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Mast cells are important components of the immune system, and they perform 
pro-inflammatory as well as anti-inflammatory roles in the complex process of 
immune regulation in health and disease. Because of their strategic perivascular 
localization, sensitivity and adaptability to the microenvironment, and ability to 
release a variety of preformed and newly synthesized effector molecules, mast 
cells perform unique functions in almost all organs. Additionally, Mast cells 
express a wide range of surface and cytoplasmic receptors which enable them 
to respond to a variety of cytokines, chemicals, and pathogens. The mast cell’s 
role as a cellular interface between external and internal environments as well 
as between vasculature and tissues is critical for protection and repair. Mast 
cell interactions with different immune and nonimmune cells through secreted 
inflammatory mediators may also turn in favor of disease promoting agents. First 
and forefront, mast cells are well recognized for their multifaceted functions in 
allergic diseases. Reciprocal communication between mast cells and endothelial 
cells in the presence of bacterial toxins in chronic/sub-clinical infections induce 
persistent vascular inflammation. We have shown that mast cell proteases and 
histamine induce endothelial inflammatory responses that are synergistically 
amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular 
changes in normal states as well as in chronic or subclinical infections, particularly 
among cigarette smokers. Furthermore, a potential role of mast cells in SARS-
CoV-2-induced dysfunction of the capillary-alveolar interface adds to the 
growing understanding of mast cells in viral infections. The interaction between 
mast cells and microglial cells in the brain further highlights their significance in 
neuroinflammation. This review highlights the significant role of mast cells as the 
interface that acts as sensor and early responder through interactions with cells 
in systemic organs and the nervous system.

KEYWORDS

cardiovascular disease, neuroinflammation, cigarette smoking, bacterial infection, 
SARS-CoV-2 disease, atherosclerosis, allergic disease, skin and wound-healing

OPEN ACCESS

EDITED BY

Stefano Bacci,  
University of Florence, Italy

REVIEWED BY

Gregorio Gomez,  
University of Houston, United States  
Daniel Elieh-Ali-Komi,  
Charité University Medicine Berlin, Germany

*CORRESPONDENCE

Kottarappat N. Dileepan  
 kdileepan@kumc.edu  

Mukut Sharma  
 Mukut.Sharma@va.gov

†PRESENT ADDRESS

Vineesh V. Raveendran,  
Department of Cell Biology, King Faisal 
Specialist Hospital and Research Centre, 
Riyadh, Saudi Arabia

RECEIVED 27 April 2023
ACCEPTED 17 July 2023
PUBLISHED 17 August 2023

CITATION

Dileepan KN, Raveendran VV, Sharma R, 
Abraham H, Barua R, Singh V, Sharma R and 
Sharma M (2023) Mast cell-mediated immune 
regulation in health and disease.
Front. Med. 10:1213320.
doi: 10.3389/fmed.2023.1213320

COPYRIGHT

© 2023 Dileepan, Raveendran, Sharma, 
Abraham, Barua, Singh, Sharma and Sharma. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Review
PUBLISHED 17 August 2023
DOI 10.3389/fmed.2023.1213320

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1213320%EF%BB%BF&domain=pdf&date_stamp=2023-08-17
https://www.frontiersin.org/articles/10.3389/fmed.2023.1213320/full
https://www.frontiersin.org/articles/10.3389/fmed.2023.1213320/full
mailto:kdileepan@kumc.edu
mailto:Mukut.Sharma@va.gov
https://doi.org/10.3389/fmed.2023.1213320
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1213320


Dileepan et al. 10.3389/fmed.2023.1213320

Frontiers in Medicine 02 frontiersin.org

1. Introduction

The immune system consists of macrophages, dendritic cells, 
monocytes, natural killer cells, basophils, eosinophils, neutrophils, T 
and B lymphocytes and mast cells, and a group of proteins that 
constitute the complement system (1). Among these cells, mast cells 
draw special attention due to their presence at strategic locations, 
expression of several stimulatory as well as inhibitory receptors, and 
their physiological and pathobiological functions based on the 
microenvironment. Mast cells are tissue-resident guard cells localized 
at strategic barrier locations, unlike monocytes, neutrophils, and T 
and B lymphocytes that circulate in the blood (2). Paul Ehrlich, who 
discovered mast cells, was also the first to describe their presence in 
the perivascular areas (3). Mast cells in rodents are grouped under two 
categories, namely the large connective tissue mast cells (CTMCs) and 
the mucosal mast cells (MMCs) although other organ specific types 
have been identified. Human mast cells (MCs) are also classified into 
two groups based on the type of protease(s), namely tryptase and 
chymase-positive (MCtc) and tryptase-only-positive mast cells (MCt). 
Classification of mast cells continues to be refined with advancing 
computing power for analysis (4).

