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Major histocompatibility complex Class I (MHC-I) molecules bind to peptides
derived from intracellular antigens and present them on the surface of cells,
allowing the immune system (T cells) to detect them. Elucidating the process of
this presentation is essential for regulation and potential manipulation of the
cellular immune system. Predicting whether a given peptide binds to an MHC
molecule is an important step in the above process and has motivated the
introduction of many computational approaches to address this problem.
NetMHCPan, a pan-specific model for predicting binding of peptides to any
MHC molecule, is one of the most widely used methods which focuses on
solving this binary classification problem using shallow neural networks. The
recent successful results of Deep Learning (DL) methods, especially Natural
Language Processing (NLP-based) pretrained models in various applications,
including protein structure determination, motivated us to explore their use in
this problem. Specifically, we consider the application of deep learning models
pretrained on large datasets of protein sequences to predict MHC Class I-peptide
binding. Using the standard performance metrics in this area, and the same
training and test sets, we show that our models outperform NetMHCpan4.1,
currently considered as the-state-of-the-art.
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1 Introduction

Major Histocompatibility Complex molecules (MHC) are large cell surface proteins that
play a key role in immune response by detecting and responding to foreign proteins and
antigens. An MHC molecule detects and binds to a peptide (a small fragment of a protein
derived from an antigen), creating a peptide-MHC complex, and presents it to the surface of
the cell; then, based on the interactions between this complex and the T cell receptor at the
cell surface, an immune response is triggered to control the compromised cell (Maimela
et al., 2019; Janeway et al., 2001; Teraguchi et al., 2020; Ong et al., 2021). MHCmolecules are
classified into two classes: (i) MHC Class I which controls non-self intracellular antigens by
presenting antigenic peptides (of 8–14 sequence length) to cytotoxic T cell lymphocytes
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(CD8+ TCR) and (ii) MHC Class II, which controls extracellular
antigens by presenting antigenic peptides (of 13–25 sequence
length) to helper T cell lymphocytes (CD4+ TCR). One of the
main steps in studying the role of the MHC molecules in the
immune system is developing insights into the interactions of the
MHC molecules and non-self pathogen peptides, referred to as
MHC-peptide binding (Reynisson et al., 2020). MHC-peptide
binding prediction plays an important role in vaccine design and
studies of infectious diseases, autoimmunity, and cancer therapy
(O’Donnell et al., 2020; Grebenkin et al., 2020).

There are two basic experimental methods to study MHC-
peptide binding: (i) Peptide-MHC binding affinity (BA) assays in
which, given a peptide, binding preferences of different MHC
molecules to the peptide are measured (Townsend et al., 1990);
(ii) MHC associated eluted ligands (EL) generated by Liquid
Chromatography Mass Spectrometry (LC-MS) in which, based
on a single experiment, a large number of eluted ligands
corresponding to an MHC are identified (Caron et al., 2015).
Compared to the BA method, the EL method is highly accurate
and thorough and it is a reliable way to determine the peptides
included in the immunopeptidome (namely, the entire set of
peptides forming MHC-peptides complexes (Alvarez et al.,
2019)). Both methods, however, are labor-intensive and time-
consuming. As a result, a number of computational methods
have been developed to predict MHC-peptide binding (Boehm
et al., 2019). These methods include heuristic approaches using
MHC allele–specific motifs to identify potential ligands in a protein
sequence (Bui et al., 2005), supervised machine learning approaches,
including artificial neural networks (ANN) (Nielsen et al., 2003),
hidden Markov models (HMM) (Zhang et al., 2006), and regression
models (Parker et al., 1994; Doytchinova and Flower, 2001). The
performance of these machine learning methods increases with the
amount of data available in epitope databases such as SysteMHC
(Shao et al., 2018) and Immune Epitope Database (IEDB) (Vita et al.,
2019). While some of these methods are trained for only one specific
MHC allele (known as allele-specific methods), there are more
generalized models (pan-specific methods) where a single model
covers all of alleles of interest. The methods are also categorized by
the type of predicted variables. Among these methods, some have
been shown to be more promising, such as NetMHCpan (Reynisson
et al., 2020), DeepLigand (Zeng and Gifford, 2019), and MHCflurry
(O’Donnell et al., 2020; Aranha et al., 2020). The most recent version
of NetMHCpan (NetMHCpan 4.1) is currently considered as the
state-of-the-art in the MHC Class I-peptide binding prediction
problem (Reynisson et al., 2020).

