state networks (RSNs) obtained from the same dataset. AUD, auditory; Cer, cerebellum; DMN, default mode network; EC, 
executive control; lFP, left frontoparietal; lVIS, lateral visual; mVIS, medial visual; rFP, right frontoparietal; oVIS, occipital visual; SM, sensorimotor.
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2021). Such theoretical findings are well in accord with the results that 
not only the average time lag but also the time lag variations occur in 
the structured form of the RSNs. As was also consistent with the 
hypothesis, the analysis of the temporal correlation R also showed a 
similar temporal variation in the form of the RSNs.

Although the interpretation and conclusion are not necessarily the 
same, these results also have some points in agreement with those of 
the previous studies examining the rsfMRI signal time lag by applying 
principal component analysis or ICA. Those studies found that the 
whole brain rsfMRI signal time lag can be decomposed into multiple 
(three or eight) spatiotemporal components somehow related to the 
RSNs spatial patterns (Mitra et al., 2015; Amemiya et al., 2016; Bolt 
et al., 2022). In interpreting such findings, it is important to note that, 
unlike task fMRI, the unavailability of knowledge about the stimuli 
poses a difficulty to the rsfMRI. Other than respiratory- and cardiac-
related physiological recordings, the spatiotemporal distribution of the 
data is the only clue that distinguishes if the source is neural or not. It 
is, therefore, often difficult to know the source of each observation in 
rsfMRI. However, with further information, such as the high 
consistency of the spatiotemporal patterns of the rs-fMRI signal time 
lag (Amemiya et al., 2019, 2020) suggesting its hemodynamic origin 
(Amemiya et al., 2020), we considered it more reasonable to conclude 
that the multiplicity of the dimensions of the rsfMRI time lag 
structures results from the variability of the hemodynamics in each 
region. In this study, we  thus hypothesized that inter- and intra-
subject variability of the hemodynamic response functions giving rise 
to the temporal variability of the time lag is the direct source of the 

RSNs’ spatial patterns. The dimensionality of the ICA was, therefore, 
set to 30, which is a common number for investigating the RSNs 
(Beckmann et  al., 2005; Tong et  al., 2015). Although this was 
empirically determined, the results showed that the hypothesis was 
true. Even asymmetric networks, like frontotemporal networks, whose 
average time lag and temporal correlation distributions were highly 
overlapped (Figures  6A,B), were decomposed into two networks 
(Figures 3, 5). That any single global phenomenon inducing the BOLD 
responses can lead to the RSN representation is an even more 
parsimonious description of the spatiotemporal organization of the 
rsfMRI signals compared with the previous global signal models 
(Mitra et al., 2015; Bolt et al., 2022) let alone the classic view of the 
RSNs assuming network-specific regulation for the local coactivation 
of the neurons.

The assumed sources of the global and simultaneous phenomenon 
include respiratory- and cardiac-related factors such as variations in 
heart rate (Chang et al., 2009) and blood pressure (Zhang et al., 2000), 
respiration volume per time (Birn et  al., 2006, 2008) and partial 
pressure of end-tidal carbon dioxide (Wise et al., 2004). All these 
interrelated factors are known to alter the cerebral blood flow or blood 
volume systematically, thereby affecting the BOLD signal in the 
low-frequency range of interest. Although the primary source of the 
global BOLD signal is likely the physiological noise (Liu et al., 2017), 
it could also have some neural components, as was suggested in the 
electroencephalographic work in humans and microelectrode 
recordings in anesthetized monkeys (Leopold et al., 2003; He et al., 
2008; Scholvinck et al., 2010; Liu et al., 2018).

FIGURE 6

Variability of the Time Delay and Correlation in each Resting-State Network. The time delay (TD) and correlation (R) in each of the 10 resting state 
networks (RSNs), averaged across subjects (day 1 dataset), show that they differ in each RSN but substantially overlap with each other (A,B). (C) shows 
an example RSN and global mean signal (GMS) time series from a single patient’s single run. 2D histograms (D) show how measured time delay (x-axis) 
and Pearson’s correlation between the GMS and each RSN time series (y-axis) vary within and across subjects in each RSN (pooled data of day 1 
dataset comprised of 26 windows x 2 runs x 50 subjects). AUD, auditory; Cer, cerebellum; DMN, default mode network; EC, executive control; lFP, left 
frontoparietal; lVIS, lateral visual; mVIS, medial visual; rFP, right frontoparietal; oVIS, occipital visual; SM, sensorimotor.
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The variation of the TD and R in the form of RSNs shown in the 
intra-subject analysis not only explains how the classic RSNs can arise 
from a global phenomenon but could also explain the variability in the 
inter-network correlations over time as the results of the temporal 
changes in the local hemodynamics and/or in the power spectrum of 
the global events. Such an observation adds further challenges to the 
studies dealing with the dynamic or time-varying functional 

