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Mitochondrial dysfunction plays an important role in the occurrence and
development of different liver diseases. Oxidative phosphorylation (OXPHOS)
dysfunction and production of reactive oxygen species are closely related to
mitochondrial dysfunction, forcing glycolysis to become the main source of
energy metabolism of liver cells. Moreover, glycolysis is also enhanced to
varying degrees in different liver diseases, especially in liver cancer. Therefore,
targeting the glycolytic signaling pathway provides a new strategy for the
treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis
associated with liver cancer. Natural products regulate many steps of
glycolysis, and targeting glycolysis with natural products is a promising cancer
treatment. In this review, we have mainly illustrated the relationship between
glycolysis and liver disease, natural products can work by targeting key enzymes in
glycolysis and their associated proteins, so understanding how natural products
regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to
inhibit liver disease.
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1 Introduction

The incidence of liver disease remains increasing (Yu et al., 2014b), it ranges from simple
steatosis or non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis
(NASH) to cirrhosis and liver cancer (Li et al., 2019). As the core organ of nutrient
storage, synthesis and metabolism, the liver has a remarkable ability to maintain metabolic
homeostasis (Petersen et al., 2017). However, under various adverse conditions, liver
metabolic homeostasis is destroyed, especially glycolysis and other glucose metabolic
functions. In recent years, abnormal of glycolysis has received increasing attention due
to its interaction with liver disease.

Glycolysis refers to the process in which glucose is catalyzed to pyruvate and provides
2 reduced nicotinamide adenine dinucleotides (NADH) and 2 adenosine triphosphates
(ATP). Pyruvate can be oxidized to acetyl-CoA by pyruvate dehydrogenase (PDH) or
converted to oxaloacetic acid by pyruvate carboxylase. In the absence of oxygen, pyruvate is
reduced to lactate by lactate dehydrogenase (LDH), or to acetaldehyde by pyruvate
decarboxylase (Nishikawa et al., 2014). When the liver is in a pathological state, there is
an adaptive metabolic transition from oxidative phosphorylation (OXPHOS), which
preferentially produces energy, to glycolysis, in which pyruvate is partially converted to
lactic acid (Nishikawa et al., 2014). It was found that glycolysis activity was enhanced and
lactic acid levels increased in NAFLD and NASH (Ye et al., 2016). Some glycolytic enzyme
levels are elevated in cirrhotic precancerous lesions and are associated with an increase in
hepatocellular carcinoma (HCC) (Lee et al., 2018). NAFLD is considered a new major risk
factor for HCC, and the increase in serum BCAA levels in NAFLD patients affects glucose
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metabolism through mTOR signaling (Chalasani et al., 2018;
Gaggini et al., 2018; Chakravarthy and Neuschwander-Tetri,
2020). In addition, studies have shown that aerobic glycolysis
exists in HCC, and the degree of aerobic glycolysis of cancer cells
in HCC is enhanced, and cancer cells preferentially metabolize
glucose into lactic acid even under aerobic conditions (Li et al.,
2017b). These findings suggested that abnormal glycolysis might
promote the development of liver disease.

Traditional cancer treatment methods, such as surgery,
chemoradiotherapy and immunotherapy, bring heavy
psychological and physical pressure and financial burden to
patients [Zhao et al. (2015)]. Studies have found that natural
products inhibit glycolysis process and disrupt the proliferation
and invasion of cancer by targeting glycolytic or metabolic
phenotype [Zhao et al. (2015)]. Furthermore, there are currently
no clinically approved drugs to treat NAFLD, which is mainly
treated with lifestyle changes through diet and exercise. However,
people with NAFLD often have difficulty maintaining an improved
lifestyle. Therefore, it is of great practical significance to strengthen
the research on the pathogenesis of NAFLD and find safe and
effective drugs to prevent and treat NAFLD (Guo et al., 2022a).
Many studies have shown that compared with traditional therapies,
natural products have obvious advantages in terms of fewer side
effects, low toxicity, and light economic burden (Efferth et al., 2007;
Hsiao and Liu, 2010).

This paper reviews the important factors and related
mechanisms affecting glycolysis in liver diseases. We discuss the
role of key glycolytic enzymes and proteins, including hexokinase
(HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate
dehydrogenase (LDH), glucose transporters (GLUTs), in liver
disease. We also reviewed the role of relevant signaling pathways,
including phosphoinositide 3-kinase (PI3K), Wnt/β-catenin,
adenosine monophosphate-activated protein kinase (AMPK), in
liver disease. Finally, we discuss the role of oncogenes, including
c-MYC, HIF-1α, and ROS, in liver disease. We also review the effects
of natural products and their active ingredients on metabolic
reprogramming in liver disease. Through this review, we hope to
identify a number of metabolites with ideal efficacy and low side
effects from natural products, and to provide promising therapeutic
drugs for metabolic reprogramming of various liver diseases.

1.1 NAFLD and glycolysis

When the liver is in a pathological state, particularly in their
ability to process excess fatty acids via OXPHOS) the resulting
mitochondrial dysfunction due to elevated ROS is a main cause of
liver dysfunction, which forces hepatocytes to rely on glycolysis as an

alternative energy source. Energy metabolism preferentially switches
fromOXPHOS to glycolysis, with the result that part of the pyruvate
is converted to lactate (Nishikawa et al., 2014). NAFLD is driven by
inflammatory processes, oxidative stress and insulin resistance
triggered by multiple pathways, including NASH, which can lead
to liver fibrosis, cirrhosis and HCC (Kanda et al., 2020; Alshehade
et al., 2022). The different stages of development of liver disease
(Figure 1). Studies have shown that the mechanism of altered
glycolysis processes can promote the progression of NAFLD to
NASH, and eventually to cirrhosis and HCC (Go et al., 2016). Liver
macrophages, neutrophils, dendritic cells, and NK cells are all
involved in the development of NASH (Nati et al., 2016).
Moreover, macrophages, including Kupffer cells and infiltrating
monocytes, play an important role in the progression of NASH.
Annexin A5 regulates liver macrophages through interaction with
PKM2, improving steatosis, inflammation, and fibrosis in NASH
mice (Xu et al., 2020). The activation of glycolysis in Kupffer cells
during NASH is induced in part by inhibition of PKM2 upregulation
by miR-122-5p (Inomata et al., 2022). Some metabolic pathways
involved in glycolysis may be potential therapeutic targets for
NAFLD. It was found that the expression of key glycolytic
enzyme HK2 was increased in the liver of mice fed high-fat diet
(HFD). HFD increased glycolysis by down-regulating the expression
of geranylgeranyl diphosphate synthase (GGPPS), accelerating the
NAFLD fibrosis process (Liu et al., 2018). Studies have shown that
down-regulating NOD-like receptor (NLR) X1 (NLRX1) can inhibit
glycolysis, enhance fat oxidation and reduce hepatic steatosis (Kors
et al., 2018). Therefore, NLRX1may be an attractive new therapeutic
target for NAFLD and metabolic syndrome. A study has found that
hyperacetylation of LDHB is associated with lactic acid
accumulation in the liver of NAFLD and NASH in humans and
mice. p300/CBP-associated factor (PCAF) mediated acetylation of
LDHB K82 significantly decreases LDHB activity, affected lactate
clearance in the liver, leading to lactate accumulation. In HFD-
induced NASH, acetylated LDHB induces lactic acid accumulation
by activating histone hyperacetylation, which intensifies lipid
deposition and inflammatory responses (Wang T. et al., 2021).
Therefore, targeting the glycolytic pathway may be a treatment
option for NAFLD.

