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ABSTRACT

A cell-by-cell artificial neural network approach is used to predict the temperature field of steady-state, incompressible, 
laminar flows in a two-dimensional computational domain. The temperature field is characterized by the initial flow 
velocity, fluid temperature and the temperature of the wall boundaries. Two types of neural network architectures 
are developed in this research, namely cascade-forward and feedforward models. Both models are trained using 
Levenberg-Marquardt and Bayesian regularization backpropagation algorithms. The training data for the models 
are obtained by solving the Navier-Stokes equations for steady-state, incompressible, heat conducting laminar flow 
in two-dimensional domain using commercial ANSYS Fluent software. The results show that the predicted values 
produced by the ANN models are in good agreement with the CFD simulation data. Even though the introduction of 
artificial neural networks at the cell level increases the complexity of the training process, this drawback is compensated 
by the increase in flexibility (generality) of the models. More importantly, the results show that the cell-by-cell artificial 
neural network approach is capable of providing an accurate prediction of the temperature field for the fluid flow 
investigated in this research, as indicated by the statistical indices used to evaluate the performance of prediction 
models. The feedforward ANN model trained using the Bayesian regularization backpropagation algorithm gives the 
most accurate predictions among all models.
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INTRODUCTION 

Regardless of the high cost and time consuming, 
laboratory experiments are considered an appropriate 
method for understanding the behaviors of fluid 
flow. Similar to the numerical methods, laboratory 
techniques are efficient and reliable, but they do not 
require solving the complex mathematical models 
of the flow. Solving fluid model numerically requires 
all the boundary conditions in the geometrical 
domains to be formulated precisely with respect to 
the computational domain. Despite the progress 
in computational techniques in fluid dynamics, the 

computational time for the simulation is considerably 
large when urgent responses are required. In fluid 
dynamics, a relatively accurate and immediate results 
are required for efficient responses. 

Knowledge of the thermal behavior of fluid flows is 
of utmost importance owing to its various range of 
applications such as gas turbine engines, electronics 
thermal management, microfluidic devices, as well 
as heating, ventilating and air-conditioning (HVAC) 
systems. In gas turbine engines, the secondary air 
system provides cooling air to the disks, blades 
and   for brush sealing of the bearing chambers. 
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Thermal characteristics of secondary air can affect 
the efficiency and the environmental aspects of gas 
turbines [1]. Thermal energy storage based on the 
energy exchanges between a heat transfer fluid flows 
and a phase changing materials. 

Both experimental and numerical techniques have 
been widely used by scientists and researchers in the 
heat transfer and fluid flow community in order to gain 
insight into the thermal behavior of fluid flows. Even 
though experimental techniques are usually reliable, 
these techniques are very time-consuming and 
costly. With advancements in computing hardware 
and software over the years, numerical techniques 
using computational fluid dynamics (CFD) have made 
it possible for scientists and researchers to probe 
into the thermal behavior and underlying physics 
of fluid flows within a shorter time frame compared 
to experimental techniques. However, even though 
CFD techniques are capable of attaining faster results 
compared to experimental techniques, numerical 
techniques are still somewhat time-consuming. 
Patankar and Spalding [2], who verified their 
algorithm by computing the flow field parameters in 
a square duct with moving walls, noted an increase 
in the total simulation time. Solving the Navier-Stokes 
energy equation increases the computational cost 
dramatically. The complexity of numerical problems 
increased over the years owing to the increasing 
demand for high thermal sensitivity, precision and 
accuracy in a variety of heat transfer and fluid flow 
applications. 

Artificial neural network (ANN) is a powerful tool that 
is capable of solving complex problems and attaining 
faster results due to its flexibility and automatic 
perceptions. Unlike other numerical techniques, ANN 
is capable of dealing with problems where there 
is lack of a proper physical model and problems in 
which uncertainties are present. More importantly, 
ANN is a promising method that can be used to 
predict the thermal behavior of fluid flows. The basic 
idea of ANN is to attach a group of arrays representing 
the inputs to an equivalent output array. When new 
inputs are entered, the ANN predicts the outputs 
instantaneously by applying what it has been trained.

