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Introduction: As social animals, our health depends in part on interactions with

other human beings. Yet millions suffer from chronic social isolation, including

those in nursing/assisted living facilities, people experiencing chronic loneliness

as well as those in enforced isolation within our criminal justice system. While

many historical studies have examined the effects of early isolation on the brain,

few have examined its effects when this condition begins in adulthood. Here, we

developed a model of adult isolation using mice (C57BL/6J) born and raised in an

enriched environment.

Methods: From birth until 4 months of age C57BL/6J mice were raised in

an enriched environment and then maintained in that environment or moved

to social isolation for 1 or 3 months. We then examined neuronal structure

and catecholamine and brain derived neurotrophic factor (BDNF) levels from

different regions of the brain, comparing animals from social isolation to enriched

environment controls.

Results: We found significant changes in neuronal volume, dendritic length,

neuronal complexity, and spine density that were dependent on brain region, sex,

and duration of the isolation. Isolation also altered dopamine in the striatum and

serotonin levels in the forebrain in a sex-dependent manner, and also reduced

levels of BDNF in the motor cortex and hippocampus of male but not female

mice.

Conclusion: These studies show that isolation that begins in adulthood imparts a

significant change on the homeostasis of brain structure and chemistry.
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Introduction

Humans are social animals, a characteristic that has been selected for during evolution
(Buss, 1990). Given the importance of social interactions for humans, it is not surprising
that social isolation leads to toxic physiological and psychological consequences (House
et al., 1988; Cacioppo and Hawkley, 2003; Hawkley and Cacioppo, 2003; Weiss et al., 2004;
Schiavone et al., 2013; Holt-Lunstad and Smith, 2016). Social isolation can be defined
structurally as the absence of social interactions, contacts, and relationships with family
and friends, with neighbors on an individual level, and with society at large on a broader
level (Institute of Medicine (US) Division of Health Promotion and Disease Prevention
et al., 1992). Isolation in humans can be effected by many conditions including, the
estimated 3.3 million people currently housed in nursing homes or assisted living facility
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(Harris-Kojetin et al., 2019), 20% of the US population estimated
to suffer from persistent loneliness (Wilson and Moulton, 2010),
social isolation (distancing) due to a public health crisis, as in the
case with the SARS-CoV2 virus in the U.S. (Abel and McQueen,
2020) as well as an extreme condition of isolation that occurs
within the criminal justice system – that of incarceration in solitary
confinement. A number of studies have examined the physiological
and psychological effects of prolonged confinement in humans.
Isolation has been shown to induce high rates of anxiety,
panic, irritability, aggression, trouble sleeping, dizziness, perspiring
hands, heart palpations, and increased prevalence of hypertension
(Grassian, 2006; Haney, 2009, 2018). Psychologically, isolation
induces hypersensitivity to external stimuli, hallucinations, panic
attacks, cognitive deficits, obsessive thinking and paranoia,
hopelessness, depression, social withdrawal, self-harm, and suicidal
ideation and behavior (Smith, 2006; Cloyes et al., 2020; Reiter
et al., 2020). Despite our understanding of the psychological and
peripheral physiological effects of isolation, little is known of
the anatomical or neurochemical changes that is induced by this
isolation that begins in adulthood (Institute of Medicine (US)
Committee on Ethical Considerations for Revisions to DHHS
Regulations for Protection of Prisoners Involved in Research et al.,
2007).

Despite the lack of studies on these structural and biochemical
impacts of isolation in humans, some insight can be obtained
from the extensive literature on early social isolation in rodents.
Recent studies have demonstrated that rodents raised in isolation
show structural changes in their brain, including reduced dendritic
complexity and spine density in medial forebrain, nucleus
accumbens (NAc) and CA1 hippocampus (Wang et al., 2012; Liu
H. et al., 2020), as well as increased dendritic arborization in
the basolateral amygdala (Wang et al., 2012). In addition, social
isolation has been shown to impair myelination in the prefrontal
cortex (PFC) (Kikusui et al., 2007; Liu et al., 2012; Makinodan et al.,
2012), alter neurogenesis (Spritzer et al., 2011), decrease expression
of synaptic proteins (Liu N. et al., 2020), alter hypothalamic
pituitary adrenal (HPA) axis functioning (Weiss et al., 2004), and
modify the levels of neurotrophins and monoamines in the brain
(Heidbreder et al., 2000; Barrientos et al., 2003; Scaccianoce et al.,
2006; Han et al., 2011; Berry et al., 2012; Garrido et al., 2013).
Animals raised in isolation also manifest hyperactivity (Berry et al.,
2012; Lander et al., 2017), impaired sensorimotor gating (Fone
and Porkess, 2008; Wang et al., 2012), altered reversal learning
(Han et al., 2011), neophobia, aggression, cognitive rigidity (Hall
et al., 1997; Pinna et al., 2004; Fone and Porkess, 2008), increased
anxiety- and depression-like behaviors (Westenbroek et al., 2003;
Arakawa, 2005; Berry et al., 2012; Lander et al., 2017), and a reduced
capacity to cope with stress (Friedler et al., 2015). Moreover, these
animals also have increased morbidity and mortality (Cacioppo and
Hawkley, 2003; Friedler et al., 2015; Holt-Lunstad and Smith, 2016;
Razzoli et al., 2018). Some of these effects are sex-dependent and
change with the age of animals and the duration of differential
experience (Bartesaghi and Serrai, 2001; Bartesaghi and Severi,
2002; Pisu et al., 2016).