1.2 Natural products regulate glycolysis in
NAFLD

Natural products regulate glycolysis in NAFLD (Table 1). HFD
caused a significant decrease in levels of anaerobic (lactic acid) and
aerobic glycolytic metabolites (pyruvate) as well as an increase in
blood sugar and insulin levels (Chao et al., 2014). Gallic acid (GA) is

FIGURE 1
The different stages of development of liver disease.
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a natural plant phenolic metabolite isolated from Cornus officinalis.
It is found in vegetables, tea, grapes, berries and wine and has anti-
inflammatory, anti-oxidant and other therapeutic effects (Tanaka
et al., 2018). Levels of metabolites associated with anaerobic (lactic
acid) and aerobic glycolysis, such as pyruvate and lactic acid,
recovered significantly in the GA treatment group. The results
indicated that GA had a protective effect on the liver of NAFLD
mice, which was partly achieved by improving glycolysis (Chao et al.,
2014). Antrodan (Ant), a β-glucan purified from Antrodia
cinnamomea, has many functions, including anti-cancer, liver
protection, and anti-inflammatory effects (Chen et al., 2007; Chiu
et al., 2013; Ker et al., 2014; Fa et al., 2015). Ant effectively inhibited
glucose and insulin levels, and effectively alleviated glucose
metabolism abnormalities in NAFLD through adenosine
monophosphate-activated protein kinase (AMPK)/Sirt1/SREBP-
1c/PPARγ pathway (Chyau et al., 2020). Vine tea (VT), a tea
traditionally used in Chinese botanical drugs, which is derived
from Ampelopsis grossedentata. It is rich in the natural anti-
oxidant dihydromyricetin (ampelopsin). In addition to its many
health benefits, rattan tea extract is considered to be a potential
natural anti-oxidant (Carneiro et al., 2020). VT decreased serum
glucose, decreased the area under the glucose curve in insulin
tolerance tests, and decreased fructose-1, 6-phosphate (F1,6P),
glucose-6-phosphate (G6P), 6-phospho-gluconate (6PG).
Moreover, with low levels of the important intermediates of the
phosphor gluconate pathway, pyruvate, G6P, and fructose 6-
phosphate (F6P), VT improved HFD-induced glucose
metabolism disorders (Wan et al., 2017). Caralluma fimbriata
(Family: Apocynaceae; CFE), is one such medicinal plant that is
becoming increasingly popular, with a variety of bioactive
ingredients and properties such as anti-oxidants, liver protection
and cancer prevention (Anwar et al., 2022). Extract of CFE
promoted the recovery of liver glycolysis (HK, PK, PFK) in HFD
rats, suggesting that combined administration of CFE/Met partially
corrected the deficiency of glycolysis caused by HFD diet in rats
(Gujjala et al., 2017).

Saskatoon berry (Amelanchier alnifolia Nutt.) is a potential
functional food containing phenolic acids, anthocyanins,
ellagtannins and flavonols (Nile and Park, 2014; Lachowicz et al.,
2017). Saskatoon berry treatment normalized the expression of
HK1 and glycogen phosphorylase in liver and increased the
expression of G6Pase. These results suggested that saskatoon

berry regulates glycolysis, gluconeogenesis, and glycogenesis,
improving metabolic syndrome (du Preez et al., 2020).

In summary, most of the experimental studies on the
improvement of NAFLD by natural products through glycolysis
are mostly studies on complex natural products, which will cause
certain uncertainty to the results of the studies. Future studies should
identify active natural products and conduct individual natural
product studies. In addition, the research on the mechanism of
action is not deep enough, and it is necessary to carry out research on
the pharmacological action targets of natural products to improve
NAFLD on the existing basis, to provide theoretical support for the
development of drugs with clear curative effects and clear targets.

1.3 Liver fibrosis and glycolysis

Fibrosis is the result of advanced liver damage, it is also closely
associated with cirrhosis and liver cancer (Vilar-Gomez et al., 2018).
Therefore, the improvement of liver fibrosis has become an
important indicator to evaluate the efficacy of NAFLD drugs
(Heyens et al., 2021). Moreover, chronic inflammatory
environment and fibrotic deposition play a key role in the
pathogenesis of HCC (Zhang et al., 2020). However, current
drugs to treat liver fibrosis have limited effectiveness and it is
important to develop drugs to prevent and reverse fibrosis
(Schuppan et al., 2018). Liver fibrosis is characterized by the
activation, proliferation, and migration of hepatic stellate cell
(HSC) (Jiang et al., 2021). Activated HSCS further promote the
formation of excess collagen and the accumulation of extracellular
matrix (ECM), leading to persistent chronic liver injury. Without
timely intervention, which gradually worsens to cirrhosis and
eventually liver cancer (Shan et al., 2019). Activated macrophages
release various cytokines, directly damage liver parenchymal cells,
promote inflammatory cell infiltration, and activate HSC (Tacke and
Zimmermann, 2014). Macrophages follistatin-like protein 1
(FSTL1) binds to PKM2, induces M1 polarization and
inflammation, and promotes the progression of liver fibrosis (Rao
et al., 2022). Tetramerization of PKM2 can reverse liver fibrosis, and
inducing tetramerization of PKM2 to reduce the level of
PKM2 dimer may be a potential therapeutic strategy for liver
fibrosis (Satyanarayana et al., 2021). It has been found that the
expression of GLUT1 and PKM2 is upregulated in liver fibrosis. And

TABLE 1 Natural products regulate glycolysis in NAFLD.

Name Origin Regulatory mechanism Dose Cell line/
Experiment

References

Gallic acid Cornus officinalis Increased levels of pyruvate and lactic acid 50 and
100 mg/kg

HFD fed mice Chao et al. (2014)

Antrodan A. cinnamomea Inhibition of glucose and insulin levels via AMPK/Sirt1/
SREBP-1c/PPARγ pathway

20 and
40 mg/kg

HFD fed mice Chyau et al. (2020)

Vine tea Ampelopsis
grossedentata

Inhibition of F1,6P, G6P,6PG, F6P, pyruvate 500 and
2000 mg/L

HFD fed rats Wan et al. (2017)

Extract of Caralluma
fimbriata

Caralluma fimbriata Increased levels of HK, PK, PFK 200 mg/kg HFD fed rats Gujjala et al.
(2017)

Saskatoon berry Amelanchier alnifolia
Nutt

Increased levels of HK1 8 mg/kg HFD fed rats (du Preez et al.,
2020)
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the expression of GLUT1 and PKM2 is significantly increased in
activated HSC exosomes, suggesting that the exosomes released by
HSC are related to HSC activation and glucose uptake (Wan et al.,
2019). Activated HSC exosomes affect the metabolism of liver non-
parenchymal cells through the transfer of glycolytic-related proteins
(Wan et al., 2019). TGF-β1 was found to promote the development
of liver fibrosis in mice by activating the Smad, p38 MAPK and
PI3K/AKT signaling pathways, causing an increase in aerobic
glycolysis in HSC and inducing GLUT1 expression in HSC. After
GLUT1 inhibitors were administered, liver inflammation and the
degree of liver fibrosis were significantly reduced in mice with liver
fibrosis (Zhou et al., 2021). Focal adhesion kinase (FAK) promoted
the aerobic glycolysis of cancer cells and fibroblasts, while FAK-
related non-kinase kinase (FRNK) inhibited the aerobic glycolysis of
HSC by inhibiting the FAK/Ras/c-MYC/ENO1 pathway, thereby
improving liver fibrosis. FRNK might be a potential target for
treatment of liver fibrosis (Huang et al., 2022). HSC activation is
the core process of liver fibrosis, and glycolysis is one of its metabolic
markers. Therefore, blocking glycolysis may become a new
treatment option for liver fibrosis.