ANN has been employed to solve a variety of heat 
transfer and fluid flow problems, particularly those 
in which uncertainties are present. Benning et al. [3, 
4] implemented neural networks trained using the 
backpropagation algorithm to predict the flow field 
variables of steady, isothermal flows around a solid 
cylinder. A hybrid artificial intelligence model was 
developed to predict the flow field over a range of 
Reynolds numbers from 1 to 60. The algorithm was 
improved by integrating ANN with conventional 
numerical techniques [3, 5]. Valyuhov et al. [6-8] 
promoted the method of weighted residuals (MWR) 
to solve Navier-Stokes equations. The MWR algorithm 
makes use of neuron estimations to solve the 
Navier-Stokes equations by computing the velocity 
components and pressure on a Cartesian grid.  ANN 
models have also been implemented successfully in 
recent years to predict the thermal behaviour of Nano 
fluids [9-11].

The existing works on ANN models are focus on the 
overall computational domain under special flow 
conditions. The main drawback of these approaches 
is that many of the flow characteristics may not be 
captured because of the approaches are limited to 
the learning procedure for the whole geometry. Even 
though some studies make use of a cost function 
strategy to improve the flexibility of the model and 
enforce the boundary conditions, this strategy only 
partially overcomes the disadvantages of complex 
geometries.

In  this research, a novel method based on artificial neural  
networks is proposed to predict the temperature field 
of a fluid flow, in which the computational domain is 
divided into an equal number of cells with equal size 
and uniform spacing (similar to a Cartesian grid) and 
the temperature is predicted on a cell-by-cell basis. 
The design and development of the cell-by-cell ANN 
approach is described in detail in this paper, beginning 
with a description on the governing equations for 
incompressible, laminar flows in a two-dimensional 
computational domain and the discretization of 
the independent variables on a staggered grid. Two 
neural network architectures are developed in this 
research (cascade-forward and feedforward ANN 
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models) and these models are trained using the 
Levenberg-Marquardt and Bayesian regularization 
backpropagation algorithms. The Levenberg–
Marquardt algorithm [12, 13], provides a fast and stable 
numerical solution for training small and medium 
sized ANN problems. The Bayesian regularization 
training algorithm shows better performance than 
the Levenberg-Marquardt algorithm. The advantage 
of a Bayesian regularization artificial neural network 
is its ability to reveal potentially complex relationships 
[14]. The ANN models are evaluated using a number of 
statistical indices in order to determine the capability 
and accuracy of the ANN models in predicting the 
temperature field of the fluid flow investigated in this 
research.

METHODOLOGY

In a neural network, the computational nodes are 
represented by neurons in the hidden layers. The 
number of hidden layers and the number of neurons 
within each hidden layer will change according to the 
complexity of the tasks executed by the ANN model 
[15, 16]. A clear understanding of the problem and 
well defined model with clear independent variables 
leads to decent neural network design. The flexibility 
of Neural network models for particular application 
leads to more difficulty in the designing phase due 
to the specific features of the application. There are 
various choices have to be decided, but very few 
guidelines to help the programmer through them. 
Some assistances can be found in the literature [17-
21], but these guidelines are applicable for certain 
applications and they have never been endorsed for 
alternative applications.

 A conjugate heat transfer problem typically involves 
heat diffusion because of the temperature gradients 
and convective heat transfer present in the fluid 
flow. In this research, the flow is considered to be 
incompressible and laminar within the computational 
domain Ω. This flow is governed by the Navier-
Stokes equations (momentum, continuity and energy 
equations) as a function time. Assuming that external 
forces and heat sources are negligible, the two-

dimensional Navier-Stokes equations are given as 
follows:

Momentum equation:

						      (1)

						      (2)

Continuity equation:
			 
						      (3)

Energy equation:

						      (4)

The steady-state  solver is chosen to eliminate the 
effect of time from the partial differential equations 
above, whereby the independent variables are x, y  
and t. The solution of the partial differential equations 
is dependent on the boundary conditions and initial 
conditions for each case. The velocity vector (u,v) in 
Equation (1) represents the dependent variable (ANN 
output) whereas the position vector (x,y) and initial 
velocity (u0)  represent the independent variables 
(ANN inputs). The velocity boundary conditions 
are consider as non-slip wall condition for all cases. 
The temperature (T) in Equation (3) represents the 
dependent variable (ANN input) whereas the position 
vector (x,y) and wall temperature (Tw)  boundary 
condition represent the independent variables 
(ANN inputs). The initial condition variable (i.e. fluid 
temperature) is neglected since the initial fluid 
temperature is kept constant for all cases.