The issue with these studies, compared to our paradigm, is that
they examine isolation from very early ages, such as those that
examine effects of early maternal separation (Arling and Harlow,
1967; Helmeke et al., 2001; Kawano et al., 2008; Shams et al., 2012);
whereas the vast majority of incidents of isolation in people occur
in later adulthood and more than likely are seen in within the

female population (Bruce et al., 2019). An exception to this is the
isolation seen within the criminal justice system, which usually
occurs in adulthood, but the majority are males (National Institute
of Corrections, 2015). What is unique about this study is that we
examine the effects of isolation in animals born and raised in an
enriched environment and only then as adults, are transferred to
isolated housing; again, this being the typical pattern for onset of
isolation in humans. Here, mice were born in multigenerational
enriched housing (Kempermann et al., 1997; Faherty et al., 2005).
At the time of weaning (5 seeks of age) male and female mice were
separated by sex but still maintained in enriched environment until
they were 4 months of age. At this time, the animals were moved
into an impoverished isolation. Within the isolated environments,
animals were able to see, hear and smell other animals; i.e., we
are examining the effects of impoverished isolation and not total
sensory deprivation. After a period of 1 or 3 months of isolation;
a time that corresponds to 3–5 human years (Flurkey et al., 2007),
we measured its effects on several aspects of neuronal morphology,
as well as catecholamine and neurotrophin levels. We found that
isolation altered each of these variables in a time and sex-dependent
manner.

Materials and methods

Animals

Male and female C57BL/6J mice (Jackson Laboratories, Bar
Harbor, ME, USA) were used as the breeding stock for all
animals used in this study. These animals were maintained in a
temperature-controlled environment with ad libitum access to food
and water in their home cages. Mice were kept in a temperature-
controlled room under standard laboratory conditions, with a
12-h light/dark cycle (lights on at 6:00 a.m.) as well as constant
temperature (22 ± 2◦C) and humidity (55 ± 10%). Olfactory,
visual, and auditory contact between the cages was not limited,
whereas social interaction with the experimenter was limited to the
handling during the weekly cage change. All animal procedures
in this study followed the “NIH Guide for the Care and Use
of Laboratory Animals” and were approved by the Institutional
Animal Care and Use Committee of Thomas Jefferson University
(TJU, protocol 00182).

Experimental design and timeline

To generate animals in this study, 4 pregnant C57BL/6J female
mice were placed into an enriched environment (Faherty et al.,
2005) and allowed to give birth. All offspring were then co-
raised by these 4 lactating dams. The enriched environment was
a 1 m × 1 m polycarbonate enclosure that contained 3 running
wheels, nesting materials (nestlets and cardboard huts), chewing
toys (wood and balls) and a system of interchangeable tunnels
that were re-arranged on a weekly basis. When the co-raised
offspring of the original 4 pregnant dams reached 28 days of age,
they were culled to cohorts of 14 male and 14 female mice and
placed in a sex-segregated enriched environment until they were
4 months of age, which is considered to be young adulthood
(Flurkey et al., 2007). To generate enough animals for this study,
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this was repeated 18 times. From each cohort of animals in the EE
cages (progeny of 4 pregnant mice), half of the male and female
mice in the enriched environment were then removed from the
enriched environment and placed into social isolation consisting of
single-housed standard cages measuring 7.25′′ W × 11.5′′ D × 5′′

H. Once the mice were assigned and moved into these different
environments, they were examined for changes at 1 and 3 months.
For female mice, all analysis was not performed during estrous
phase, based on the shape of the vaginal opening (Byers et al., 2012).
Due to different methods used for tissue preparation, different
cohorts of control and isolated mice animals were used for each
analysis. generate animals for all of the studies, this process was
repeated 16 times.

Neuroanatomical analysis

Golgi cox staining
Animals were deeply anesthetized with Avertin, after which

they were decapitated, and the fresh brains quickly removed from
the calvaria and stained en bloc using the Rapid GolgiStainTM

kit as directed by the manufacturer (FD Neurotechnologies Inc.,
Columbia, MD, USA). After en bloc staining, brains were rapidly
frozen and serial 160-micron sections cut through from the
forebrain to the midbrain/hindbrain junction (thus excluding the
cerebellum, hindbrain, and spinal cord) and mounted on gelatin-
coated microscope slides (Azer Scientific, Morgantown, PA, USA).
Sections were allowed to dry naturally at room temperature in the
dark for 1–3 days before being processed. Detection of neurons
was performed using protocols in the Rapid GolgiStainTM kit. After
staining, the sections were cleared in xylene 3 times for 4 min each
and cover slipped with Permount R©.

