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Introduction: This study examined the effects of blood flow restriction (BFR) and
reperfusion on the mechanical properties of the rectus femoris muscle at rest
(frequency and stiffness).

Methods: Fourteen trainedmen (body weight = 81.0 ± 10.3 kg; BMI = 25 ± 3.0m/kg2;
height = 181 ± 4 cm; training experience = 6.0 ± 2.2 years) participated in an
experimental session involving their dominant (BFR) and non-dominant leg (control).
Muscle mechanical properties were measured using Myoton’s accelerometer at the
midpoint of the rectus femorismuscle at five time points. In the BFR leg, an 80% arterial
occlusion pressure was applied by a cuff for 5min. No cuff was applied in the control
leg. Femoral Myoton measurements were taken from both legs 2 and 4min after the
start of BRF as well as 30 s and 2min after the end of the occlusion period.

Results: The two-way ANOVA revealed a statistically significant interaction effect
for stiffness and frequency (p < 0.001; η2 > 0.67). The post hoc analysis showed that
both stiffness and frequency increased during BFR compared with rest and then
dropped to the resting levels post BFR period. Also, stiffness and frequency were
higher than control only during the BFR period, and similar during rest and post BFR.

Conclusion: These results indicate that the application of BFR at rest leads to
significant changes in mechanical properties of the rectus femoris muscle.
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Introduction

The objective of blood flow restriction (BFR) is to reduce blood flow to the muscles using
an inflatable cuff or tourniquet applied around proximal parts of the upper or lower limbs
(Loenneke et al., 2012). Cuffs that induce BFR may be readily used in various populations,
including healthy, previously injured as well as patients with various heart conditions (Abe
et al., 2005; Marocolo et al., 2018; Cahalin et al., 2022; Salagas et al., 2022). BFR training
methods differ from each other, in terms of the aim and protocol used, e.g., pre-conditioning
BFR performed before exercise to improve performance (Incognito et al., 2016; Marocolo et al.,
2018; Wilk et al., 2020; Salagas et al., 2022), intermittent BFR during exercise (Gepfert et al.,
2020), continuous BFR throughout the duration of resistance exercise (Takarada et al., 2000;
Takarada et al., 2002; Wernbom et al., 2009; Patterson et al., 2019) or intra-conditioning BFR,
i.e., only during the rest intervals of a series of exercise sets (Wilk et al., 2021a; Jarosz et al.,
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2021). These different BFR protocols may have an acute impact on
post-exercise performance or muscle hypertrophy effects, with or
without resistance exercise (Loenneke et al., 2012). Although the
mechanisms underlying its effects have not been fully explored
(Kubota et al., 2008), the phenomena initiating a cascade of
physiological responses are triggered by the pooling of blood and
fluid distal to the cuff, which enhances hydrostatic and osmotic
gradients and finally increases intramuscular pressure and muscle
volume (Jessee et al., 2018).

Intramuscular fluid pressure may have an effect on mechanical
properties of muscle, which can be quantified by myotonometry
(Korhonen et al., 2005). This method involves applying a small
amount of force and evaluating the muscle’s response to it. The
stiffness and frequency of oscillation indicate the level of tissue tone,
with higher levels, indicating greater muscle tone (Alaca and Kablan,
2021). Intramuscular fluid pressure can have a significant impact on
muscle function, affecting the geometry of muscle fibers and, as a result,
the level of produced force (Sejersted and Hargens, 1995). Therefore,
according to Konrad and Paternoster. (2022), evaluating this variable
could contribute to the prediction of changes in muscle performance
(Wang et al., 2017; Wang et al., 2017; Klich et al., 2019; Klich et al.,
2020). For example, Klich et al. (2020) reported an acute increase in
vastus lateralis stiffness after all-out 200 m and 4000 m track cycling,
with a greater increase after the shorter sprint. Additionally, Trybulski
et al. (2022a) observed a tendency for increased muscle stiffness of the
triceps brachii long head with a simultaneous decrease in barbell
velocity during the bench press exercise. The observed fatigue may
be related to higher intramuscular fluid pressure which may impair
clearance of metabolic byproducts. On the other hand, Krzysztofik et al.
(2023) showed a decrease in vastus lateralis stiffness simultaneously
with countermovement jump height improvements after low-volume
and high-loaded back squats. This could partially explain the
improvement in power or muscle strength reported previously after
BFR application (Jarosz et al., 2021; Wilk et al., 2021). It seems that the
increase in intramuscular fluid pressure induced by BFR applied at rest
immediately before exercise could positively affect muscle metabolism
(Murry et al., 1990; Andreas et al., 2011), increase blood flow to the
muscles (Cunniffe et al., 2017), enhance neural activation (Cruz et al.,
2017), and finally, as suggested by Kocman et al. (2015) allow the
muscles to become more resistant to BFR and its potential deleterious
effects during exercise.