connectivity using rsfMRI (Preti et al., 2017) that have seen rapidly 
growing interest in recent years as a clinical diagnostic marker of 
psychiatric disorders (Lurie et al., 2020).

There are some limitations and technical considerations to 
be taken into account when interpreting the results. Firstly, for the 
intra-subject analysis, we used the sliding window approach. While 
this is a traditional and simple method often employed in dynamic 

FIGURE 7

Variability of the Time Delay and Correlation versus Motion. The motion index and standard deviation of the average time delay (TD) and correlation 
(R) in each of the 10 resting state networks (day 1 dataset; 2 runs x 50 subjects) showed no significant correlation. AUD, auditory; Cer, cerebellum; 
DMN, default mode network; EC, executive control; lFP, left frontoparietal; lVIS, lateral visual; mVIS, medial visual; rFP, right frontoparietal; oVIS, 
occipital visual; SD, standard deviation; SM, sensorimotor.
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functional connectivity studies, the choice of window length is 
arbitrary. This is because, other than setting a lower limit to the largest 
wavelength to avoid artifacts (Leonardi and Van De Ville, 2015), there 
is no clear indication of the window size to achieve the best trade-off 
between the reliable computation of correlation and detection of the 
temporal variations of interest (Preti et al., 2017). Secondly, the intra-
subject variation of the TD and R likely reflects the measurement 
errors to some extent, although no significant effect of motion was 
found for any RSN. As was shown in the whole-brain analysis of the 
mean and standard deviation maps of TD and R, the regions with 
smaller standard deviations tended to have a larger correlation with 
the global mean signal. This could be attributed to larger measurement 
errors in the presence of signals other than the global mean signal. 
However, given the fact that the variations occur not randomly but in 
the structured form of the RSNs, they seem to be  related to 
physiological phenomena. Thirdly, although it has empirically been 
shown that the rsfMRI signal TD relative to the global mean signal 
corresponds to the perfusion delay, it is less clear if the contribution 
from the local signals is also negligible in the evaluation of the 
variability of TD and R. Indeed, it is difficult to entirely deny the 
possibility that the correlation between the RSN and TD/R ICs is 
enhanced by the fact that signals within each RSN covary. However, 
as far as we examined in a simulation study, the correlation is less 
likely to reflect an artifact (see Supplementary material). Finally, as for 
the interpretation of the dynamic changes in the time lag, it might 
be difficult to completely exclude the possibility that the changes are 
related to the network-specific neural activity. However, it is important 
to note that there is no evidence supporting such a view, which is in 
contrast to the highly coherent findings suggesting its hemodynamic 
origin for the average as well as the inter- and intra-subject variability 
of the time lag in a series of studies (Lv et al., 2013; Amemiya et al., 
2014, 2016, 2020, 2022; Christen et al., 2015; Donahue et al., 2016; 
Siegel et al., 2016; Khalil et al., 2017; Tong et al., 2017; Nishida et al., 
2019; Yao et al., 2021). We thus consider it more reasonable to attribute 
it to the hemodynamic changes.

6. Conclusion

In summary, by taking advantage of the inter- and intra-subject 
variations of the local signal time lag and correlation, we examined the 
spatiotemporal patterns of the global signal, which have consistently 
been proven to represent local hemodynamic status and found that 
they organize the spatial patterns equivalent to the RSNs. These data 
not only indicate that any single global phenomenon inducing 
hemodynamic responses can result in the RSN representation but also 
explain how the regional variations in the hemodynamics, combined 
with the changes in the power spectrum of the global events, can lead 

to the observations. While the findings pose challenges to the 
interpretation of rsfMRI studies, they further support the view that 
rsfMRI can offer detailed information related to global 
neurophysiological phenomena as well as local hemodynamics that 
would have great potential as biomarkers.
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