1.4 Natural products regulate glycolysis in
liver fibrosis

In recent years, many studies have shown that natural products
and their active ingredients have anti-fibrosis effects (Table 2). HSC
activation was the central event of liver fibrosis. Costunolide is a
natural sesquiterpene lactone extracted from Radix Aucklandiae and
exhibits a variety of biological activities, including anti-fibrotic, anti-
oxidant, anti-inflammatory, and anti-cancer properties (Tian et al.,
2022; Saraswati et al., 2018; Niu et al., 2021). Costunolide reduced
HSC activity by inhibiting the expression of two key markers of HSC
activation, a-smooth muscle actin (a-SMA) and Collagen alpha-1(I)
chain (COL1A1). It also reduced glucose uptake and consumption,
and reduced the level of lactic acid and inhibited HK2 expression
and activity, inhibiting glycolysis (Ban et al., 2019).
Deoxyelephantopin is a sesquiterpene lactone extracted from
Compositae Elephantopus scaber L., which has good anti-oxidant
and anti-carcinogenic properties (Mehmood et al., 2017).
Deoxyelephantopin decreased the expression of a-SMA and α1(I)
procollagen II (pro-COL1A1) and inhibited liver fibrosis. In
addition, it decreased the expression of HK, PFK2,
GLUT4 through the hedgehog pathway, and reduced the
production of lactic acid in HSC, inhibiting the production of
aerobic glycolysis in HSC (Gao et al., 2019). Curcumin is a
bright yellow metabolite isolated from Curcuma longa L.

(turmeric) plants and has a variety of therapeutic applications,
showing liver protection, anti-cancer, anti-inflammatory, anti-
oxidant, anti-proliferation effects (Tagde et al., 2021). Curcumin
inhibited glycolysis in HSC by decreasing the expression of HK,
PFK2, and GLUT4, and lactic acid depending on AMPK activation.
Curcumin inhibited the expression of α-SMA and pro-COL1A1, and
inhibited liver fibrosis (Lian et al., 2016).

In conclusion, there are few researches on glycolytic treatment of
liver fibrosis based on natural products, and the content of the
research is not deep enough. The signaling pathways closely related
to liver fibrosis should be associated with glycolysis, such as TGF-β,
PDGF,Wnt/β-catenin and Hedgehog signaling pathways to increase
the depth of glycolytic treatment of liver fibrosis. In addition, most
studies mainly focus on the cellular level, these cannot completely
simulate the pathological characteristics of human liver fibrosis, and
its drug activity needs to be further studied and confirmed. At
present, there is still a lack of specific anti-fibrosis drugs in clinical
practice, which leads to no control drugs in animal, cell and clinical
experiments, making the natural drug anti-fibrosis research lack of
unified and clear efficacy standards. In addition, there are many
causes of liver fibrosis, including viral hepatitis, non-alcoholic
steatohepatitis and cholestatic liver disease, so it is more
meaningful to study cell models and animal models based on
different etiology.

1.5 Liver cancer and glycolysis

Normal cells produce ATP mainly through OXPHOS under
aerobic conditions. In the absence of oxygen, ATP is produced
mainly by glycolysis. In the process of rapid proliferation of tumor
cells, the demand for energy increases, resulting in a reprogramming
process of tumor cell metabolism. Therefore, cancer cells produce
ATP mainly through glycolysis, even under aerobic conditions,
which is called aerobic glycolysis and also known as the Warburg
effect (Koppenol et al., 2011). Tumor cells eventually metabolize
glucose into lactic acid through glycolysis, a process that produces
energy, but the energy produced by this pathway is much lower than
the energy produced by each cycle of tricarboxylic acid. In order to
obtain high efficiency glycolysis, tumor cells increase glucose
transporters or various key enzymes to promote the efficient
entry of nutrients into cells and participate in metabolism
(Reckzeh et al., 2019).

The basic way to regulate glycolysis is to change the activity of
key glycolytic enzymes, including HK, PFK1 and PK, whose activity
directly affects the speed and direction of the entire metabolic
pathway (Cui et al., 2022). HK as an important glycolytic

TABLE 2 Natural products regulate glycolysis in liver fibrosis.

Name Origin Regulatory mechanism Dose Cell line/Experiment References

Costunolide Radix Aucklandiae Inhibition of HK2 10, 20 and
30 μM

Primary HSCs were isolated from
rats

Ban et al. (2019)

Deoxyelephantopin Elephantopus
scaber L

Inhibition of HK, PFK2, GLUT4 levels via hedgehog
pathway

2.5, 5 and
10 μM

Primary rat HSCs (HSC-T6) Gao et al. (2019)

Curcumin Curcuma longa L Inhibition of HK, PFK2, GLUT4 levels via AMPK
pathway

20 μM Primary rat HSCs Lian et al.
(2016)
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enzyme, HKs is responsible for the first rate-limiting step in glucose
metabolism, the phosphorylation of glucose to G6P (Tan and
Miyamoto, 2015). Currently, there are four different types of HK,
namely, HK1-4 (Perrin-Cocon et al., 2018). Among them, HK1 and
HK2 are located mainly on the outer membrane of mitochondria,
HK3 is located in the perinuclear compartment, and HK4 is located
in the cytoplasm. Localization in the mitochondrial outer membrane
gives HK2 the advantage of escaping product inhibition and
preferentially obtaining mitochondrial ATP (Pedersen, 2008).
Among these different HKs, HK2 was upregulated in a variety of
cancers and played a key role in the development of Warburg (Xu
et al., 2017). Therefore, based on the key role of HK in HCC,
HK2 may become a target for the development of new therapies for
liver cancer. PFK1 is the second rate-limiting enzyme involved in
glycolysis, whose activity is regulated by phosphofructokinase-2/
ructose-2, 6-diphosphatase 3 (PFKFB3) (Zuo et al., 2021).
PFKFB3 does not directly participate in the catalytic process of
glycolysis, but instead produces fructose 2, 6-diphosphate by
catalyzing F6P. Fructose 2, 6-diphosphate is an allosteric
activator of PFK1 and can significantly enhance the catalytic
activity of PFK-1 (Boutard et al., 2019). It was found that the
combination of aspirin and sorafenib after inhibiting the
expression of PFKFB3 can overcome the resistance of sorafenib
by inducing apoptosis of HCC cells, so as to enhance the therapeutic
effect of HCC (Li et al., 2017a). Therefore, PFKFB3 is also the key to
regulate glycolysis and is another important target for tumor
therapy. Another rate-limiting enzyme in glycolysis is PK, which
has 4 subtypes, including PKL, PKR, PKM1, and PKM2 (Dong et al.,
2016). PKM2was highly expressed in liver cancer and was associated
with poor prognosis (Li et al., 2020). PKM2 existed in different
forms, mainly in the form of low activity dimer, which promoted
tumor growth. Studies have shown that PKM2 drives HCC
progression by inducing immunosuppressive microenvironment
and upregulation of PD-L1. Overexpression of PKM2 makes
HCC sensitive to immune checkpoint blocking, thereby
enhancing IFN-γ-positive CD8 T cells in mouse models of liver
cancer (Li et al., 2020). These results indicated that PKM2 was
expected to be another therapeutic target in the treatment of liver
cancer. In addition, LDH catalyzes the final step in the glycolysis
process and is responsible for the mutual conversion of lactic acid
and pyruvate (Sharma et al., 2022). There are three subtypes of LDH,
including LDHA, LDHB and LDHC, of which LDHA is responsible
for converting pyruvate into lactic acid (Feng et al., 2018) and LDHB
is responsible for converting lactic acid into pyruvate (Urbańska and
Orzechowski, 2019). LDHA was mainly expressed in tumor cells.
The expression of LDHA was increased in liver cancer, and a large
amount of energy wasrapidly generated through glycolysis to
support cancer cell growth (Feng et al., 2018). In addition, it is
methylated at R112 and is essential for PRMT3-induced glycolysis
and HCC growth (Lei et al., 2022). Therefore, LDHA is a promising
therapeutic target. Regulation of glycolysis is also regulated by
GLUTs. Of the 14 members of the GLUTs family, only GLUT1-5
is currently the most intensively studied, and they all act as glucose
and/or fructose transporters in a variety of tissues and cell types
(Pyla et al., 2013; Cui et al., 2022). Hypoxia induced abnormal
activation of hypoxia-inducible factor-1α (HIF-1α) in the immune
microenvironment, and also upregulated LDHA and GLUT1 to
cause glycolysis, which promoted the progression of HCC and led to

enhanced drug resistance of cancer cells (Zhou et al., 2022).
Therefore, various key enzymes and transporters of glycolysis are
expected to become drug targets for liver cancer treatment.