To the best of the authors’ knowledge, no study to date has
evaluated the acute effect of BFR at rest and after its cessation on
changes in muscle mechanical properties using myotonometry.
Since alterations in muscle mechanical properties, i.e., due to
changes in intramuscular fluid pressure, might provide insight
into muscle force production ability, hence this assessment could
be used to determine the time required for reperfusion after BFR to
limit the impact of high intramuscular fluid pressure on subsequent
performance. Therefore, the purpose of this study was to examine
changes in mechanical properties (frequency and stiffness) of the
rectus femoris muscle during BFR as well as during reperfusion at
rest. Since the enhancement in power output was previously
observed immediately after the removal of BFR (Wilk et al.,
2021a; Jarosz et al., 2021), it was hypothesized that during BFR
muscle stiffness and muscle tone would significantly increase, and
that immediately after removal of the cuff, they would return to
baseline values.

Materials and methods

Study design

The aim of this study was to examine changes in mechanical
properties of the rectus femoris muscle, namely: tone [oscillation
frequency (Hz) and stiffness (N/m), under BFR without any physical
activity]. Muscle properties of the rectus femoris of both legs were
measured using the Myoton device, at 5 time points: at rest, 2 min
and 4 min after the start of BFR, and 30 s and 2 min during
reperfusion, after the release of BFR. BFR was applied for 5 min
on the dominant lower limb with 80% of the total arterial occlusion
pressure (AOP), while measurements of mechanical properties were
also performed at the same time-points on the non-dominant limb
without BFR (Control).

Participants

Fourteen trained males participated in the study (body mass =
81.0 ± 10.3 kg; BMI = 25 ± 3.0 m/kg2; height = 181.0 ± 4.3 cm;
training experience = 6.0 ± 2.2 years). The inclusion criteria were: a)
age 18–40; b) resistance training at least 3 times a week, for at least
5 years; c) no cardiovascular diseases, e.g., thrombosis; d) no muscle
injuries (leading to absence from training for more than 4 weeks) for
at least 6 months before the start of the study. Participants were
informed about the potential risks and benefits of participating in
the project and about their right to withdraw from the study at any
time, without providing any explanation for their decision. The
participants signed a written consent to participate in the study but
did not receive information about the purpose of the study and the
expected results. All stages of the research were carried out at the
Academy of Physical Education in Katowice, Poland. The
experimental project was approved by the Bioethics Committee
for Scientific Research (02/2019) at the Academy of Physical
Education in Katowice, Poland, in accordance with the ethical
standards of the Declaration of Helsinki, 1983. No participants
withdrew from the study.

Familiarization session

One week before the main experiment, the participants took part
in a familiarization session. The familiarization session was
performed to minimize possible learning effects during the main
testing sessions and ensuring that the participants were well-
prepared and accustomed to the tasks they were required to
perform. During the familiarization session, measurements of
frequency and stiffness, were performed at the middle point on
the rectus femoris of both legs. The exact site of measurement was
marked so as to perform all subsequent evaluations in the same
position. For the BFR, the cuff was applied to the most proximal part
of the dominant limb, while the cuff was not used for the control leg.
The dominant leg was defined as the leg that the participants
identified as their preferred or stronger leg for activities requiring
single-leg performance (self-declaration). The familiarization
protocol consisted of 3 min BFR with 2 min of reperfusion using
a pressure of 100 mmHg.
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Experimental sessions