The solution of the differential equations depends on 
the boundary conditions and initial conditions of each 
case. From the momentum equations, the velocity 
vector (u,v) is considered the dependent variables 
(ANN outputs). Position vector (x,y) and initial velocity 
condition represent the independent variables (ANN 
inputs).
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Cell-by-cell approach (CBC)

Whenever a numerical method is used such as the 
finite difference method, discretization is necessary 
in order to solve the system of partial differential 
equations, i.e. Equations (1) and (3). The analytical 
solution of Equations (1), (2) and (3) gives the values 
of the flow field variables at any point in the flow. In a 
numerical method, these equations are replaced by a 
system of algebraic equations. The numerical solution 
of this system of algebraic equations gives the values 
of the flow field variables at discrete points in the 
flow. Once the computational domain is discretized 
into an equal number of cells with equal size and 
uniform spacing, the computation of the flow field 
variables takes place in each cell and the discrete 

results are then combined to provide the solution for 
the entire computational domain. The number of cells 
in the Cartesian mesh is 11654 cells with the values 
of Local Truncation Error is 0.00246. Figure 1 shows 
the computational domain of the temperature field 
discretized on a staggered grid. In this grid, the normal 
velocity components are stored at the borders of the 
cell, whereas the temperature and pressure values 
are stored at the center of the cells [21]. The initial 
conditions and boundary conditions are assigned 
to the belt of ghost cells outside the domain. The 
purpose of these ghost cells is to assist in computing 
the solutions of the Naiver-Stokes equations including 
the energy equation throughout the domain from the 
outer border cells.

Figure 1  Computational domain for the temperature field
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The discretization process is also applied to transform 
the space domain from continuous to discrete. The 
cell-by-cell ANN approach is then introduced to 
predict the temperature field of the flow. Using this 
approach, the computations take place locally at the 
cell level – however, it shall be noted that the model 
has been trained prior to running the simulation. The 
independent variables are discretized using a grid 
similar to the staggered grid in the finite difference 
method. Figure 2 shows how each cell receives the 
value of the independent variable from the three 
adjacent cells. The entire computational domain 
is covered using this technique. Similar to other 
numerical techniques, an interpolation procedure is 
used to compute the missing values of the dependent 
variable in the spaces in between the computational 

domain. The Reynold number range for the 2-D model 
is between (1150, 2000) with velocity (0.08, 0.15) m/s.

It is possible to produce a decent neural network 
design when one has a clear understanding of the 
physical problem and a well-defined model with clear 
independent variables. The primary variables that 
control the behavior of the flow field at the cell level 
are the position vector (x, y) of the cell, the velocity 
vector (u, v)  and temperature (T).  All of the cells in 
the Cartesian grid are identical and spaced at an 
equal distance from each other, which reduces the 
influence of the position vector (x, y). Figure 3 shows 
the input layer (independent variables) and their 
interconnection with the output layer through the 
hidden layer of the ANN model.
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Figure 2  Schematic diagram of the of cell-by-cell approach
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Figure 3  Schematic diagram of CBC for temperature

CBC Model implementation approach

Two ANN models are selected and tested to 
determine the capability of each model in predicting 
the temperature field of steady-state, incompressible, 
laminar flows in a two-dimensional computational 
domain. The architecture of the cascade-forward and 
feedforward ANN model is illustrated in Figure 4 and 
Figure 5, respectively. As mentioned previously, a 
portion of the data set is used to test each ANN model 
after training to determine the differences between 
the predicted data and simulation data. The cascade-
forward and feedforward ANN models are developed 
to emulate the behavior of a fluid particle. Based on 
the assumption that there is only one inlet, the energy 

is transferred from the first particle to the second 
particle in the forward direction. In steady-state, 
laminar flows, the momentum shifts from one particle 
to the adjacent particle in the forward direction. Each 
ANN model analyses the input energy from three 
previous particles and then computes the resultant 
total energy. This simple energy conservation 
approach is analogous to the data flow in cascade-
forward and feedforward networks. There is no 
back flow in steady-state, laminar flows and likewise, 
there are no feedback loops in cascade-forward and 
feedforward networks. The cascade-forward ANN 
model is proposed to measure the echo of the initial 
energy on the molecules and the weight of the other 
energy routes.

Input layer
(independent variables)

U1

V1

T1 T

....