NetMHCpan is a pan-specific model which predicts binding of
peptides to any MHC molecule of known sequence using artificial
neural networks. Since 2003, this model has gradually been
improved and its last version for MHC Class I (NetMHCpan 4.1)
has been introduced in 2020. This model is trained on a combination
of the BA and EL peptide datasets where the inputs are sequences
associated with MHC-peptide complexes (Tong, 2013). There are
some specific features associated with this method that helps it to
outperform other approaches: (i) instead of using the complete
sequence of MHC molecules as input, NetMHCpan uses pseudo-
sequences of MHC molecules with a fixed length (34 amino acids);
these pseudo-sequences include those amino acids associated with
the binding sites of the MHC molecule inferred from a priori

knowledge; (ii) to accommodate peptides of different lengths
(8–15 in MHC Class I), the length is fixed to a uniform length of
9 via insertion and deletion of amino acids; (iii) additional features
with specificity information of the peptides are used during the
insertion and deletion steps; for example, the original length of the
peptide is encoded as a categorical variable and the length of the
sequence that was inserted/deleted is added as a different feature;
(iv) NetMHCpan consists of several shallow neural networks and it
implements the ensemble technique: using cross-validation, the
training dataset is split into 5 parts and the model is trained five
times, one for each split. Also, NetMHCpan uses shallow neural
networks with one hidden layer containing 56 or 66 neurons that are
trained using 10 different random initial weight configurations; thus,
the ensemble NetMHCpan contains 100 different models.

As indicated above, the most recent NetMHCpan approach
[version 4.1 (Reynisson et al., 2020)] is based on shallow neural
networks. In recent years, a number of more complex yet efficient
methods such as deep neural networks have shown promising
results in a number of fields (Deng et al., 2013; LeCun et al.,
2015; Khan and Yairi, 2018; Voulodimos et al., 2018; Iuchi et al.,
2021; Mohammadzadeh and Lejeune, 2021). For example,
transformer models (Vaswani et al., 2017), a recent breakthrough
in natural language processing, have shown that large models
trained on unlabeled data are able to learn powerful
representations of natural languages and can lead to significant
improvements in many language modeling tasks (Devlin et al., 2018;
Hu et al., 2022). Furthermore, it has been shown that collections of
protein sequences can be treated as sentences so that similar
techniques can be used to extract useful biological information
from protein sequence databases (Rao et al., 2019; Rives et al.,
2019). A highly successful example of this approach has been
DeepMind’s recent protein-folding method, using attention-based
models (Jumper et al., 2020; Lensink et al., 2021; Egbert et al., 2021;
Ghani et al., 2021). Currently, there are a number of publicly
available pre-trained models which have been shown to be
helpful in a variety of downstream protein related tasks (Rao
et al., 2019; Rives et al., 2019; Elnaggar et al., 2020; Rao et al.,
2020; Rao et al., 2021).

In the work reported in this paper, we consider using a number
of such pre-trained models and Deep Learning (DL) methods to
address the MHC Class I peptide binding prediction problem. One
component of the approach in this work is based on transfer
learning. In Deep Learning (DL), transfer learning is a method in
which a DL model is first trained on a problem similar to the
problem of interest; then, a portion or the whole of this pre-trained
model is used for training the model of the desired problem. This
approach is particularly advantageous when the amount of data for
the problem of interest is limited, however, large databases
associated with other problems with some similarity to the
problem of interest exist (Fu and Bates, 2022). Fine-tuning a pre-
trained model using the dataset associated with the problem of
interest is one of the approaches in transfer learning and one that is
used in this work. In this case, a portion, or all of the weights
associated with the pre-trained model are used as the initial weights
of a new DL model for the desired task. For example, in NLP, BERT
(Bidirectional Encoder Representations from Transformers) is a
pre-trained transformer model which is trained on a large corpus
of unlabelled text including the entire Wikipedia (about
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2,500 million words) and the Book Corpus (800 million words)
(Devlin et al., 2018). Thereafter, the pre-trainedmodel has been used
for a number of NLP tasks such as text classification, text annotation,
question answering, and language inference, to name a few.