Images of Golgi-impregnated neurons were captured with Leica
TCS SP8 confocal laser scanning microscope equipped with a HC
PL APO CS2 40×/1.30 oil objective and the Perfect Focus System
for maintenance of focus over time. The images were acquired in
brightfield setting by using the 488 nm laser with Photomultiplier
Tube (PMT) trans-On. In each image, z-series optical sections were
collected with a step-size of 0.5 µm and an image stitching feature
controlled by LASX software was used that captures all of the three-
dimensional feature of the neuron of interest.

Reconstructed images of complete Golgi-impregnated neurons
from sensory cortex, motor cortex and the CA1 region of the
rostral hippocampus were analyzed using the Neurolucida 360
Program (MBF Biosciences, Williston, VT, USA). This program
allows tracing of individually labeled Golgi-impregnated neurons,
with the ability to trace different components of neurons (axon,
dendrites, cell body, and spine) in the x, y, and z planes from
captured z stacks, and record changes in process thickness. The
neurons were chosen based on the following criteria: The neuronal
body and dendrites were fully impregnated, there were less than
5% cut ends to the individual dendrites within the cell and the
entire neuron was visible and relatively isolated from surrounding
neurons. A total of 4–5 neurons/animal were examined and the
mean of these values was determined; this mean value being the
datapoint used in the analysis.

We analyzed neurons from layer II of sensory cortex (0.5 mm
to 1.34 mm from the Bregma, plate 20–27), layer V of the motor

cortex (0.5 mm to 1.34 mm from the Bregma, plate 20–27),
and pyramidal neurons in the CA1 region of the hippocampus
(−2.5 mm to−1.94 mm from the Bregma, plate 47–52) (61). Once
each neuron was traced and the data recorded, four separate types
of analysis were performed: total dendritic length per neuron, total
volume (bounding box area), neuron complexity based on dendritic
branching (Sholl analysis), and spine density (Lloyd et al., 2003).

Biochemical analysis

For analysis of catecholamines and BDNF, male and female
mice from each condition (Table 1) were deeply anesthetized with
Avertin until reflexes are absent and then decapitated. Fresh brains
were quickly removed from the calvaria and placed in a plastic
brain mold cooled with dry ice. Razor blades were inserted at 2 mm
intervals starting at midbrain/hindbrain junction. The 2 mm brain
slices were laid out on cold mold plate and 4 brain regions: frontal
cortex, motor cortex, striatum, and hippocampus were dissected
and quickly frozen in dry ice and stored in−80◦C.

Catecholamine analysis

We analyzed catecholamine content from striatum and frontal
cortex from male and female mice in each condition (Table 1).
Tissues were removed from −80◦C storage and placed into dry
ice prior to the addition of homogenization buffer to prevent
degradation of biogenic amines. Tissues are then homogenized,
using a handheld sonic tissue dismembrator, in 100–750 µl of 0.1 M
TCA containing 0.01 M sodium acetate, 0.1 mM EDTA, and 10.5%
methanol (pH 3.8). Ten microliters of homogenate from the sample
were used for the protein assay. The samples were then spun in a
microcentrifuge at 10,000 g for 20 min. Supernatant was removed
for HPLC-ECD analysis. HPLC was performed using a Kinetix
2.6 µm C18 column (4.6 × 100 mm, Phenomenex, Torrance, CA
USA). The same buffer used for tissue homogenization was used
as the HPLC mobile phase. Concentrations were extrapolated from
standards using a 5-point curve.

Protein concentration in tissue pellets was determined by Pierce
BCA Protein Assay, cat 23227, ThermoFisher, Waltham, MA, USA.
Ten microliter tissue homogenates were distributed into 96-well
plate and 200 ml of mixed BCA reagent (25 ml of Protein Reagent
A mixed with 500 µl of Protein Reagent B) was added. The
plate was incubated at room temperature for 2 hrs for the color
development. A BSA standard curve was run at the same time.
Absorbance was measured by the plate reader (POLARstar Omega).
DA turnover was estimated by determining the ratio of the sum of
the major metabolites of DA synthesis [3,4-dihydroxyphenylacetic
acid (DOPAC)] and homovanillic acid (HVA) divided by DA levels
(DOPAC + HVA/DA).

Determination of BDNF

Levels of the mature form of brain derived neurotropic factor
(BDNF) were determined from frontal cortex and hippocampus
of male and female in each condition (Table 1) using the BDNF
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TABLE 1 Number of animals used in each analysis.