The participants were asked not to perform any resistance
exercise 24 h before the start of the experimental session. They
were also instructed to maintain their eating habits and not to use
any supplements or stimulants before and during the week
preceding the experiment. At the start of the experimental
session body composition was evaluated using multi-channel
bioelectrical impedance analysis in a laboratory environment with
the InBody 370 device (InBody, Seoul, South Korea). Thereafter, the
individual pressure of 100% AOP of the dominant lower limb was
determined, and 80% AOP was used in the subsequent experimental
protocol. Five minutes after determining the individual AOP, the
mechanical properties of the rectus femoris muscle of both legs (BFR
and control) were evaluated using the Myoton device.
Measurements were taken at the middle of the length of the
muscle (Muckelt et al., 2022), as previously determined.
Immediately after the Myoton measurement, the cuff was applied
on the dominant leg and was inflated to 80% of the individual AOP
for 5 min. No cuff was applied on the other leg. Subsequent Myoton
measurements of the rectus femoris muscle of both legs were
performed 2 and 4 min after the cuff was inflated. The cuff was
removed from the dominant leg after 5 min of occlusion, and further
measurements were performed in both legs 30 s and 2 min after the
end of BFR (reperfusion). During the entire duration of the
evaluations the participants were still in the supine position with
a foam roller under their knees to keep them slightly flexed.

Blood flow restriction

A cuff (FitCuffs®, cuff width 10,5 cm, Denmark) was placed in
the most proximal part of the dominant limb in order to determine
the AOP of each participant (~80% AOP conditions). After
completing the general warm-up and a 5-min rest interval, the
full occlusion arterial pressure (100% AOP) was determined (in a
seated position). A handheld Edan SD3 Doppler with an OLED
screen and a 2 MHz probe from Edan Instruments (Shenzhen,
China) was used (Jarosz et al., 2021; Wilk et al., 2021). The AOP
was measured twice and the measurements were 5 min apart in the
subject Sieljacks et al. (2018), in case the obtained differences were
within 20 mmHg, then the mean of the two measurements was used.
The average 80%AOP used for BFR was (147 ± 24 mmHg).

Measurement of muscle mechanical
properties

MyotonPRO, is a non-invasive device monitoring superficial
mechanical deformation of soft tissues (MyotonPRO, Myoton AS,
Tallinn, Estonia), and was used to assess the mechanical properties
of the rectus femoris muscle. Measurements were performed at the
midpoint of the rectus femoris muscle build on previous research
(Mullix et al., 2012; Agyapong-Badu et al., 2016; Gacto-Sánchez
et al., 2023). The midpoint of the rectus femoris was determined in
the supine position with a foam roller under the knee (Muckelt et al.,
2022) with the aid of a tape measure applied on the line formed
between the upper edge of the patella and the iliac spine of the pelvis.

The rectus femoris muscle has been selected due to its crucial role in
knee extension and hip flexion, and feasibility and accessibility for
measurement (its superficial location in the thigh makes it more
amenable to non-invasive assessment). The following muscle
mechanical properties were measured: the Natural Oscillation
Frequency [Hz], which is the intrinsic tension of the muscle in
its passive state, characterizing tone or tension and the dynamic
stiffness, which indicates the resistance to deformation (Salagas
et al., 2022). Myoton’s accelerometer was set to 3200 Hz, and the
average value kept for analysis was obtained from five consecutive
measurements (0.4 N for 15 m) (Szymczyk et al., 2022).

Statistical analyses

Data were analyzed using Statistica 9.1. The Shapiro-Wilk test
was used to verify normality, while the homogeneity of variance was
assessed by the Levene’s test. Statistical differences between BFR and
control independently for frequency and stiffness were analyzed by
two-way repeated measures ANOVA [(BFR vs. control leg) ×
5 measurement time points]. The partial eta squared was used to
determine effect sizes (ES). Partial eta squared values were classified
0.01–0.059 as small, 0.06–0.137 as moderate, and >0.137 as large.
Post hoc comparisons using the Tukey’s test were conducted to
locate the differences between mean values when a main effect or an
interaction was found. For pairwise comparisons, ESs were
determined by Cohen’s d which was characterized as trivial: d <
0.20; small: d between 0.20 and 0.49; moderate: d between 0.50 and
0.80, and large: d > 0.80. The statistical significance was accepted at
p < 0.05.