Recently, following the successful results of pre-trained
transformer models such as BERT and their transfer learning
derivatives in NLP applications, similar approaches have been
attempted in the protein field thanks to the substantial growth in
the number of protein sequences. As a result, there are a number of
pre-trained self-supervised BERT-like models applied to protein
data in the form of unlabeled amino acid sequences which can be
very useful for many protein task-specific problems using transfer
learning (Elnaggar et al., 2020; Rao et al., 2020). Two recent works
have considered using protein language models in the MHC-peptide
binding problem. BERTMHC (Cheng et al., 2020) explores whether
pre-trained protein sequence models can be helpful for MHC Class
II-peptide binding prediction by focusing on algorithms that predict
the likelihood of presentation of a peptide given a set of MHC Class
II molecules. They show that models generated from transfer
learning can achieve better performance on both binding and
presentation prediction tasks compared to NetMHCIIpan4.0 (last
version of NetMHCpan in MHC Class II (Reynisson et al., 2020)).
Another BERT-based model known as ImmunoBERT (Gasser et al.,
2021) applies pre-trained transformer models in the MHC Class
I-peptide binding problem. As reported, in this work they were not
able to compare their model fairly with NetMHCPan (Reynisson
et al., 2020) and MHCflurry (O’Donnell et al., 2020) performance
due to a lack of access to the same training set. BERTMHC and
ImmunoBERT both use the TAPE pre-trained models (Rao et al.,
2019) which were trained on 31 million protein sequences, whereas
now there are larger and more informative pre-trained models
available such as ESM (Rao et al., 2020; Lin et al., 2022) and
ProtTrans (Elnaggar et al., 2020) which are trained on more than
250 million protein sequences.

In the work reported in this paper, we focus on MHC Class
I-peptide binding prediction and develop different approaches using
the larger pre-trained protein language models. Two of these
approaches are based on fine-tuning using a soft-max layer in
one and a Graph Attention Network (GAT) in the other. Our
third approach is based on a domain adaptation method to
further pre-train the protein language models and enhance the
fine-tuning performance. We evaluate the performance of our
models using the standard metrics of the field and the same
training and test sets as those of NetMHCpan 4.1. We show that
our methods outperform NetMHCpan 4.1 over these test sets.

2 Materials and methods

2.1 Methods

In this work, we considered two large protein language pre-
trained models, ESM1b (Rao et al., 2020) and ESM2 (Lin et al.,
2022), two BERT-based models which are trained on hundreds of
millions of protein sequences. ESM1b is a pre-trained Transformer
protein language model from Facebook AI Research which has been
shown to outperform all tested single-sequence protein language
models across a range of protein structure prediction tasks (Rao

et al., 2020); its successor, ESM2, has achieved even better
performance on protein folding related tasks. ESM1b and ESM2-
650M have 33 layers with 650 million parameters and an embedding
dimension of 1280, and the largest model we used, ESM2-3B, has
36 layers, embedding dimension of 2560 and 3 billion parameters. In
our fine-tuning approaches, after including an additional layer at the
end of the ESMmodels, we re-trained the entire set of parameters of
ESM1b and ESM2 and trained the parameters of the added layer
using the MHC-peptide dataset. Thus, the entire parameters,
including the pre-trained weights of the model, were updated
based on our dataset (Figure 1).

2.1.1 ESM fine-tuning
Since ESM models can be regarded as transformer-based

bidirectional language models (bi-LM), we borrowed an idea
from a basic NLP task called Natural Language Inference (NLI)
(Bowman et al., 2015) to perform MHC-peptide binding prediction.
One of the NLI tasks is the sequence-pair classification problem,
namely, predicting whether a text A (e.g., “rabbits are herbivorous”)
can imply the semantics in a text B (e.g., “rabbits do not eat rats”).
Similarly, in the MHC-peptide case, we would like to know whether
a given peptide sequence (same as text A) binds to a given MHC
sequence (same as text B), suggesting that applying an NLI-based
model could be effective in MHC-peptide binding prediction. A
common transformer-based NLI model combines text A and B into
one sequence “[BOS] seq-A [SEP] seq-B [EOS]” as input, where
[BOS], [SEP] and [EOS] are special tokens1 in bi-LM vocabulary.