Mast cells originate from hematopoietic progenitor cells which 
express c-kit (CD117) (5), the receptor for stem cells factor (SCF) and 
CD34 but lack FcεR1 (6–9). Circulating mast cell precursors migrate 
to different tissues through adhesion contacts to a network formed by 
integrins (10–12). Depending on the microenvironment, mast cells 
acquire specific phenotypic characteristics and expression of receptors. 
For example, FCγRIIb is expressed by mast cells of gastrointestinal 
tract but not by mast cells of skin (13). Mature mast cells are present 
in the areolar connective tissue space of many organs, such as the 
adventitial layer of blood vessels, skin, nerve fibers, smooth muscles, 
airways, gastrointestinal tract, and adipose tissue (14–16).

A characteristic feature of mast cells and other granulocytes 
(neutrophils, basophils, and eosinophils) is the regulated 
degranulation of cytoplasmic granular bodies (granule exocytosis) 
and their ability to regranulate (17). Mast cell degranulation is now a 
subject of intense investigation because of its therapeutic potential 
(18). Mast cells can also utilize the classical/constitutive secretory 
pathway to release mediators that modulate the innate and adaptive 
immune systems (19). Mast cells can also release DNA to form 
extracellular traps (MCET) in response to certain microorganisms 
(20, 21). MCET formed by mast cells have been shown to contain 
histones, tryptase and LL-37 (20, 22, 23). These characteristics enable 
mast cells to function as frontline responders to the toxins released by 
the invading viral, bacterial, or fungal pathogens, insects, and 
parasites. It is noteworthy that mast cell proteases are capable of 
degrading insect and snake venom toxins by releasing 
carboxypeptidase A (CPA3) and thus increasing resistance to their 
toxic effects (24). Mast cells may also act in synergy with exogenous 
toxins to amplify inflammatory responses. However, aging and 
senescence may significantly affect mast cell number and function (25).

In this article, we highlight mast cell receptors and mast cell-
generated mediators that regulate inflammatory responses. These 
mediators enable mast cells to act as pro-and anti-inflammatory 
effectors to promote mobilization and proliferation of other immune 
cells. Next, using their perivascular localization as a point-of-
reference, we  address the role of mast cells under physiological 
conditions as well as in representative diseases where mast cells 

orchestrate cross-talks between different cell types and manage 
immune homeostasis. We  discuss the role of mast cells in early 
vascular inflammation with and without co-morbidities (chronic/
sub-clinical infections) and long-term progression to atherosclerosis. 
Lifestyle choices affect both the severity and outcome of vascular 
disease with or without infection. Using cigarette smoking as a lifestyle 
choice model, we outline recent research connecting cigarette smoking 
with mast cells, vascular inflammation, and bacterial toxins. Role of 
mast cells in virus-induced pathologies is an emerging field. Here, 
we discuss the evidence that links mast cells to changes in the capillary 
and alveolar structure–function following SARS-CoV-2 infection. 
Since mast cells are uniquely positioned to connect the central nervous 
system with changes in peripheral organs through the vasculature, 
we  summarize growing evidence that demonstrates interaction 
between mast cells and brain (microglial) cells that influences 
neuro-inflammation.

2. Main classes of mediators released 
by mast cells

2.1. Overview of the mechanisms for 
release of mediators

Mast cells package pre-formed mediators in granules that are 
released upon activation. Mast cells also secrete several mediators 
through the secretory pathway leading to exocytosis of such molecules 
as large vesicles, microvesicles or exosomes (26, 27). Besides 
activation-induced secretion of mediators, human skin mast cells can 
constitutively and spontaneously secrete pro-angiogenic factors (28). 
Figure 1 provides a snapshot of pre-formed, cytokines/chemokines 
and de novo synthesized mediators released as well as some key 
receptors expressed by mast cells. Mediators stored in the granules are 
diverse chemical entities grouped as biogenic amines (histamine, 
serotonin, dopamine) (29–32), proteases (serine proteases, aspartic 
acid proteases, cysteine proteases, metalloproteinases) (33, 34), 
peptidoglycans (heparin, chondroitin sulfate) (35), many cytokines 
(TNF, IL-4 etc.) (36, 37), and growth factors (GM-CSF, bFGF, VEGF, 
NGF) (38). Newly synthesized inflammatory mediators include lipid 
mediators (LTB4, LTC4, PAF, PGD2), neuropeptides (CRH, VIP) (39), 
growth factors (PDGF, GnRH) (38), chemokines (MCP-1, eotaxin, 
TARC, RANTES) (40, 41), and cytokines (IL-1, IL-3, IL-6, IL-18, SCF, 
TGF-β) (27, 36, 37). Table 1 provides a list of mediators released by 
mast cells, their receptors, and their significance in disease. Such wide 
array of inflammatory mediators and the ability to release them 
through diverse mechanisms enable mast cells to perform a variety of 
functions including regulation of innate and adaptive immune 
mechanisms, participation in host defense against invading pathogens, 
parasites, venom detoxification and elimination of cancer cells (2, 
172–178).