Results

Post-hoc power analysis using G*Power version 3.1.9.2
(Dusseldorf, Germany) for the parameters, such as “ANOVA,
repeated measures, within factors,” was assumed as a statistical
test (1 group of subjects, 2 experimental conditions, and
5 measurements) and the significance level of 0.05, indicated that
effect size of at least 0.31 is needed to achieve a power above 80%.
The two-way ANOVA showed a statistically significant interaction
effect for stiffness (p < 0.001; η2 = 0.84) and frequency (p < 0.001;
η2 = 0.81). The ANOVA also showed a statistically significant main
effect of condition for stiffness (p < 0.001; η2 = 0.76) and frequency
(p < 0.001; η2 = 0.60). The post hoc analysis for interaction showed
that both stiffness and frequency increased during BFR compared
with rest and then dropped to the resting levels during the
reperfusion period. Also, stiffness and frequency were higher
than control only during the BFR period, and similar during rest
and post BFR (p < 0.001 for all, see Table 1).

Discussion

The main finding of the study was that the application of BFR
causes significant changes in mechanical properties of the rectus
femoris muscle, i.e., stiffness and frequency, at rest. Specifically, a
significant increase in stiffness and frequency were found only
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during the application of BFR compared to the control leg, but this
effect disappeared immediately after the end of BFR. Furthermore,
changes in mechanical properties of the studied muscle, were similar
after 2 and 4 min of BFR, indicating that they were not dependent on
the duration of BFR, at least for this BFR period. Additionally, the
observed increases in frequency and stiffness of the rectus femoris
muscle returned to baseline values very fast, i.e. 30 s after the
removal of BFR. Therefore, the changes in mechanical properties
of the muscle, as assessed by myotonometry last only during BFR
and are quickly removed during the reperfusion period.

The increase in muscle stiffness and frequency observed in
the BFR condition may be related to higher intracellular fluid
levels and the associated increase in intracellular fluid pressure.
Such an increase in intracellular fluid levels is one of the
physiological factors arising from the accumulation of fluid
distal to the cuff, increasing hydrostatic and osmotic
gradients, and ultimately increasing muscle volume and
intramuscular pressure (Jessee et al., 2018), which are related
with changes in the mechanical properties of muscles. Previous
studies examining changes in the level of intracellular fluids
during exercise performed under BFR (Wilk et al., 2018) could
not separate the effect of exercise per se from the effect of BFR on
the mechanical properties of the muscles involved. The results of
the present study indicate that an increase in muscle stiffness and
frequency may be induced only from BFR at rest, thus separating
the effects of exercise and BFR. Therefore, changes in the
mechanical properties of muscles do not need to be exercise-
related, as suggested by Hill et al. (2022). These authors
emphasized that changes in mechanical properties of muscles
are related to the type, intensity and volume of exercise, however,
our study showed that such changes following BFR may be
mainly related to the increase in intracellular fluid levels
caused by external compression reducing blood flow. It should
be noted that due to the constrictive nature of muscle

contractions, the physiological effect of muscular contractions
in combination with the exercise-induced plasma volume shifts
to the working muscles during exercise, may also increase the
level of intracellular fluids similar to that observed with resting
BFR (Egan et al., 2006; Wilk et al., 2018; Wilk et al., 2021b). The
results of the present study showed a significant increase in
muscle stiffness and frequency during BFR compared to the
control. Similar changes in stiffness and frequency to those
observed in the present study, have been previously reported
during exercise (Klich et al., 2019; Klich et al., 2020). According
to Klich et al. (2020) the increase in the level of intracellular fluids
during exercise reduces capillary blood flow, and causes a
decrease in muscle strength, early muscle pain and fatigue,
which may be associated with an increase in muscle stiffness
(Wang et al., 2017; Wang et al., 2017; Klich et al., 2019; Klich
et al., 2020; Trybulski et al., 2022b). It can therefore be postulated
that the use of BFR at rest may induce similar changes in muscle
mechanical properties to intense muscle actions during exercise.