Test Male
EE

Female
EE

Male
1 m

isolation

Female
1 m

isolation

Male
3 m

isolation

Female
3 m

isolation

Golgi 16–24 11–17 29–30 19–20 29–40 30–40

Catecholamine analysis 15 10 10 5 5 6

BDNF 15 10 10 5 8 5

Rapid ELISA Kit (Biosensis Pty Ltd., Thebarton, SA, Australia)
according to manufacturer’s instructions. Briefly, brain tissues were
re-suspended in an approximately 10 weight/volume ratio of acid-
extraction buffer (50 mmol/L sodium acetate, 1 mol/L NaCl, 0.1%
Triton x100, acetic acid, “Complete Mini” protease inhibitors
cocktail tablet, pH 4.0). The suspension was then sonicated to
homogeneity on ice with a Branson Digital Sonifier SFX150 in
short bursts of 5 sec on and 5 sec off for the total of 30 s to avoid
excessive sample heating. The homogenates were kept on ice for
30 min and another round of sonication as well as incubation on
ice was performed. The homogenates were centrifuged for 30 min
at 12,000 × g at 4◦C. The clear supernatants were then transferred
into clean tubes and total protein concentration measured using
a DC protein assay (Bio-Rad, Hercules, CA, USA). To prepare
for ELISA, sample dilution with 1 part tissue extracts and 3 parts
of incubation/neutralization buffer (0.1 mol/L phosphate buffer,
pH 7.6) were prepared. The final pH of sample was near neutral.
ELISA assay was performed at room temperature. First, 100 µl of
diluted mature BDNF standards, QC sample, samples and blank
were added to the pre-coated microplate wells. The plate was then
sealed with parafilm and incubated on a shaker (140 rpm) for
45 min. The solution inside the wells was then discarded and the
wells washed 5 times with 1× wash buffer. After washing, 100 µl of
the detection antibody was added into each well and the plate was
sealed and incubated on a shaker for 30 min. After discarding the
solution inside the wells and washing 5 times with 1× wash buffer,
100 µl of the 1× streptavidin-HRP conjugate was added into each
well followed by 30 min of incubation on a shaker. The solution
inside the wells was then discarded followed by 5 washes with 1×
wash buffer. 100 µl of TMB was then added into each well and the
plate incubated at room temperature for 6 min in the dark without
shaking. The reaction was stopped by adding 100 µl of the stop
solution into each well. Within 5 min after adding the stop solution,
the absorbance was read at 450 nm with the Molecular Devices
SpectraMax 384 Plus microplate reader. Results were reported as
ng BDNF/mg total soluble protein.

Statistical analysis

All the data are presented as mean ± SEM. Statistical analysis
was performed using Prism 7 (GraphPad Software). The results
of morphological changes for Golgi staining, biochemical changes
for HPLC and BDNF ELISA were analyzed by three-way factorial
MANOVA followed by simple effect analysis with Bonferroni
adjustment if a single factor or interaction effect was statistically
significant. Prior to analysis an outlier test at alpha = 0.01 was
run on all data and values deemed outliers were removed from
the analysis. A value of p < 0.05 was considered as statistical

significance. Table 1 shows the number of cells or animals
examined in each condition.

Results

Neuroanatomical effects of
adult-induced isolation

Using both male and female adult mice, we examined the
effects of two different periods of isolation (1 and 3 months) on
total neuron volume, total dendritic length, dendritic complexity
(branching), and spine density from three different regions of the
CNS: Layer II neurons from the somatosensory cortex, Layer V
neurons from the motor cortex, and CA1 pyramidal cells from
the hippocampus.

Effects of isolation Effects on neuronal
volume

Neuronal volume, measured by placing a bounding box around
the most distal ends of the axon and dendrites, was differently
affected dependent on region of the brain examined as well
as sex of the animal and duration of isolation. Bounding box
volumes were compared from neurons in layer II neurons from the
somatosensory cortex (Figures 1A, D), layer V neurons from the
motor cortex (Figures 1B, E) and CA1 pyramidal cells from the
hippocampus (Figures 1C, F).

In Layer II neurons of the somatosensory cortex, there was a
statistically significant housing effect (F1,170 = 11.68, p < 0.0008),
but no other sources of variation or interactions were measured.
We found a significant reduction of neuronal volume by 40% at
1 month of isolation in female mice (p < 0.01) which lessened
to 24% at 3 months of isolation compared to their EE housed
littermates (p < 0.01). No significant differences in neuronal
volume were seen in male in Layer II of the sensory cortex at either
1 or 3-months of isolation (Figures 1A, G).

In Layer V neurons of the motor cortex, there was a statistically
significant effect of sex (F1,203 = 5.541, p < 0.0195) and time in
isolation (F1,203 = 6.995, p < 0.0088) as well as an interaction
housing and time in isolation (F1,203 = 6.995, p < 0.0088).
Specifically, we found a significant 67% increase of neuronal
volume in female mice at 3 months of isolation compared to their
EE littermates (p < 0.001) (Figures 1B, G).