Lactate transport from the extracellular depends on
monocarboxylate transporters, MCT family currently consists of
14 members, glycolysis speed is fast, may lead to the increase of
lactate production in cancer cells, affect the development and
proliferation of tumor cells (Halestrap, 2012). If cancer cells are
unable to process lactic acid, it may lead to tumor cell death (Cui
et al., 2022). Studies have shown that MCT1 andMCT4 are the main
transporters of lactic acid excretion in tumor cells (Ruzzolini et al.,
2020; Soni et al., 2020), therefore, MCT may become the target of
liver cancer treatment.

Glycolysis also affects the tumor immune microenvironment.
The tumor microenvironment is a complex cellular environment.
Inducing differentiation of naive CD8+T cells is the main anti-tumor
mechanism of immune cells. Naive CD8+T cells are usually present
in a quiescent state. Maintenance of this state is mediated primarily
by two molecules: sphingosine 1-phosphate (S1P) and interleukin
(IL)-7 (Goronzy et al., 2015; Mendoza et al., 2017). S1P is important
for OXPHOS (Mendoza et al., 2017), while IL-7 mainly promotes
glucose uptake by GLUT-1, affecting the glycolysis process (Niu
et al., 2023). Glycolysis is primarily used to activate T cells, but
OXPHOS are also important, and their absence prevents T cell
proliferation (Tarasenko et al., 2017). In addition, high levels of
lactic acid can cause macrophages to develop into M2 macrophages,
inhibit T cell activation and proliferation, and exert their
immunosuppressive function by expressing arginase 1 (ARG1)
protein (Andrejeva and Rathmell, 2017). Macrophages that
ingested glucose can develop into M1 macrophages after
receiving interferon gamma (IFN-γ) secreted by Th1 cells, and
the anti-tumor ability of M1-macrophages can be enhanced
(Andrejeva and Rathmell, 2017). Activation of NK cells require a
shift in their metabolism from mitochondrial oxidation to glycolysis
(Assmann et al., 2017).

1.6 Natural products regulate glycolysis in
liver cancer

1.6.1 Targeting glycolytic enzymes
Many natural products affect glycolysis by directly or indirectly

regulating key enzymes of glycolysis (Table 3; Figure 2). Quercetin is
a flavonoid that is present in a variety of vegetables and fruits (Di
Petrillo et al., 2022) and has anti-inflammatory, anti-oxidant and
anti-cancer effects (Xu et al., 2019; Saeedi-Boroujeni and
Mahmoudian-Sani, 2021; Wang et al., 2022c). Studies have
shown that in vivo and in vitro experiments, quercetin decreases
the expression of HK2 in HCC cells (Wu et al., 2019a). Baicalein, one
of the main bioactive metabolites isolated from Scutellaria
baicalensis, has anti-inflammatory, anti-lipogenesis, anti-viral and
cardiovascular protective effects (He et al., 2021). Baicalein inhibited
the activity and energy metabolism of liver cancer cells. Baicalein
also significantly inhibited the expression of HK2 and decreased the
glycolysis ability of liver cancer cells (郭舜 et al., 2021). In glycolytic-
dependent cells, the binding of HK and VDAC was an important
factor in the maintenance of glycolysis and could inhibit
mitochondrial energy metabolism (Todisco et al., 2016). Rhein is
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TABLE 3 Natural products regulate glycolysis via glycolytic enzymes in liver cancer.

Name Origin Target
glycolytic
enzymes

Regulatory
mechanism

Dose Cell line/
Experiment

References

Quercetin Vegetables and
fruits

HK2 downregulate 12.5,25,50 μM and 50 mg/kg SMMG-7721, BEL-7402
cells and BALB/c nude
mice

Wu et al. (2019a)

Baicalein Scutellaria
baicalensis

HK2 downregulate 5,10 and 20 μM SMMC-7721 and
HepG2 cells

(郭舜 et al., 2021)

Rhein rhubarb HK2 downregulate 5,10,20,40,60,80 μM SMMC-7721 and
SMMC-7721/DOX cells

Wu et al. (2019b)

Proanthocyanidin B2 Vegetables and
fruits

PKM2 downregulate 10,20,40,60,80,100,120 and
140 μM

HCC-LM3, SMMC-
7721, Bel-7402, Huh-7
and HepG2 cells

Feng et al. (2019)

Oviductus ranae
protein hydrolysate

Rana temporaria
chensinensis David

PKM2 downregulate 400 ug/mL for HepG2 cells and
450 ug/mL for Hep3B cells

Hep3B, HepG2 cells and
clinical samples

Xu et al. (2018)

Astragalin Botanical drugs,
vegetables and
fruits

HK2 downregulate 11,33 μM and 10,20 mg/kg HepG2, Huh-7, HL-
7702, H22 cells and
Kunming mice, athymic
nude mice

Li et al. (2017c)

Chrysin Botanical drugs HK2 downregulate 15,30,60 μM and 30 mg/kg HepG2, Hep3B, Huh-7,
HCC-LM3, Bel-7402,
SMMC-7721 and nu/nu
athymic nude mice

Xu et al. (2017)

Shikonin Lithospermum
erythrorhizon

PKM2 downregulate 1,2,3 μM and 5 mg/kg HCC-LM3, SMMC-
7721, Huh-7,
HepG2 cells and BALB/c
nude mice

Liu et al. (2020)

Icaritin Epimedium GLUT1 downregulate 2.5,5 and 10 μM HepG2, HCC-LM3 cells
and nude mice

Zheng et al. (2021)

Chlorogenic acid Plants GLUT4 downregulate 25,50 and 100 μg/mL HepG2 cells Chen et al. (2019)

Oleuropein Olives GPI downregulate 1,10,25,100,250 μM and
200 mg/kg

HepG2, HuH-7 cells and
Balb/c mouse

Hong et al. (2023)

Erianin Dendrobium
chrysotoxum Lindl

PC downregulate 10,20,30,40,50,100,200 and
400 nM

HepG2, MHCC97, SK-
Hep-1 and HCC-LM3
cells

Sheng et al. (2022)

Zerumbone Zingiber zerumbet
(L.) Smith

Glucose-6-
phosphate

downregulate 50,100,150,200 µM and 20 mg/kg HepG2, Hep3B, Sk-Hep-
1, SNU-182, SNU-449,
HCC-LM3 cells and NSG
mice

Wani et al. (2018)

α-tomatine Tomato LDHA, MCT4 downregulate 0.5,1,15,2 and 2.5 µM HuH-7 cells (何志龙 et al.,
2022)

Neochamaejasmin A Stellera
chamaejasme

PK, LDH downregulate 10,20,40,80 μg/mL HepG2 cells (丁杨芳 et al.,
2019)

Genistein Soybeans HK2, GLUT1 downregulate 20,40,60,80,100,140 µM and
20,40,80 mg/kg

HCC-LM3, SMMC-
7721, Hep3B, Bel-7402,
Huh-7 cells and athymic
BALB/c nu/nu mice

Li et al. (2017b)

Dauricine Menispermum
dauricum DC.