Generally, the type of mediators released by mast cells are 
determined by the receptor [s] activated by specific ligands and the 
microenvironment. However, the composition, chronology of the 
release of granules, their cargo and multiple mechanisms for secreting 
mediators contribute to variations to this generalization (27). The 
pleiotropic nature of mast cells is also determined by the diversity of 
receptors, degree of ligand-specificity of receptors and receptor 
interactions and the effect of released mediators with the 
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FIGURE 1

Mast cell receptors and products. Panel (A) depicts some of the major receptors expressed on mast cells. Respective ligands of these receptors are also 
shown. The receptors shown here include the high affinity FceRI for IgE; MRGPRX2: Mas-related G-protein coupled receptor-X2 that binds quinolones 
and compound 48/80 among other ligands; TLRs (Toll-like receptors) at the plasma membrane (TLR2 and TLR4) and at endosomes (TLR3 and TLR7-9) 
that bind to various exogenous and endogenous molecules in a pattern recognizing manner; NPR for neuropeptide ligands ANP, BNP or CNP; Protease 
Activated Receptors PARs; Histamine Receptors HRs for histamine; CXC-Chemokine Receptor CXCR. Other important receptors expressed on mast 
cells (not shown here) include receptors for Kit (stem cell factor receptor), Complement (C3a and C5a); alarmins IL-33 (ST2, IL-1 family receptor) and 
Epithelial cell derived Thymic stromal lymphopoietin (TSLP); the platelet-activating factor (PAF); vascular endothelial growth factor (VEGF); nerve 
growth factor (NGF); fibroblast growth factor (FGF); Interleukins (IL); Transforming growth factor beta (TGF-b); Thymus and activation-regulated 
chemokine (TARC); Prostaglandins (PGs); Cysteinyl leukotrienes (CysLT). Mast cell regulator/inhibitory receptors containing immunoregulatory tyrosine 
inhibition motifs (ITIMs) including IgE receptor Fc-gamma-RIIb, CD300a, CD200 R1, platelet-endothelial cell adhesion molecule 1 (PECAM-1), paired 
immunoglobulin-like receptor B (PIR-B), the c-lectin mast cell function-associated antigen (MAFA), sialic acid-binding immunoglobulin-like lectins 
(Siglecs), and leukocyte immunoglobulin-like receptor 4, subfamily B, member 4 (LILRB4). Panel (B) mast cells release many effector molecules 
through different mechanisms. Degranulation is a robust mechanism for mast cells to release pre-formed molecules of several chemical classes. 
However, release of mediators through degranulation is a complex process that may vary with regard to the composition of granules or the duration of 
release resulting in a fine control of mast cell response to their surroundings. Release of molecules including cytokines and chemokines may involve 
the classical secretory pathway or other mechanism for exocytosis. Molecules such as prostaglandins and leukotrienes are synthesized de novo in 
response to stimuli. Mediators released by mast cells enable mast cells to respond to many physiological and pathological conditions. bFGF, Basic 
Fibroblast Growth Factor; CCL2,3, and 4, Chemokine (C-C motif) Ligand 2, 3 and 4; CPA3, Carboxypeptidase-3; CXCL2,3 and 4-Chemokine (C-X-C 
motif) Ligand 2, 3 and 4; cysLTs, Cystinyl Leukotrienes; GM-CSF, Granulocyte Macrophage Colony-Stimulating Factor; IL-1, IL-3, IL-4, IL-6, IL-18, 
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microenvironment (179). For example, IgE binds with high affinity to 
FcɛRI (tetrameric FcεRIαβγ2) expressed on mast cell, basophils, and 
gastrointestinal mucosa (180). However, IgE can also bind with lower 
affinity to FcεRII (or CD23, a C-type lectin) and to ε-binding protein 
εBP (or galectin 3) (181, 182). Such heterogeneity of the cells carrying 
different receptor isoforms for the same ligand creates varying 
response to IgE. Also, ligands that bind distinct receptor(s) may 
induce strong (allergy-type) responses without involving IgE. For 
example, quinolone containing tetrahydroisoquinoline (THIQ) motif 
(ciprofloxacin, vancomycin, morphine, rocuronium and others) bind 
to mast-cell specific Mas-related G protein-coupled receptor 
(MRGPRX2) and may cause severe allergy-type symptoms without 
involving IgE (183). In addition, mast cells may release mediators in a 
selective, piece-meal or discriminatory manner. Selective/differential 
release of mediators implies a preferential release of a cytokine or 
neurotransmitter without/before secretion of other mediators and/or 
without degranulation, e.g., serotonin release without histamine and 
without degranulation (74, 184, 185). The following sections outlines 
representative secretory products of the mast cell and their roles in 
inflammation with special emphasis on vascular inflammation.