In the CA1 pyramidal neurons in the hippocampus, there were
significant two-way interactions between sex and time in isolation
(F1,157 = 7.946, p < 0.0054) and sex and housing (F1,157 = 10.44,
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FIGURE 1

Effects of 1 and 3 months of isolation introduced as adults on volume of neurons located in (A) volume of neurons located in layer II from
somatosensory cortex (B) volume of neurons located in layer V from motor cortex (C) volume of neurons located in Layer V of the motor cortex. (D)
Appearance of Layer II neuron from somatorsensory cortex impregnated by Golgi method. (E) Appearance of Layer V neuron from motor cortex
impregnated by Golgi method. (F) Appearance of CA1 neuron from rostral hippocampus impregnated by Golgi method. (G) Neurolucida 360
projection drawings of typical neurons from each regions examined from Enriched environment (EE), isolation from male mice and isolation from
female mice. *p < 0.05, **p < 0.01. Scale bar (A) 40 µm, (B,C) 25 µm.

p < 0.0054). At 1 month of isolation, no significant differences
in neuronal volume were seen in CA1 pyramidal neurons of male
or female mice. However, after 3 months of isolation male mice
showed a significant 39% decrease in the volume of CA1 neurons
(p < 0.001) while female mice exhibited a significant 34% increase
compared to EE housed littermates (p < 0.02) (Figures 1C, G).

Effects of isolation effects on dendrite
morphology

We also examined the effect of 1 or 3 months of isolation
in male and female adult mice on three aspects of dendrite
morphology: the total length (Figure 2), complexity (branching)
(Figure 3), and spine density (Figure 4) from neurons in Layer II
of the somatosensory cortex, Layer V of the motor cortex and CA1
hippocampal pyramidal cells.

In Layer II of the somatosensory cortex, there was a significant
two-way interaction between sex and housing condition on total
processes length (F1,168 = 5.190, p = 0.026) and a significant
main effect of isolation on dendritic branching (F1,172 = 7.711,
p < 0.006) and dendritic spine density (F1,168 = 22.49, p < 0.0001).
Examination of housing effects shows a significant reduction of
total processes length by 44% in female mice at 1 month (p < 0.007,
Figure 2A), with no changes seen in male mice. Female mice also
show a significant 30% decrease in dendrite branching at 3 months
(p < 0.007). In regard to spine density, there was a significant 21%

increase in dendritic spine density in male mice (p < 0.009) that
remains elevated at 3 months (p < 0.03) (Figure 4A).

In Layer V of the motor cortex, there was a significant two-
way interaction between sex and housing condition on total neurite
processes length, dendritic branching, and dendritic spine density
(F1,141 = 11.60, p < 0.0009; F1,120 = 22.02, p < 0.0001; F1,163 = 6.34,
p = 0.013, respectively).

Examination of housing effects shows no change in dendrite
length at 1 month in male mice. In female mice, we did measure
a 31% increase in female mice (p < 0.01). At 3 months, this
increase in dendrite length increased to 71% increase in female
mice (p < 0.01, Figure 2B). As with the 1 month timepoint, no
changes were observed after 3 months in male mice. Significant
changes were also measured in the number of dendritic branches
in both male and female mice. Male mice demonstrated a 47%
decrease in dendrite branching at 1 months (p < 0.01) that remains
reduced at 3 months. Female mice also show significant changes in
dendrite branching, but unlike males, after 3 months of isolation,
we observed a 75% increase in branches (p < 0009) (Figure 3B).
In regard to spine density, we only observed significant changes
in female mice after 3 months of isolation, where there was a
significant 21% increase in dendritic spine density (p < 0.02)
(Figure 4B).

In Layer the CA1 region of the rostral hippocampus there
was a significant two-way interaction between sex and housing
condition on total neurite processes length, dendritic branching,
and dendritic spine density (F1,148 = 6.659, p < 0.03; F1,159 = 9.475,
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FIGURE 2

Effects of 1 and 3 months of isolation introduced as adults on total dendrite length from (A) neurons in layer II from somatosensory cortex, (B) layer
V from motor cortex and (C) CA1 neurons from the rostral hippocampus of male and female mice. ∗p < 0.05, ∗∗p < 0.01.

p < 0.0003; F1,148 = 11.89, p = 0.0007, respectively). Examination of
housing effects shows no change in dendrite length at 1 or 3 months
in male mice and 1 month in female mice. However, we did measure
a significant 62% increase in total processes length in female mice

after 3 months of isolation (p < 0.02, Figure 2C). A similar pattern
was seen in dendritic branching, where no change was seen in male
or female mice at 1 month. We did measure a 69% increase in
the number of dendritic branches in female mice after 3 months
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FIGURE 3

Effects of 1 and 3 months of isolation introduced as adults on neuronal complexity (dendritic branching) from (A) neurons in layer II from
somatosensory cortex, (B) layer V from motor cortex and (C) CA1 neurons from the rostral hippocampus of male and female mice. ∗∗p < 0.01.

of isolation (p < 0009) (Figure 3C). In regard to spine density, no
significant changes were seen after either 1 or 3 months of isolation
in male and female mice (Figure 4C).