Suppose the amino acids in the MHC and the peptide sequences
are M1, . . ., Mp and P1, . . ., Pq, respectively. We generate the
sequence “[BOS], M1, . . ., Mp, [SEP], P1, . . ., Pq, [EOS]” with
length p + q + 3 as the ESM model input, and obtain the same
size embedding vectors vBOS, vM1, . . . , vMp, vSEP, vP1, . . . , vPq, vEOS
from the last layer of ESM models, corresponding to the special
tokens and the amino acids in the MHC and the peptide. As a
common strategy in NLP sequence classification tasks, we use the
embedding of [BOS] to be the MHC-peptide sequence-pair
embedding vector �v (Ibtehaz and Kihara, 2023). Finally, passing
�v through a softmax classifier layer, we output the probability of
binding and use it to compute the loss and apply back-propagation.
Compared to embedding the MHC and the peptide separately, this
compound input allows the transformer to use the attention
mechanism to further extract the interactive information between
the amino acids in the MHC and the peptide, thus, helping the
binding prediction.

Although ESM models are well pre-trained in an unsupervised
manner, using a large number of universal sequences, we know that
MHCs are highly specific types of protein sequences, so the
embedding from the pre-trained ESM models may not be
optimal for the specific MHC task and input format. Therefore,
we not only need to train the final softmax classifier but need to train
the ESM model parameters as well to improve the sequence-pair
embedding. We applied a fine-tuning which is commonly used in
NLP. Initialized from the pre-trained ESM model parameters, we

1 A token is a string of contiguous characters between two spaces, or
between a space and punctuation marks.
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updated the parameters in the whole network using a small learning
rate during the back-propagation, so that valuable information in
the pre-trained ESMmodels is maintained while the fine-tuned ESM
models provided a more informative embedding specific to the
MHC tasks.

2.1.2 ESM domain adaptation
In NLP, domain adaptation pre-training is an important tool

to introduce domain-specific information into a bi-LM. A BERT
model pre-trained on general corpora (Devlin et al., 2018) (e.g.,
Wikipedia) can be further pre-trained by the same masked

FIGURE 1
Our fine-tuning architecture using NLP-based pre-trained models.

TABLE 1 Distribution of training set used in NetMHCpan 4.1 (Reynisson et al., 2020); Columns correspond to each type of training data, for which the number of
positive and negative samples, and the total amount of unique MHCs are shown. A threshold of 500 nM is used to define positive BA data points.

Binding affinity EL (single allele) EL (multi allele)

Positives Negatives MHCs Positives Negatives MHCs Positives Negatives MHCs

52,402 155,691 170 218,962 3,813,877 142 446,530 8,395,021 112

FIGURE 2
PPV Comparison of ESM2 model vs NetMHCpan 4.1 over different hit-decoy ratio.
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language modeling (MLM) methods but using corpora from
specific domains such as clinical medicine (Alsentzer et al.,
2019) in order to gain better down-stream task performance
in different knowledge domains. This idea fits our protein
language models as well because ESM models were pre-trained
on general full protein sequences whereas our MHC-peptide
binding prediction focuses on MHC pseudo-sequences and
short peptides, which were not available in the ESM pre-
training data. Therefore, we applied domain adaptation to the
ESM models in order to offer the ESM models more knowledge
about the MHC pseudo-sequences and the peptides.

We still use the NetMHCpan V4.1 training set as our domain
adaptation pre-training set. For an MHC-peptide pair “[BOS], M1,
. . ., Mp, [SEP], P1, . . ., Pq, [EOS]”, we first randomly mask 7 amino
acids (around 15%), and then feed this masked sequence pair to the
pre-trained ESM models. Note that with a probability of 0.8, an
amino acid to be masked will be masked by a special token [MASK],
otherwise it will be “masked” by the original amino acid, which
resembles the MLM setting in BERT. The ESM models will then
exploit the information from the visible context of amino acids, and
finally use a classification head to predict the masked amino acids.
As a result, the special structural characteristics of the MHC pseudo-
sequences and the peptides will be further learned, and our domain-
adapted ESM models can better fit the MHC-related tasks,
compared with the vanilla ESM models. For one MHC-peptide
pair, the loss to beminimized is the mean cross-entropy loss between
the predicted and the ground truth masked amino acids. During the
ESM domain adaptation pre-training, we still update all parameters
of the ESM models, and our domain-adapted ESM models will be

used as the initialization of the MHC-peptide binding prediction
fine-tuning task described in the previous section.