Changes in mechanical properties of muscles were identical after
2 and 4 min of BFR. Thus, it may be suggested that the duration of
BFR has no significant effect on the mechanical properties of
muscles and the change in intracellular pressure, at least for the
BFR period examined. The lack of significant changes in mechanical
properties of muscles during the 2–4 min period under BFR may
indicate a similar level of intracellular fluid pressure at these two
time points. Maintaining constant values of intracellular pressure
from the use of BFRmay have a significant impact on the level of free
radicals, lactate, hypoxia inducing factors (HIF) and heat shock
proteins (HSP) in the resting muscle, and may contribute to the
process of muscle activation and regeneration (Bemben et al., 2022).

In the present study, the mechanical properties of muscles
returned to baseline values just 30 s after BFR removal. To the
best of our knowledge, there is currently no evidence available to
compare our study, especially in terms of reperfusion time and

TABLE 1Muscle stiffness and frequency as determined byMyotonmeasurements in the blood flow restricted (BFR) and Control leg during BFR and reperfusion. ES:
Cohen’s d effect size.

Stiffness (N/m)

Blood flow restriction period Reperfusion

Condition Rest 2 min 4 min 30 s 2 min

BFR 278.3 ± 15.7 409.9 ± 70.95a# 418.6 ± 63.9a# 280.1 ± 22.5 277.6 ± 20.7

CONTROL 279.4 ± 21.6 278.3 ± 18.6 282.3 ± 21.2 281.0 ± 22.3 280.0 ± 22.2

ES 0.06 2.54 2.87 0.04 0.11

Frequency (Hz)

Blood flow restriction period Reperfusion

CONDITION Rest 2 min 4 min 30 s 2 min

BFR 15.17 ± 0.92 19.56 ± 2.63a# 19.77 ± 2.40a# 15.22 ± 0.76 15.07 ± 1.01

CONTROL 15.31 ± 1.13 15.21 ± 1.05 15.44 ± 1.32 15.34 ± 1.31 15.54 ± 1.19

ES 0.14 2.17 2.24 0.11 0.43

a0.001 from control at the corresponding time point. #: 0.001 from Rest in the corresponding condition, p < 0.001.
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changes in muscle properties. The increased blood flow resulting
from the use of BFR at rest may be related to the rapid return of
mechanical properties of the muscles to resting values. Also, the
rapid recovery of mechanical properties of the muscles to baseline
values suggests that BFR at rest has a strong but short-term effect on
quadriceps neuromuscular function. The benefits resulting from the
direct return of mechanical properties of the muscles to baseline
values observed in the present study confirm the results of Trybulski
et al. (2022b), who argued that reperfusion time may also be a
significant factor in BFR-induced acute adaptive changes.

The main limitation of the presented study is the lack of
possibility to compare and generalize the results between
different research protocols. As this is currently the only study
analyzing the impact of BFR on changes in the mechanical
properties of the rectus femoris muscle, further comparisons with
other research protocols are not feasible. One methodological
limitation is the absence of an analysis of the biochemical
changes in the blood accompanying the application of BFR at
rest. Such analysis could significantly influence the obtained
results and provide a broader understanding of this topic.
Another limitation of the present study is the lack of exercise
performance measurements during and after BFR, so as to
examine the changes in stiffness on muscle strength and power.
However, previous studies Wilk et al. (2020) have shown
improvements in peak bar velocity during bench press when
performed under continuous BFR, and one possible mechanism
contributing to this improvement may be an increase in stiffness.
However, this remains to be directly examined in future studies.

Conclusion

The results of this study indicate that the application of BFR at
rest causes significant changes in mechanical properties of the rectus
femoris muscle, i.e., stiffness and frequency. However, this effect is
only observed during BFR and disappears immediately after
removing BFR. This suggests that BFR increases stiffness and
frequency of muscles only during its application, without
affecting post-exercise mechanical properties, as assessed by
myotonometry.
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