Effects of isolation on CNS
neurochemistry

We examined the effects of 1 and 3 months of isolation in adult
male and female mice on levels of catecholamines in the striatum.

In the striatum, levels of norepinephrine (NE) and serotonin (5-
hydroxytryptamine, 5-HT) were only measured at or below the
level of detection; both in enriched environment and isolation
conditions (data not shown). Thus, any changes in these two
neurotransmitters could not compared between conditions. We
were able to detect dopamine (DA), 3,4-Dihydroxyphenylacetic
acid (DOPAC), and homovanillic acid (HVA). We found that
there were significant two-ways interaction between sex and
housing on the level of DA, and DA turnover (estimated as the
DOPAC + HVA/DA ratio) in the striatum (F1,67 = 16.72, p = 0.0001;
F1,67 = 10.05, p < 0.002). In female mice, no significant difference
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FIGURE 4

Effects of 1 and 3 months of isolation introduced as adults on spine density from neurons in (A) layer II from somatosensory cortex, (B) layer V from
motor cortex and (C) CA1 neurons from the rostral hippocampus of male and female mice. ∗p < 0.05, ∗∗p < 0.01.

in the levels of DA, DOPAC, HVA, and DA turnover was observed
in the striatum after 1 or 3 months of isolation (Figures 5A–D).
In male mice, 1 month of isolation induced a 32% increase in the
level of striatal DA (p < 0.03), which normalized after 3 months
of isolation (Figure 5A). The increase in the level of DA in the

striatum in male mice at 1 month of isolation occurred together
with a significant decrease in DA turnover, which was reduced
by 43% after 1 month of isolation (p < 0.0005) (Figure 5D). No
significant difference in DA turnover was observed in male mice
after 3 months of isolation (Figure 5D).
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FIGURE 5

Effects of 1 and 3 months of isolation introduced as adults on (A)
striatal dopamine, (B) DOPAC, (C) HVA and (D) DA turnover
(DOPAC + HVA/DA) of male and female mice. ∗p < 0.05, ∗∗p < 0.01.

Examination of catecholamine levels in the frontal cortex
showed significant two-way sex x housing interactions in levels of
norepinephrine (F1,67 = 14.86, p < 0.0023) but not in levels of DA
or 5-HT. In regard to NE, no changes were detected in male mice
after 1 or 3 months of isolation. However, in female mice, no change
was detected after 1 month, but after 3 months isolation the levels of
NE decreased by 54% (14.66 pg/mg tissue in EE versus 6.74 pg/mg
tissue; p < 0.0001).

Effects of isolation on hippocampal
BDNF

Brain derived neurotrophic factor, a member of the
neurotrophin family of growth factors, has been shown to
play critical roles in a number of cellular processes, including cell
survival and differentiation (Snider and Johnson, 1989; Reichardt,
2006). In the brain, the level of BDNF has been shown to be labile,

altering its levels in response to any number of cellular stresses,
including those associated with social isolation (Murínová et al.,
2017). We examined how adult-induced isolation altered the level
of BDNF in frontal cortex and hippocampus (Figure 6). We found
two-way sex x housing interactions when comparing BDNF in
frontal cortex (F1,64 = 4.517, p < 0.037) as well as in hippocampus
(F1,68 = 5.448, p < 0.023). In female mice, there was no significant
difference in the level of BDNF in the frontal cortex at 1 month of
isolation. However, after 3 months, we measured a 51% decrease
(p < 0.05) (Figure 6A). In male mice, no significant changes were
detected after 1 or 3 months from frontal cortex.

In hippocampus, we there were significant two-way
interactions between sex and housing for BDNF (F1,68 = 5.448,
p = 0.022). In female mice, there was no significant difference
in the level of BDNF in the hippocampus at 1 or 3 months of
isolation (Figure 6B). In male mice, 1 month of isolation induced
64% decrease in the level of BDNF (p < 0.05). After 3 months of
isolation, the level of BDNF remained 31% lower than in mice in
the EE conditions (Figure 6B).

Discussion

In this study we examined the effects of 2 periods of isolation
imposed on adult male and female C57BL/6J mice that had been
born and raised in an enriched environment. We found that mice
raised in an EE and subsequently isolated at 4 month of age
had significant alterations in their neuronal morphology including
changes in neuronal volume, dendritic length and branching, and
spine density. These changes were dependent on brain region and
period of isolation, as well as sex of the animal.