2.1.3 ESM-GAT fine-tuning
Here, we consider our second approach to fine-tuning.

Molecular structure-based biological data such as proteins, can be
modeled with graph structures in which amino-acids or atoms are
considered as nodes, and contacts or bonds are considered as edges.
It has been shown that Graph Neural Networks (GNNs), as a branch
of deep learning in non-Euclidean spaces, perform well in various
applications in bioinformatics (Zhang et al., 2021). In our context,
the interaction between anMHC and a peptide can be described by a
graph in which the amino-acids are considered as the nodes and the
interaction between them as edges. To model such a graph
information, we added a variant model of GNN known as Graph
Attention Network (GAT) as the last layer of the ESM network. GAT
is a novel neural network architecture that operates on graph-
structured data by leveraging attention layers to address the
shortcomings of prior methods based on graph convolutions or
their approximations (Veličković et al., 2017). For each MHC-
peptide pair, we used a directed graph G, where the nodes N1,
. . .,Np+q+3 represent the p + q + 3 amino acids and the special tokens
as described above, and an edge (Ni, Nj) indicates that amino acids i
and j are in contact with each other. Denote the neighbor set of
amino acid i as A(i) � {j: (Ni,Nj) ∈ G}; then, each embedding
vector vi is updated as a weighted average of its transformed
neighbor embedding vectors:

vi′ � ∑
j∈A i( )

αijWvj,

where W is a weight matrix for vector transformation, and the
weight αij is computed using an attention mechanism. Suppose zij is
the concatenation of vectors Wvi and Wvj and c is a parameter
vector, then the weight αij is given by:

αij �
exp σ 〈c, zij〉( )( )

∑k∈A i( ) exp σ 〈c, zik〉( )( ),

where σ is an activation function. Note that the attentionmechanism
here is known as additive attention, which is different from the dot-
product attention mechanism used in ESM and other transformer-
based models.

After each GAT layer, we update the embedding vector for
the amino acids and the special tokens as vBOS′ , vM1′ , . . . , vMp′ ,

TABLE 2 Summary table of comparison of the mean of our models and NetMHCpan (V4.1) AUC-ROC and PPV over all test sets.

Models PPV (hit-decoy ratio: 1:19) PPV (hit-decoy ratio: 1:99) AUC-ROC

NetMHCpan4_ 1 0.791 0.671 0.950

ESM1b 0.834 0.737 0.977

ESM2_650M 0.837 0.742 0.976

ESM2_3B 0.844 0.753 0.976

ESM1b_domain 0.851 0.756 0.979

ESM2_650M_domain 0.850 0.756 0.980

ESM2_3B_domain 0.857 0.769 0.981

TABLE 3 Summary table of comparison of the mean of our models and
NetMHCpan (V4.1) F1, AUC-PR, and MMC over all test sets.

Models Fl AUC-PR MMC

NetMHCpan4_l 0.711 0.833 0.726

ESM1b 0.771 0.885 0.779

ESM2 650M 0.785 0.888 0.791

ESM2 3B 0.788 0.893 0.794

ESM1b_domain 0.794 0.902 0.799

ESM2_650M_domain 0.796 0.900 0.801

ESM2 3B domain 0.801 0.908 0.806
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vSEP′ , vP1′ , . . . , vPq′ , vEOS′ , and more GAT layers follow. Here, in our
implementation, we use two fully connected GAT layers. Same as
vanilla transformer model (Vaswani et al., 2017), we apply multi-
head attention mechanism in which for each GAT layer, we split the
parameters and pass each split independently through a separate
head. Particularly, in the first GAT layer we use 8 attention heads
which are then concatenated together and passed to the next layer
while in the final GAT layer we average the heads of a certain token.
We finally use the embedding vector of [BOS] in the final GAT layer
as the MHC-peptide sequence pair embedding vector to determine
the binding prediction. The final GAT layer was meant to use the
attention mechanism to aggregate all the node information into
[BOS] position by letting [BOS] token contact with all the amino
acids in the graphs which makes the [BOS] embedding potentially a
more powerful sequence embedding than simply using the average

of the embedding vectors output by the first GAT layer. Compared
to using only ESM dot-product attention layers and a linear
classification head, now we are adding more GAT additive
attention layers to dynamically refine the ESM embedding and
enhance the final binding classification.