HK2, PKM2 downregulate 2 μg/mL and 10 mg/kg HepG2, Huh-7, Hep3B
and athymic nude mice

Li et al. (2018)

Deoxyelephantopin Elephantopus
scaber L

HK2, PFK1,
PKM2

downregulate 0.625,1.25,2.5,5,10,20,40 and
80 µM

HepG2 cells (吴红雁 et al.,
2023)

Physcion Rheum officinale
Baill

HK2, PFKFB3,
PKM2

downregulate 1.25,2.5,5,10,20 and 40 µM HepG2 cells (陶正娣 et al.,
2022)

Triptolide Tripterygium
wilfordii Hook f

HK2, PKM2,
LDHA

downregulate 10,40,60 and 100 nM SMMC-7721 cells (李恬 et al., 2020)

(Continued on following page)
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an anthraquinone metabolite extracted from the Traditional
Chinese Medicine (TCM) rhubarb [Huang et al. (2022)], which
has anti-cancer, anti-inflammatory and anti-viral effects (Wang
et al., 2018; Zhuang et al., 2019; Bu et al., 2020). Rhein
dissociated the binding of VDAC and HK, inhibited glycolysis,
reduced ATP in liver cancer, inducing apoptosis of liver cancer
cells (Wu et al., 2019b). Oviductus Ranae, derived from the dried

tubular product of Rana temporaria chensinensis David, has anti-
fatigue and increased immune biological activity (Xiao et al., 2019).
Oviductus Ranae is a precious natural product in northeast China,
which has been developed into a series of health food and TCM
(Wang et al., 2021a). Oviductus ranae protein hydrolysate (ORPH)
treatment decreased the expression of PKM2 by upregulating miR-
491-5p in a post-transcriptional manner, and inhibited the growth,

TABLE 3 (Continued) Natural products regulate glycolysis via glycolytic enzymes in liver cancer.

Name Origin Target
glycolytic
enzymes

Regulatory
mechanism

Dose Cell line/
Experiment

References

Morusin Morus alba HK2,
PKM2, LDH

downregulate 2.5,5,10,20 and 40 μM Huh7 and Hep3B cells Cho et al. (2021)

Apigenin Vegetables and
fruits

HK2, LDHA,
PDHK1

downregulate 20,40,80 μM and 400 mg/kg HepG2 cells and athymic
nude mice

(张睿 et al., 2020)

Curcumin Curcuma longa L LDHA, MCT1 downregulate 1,2,5,10 μM HepG2 and HuT78 cells Soni et al. (2020)

Licorice roots extract Glycyrrhiza
glabra L

HK2, PKM2,
LDHA

downregulate 1.562–200 mg/mL HepG2 cells Abdel-Wahab
et al. (2021)

Scopolin Smilax china L GPI, GPD2,
PGK2

downregulate 25,50,100,200 μM and
20,50,100 mg/kg

HepG2 cells and BALB/c
mice

Wang et al.
(2022a)

Extract of Nigella
sativa

Nigella sativa HK, GAPDH downregulate 1 g/kg Wister Albino rats Abdel-Hamid
et al. (2013)

Rhizoma Paridis
Saponins

Rhizoma Paridis HK2, PKM2,
LDHA, GLUT1

downregulate 100 mg/kg Kunming mice Qiu et al. (2016)

FIGURE 2
Natural products affect the glycolysis of liver cancer by directly regulating glycolysis enzymes. HK, hexokinase; PFK, Phosphofructokinase; PK,
pyruvate kinase; LDH, lactate dehydrogenase; GLUT, glucose transporters; MCTs, Monocarboxylate transporters.
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metastasis and glycolysis of mouse liver cancer cells (Xu et al., 2018).
Astragalin (ASG) is a flavonoid that was found in a variety of
botanical drugs, such as Radix astragali, Morus alba and Cassia
alata, as well as in some fruits and vegetables (Liu et al., 2019). ASG
has been widely used in various pharmacological fields because of its
anti-inflammatory, anti-oxidant and inhibitory effect on malignant
tumor cells (Harikrishnan et al., 2020). ASG could inhibit HCC cell
proliferation by promoting microRNA-125b (miR-125b) and
metabolic reprogramming, reducing HK2 expression and
inhibiting glycolysis in HCC cells (Li et al., 2017c). Chrysin is a
bioactive flavonoid derived from plant extracts, found in blue
passion flower, propolis and honey, and is widely used as a
Chinese herbal medicine in China. Chrysin not only has anti-
oxidant, anti-inflammatory and other biological activities, but
also has anti-cancer effect (Yao et al., 2014; Zhang et al., 2015;
Tang et al., 2016). Chrysin or its derivatives significantly inhibited
glucose uptake and lactate production in HCC cells by decreasing
HK2 expression. Reduced expression of HK2 bond to voltage-
dependent anion channel 1 on mitochondria, leading to transport
of Bcl-2-associated X protein (Bax) from cytoplasm to mitochondria
and inducing apoptosis (Xu et al., 2017). Shikonin is a naturally
occurring naphthoquinone isolated from the root of the plant
Lithospermum erythrorhizon. Studies have shown that comfrey
and its derivatives have anti-cancer effects on many types of
tumors (Lee et al., 2014; Ruan et al., 2021). By inhibiting PKM2,
Shikonin decreased the expression of cyclinD1, inhibited liver
cancer glycolysis and cell proliferation, and induced cell
apoptosis. The effect of Shikonin on the proliferation, apoptosis
and glycolysis of HCC cells will make it a promising drug for the
treatment of HCC (Liu et al., 2020). Icaritin is an active component
of Chinese botanical drug Epimedium. It has a wide range of
biological and pharmacological functions, including anti-oxidant
and anti-cancer (He et al., 2010; Zhou et al., 2011; Qin et al., 2020).
Icaritin induced upregulation of FAM99A expression in HCC cells,
blocked JAK2/STAT3 pathway, and inhibited GLUT1-mediated
glycolysis and HCC cell viability (Zheng et al., 2021).
Chlorogenic acid (CGA) is a dietary phenolic acid produced by a
variety of plants, such as Sonchus oleraceus Linn. CGA is the most
prevalent metabolite in the phenolic acid group, which is also found
in tea and coffee extracts (Gupta et al., 2022). CGA has a wide range
of effects, such as anti-cancer, anti-bacterial, anti-oxidant and so on
(Zeng et al., 2021). The hepatoprotective effect of CGA might be
related to increasing the production of ATP, stimulating
mitochondrial OXPHOS and inhibiting glycolysis (Zhou et al.,
2016). CGA also prevented the glucose-induced decline in
GLUT4 levels and regulated glucose uptake and transport in
HepG2 cells (Chen et al., 2019). Oleuropein is an iridoid
phenolic metabolite composed of three structural subunits:
hydroxytyrosol, enolic acid and glucose molecules. It is also
reported to be a chemical classification marker for olives.
Oleuropein has been reported to have a variety of biological
activities, including anti-dyslipidemia, anti-atherosclerosis, anti-
inflammatory, anti-diabetes, and liver protective effects (Ahamad
et al., 2019). Glucose-6-phosphate isomerase (GPI) was a key
enzyme in glycolysis. The expression of GPI in tumor cells
affected different physiological functions and signal transduction.
GPI was the direct target of oleuropein, which could inhibit liver
cancer glycolysis by inhibiting GPI, and it showed good anti-tumor

activity in vivo without adverse side effects (Hong et al., 2023).
Erianin, extracted from the rare Chinese medicine Dendrobium
chrysotoxum Lindl, is a small molecule natural metabolite with a
wide range of anti-cancer potential in vivo and in vitro (Sun et al.,
2020). Erianin effectively inhibited the enzyme activity of pyruvate
carboxylase (PC), promoted mitochondrial oxidative stress,
inhibited glycolysis, inducing insufficient energy required for the
proliferation of liver cancer cells (Sheng et al., 2022). Zerumbone is a
natural metabolite of the ginger plant Zingiber zerumbet (L.) Smith,
which is used to treat a wide variety of ailments. Zerumbone’s anti-
cancer properties have been reported in vitro and in vivo studies of a
variety of cancers (Zainal et al., 2018; Girisa et al., 2019). Zerumbone
blocked the binding of G6P through the pentose phosphate pathway,
reduced glucose consumption and lactic acid production, inhibited
glycolysis, inducing cell cycle arrest and apoptosis of liver cancer
cells (Wani et al., 2018).