There is a significant literature on the neuroanatomical and
neurochemical effects of housing. The vast majority of these studies
examine the effects of environmental enrichment by comparing
where animals housed in standard “shoebox” cages, either in small
groups or individually, and then placed as adults in enhanced
housing conditions with additional social interactions, availability
of toys, exercise, and mentally stimulating apparatus (Honess and
Marin, 2006; Gelfo et al., 2009; Segovia et al., 2009; Ashokan et al.,
2016; Kempermann, 2019; Ohline and Abraham, 2019). However,
whereas these studies can provide clues to potential plasticity of
the brain, the temporal order of these modifications is far from
that experienced by humans, where–except for the few instances of
early life isolation (Sheridan et al., 2012)–we are born and raised
in relative enrichment and then in later life are by circumstance
isolated. These include isolating circumstances such as placement
into nursing homes and other rehabilitation facilities, segregation
from society into prisons and further into solitary confinement, and
even by separation from general society by restrictions imposed
by a viral pandemic. Additionally, despite the body of literature
available about enrichment, one cannot just assume that the effects
of isolation would be the opposite of enrichment, since moving
from isolation to enriched environment does not necessarily equal
that of moving from enriched environment to isolation. Thus, it is
critical to examine these parameters in a temporally relevant way.

It has been shown that isolation during the early stages of
development, particularly pre-weaning (i.e., maternal deprivation)
and immediately after weaning, can have significant effects on
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FIGURE 6

Effects of 1 and 3 months of isolation introduced as adults on BDNF levels in (A) cortex and (B) rostral hippocampus of male and female mice.
∗p < 0.05.

brain structure (Wang et al., 2012; Maccari et al., 2014; Nishi,
2020). In fact, it appears that this form of deprivation is negatively
correlated to the age when it is first introduced (Lapiz et al., 2003),
with earlier isolation resulting in much more significant effects.
However, this conclusion is based on only a very limited number of
studies that have assessed the impact of social isolation introduced
as adults after the pre/peri-weaning period. In regard to neuronal
morphology, Liu N. et al. (2020) demonstrated that both 6–8-
weeks-old male and female C57BL6/J mice isolated for 8 weeks
had significantly decreased CA1 apical and basal branch points and
reduced dendritic length and spine density compared to group-
housed mice. Similar changes in neuronal structure were found in
45-day isolated middle aged rats (450 days), where it was found
that isolation (compared to enriched environment) effected shorter
terminating branches and less second and fifth order branches in
both layer IV stellate and layer III pyramidal cells in the occipital
cortical (Green et al., 1983). Additionally, the isolation induced in
these studies followed separation from other rodents from group
housing (3–4 animals/shoebox cage) that was otherwise devoid of
enrichment. An additional confound to these studies was that Liu
et al. examined these morphological changes after the mice were

used for behavioral testing, i.e., they were handled prior to the
anatomical analysis rather than being examined in sentinel animals.

In terms of adult-imposed isolation effects on brain
neurochemistry, our study looked at baseline changes induced
by isolation, whereas it appears that the few studies that have
examined the effects of adult isolation studied these in context of
response to exogenous stressors (Garrido et al., 2013). We found
that the baseline levels of catecholamines and their metabolites
to determine their turnover altered by time in isolation were
dependent on the region examined, the time in isolation, and the
sex of the animal. Male mice demonstrated a significant alteration
in the striatal DA system, whereas isolation had no effect on
the DA systems of female mice. Isolated female mice, on the
other hand, had a significant alteration in the NE system in the
frontal cortex, which was not affected in isolated male mice. The
differential change in baseline neurochemistry (Konradi et al.,
1992; Bangasser et al., 2016) (i.e., the “intrinsic reserve” (Stern et al.,
2020) could be one reason we observed sex-dependent changes in
isolation-induced behaviors. Our results are consistent with those
observed following 8–9 weeks of isolation in male post-weaning
rats, where social isolation led to no change in DA levels in mPFC
compared to group-reared controls (Wang et al., 2012), no effect
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on basal extracellular 5-HT levels (Hall et al., 1998), and increased
basal extracellular DA in the striatum measured by HPLC (Holson
et al., 1991). In addition, our results with isolated female mice are
consistent with those observed following prolonged isolation in
female post-weaning rats, where social isolation led to decreased
DA turnover in the PFC (Powell et al., 2003).

The vast majority of research on the expression of the
neurotrophin BDNF has examined either peri- and early post-
weaning animals (Murínová et al., 2017; Zaletel et al., 2017) or how
these growth factors change in response to enriched environment
as an adult (Torasdotter et al., 1998; Ickes et al., 2000; Faherty et al.,
2005; Bekinschtein et al., 2011). In our studies, only isolated adult
male mice showed significant reductions in the concentration of
BDNF in the hippocampus, whereas female mice did not show
any significant change in this regions. Our BDNF findings are
also similar to several previous studies that found adult male
mice and rats isolated from 3 to 14 weeks had decreased BDNF
expression in the hippocampus (Scaccianoce et al., 2006; Berry
et al., 2012; Liu N. et al., 2020). In addition, studies of the effects
of isolation on BDNF expression have found that the neurotrophin
was decreased (Scaccianoce et al., 2006), increased (Meng et al.,
2011), or unchanged (Weintraub et al., 2010) in the PFC and
hippocampus. This discrepancy may be indicative of sex, age, and
strain differences in neurochemical alteration following isolation or
may be influenced by the different isolation duration and molecular
paradigms used in their study.