Note that the contact information can be defined differently
through graphs. If in the absence of specific information about
the contacts, fully-connected graphs are used as we did, the
dependency among any amino acids can be further exploited
by those additive attention layers, similar to the ESM layers.
However, if prior information on contacts is available and is
represented in the graphs, such information can also be
introduced to the GAT layers by allowing the additive
attention mechanism to happen only between the desired
amino acids.

FIGURE 3
PPV Comparison (hit-decoy ratio: 1:19) of our fine-tuning method with the latest NetMHCpan server (Version 4.1) over the same training and test
sets (Reynisson et al., 2020). (A) Bar plots associated with each test set. (B) Scatter plot: each point is the PPV of each group of test set.
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2.2 Dataset

2.2.1 Training set
We used the training set used by the last version of NetMHCpan

(Reynisson et al., 2020), including 13 millions binary labeled MHC-
peptide binding samples, generated from two main data sources: (i)
the BA peptides derived from in-vitro Peptide-MHC binding assays,
and (ii) the EL peptides derived from mass spectrometry
experiments. However, it has been shown that the results from
the mass spectrometry EL experiments are mostly poly-specific,
i.e., they contain ligands matching multiple binding motifs (Alvarez
et al., 2019). That being said, for most of the samples in the EL
dataset, each peptide is associated with multiple alleles (from 2 to
6 alleles for each peptide). Thus, in this training set, the EL dataset is
composed of two subsets: (i): Single-Allele (SA) peptides assigned to
single MHCs and (ii) Multi-Allele (MA) peptides with multiple

MHC options to be assigned. Table 1 shows the distribution of the
aforementioned dataset which indicates that more than 67% of the
dataset is associated with EL-MA. According to (Alvarez et al.,
2019), the existence of theMA dataset introduces some challenges in
terms of data analysis and interpretation; therefore, to train a binary
MHC-peptide predictor, a process, known as deconvoluting the MA
binding motifs, is needed to convert these EL-MA data to a single
peptide-MHC pair (Reynisson et al., 2020).

2.2.2 Deconvolution of multi allelic (MA) data
To deconvolute the EL-MA dataset, several computational

approaches have been used based on unsupervised sequence
clustering (Bassani-Sternberg and Gfeller, 2016; Bassani-Sternberg
et al., 2017). Although these methods show some progress in dealing
with the MA dataset, they have some shortcomings; for example,
they do not work in cell lines including MHC alleles with similar

FIGURE 4
PPV Comparison (hit-decoy ratio: 1:99) of our fine-tuning method with the latest NetMHCpan server (Version 4.1) over the same training and test
sets (Reynisson et al., 2020). (A) Bar plots associated with each test set. (B) Scatter plot: each point is the PPV of each group of test set.
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binding motifs. Therefore, in the new version of NetMHCPan
(Version 4.1), they present a new framework, NNAlign-MA
(Alvarez et al., 2019), which works better than the previous
approaches. NNAlign-MA is a neural network framework, which
is able to deconvolute the MA dataset during the training of the
MHC-peptide binding predictor. Recently (Cheng et al., 2020),
attempted to solve this problem in MHC Class II by using a
multiple instance learning (MIL) framework. MIL is a supervised
machine learning approach, where the task is to learn from data
including positive and negative bags of instances. Each bag may
contain many instances and a bag is labeled positive if at least one
instance in it is positive (Maron and Lozano-Pérez, 1998). Assume
the i-th bag includes m alleles as Ai = {ai1, ai2, . . ., aim} which is
associated with peptide sequence si. At each training epoch, for each
instance in the i-th bag, xij = (aij, si), the probability of whether that

instance is positive, p(yij = 1|xij) is defined as ŷij � fθ(aij, si) where
fθ is the neural network model; in (Cheng et al., 2020) max
pooling is used as a symmetric pooling operator to calculate the
prediction of the bag from the predictions of instances within it.
Here, in our work, we follow this MIL idea to deal with the EL-MA
dataset.