Output layer
(dependent variables)

Hidden layer
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Figure 4  Architecture of the cascade-forward ANN
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Figure 5  Architecture of the feedforward ANN

The results of the experiment used to select the 
optimum number of hidden neurons are shown in 
Figure 6. The results show the variations of the MSE, 
RMSE and MAE values with respect to the number 
of hidden neurons for the feedforward ANN model. 
The first objective of this experiment is to confirm 
that the increase in the number of hidden neurons 
will not improve the outcomes of the model [22, 23] 
and this evident from Figure 6, whereby the error 
values actually increase when the number of hidden 

neurons exceeds 20 due to overfitting problem. The 
mean square error smallest value achieved when 15 
hidden neurons are used, but the ratio of the error 
value change between 11 neurons and 20 neurons 
is small. The root mean square error gradient shows 
the increasing value of the error for one neuron is 
insignificant in the range from minimum value at 11 
hidden neurons to 20 hidden neurons. In the interval 
between 15-20 neurons the upward sloping line for the 
mean absolute error increasing value from the lowest 
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value can be neglected. Therefore, the error minimum 
values are reached when choosing an ANN model 
with 15 hidden neurons.  The second objective of this 
experiment is to determine the differences between 
the predicted data and simulation data. Regression 
analysis is carried out in order to determine how well 
the cascade-forward and feedforward models fit with 
the simulation data.

RESULTS AND DISCUSSION

The regression between the predicted data and 
simulation data for the cascade-forward and 
feedforward ANN model obtained from the validation 
phase is shown in Figure 7 and Figure 8, respectively. 
It is evident from the ANN predicted data show good 
agreement with the CFD simulation data under the 
same training conditions. Two different Artificial 
Neural Network training algorithms are applied to 
the model, Bayesian regulation backpropagation 
(BRB) and Levenberg-Marquardt backpropagation 

(LMB). For the Bayesian regularization, the lowest 
correlation coefficient (R) is found to be 0.99978 and 
0.99974 for the cascade-forward and feedforward 
ANN model, respectively. For Levenberg-Marquardt, 
the lowest correlation coefficient (R) is found to 
be 0.99668 for the feedforward and 0.99613 for 
cascade-forward ANN model, as shown in Figure 9 
and Figure 10, respectively. Based on Pan et al. [24] 
the Levenberg-Marquardt algorithm is usually faster 
than Bayesian regularization, although it does require 
more memory than other algorithms. The influence 
of the training methods is greater than the influence 
of ANN architectures, the Bayesian regulation 
backpropagation generalizes well comparing other 
algorithms. It can be seen that the correlation 
coefficient is very high (close to +1.0) for both models, 
indicating that there is a strong correlation between 
the predicted data and simulation data. Based on 
the correlation coefficient values, it can be deduced 
that the cascade-forward ANN model predicts the 
temperature field with a little higher accuracy compared 
to the feedforward ANN model.

Figure 6  Variations vs the number of hidden neurons

MSE, RMSE and MAE values versus the number of neurons for the feedforward ANN model
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For Bayesian regulation backpropagation (BRB) training:

Figure 7  Regression analysis in the validation phase for the cascade-forward ANN model

Figure 8  Regression analysis in the validation phase for the feedforward ANN model

Regression analysis for cascade-forward ANN model: R=0.99978
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For Levenberg-Marquardt backpropagation (LMB) training:

Figure 9  Regression analysis in the validation phase for the feedforward  ANN model

Figure 10  Regression analysis in the validation phase for the cascade-forward
ANN model under (LMB) training

Regression analysis for feedforward ANN model: R=0.99668
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Regression analysis for cascade-forward ANN model: R=0.99613
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The performance of the cascade-forward and 
feedforward ANN models trained using the 
Levenberg-Marquardt and Bayesian regularization 
training algorithms is evaluated using a number of 
statistical indices. These parameters indicate the 
deviation of the predicted values from the simulation 
values. These statistical indices along with the 
statistical boundaries of the network training phase 
will help one to determine if there is overfitting in 
the ANN models. In general, the lower the statistical 
index values, the better the prediction model will be. 
It can be deduced that the feedforward ANN model 
outperforms the cascade-forward ANN model – 
however, verification is needed to clarify this matter. 
In addition, the feedforward ANN model trained using 
the Bayesian regularization algorithm has higher 
prediction accuracy compared to the same model 
trained using the Levenberg-Marquardt algorithm. 
The results are in a good agreement with the results of 
former applications indicating the same behavior [25].