So how do these studies relate to and impact conditions of
isolation in humans? Due to the longitudinal nature of isolation,
the cost issues of access to non-invasive tools of measurement
(e.g., CT scan and MRI), and in the case of persons isolated in
the criminal justice system the capacity to obtain truly informed
consent, only a few studies have examined isolation on brain size.
One study examined brain size in eight male and female polar
expeditioners who spent 14 months isolated in Antarctica at the
German Neumayer III station. They found that there was a 7.2%
loss of volume in the dentate gyrus of the hippocampus as well
as smaller but significant changes in other regions of the brain
including the PFC (Stahn et al., 2019). This study also examined
serum BDNF levels and found that this was reduced by 45% (Stahn
et al., 2019), similar to the reductions we measured in regions of
brains of male mice. Other forms of isolation have measured similar
shrinkage in the amygdala (Düzel et al., 2019). Due to similar
factors described above, examination of catecholamines and growth
factors in living brains of isolated people has not been reported. In
fact, it is for these reasons that studies more closely representing
isolating conditions in humans must be carried out using animal
models. Although not directly measured in this study, there is also
an excellent correlation between the behavioral manifestations of
isolation experienced by people in isolation and those observed
in mice, including increased anxiety, aggression, and depression
(Matsumoto et al., 2005; Brenes and Fornaguera, 2009; Teo et al.,
2013; Mumtaz et al., 2018; Takahashi et al., 2018; Reiter et al., 2020);
thus supporting the use of animal modeling to predict the human
experience.

Of all of the conditions of isolation experienced by humans,
the model we use in this study best replicates that of the condition
of solitary confinement that is used in the criminal justice system.
In our studies as well as incarceration in solitary confinement, the
isolation starts after a period of relative enrichment. Our model

also reliates this human condition since we impose isolation at
the approximately the age when a majority of the cases of solitary
confinement occurs, which is equivalent to that of a young adult
(Beck, 2015). Solitary confinement – for even short periods of
time (days to weeks)–has been shown to induce a number of
psychiatric disorders including hypersensitivity to external stimuli,
hallucinations, panic attacks, cognitive deficits, obsessive thinking,
and paranoia. Prolonged confinement also leads to numerous
other negative symptoms, including loss of emotional control,
mood swings, hopelessness, and depression, social withdrawal,
and self-harm and suicidal ideation and behavior (Grassian, 1983,
2006; Haney, 2006, 2009; Reiter et al., 2020). In addition, persons
who have experienced long-term solitary confinement may show
memory loss and impaired concentration, and may report feeling
extremely confused and disoriented in time and space (Scharff,
2006). However, no studies have been reported that examined any
neuroanatomical or neurochemical changes in persons within this
population.

One of the more surprising findings in this study is that social
isolation started in adulthood appears to differently affect male and
female animals. The differential impact of social isolation between
human males and females has been well documented; and this is the
major reason we chose to specifically examine male and female mice
as individual cohorts. Some examples of differences in response to
isolation include the finding that females have a significantly higher
stress response than males (Senst et al., 2016; Liu H. et al., 2020),
that females experience greater levels of depression and anxiety
after isolation (Martin and Brown, 2010; Warner et al., 2019), and
that females experience greater feelings of separation than males
(Aranda-Hughes et al., 2021). A number of studies have shown that
HPA signaling is different in male vs. female animals experiencing
isolation (Cacioppo et al., 2011; Pisu et al., 2016; Mumtaz et al.,
2018). Our studies show differences in catecholamine levels and
neurotrophin levels between sexes. One unexpected observation
was that in some of our neuronal analyses (dendrite length and
branching) and we found that males and females had effects in
opposite directions, rather than just greater or lesser responses
in a single direction. At this time, we do not understand this
difference; however, we hypothesize that any change from that
measured from animals in continued exposure to an enriched
environment would disrupt functional homeostasis; and thus have
negative consequences. Still to be determined is whether any of
the changes we measured are reversible, and if not, whether there
a critical amount of time in isolation after which changes are
permanent.

In conclusion, our studies in mice show that a relatively short
period of isolation started in adulthood can induce significant
changes in neuron size, dendrite length and spine density (which
will affect its connectivity (Chklovskii, 2004), and changes in its
intrinsic biochemistry, each likely to manifest alterations in the
animal’s cognitive functioning.

Conclusion

Overall, this body of work fills several gaps in the literature
on social isolation by focusing on how different periods
isolation in male and female mice, enforced as adults after
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being raised in relative enrichment affect neuron structure and
biochemistry. These findings have substantial value in identifying
both neurobiological and behavioral disturbances that occur
secondary to isolation and thus, may be used to inform the
development of therapeutic interventions in adults. Additionally,
understanding how isolation changes the brain may provide a
mechanism for predicting which disturbances in behaviors, as well
as mental health, may occur in response to prolonged isolation.
This may allow psychologists, clinicians, and community health
leaders to employ evidence-based prevention programs to mitigate
the risk of isolation-induced mental illness.
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