2.2.3 Test set
In order to have a fair comparison of our model and

NetMHCPan 4.1, we used the same test set as provided in their
work (available in the Supplementary Section). This dataset is
associated with a collection of 36 EL-SA datasets, downloaded
from (Abelin et al., 2017). Each dataset is well enriched, length-
wise, with a number of negative decoy peptides equal to 5 times the
number of ligands of the most abundant peptide length.

FIGURE 5
PPVComparison (hit-decoy ratio: 1:19) of our domain-adaptationmethodwith the latest NetMHCpan server (Version 4.1) over the same training and
test sets (Reynisson et al., 2020). (A) Bar plots associated with each test set. (B) Scatter plot: each point is the PPV of each group of test set.
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2.3 Metric

Predicting the binding affinity of MHC with a peptide is a
binary classification problem. Typical metrics for assessing the
quality of binary classification models for a given task include
precision, accuracy, recall, receiver operating characteristic curve
(ROC) and the corresponding Area Under the Curve (AUC). In
this work, we use AUC-ROC and a specific precision metric
known as positive predictive value (PPV); AUC and PPV have
been used as the main metrics in previous works in MHC-peptide
binding prediction (Reynisson et al., 2020; O’Donnell et al.,
2020). AUC is an evaluation metric for binary classification
problems which measures the area under the ROC curve.
AUC ranges in value from 0 to 1 and models with higher
AUC perform better at distinguishing between the positive

and negative classes. PPV is another metric which specifically
is defined in this area and is interpretable as a model’s ability to
rank positive samples far above the negative samples. PPV is
defined as fraction of true positive samples (hits) among the top-
scoring 1

N+1 fraction of samples, assuming that the ratio of the
number of positive samples to negatives (decoys) is 1: N (known
as hit-decoy ratio). Since NetMHCpan (Reynisson et al., 2020)
uses hit-ratio 1:19 and MHCflurry (O’Donnell et al., 2020) uses
hit-ratio 1:99, here in this work, we use both.

Beyond AUC-ROC and PPV, we also consider three more
metrics: F1 score, Precision-Recall Area Under Curve (AUC-PR),
and Matthews Correlation Coefficient (MMC). These metrics
provide a comprehensive evaluation of the model’s performance
by measuring the balance between precision and recall, and
summarizing performance on imbalanced datasets.

FIGURE 6
PPV Comparison (hit-decoy ratio: 1:99) of our domain-adaptation method with the latest NetMHCpan server (Version 4.1) over the same training
and test sets (Reynisson et al., 2020). (A) Bar plots associated with each test set. (B) Scatter plot: each point is the PPV of each group of test set.
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3 Results

In order to evaluate and compare the performance of our
approaches with the state-of-the-art method, we used the latest
version of NetMHCpan server (Version 4.1); as mentioned above,
the same training and test sets from (Reynisson et al., 2020) were used in
this study. The list of independent EL SA test set including the MHC
molecules, the number of peptides and the distribution of positives and
negatives for each case is provided in the Supplementary Material.

To arrive at the hit-decoy ratios of 1:19 and 1:99 for each case, we
followed a random sampling approach that was repeated 1000 times.
As a result, for each MHC molecule, the PPV values are sample
averages of 1000 values. Additionally, in Figure 2 we provide a
comparison over a range of hit-decoy ratios.

To present the results of the comparison of our fine-tuning as
well as our domain adaptation approaches with NetMHCpan, we
provide two figures for each hit-decoy ratio in what follows: (a) a bar
plot that provides a comparison of PPVs of our approach and
NetMHCpan for eachMHCmolecule in the test set, and (b) a scatter
plot of the same PPV values that provides a better visual summary of
performance comparison.