Verification cases

A test case is used to verify the capability of the ANN 
models in predicting the temperature field of fluid 
flows using a different data set. The computational 
domain remains the same, whereby the same number 
of Cartesian cells is used for the CFD simulation 
and ANN models. The boundaries of the ghost cells 
are added to initiate the computations from the 
boundary conditions as well as to include the initial 
computational domain. The regression between the 
predicted data and simulation data for the cascade-
forward and feedforward ANN model is shown in 
Figure 11, 12 under (BRB) training and Figure 13, under 
(LMB) training respectively. It can be observed that 
the predicted data show good agreement with the 
simulation data, whereby the correlation coefficient 
(R) is 0.99964 and 0.99982 for the cascade-forward 
and feedforward ANN model, respectively. The results 
of the verification phase conform to those from the 
validation phase, with a regression difference of less 
than 4.5x10-04.

Figure 11  Regression analysis in the verification phase for the cascade-forward
ANN model under (BRB) training
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Regression analysis for cascade-forward ANN model: R=0.99964
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Figure 12  Regression analysis in the verification phase for the feedforward ANN model under
(BRB) training

Figure 13  Regression analysis in the verification phase for the cascade-forward ANN model under (LMB) 
training

Regression analysis for feedforward ANN model: R=0.99982
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Regression analysis for cascade-forward ANN model: R=0.99738
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Figure 14  Regression analysis in the verification phase for the feedforward ANN model under (LMB) training

Figure 15  The differences between CFD simulation and the (ANN) velocity vectors

Regression analysis for feedforward ANN model: R=0.99655
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It can be seen that the values of the statistical indices 
in the verification phase are similar to those obtained 
from the validation phase. The statistical indices 
indicate that the cascade-forward and feedforward 
ANN models have good generalization capability. In 
general, the feedforward ANN model has superior 
performance compared to the cascade-forward 
ANN model in predicting the temperature field of 
two-dimensional, steady-state, incompressible, 
laminar flows since most of the statistical index 
values are lower for the feedforward ANN model. The 
feedforward ANN model trained using the Bayesian 
regularization algorithm also has higher prediction 
accuracy compared to the same model trained using 
the Levenberg-Marquardt algorithm. It shall be 
noted that even though the correlation coefficients 
of both models obtained from the verification phase 
are higher than those obtained from the validation 
phase, the statistical index values are higher for the 
verification phase. For the flow velocity vectors, the 
differences between the simulation data and the 
predictive data are showed in Figure 15.

CONCLUSION 

In this research, a novel cell-by-cell ANN approach 
is proposed to predict the temperature field a 
steady-state, incompressible, laminar flow in a two-
dimensional computational domain. Two types of 
ANN models have been developed in this research 
(cascade-forward and feedforward models) and 
trained using Levenberg-Marquardt and Bayesian 
regularization backpropagation algorithms. The 
predicted data generated by the ANN models 
are compared with those from CFD simulations. 
The results indicate that both ANN models are 
capable of predicting the temperature field of two-
dimensional, steady-state, incompressible, laminar 
flows with reasonable accuracy (R=.099). However, the 
feedforward ANN model trained using the Bayesian 
regularization backpropagation algorithm gives the 
most accurate predictions among all models.  Even 
though the introduction of ANN at the cell level 
increases the complexity of the models during the 
training phase, this drawback is compensated by the 

increase in flexibility (generality) of the models. Since 
most of the computational cost is associated with 
the training phase, the new approach is capable of 
computing the results within a fraction of the time 
taken by conventional numerical techniques. Hence, 
the new ANN approach can be used to predict the 
temperature field of fluid flows with an acceptable 
margin of error within a shorter time frame. 

Since structured grids are more common compared 
to other types of grids, it is recommended that the 
cell-by-cell ANN approach is tested on structured 
grids in future work in order to reform the node-by-
node approach. In addition, there is a need to test the 
new approach on transient flows and examine the 
prediction of temperature as a function of time. There 
is also a need to develop a robust ANN model to predict 
the temperature field in complex fluid flow problems 
which will lead to an increase in the number of inputs 
of the ANN model.  Finally, the limitations of the cell-
by-cell ANN approach developed in this research 
need to be examined in detail by implementing the 
approach on various types of fluid flows.
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