Neochamaejasmin A is a major component in the stem root of
Stellera chamaejasme, which has anti-cancer effects on tumor cells
(Liu et al., 2008). Neochamaejasmin A inhibited the proliferation of
tumor cells by inhibiting glucose uptake and lactate production in
HepG2 cells, and reducing the expression of glycolytic related
proteins PK and LDH (丁杨芳 et al., 2019). Genistein is an
isoflavone found in soybeans. It plays an important role in the
occurrence and development of cancer and the prevention and
treatment of common diseases such as metabolic syndrome by
inhibiting inflammation and regulating metabolic pathways (Xu
et al., 2022). Genistein inhibited aerobic glycolysis by decreasing
GLUT1 and HK2 (Li et al., 2017b). Dauricine (Dau), an alkaloid
metabolite isolated from the roots of Menispermum dauricum DC.,
inhibits tumor growth. By increasing miR-199a, Dau directly
downregulated HK2 and PKM2, inhibited glycolysis and
increased OXPHOS, inhibited liver cancer cell proliferation, and
sensitized sorafenib therapy (Li et al., 2018).

Physcion extracted from Rheum officinale Baill., is a naturally
occurring anthraquinone derivative with anti-cancer, anti-bacterial,
anti-viral, anti-inflammatory and other biological activities (Zhang
et al., 2021). Physcion significantly downregulated the expression of
HK2, PFKFB3, PKM2, and inhibited glucose uptake and lactic acid
production. These results showed that Physcion inhibited the
proliferation of liver cancer cells by interfering with the process
of glycolytic energy metabolism (陶正娣 et al., 2022). Triptolide is a
natural epoxy diterpenoid metabolite derived from botanical drug
Tripterygium wilfordii Hook f, which has strong anti-cancer
properties (Chen et al., 2018; Cai et al., 2021). Licorice plant,
(Glycyrrhiza glabra L.), have been widely used in TCM for the
treatment of different diseases, for its role in nourishing qi, tonifying
spleen and stomach, and harmonizing prescriptions (Abdel-Wahab
et al., 2021; Shikov et al., 2022). Licorice roots extract induced
apoptosis and cycle arrest of liver cancer cells, inhibited HK2,
PKM2, and LDHA enzymes, and inhibited glycolysis by up-
regulating multiple tumor suppressor genes miRNAs (Abdel-
Wahab et al., 2021). Smilax china L. is a well-known Chinese
medicine used as an anti-inflammatory, anti-cancer and analgesic
(Yu et al., 2014a; Feng et al., 2020). Scopolin obtained from Smilax
china L. plays the role of anti-HCC. Scopolin regulated glycolysis-
related proteins glucose-6-phosphate isomerase (GPI), glycerol-3-
phosphate dehydrogenase, mitochondrial (GPD2) and
phosphoglycerate kinase 2 (PGK2) expression and inhibited
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TABLE 4 Natural products regulate glycolysis via multiple signaling pathways in liver cancer.

Name Origin Regulatory
mechanism

Dose Cell line/Experiment References

Quercetin Vegetables and
fruits

AKT, mTOR 12.5,25,50 μM and 50 mg/kg SMMG-7721, BEL-7402 cells and
BALB/c nude mice

Wu et al. (2019a)

Deoxyelephantopin Elephantopus
scaber L

PI3K, Akt, mTOR 0.625,1.25,2.5,5,10,20,40 and
80 µM

HepG2 cells (吴红雁 et al.,
2023)

Rhizoma Paridis Saponins Rhizoma Paridis PI3K, Akt, mTOR 80 mg/kg Kunming mice Yao et al. (2018)

Chlorogenic acid Plants PI3K, AKT 25,50 and 100 μg/mL HepG2 cells Chen et al. (2019)

Prunella vulgaris total
flavonoids

Prunella vulgaris L Bcl-2, Bax 50,100,200,400 and 800 μg/μL SMMG7721 cells (宋亚刚 et al.,
2020)

Echinacoside Cistanche salsa β-catenin 1,2,5,10 and 20 μg/mL HepG2 and Huh7 cells and clinical
samples

Wang et al.
(2022b)

Morusin Morus alba AMPK, p-mTOR 2.5,5,10,20 and 40 μM Huh7 and Hep3B cells Cho et al. (2021)

Rosemary extract Rosmarinus
officinalis L

AMPK 2,10 and 50 μg/mL HepG2 cells Tu et al. (2013)

Cryptotanshinone S. miltiorrhiza
Bunge

AMPK 5,10,15,20,25 μM and 2.5 mg/kg H22, Hepa1-6 cells and C57BL/6J
mice

Jiang et al. (2022)

FIGURE 3
Key enzymes, proteins and pathways of natural products regulating glycolysis process in liver cancer. Natural products regulate glycolysis in three
ways. First, natural products affect the glycolysis of liver cancer cells by directly regulating glycolytic enzymes. Secondly, natural products can inhibit liver
cancer cell glycolysis through PI3K, Wnt/β-catenin or AMPK pathways. Finally, natural products may regulate genes related to glycolysis by regulating
oncogenes c-MYC, HIF-1α, etc., thus changing the metabolic pathway of liver cancer. HK, hexokinase; PFK, Phosphofructokinase; PK, pyruvate
kinase; LDH, lactate dehydrogenase; GLUT, glucose transporters; MCTs, Monocarboxylate transporters; HIF-1α, Hypoxia Inducible Factor 1 Subunit
Alpha; AMPK, AMP-dependent protein kinase; PI3K, Phosphatidylinositol 3-kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin.
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protein-protein interaction, reduced energy metabolism in liver
cancer tissue, inhibiting tumor growth (Wang et al., 2022a).
Nigella sativa (NS), commonly known as the black seed or black
cumin “Al-Habba Al-Sauda”, is the seed of an enveloped plant
belonging to the Ranunculaceae family (Amin and Hosseinzadeh,
2016). It has been used as a spice and food preservative, as well as a
protective and therapeutic drug for many diseases (Zielińska et al.,
2021). Serum HK and GAPDH were increased in liver cancer
group. Extract of Nigella sativa (MENS) inhibited glycolysis by
reducing the expression of these enzymes and has chemical
preventive effects on the progression of liver cancer (Abdel-
Hamid et al., 2013). Rhizoma Paridis Saponins (RPS), a natural
product purified from the commonly used Chinese medicine
Rhizoma Paridis, is not only inhibits liver fibrosis and cirrhosis,
but also inhibits the growth of a variety of cancers (Man et al., 2014a;
Man et al., 2014b). RPS decreased the expression of GLUT1, HK2,
PKM2, and LDHA. RPS also reversed aerobic glycolysis by
activating tumor suppressor genes p53 and PTEN, and inhibited
the proliferation of mouse liver cancer H22 tumors (Qiu et al., 2016).
In summary, as a rich resource, natural products show potential as
glycolysis inhibitors in the future clinical treatment of liver cancer.