Since there was not a significant difference in performance when
using the ESM1b, ESM2-650M, or ESM2-3B, we report the ESM2-
3B values in this section which were slightly better in mean
performance than others. Tables 2, 3 below show the summary
of the results for fine-tuning and domain adaptation which provides
the mean of using PPV, AUC-ROC, F1, AUC-PR, and MMC
averages over all MHC molecules in the test set.

3.1 ESM fine-tuning

As seen in Figure 3 our fine-tuning method outperforms
NetMHCpan over all hit-decoy ratios in the 35 different test sets;

only for HL-B18:01, at ratio 1:19, NetMHCpan performs slightly
better. Also, as seen in Figure 4, at ratio 1:99 the model outperforms
NetMHCpan for all 36 test set including the HL-B18:01.

3.2 ESM domain adaptation

Figures 5, 6 show that our domain adaptation model
outperforms NetMHCpan over all hit-decoy ratios in the
35 different test sets; only for HL-B18:01, at ratio 1:19,
NetMHCpan slightly performs better. In addition, the
performance of the domain adaptation approach is slightly better
than the fine-tuning approach.

3.3 ESM-GAT fine-tuning

Given the superior performance of ESM fine-tuning in comparison
with NetMHCpan, to assess the performance of ESM-GAT fine-tuning,
we compared its performance with that of ESM fine-tuning. In this case,
a hit-decoy ratios of 1:19 was considered. We found that in the case
where we subdivided the training and test sets between peptides of
length 8 and 9 on the one hand and peptides of size 10–15 on the other,
ESM-GAT fine-tuning outperformed ESM fine-tuning. Specifically, we
used subsets of the training set that included samples associated with
peptides of length 8 and 9 and compared both methods over two test
sets. As can be seen in Figure 7, ESM-GAT outperformed ESM fine-
tuning when the test set with peptide length 10–15 was considered (red
dots), while the results were almost the same when using the test set
with peptides of length 8 and 9 (blue dots). Bar plots associated with
these figures are available in the Supplementary Section. This
observation suggests that GAT has the potential to improve the
ability of the model to predict binding of peptides with lengths
different from those considered in the training set. The testing of
this conjecture is a subject of future research.

4 Conclusion

Predicting peptides that bind to the major histocompatibility
complex (MHC) Class I is an important problem in studying the
immune system response and a plethora of approaches have been
developed to tackle this problem. NetMHCpan 4.1 is developed
based on training shallow neural networks (Reynisson et al., 2020)
and is currently considered the state-of-the-art for MHC Class
I-peptide binding prediction. A number of recent works have
focused on using protein language models in MHC-peptide
binding problems. Protein language models developed based on
deep learning approaches, such as attention-based transformer
models, have shown significant progress towards solving a
number of challenging problems in biology, most importantly,
the protein structure prediction problem (Jumper et al., 2021).
BERTMHC (Cheng et al., 2020) and ImmunoBERT (Gasser
et al., 2021) for the first time applied the pre-trained protein
language models in MHC-peptide binding problems. Both
methods used a relatively small pre-trained model ((Rao et al.,
2019) was trained with 31 million protein sequences); currently,
there are substantially larger and more informative models such as

FIGURE 7
ESM-GAT fine-tuning outperforms the ESM fine-tuning method
when the test set with peptide length 10–15 is considered (red points)
while the results are almost the same when using the test set with
peptides of length 8 and 9 (blue points).
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ESM1b (Rao et al., 2020) and ProtTrans (Elnaggar et al., 2020) which
are trained on more than 250 million protein sequences. In the work
reported in this paper we focus on MHC Class I peptide binding
prediction by developing approaches based on large pre-trained
protein language models, ESM1b (Rao et al., 2020) and ESM2 (Lin
et al., 2022). We follow two fine-tuning approaches using a soft-max
layer and Graph Attention Network (GAT) as well as implement a
domain adaptation pre-training for ESM models. In order to have a
fair comparison, we train our model using the same training set used
by NetMHCpan 4.1 (Reynisson et al., 2020) and evaluate our model
using the same test set. We show, using the standard performance
metrics in this area, that our model outperforms NetMHCpan. As
reported in the paper, adding Graph Attention Network (GAT) to
the ESM networks, improved the ability of the model to predict
peptides with lengths different from those considered in the training
set; this feature is expected to be beneficial for training models
beyond MHC Type I.
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