1.6.2 Targeting multiple signaling pathway in liver
cancer

Various signaling pathways play an important role in the
glycolysis of liver cancer (Table 4; Figure 3). Studies have shown
that the activated PI3K/AKT signaling pathway stimulates glucose
uptake by regulating GLUT1 expression, enhances glycolysis, drives
lactic acid production in cancer cells, inhibits macromolecular
degradation, and affects tumor cell metabolism (Wasik and
Lehtonen, 2018; Jin et al., 2021). Quercetin has been found to
reduce HK2 levels and inhibit the AKT/mTOR pathway in liver
cancer cells in vivo and in vitro (Wu et al., 2019a). In addition to its
role in liver fibrosis, Deoxyelephantopin also plays an important role
in liver cancer. Deoxyelephantopin reduced glucose uptake and
lactic acid production and inhibited glycolysis through PI3K/Akt/
mTOR/HIF-1α signaling pathway, thus inhibiting the proliferation
andmigration of HepG2 cells (吴红雁 et al., 2023). It was found that
the combination of RPS sorafenib increased the anti-cancer effect,
overcoming the tolerance of sorafenib by protecting mitochondrial
damage, inhibiting anaerobic glycolytic through PI3K/AKT/mTOR
pathway (Yao et al., 2018). CGA regulated glucose uptake and
transport in HepG2 cells through the PI3K/AKT pathway (Chen
et al., 2019). Prunella vulgaris is dried fruit spike of Lamiacea plant P.
vulgaris L., which is an important medicinal plant mainly found in
Europe and Asia (Chang et al., 2023). Prunella vulgaris total
flavonoids inhibit the proliferation of liver cancer (Song et al.,
2021). The Prunella vulgaris total flavonoids activated Bcl-2/Bax
protein to induce apoptosis of liver cancer cells, and the mechanism
might be related to the inhibition of aerobic glycolysis and OXPHOS
levels of liver cancer cells (宋亚刚 et al., 2020). The Wnt/β-catenin
signaling pathway stimulates glycolysis by up-regulating the
expression of HK2, LDHA and pyruvate dehydrogenase kinase 1
(PDK1) (Fang et al., 2019). The Wnt/β-catenin pathway stimulates
the downstream PI3K/AKT pathway and HIF-1α, thereby indirectly
activating aerobic glycolysis (Vallée et al., 2017). Therefore, targeting
the Wnt/β-catenin signaling pathway can regulate glycolysis.
Echinacoside (ECH) is an active component of Cistanche salsa,

which has strong anti-proliferation and pro-apoptotic activities in
various cancers including HCC (Ye et al., 2019; Wang et al., 2022b).
Studies have shown that ubiquitin protein ligase E3 component
N-recognin 5 (UBR5) expression is associated with decreased
apoptosis and increased glycolysis of hepatoma cells through β-
catenin signaling pathway. AMPG nanocomposites have low
cytotoxicity and good biosafety. The ECH of AMPG effectively
reduced glycolysis and promoted the apoptosis of liver cancer cells
(Wang et al., 2022b). HIF-1α and AMPK signaling pathways are
major regulators of glycolysis and OXPHOS and are critical for
metabolic reprogramming of tumor cells (Chen et al., 2022). AMPK
is a key sensor and regulator of cellular metabolism (González et al.,
2020). AMPK is a heterotrimer complex consisting of a catalytic α
subunit and two regulatory β and γ subunits (Herzig and Shaw,
2018). Morusin is a kind of naturally existing prenylated flavonoid
isolated from the root bark of M. alba, which has the effect of
inhibiting cancer (Wang et al., 2020). Morusin inhibited HK2,
PKM2 and LDH expression and reduced lactic acid, glucose and
c-MYC, activated AMPK through AMPK pathway, which played an
important role in anti-HCC (Cho et al., 2021). Rosemary extract
from the plant Rosmarinus officinalis L., has anti-oxidant, anti-
cancer, anti-bacterial and other effects (Jaglanian and Tsiani, 2020).
Rosemary extract significantly increased glucose consumption in
HepG2 cells and promoted liver glycolysis and fatty acid oxidation
by activating AMPK and PPAR pathways (Tu et al., 2013).
Cryptotanshinone is a liposoluble soluble diterpene derivative
mainly found in the genus Salvia, among which S. miltiorrhiza
Bunge, is a diterpene-rich plant (Dalil et al., 2022). Arsenic trioxide
cooperate cryptotanshinone (ACCS) inhibited liver cancer by
increasing AMPK phosphorylation and activating AMPK
signaling pathway, which enhanced glucose utilization and
glycolysis of macrophages (Jiang et al., 2022).

1.6.3 Targeting multiple oncogenes in liver cancer
Multiple oncogenes play an important role in the glycolysis of

liver cancer (Table 5). Oncogenes maintained the survival and
development of cancer cells through reprogramming of glycolytic
metabolism [Mukhopadhyay et al. (2021)]. Studies have found that
abnormal expression of MYC exists in cancer, and the expression of
MYC is closely related to genes regulating glucose metabolism, such
as GLUT1, HK2, PFKM, etc. (Wokolorczyk et al., 2008; Dang et al.,
2009). Cancer cells also used activation of HIF-1α to increase glucose
uptake and glycolysis flux, promoted glucose catabolism and
adapted to low oxygen environment to ensure tumor growth (Lee
et al., 2020). ROS stimulated carcinogenic signaling, specifically
HIF-1α. ROS stabilized HIF-1α protein by inhibiting propyl
hydroxylase protein D (PHD) (Ren et al., 2022). In recent years,
more and more natural products targeting HIF-1α and ROS
expression and inhibiting liver cancer glycolysis have been
studied for the treatment of liver cancer. Deoxyelephantopin
reduced the glucose uptake and lactic acid production of liver
cancer cells, downregulated the key glycolysis enzymes HK2,
PFK1, and PKM2, inhibited the glycolysis of liver cancer through
the PI3K/AKT/mTOR/HIF-1α signaling pathway, inhibiting the
proliferation and migration of HepG2 cells (吴红雁 et al., 2023).
α-tomatine, a steroid sugar alkaloid, is abundant in the flowers,
leaves, calyx and immature fruits of tomato. It has various biological
activities, such as anti-cancer, anti-inflammatory and anti-viral
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(Zhao et al., 2015; Fujimaki et al., 2022). α-tomatine reduced the
expression of LDHA and MCT4, inhibited the uptake of glucose,
reduced lactic acid and intracellular ATP, reduce the expression of
HIF-1α, inhibiting glycolysis, proliferation and metastasis of Huh-7
cells (何志龙 et al., 2022). Triptolide could reduce the expression of
HIF-1α, inhibit the production of glucose and lactic acid, inhibiting
the glycolysis and proliferation and metastasis of liver cancer cells
(李恬 et al., 2020). Apigenin is a natural flavonoid that is found in a
variety of natural plants, including most vegetables and fruits and
exhibits many beneficial effects, including anti-cancer, anti-oxidant
and anti-bacterial (Ginwala et al., 2019; Wang et al., 2021b; Kashyap
et al., 2022). Apigenin inhibited HIF-1α in HepG2 cells, and
decreased the expression of glycolytic related proteins (HK2,
LDHA, PDHK1), thereby inhibiting the anti-cancer effect of
glycolysis (张睿 et al., 2020). Curcumin inhibited anaerobic
glycolysis by inhibiting the expression of LDH and HIF-1α,
which strengthened the anti-HCC effect of sorafenib (Man et al.,
2020). Curcumin also reduced the expression of HIF-1α, inhibited
glucose consumption and lactic acid production, alleviating the drug
resistance of liver cancer cells to chemotherapy (Soni et al., 2020). By
directly down-regulating HIF-1α, Genistein made aerobic glycolytic
HCC cells sensitive to apoptosis, and thus inactivated GLUT1 and
HK2 to inhibit aerobic glycolysis (Li et al., 2017b). Proanthocyanidin
B2 (PB2) is widely exists in natural product, such as fruits and
vegetables and has strong anti-oxidant activity because the phenolic
hydrogen atoms can effectively intercept free radicals in the free
radical chain reaction (Snow et al., 2019). The anti-cancer properties
of these metabolites have been well documented, and these effects
are mainly attributable to their powerful anti-oxidant and anti-
inflammatory effects (Al-Ishaq et al., 2020). PB2 inhibited the
expression and nuclear translocation of PKM2, thereby
disrupting the interaction between PKM2/HSP90/HIF-1α, and

inhibiting the aerobic glycolysis and proliferation of liver cancer
cells (Feng et al., 2019). Ginseng (Panax ginseng C. A. Meyer, Family
Araliaceae) is one of the major medicinal and nutraceutical plants
(Murthy et al., 2018). Ginsenoside CK is one of the most abundant
intestinal metabolites of ginsenoside prototype saponins (Guo et al.,
2020). It has anti-cancer and anti-inflammation effects, among
others (Zhang et al., 2013; Li et al., 2014). Ginsenoside CK
inhibited the expression of HIF-1α under hypoxia condition,
promoted the ubiquitination degradation of HIF-1α, thus
inhibiting the glycolysis and proliferation of hepatoma cells (苏
杰琳 et al., 2021).

At present, there have been many studies on natural products
regulating glycolysis in the treatment of liver disease, but most of the
studies focused on the changes in glycolysis of liver cancer cells.
However, with the in-depth study of liver cancer in recent years, we
found that it is far from enough to study single cells of liver cancer
cells. Glycolysis products in liver cancer cells also play an important
role in the microenvironment of liver cancer. We should also study
how glycolysis affects other cell types in the liver cancer
microenvironment. For example, glycolysis product lactic acid
has a profound effect on macrophage activation and T cell
exhaustion. The further study of glycolysis also provides an
alternative target for the existing combination therapy of liver
cancer.

2 Conclusion and future perspectives

In NAFLD, glycolysis is significantly enhanced, resulting in
increased levels of pyruvate. Pyruvate is enhanced in NAFLD by
conversion to oxaloacetic acid or lactic acid (Wang et al., 2021c). The
enhancement of glycolytic activity will promote the production of

TABLE 5 Natural products regulate glycolysis via oncogenes in liver cancer.

Name Origin Regulatory
mechanism

Dose Cell line/Experiment References

Morusin Morus alba c-MYC 2.5,5,10,20 and 40 μM Huh7 and Hep3B cells Cho et al. (2021)

Deoxyelephantopin Elephantopus
scaber L

HIF-1α 0.625,1.25,2.5,5,10,20,40 and
80 µM

HepG2 cells (吴红雁 et al.,
2023)

α-tomatine Tomato HIF-1α 0.5,1,15,2 and 2.5 µM HuH-7 cells (何志龙 et al.,
2022)

Triptolide Tripterygium
wilfordii Hook f

HIF-1α 10,40,60 and 100 nM SMMC-7721 cells (李恬 et al.,
2020)

Apigenin Vegetables and
fruits

HIF-1α 20,40,80 μM and 400 mg/kg HepG2 cells and athymic nude mice (张睿 et al.,
2020)

Curcumin Curcuma longa L HIF-1α 1,2,5,10 μM HepG2 and HuT78 cells Soni et al. (2020)

Genistein Soybeans HIF-1α 20,40,60,80,100,140 µM and
20,40,80 mg/kg

HCC-LM3, SMMC-7721, Hep3B, Bel-
7402, Huh-7 cells and athymic BALB/c
nu/nu mice

Li et al. (2017b)

Proanthocyanidin B2 Vegetables and
fruits

HIF-1α 10,20,40,60,80,100,120 and 140 μM HCC-LM3, SMMC-7721, Bel-7402,
Huh-7 and HepG2 cells

Feng et al. (2019)

Ginsenoside CK Panax ginseng C. A.
Meyer

HIF-1α 20,40,60 μM Bel-7404 cells (苏杰琳 et al.,
2021)

Prunella vulgaris total
flavonoids

Prunella vulgaris L ROS 50,100,200,400 and 800 μg/μL SMMG7721 cells (宋亚刚 et al.,
2020)
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mitochondrial ROS, leading to the progression of NAFLD to NASH,
and inhibiting mtROS to maintain mitochondrial homeostasis may
be a potential treatment for NAFLD and prevent the further
development of the disease (Shimada et al., 2012). In addition,
the 2020 proposal to change NAFLD to metabolic (dysfunction)
associated fatty liver disease (MAFLD) puts more emphasis on the
importance of metabolism (Eslam et al., 2020). Although the
metabolic abnormalities of NAFLD are not only the
abnormalities of glycolysis and oxidative phosphorylation,
glycolysis plays a more important role in the progression of
NAFLD disease. More and more evidences showed that HSC
played an important role in the process of liver fibrosis. Glucose
metabolic reprogramming played an important role in the activation
of HSC, mainly through upregulation of glycolysis to meet the
energy requirements of HSC activation (Guo et al., 2022b).
Therefore, natural products blocking glycolysis through some
metabolic pathways may become a new treatment option for
liver fibrosis. The occurrence of various types of liver cancer is
closely related to liver fibrosis and cirrhosis, and the abnormal state
of glycolysis in liver cancer has also aroused our attention to the
changes of glycolysis in liver cirrhosis in the early stage of liver
cancer.

Metabolic reprogramming is a core marker of cancer and is
crucial for tumorigenesis and progression (Liu et al., 2021).
Glycolysis plays an important role in promoting the progression
of liver cancer, including proliferation, migration and drug
resistance.

Natural products may be important for overcoming limitations
in liver cancer treatment by targeting key enzymes contained in
glycolysis (such as HK2, PFK, or PKM2) and other signaling
pathways. Importantly, natural products inhibit key glycolytic
enzymes and proteins, and inhibit oncogenes c-MYC, HIF-1α,
and ROS-mediated metabolic reprogramming toward glycolytic
phenotypes. Moreover, it has advantages in improving metabolic
reprogramming of tumor cells, and in glycolytic signaling pathways,
such as PI3K, Wnt/β-catenin and AMPK may be the main targets of
natural products. The multi-target and multi-pathway therapeutic
effect of natural products on liver disease is its advantage, but the
intensity of the effect on the target is not enough. In addition, the
rate-limiting enzymes in the process of glycolysis have a variety of
isoenzymes, such as HK, HK1-2 plays a role in the glycolysis of liver
cancer, but glucokinase (HK4) plays a role in NAFLD. Therefore, the
study of natural products should select different enzymes according
to different liver diseases (Pusec et al., 2019). The depth of research is
more limited to the study of hepatocyte glycolysis abnormalities, and
more attention should be paid to the study of non-hepatocyte
glycolysis in different liver diseases, such as fibroblasts, Kupffer
cells, macrophages and T cells. In addition, many studies on natural
products are in the pre-clinical stage, and more clinical data are
needed to support the safety and effectiveness of natural products. In
addition, the research on the treatment of natural products for liver

disease should not only stay in pre-clinical research, but also strive to
be transformed into clinical drugs. Since natural products have the
potential to treat diseases, they should show their advantages.

The occurrence of liver diseases is closely related to the
metabolic dysfunction of liver cells, and the abnormal glycolysis
function concerned in this paper is only a part of the metabolic
abnormalities, and the abnormal glycolysis function is closely
related to and mutually influenced by the abnormal oxidative
phosphorylation. Due to the limitation of the length of the
study, it is difficult for us to introduce different kinds of
metabolic abnormalities in different liver disease at the same
time in one article. Therefore, we selected the dysfunction of
glycolysis in liver disease to introduce it. Glycolysis is an
important part of liver cells to provide energy, and it is also an
important metabolic mode of liver cancer. Therefore, we choose
glycolysis to review.
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