2.2. Histamine

Histamine is a vasoactive amine synthesized and stored in the 
cytoplasmic granules of human basophils and mast cells. It is one of 
the major secretory products of mast cells that is well-recognized for 
its participation in allergic and hypersensitivity reactions. Histamine 
alone as well in combination with other mast cell products regulates 
vasodilation, bronchoconstriction (186, 187) and modulate the 
functions of monocytes/macrophages (188, 189), eosinophils (44, 
188), T-cells (45), neutrophils (46), and endothelial cells (47–50).

Effects of histamine on physiological processes are mediated 
through a family of G-protein-coupled receptors, H1, H2, H3, and H4 
(190). H1 receptors are highly expressed in many cell types including 
endothelial cells, smooth muscle cells, neuronal cells, respiratory 
epithelial cells, hepatic cells, dendritic cells, lymphocytes, and mast 
cells. Histamine contributes to vasodilation (through histamine-H1R-
CycAdenosine axis), arteriolar constriction (through histamine-H1R-
thromboxane axis) (118), angiogenesis, and vascular permeability. 
Histamine acting through the H1 receptor modulates inflammatory 
and hypersensitivity responses (47, 191–193). The H2 histamine 
receptor participates in the stimulation of gastric acid secretion in the 
gut and in the regulation of cytokine production by cells in cardiac, 
smooth muscle, and immune system (189, 194–197). The H2 receptor 
is expressed in a wide array of cells including B cells, T cells, dendritic 
cells, gastric parietal cells, smooth muscle cells as well as in the brain 
and cardiac tissues (192). The H3 histamine receptor is expressed in 
histamine-containing neurons of the brain (198) and functions by 
coupling to Gαi/0. The H4 receptor has approximately 40% homology 
to the H3 receptor and is highly expressed in bone marrow and 

leukocytes, and moderately expressed in spleen, thymus, lung, small 
intestine, colon, and heart (199–201). The H4 receptor is also 
expressed in the central nervous system and in certain cancer cells. 
The H4 receptor-signaling is associated with Gαi/0. It is noteworthy that 
the physiological outcomes of histamine action engaging different 
subtypes of histamine receptors are distinct and cell-specific.

The significance of histamine and its receptors in cardiovascular 
disease (CVD) has been proposed in several pioneering studies (57, 
58, 202). Our studies have shown that histamine acting through H1 
receptor stimulates the expression of IL-6 and IL-8 (47) and COX2 
(49) in human coronary artery endothelial cells (HCAEC) in vitro 
which suggests that it can act as an important vascular inflammatory 
signal. Interestingly, the effects of histamine on these parameters were 
synergistically enhanced by lipopolysaccharide (LPS), peptidoglycan 
(PGN) and lipoteichoic acid (LTA) (47, 48). Our studies also 
demonstrated that LPS would enhance H1 receptor expression in 
endothelial cells (50). In addition, histamine can induce smooth 
muscle cell migration and proliferation (203, 204), and plays a role in 
intima thickening in a mouse model (205).

A direct relationship between histamine and vascular 
inflammation is evident from the observation that coronary arteries 
of patients with ischemic heart disease contain more mast cells and 
histamine than normal vessels (57). The role of histamine in vascular 
disease is further supported by the presence of elevated levels of 
histamine in the coronary circulation of patients with variant angina 
(206). Takagishi et al. have further shown increased expression of H1 
receptor mRNA in smooth muscle cells of intima/media in the 
atheroma. Many recent reviews have focused on the role of histamine 
in coronary arterial disease (CAD) (61, 207–210).

2.3. Mast cell proteases

On a weight and molar basis, enzymatically active neutral 
proteases are the major protein constituents released from activated 
mast cells (175). Tryptase, chymase, and carboxypeptidase A, in 
various combinations, represent the three major proteases in the 
granules of mast cells (211). Expression of tryptases and chymases is 
highly specific for mast cells but proteases including cathepsins G, C, 
and L are present in various cells of inflammatory process. Both mast 
cells and basophils express carboxypeptidase A3 but proteases like 
mastin are mostly restricted to basophils (33). As mentioned earlier, 
the unique pattern of protease expression is the basis to classify 
heterogeneous mast cell populations broadly into MCTC and MCT 
(212–216). The role of mast cell chymase and tryptase in the 
progression of atherosclerosis has been extensively studied by 
Kovanen and colleagues (217–220) and by Bot and collaborators 
(221, 222).

Human tryptases are heterogeneous proteins expressed by alleles 
of α, β, and γ genes (223). Human mast cell tryptase can induce IL-8 
and intercellular adhesion molecule 1 (ICAM-1) expression in 

Interleukins 1, 3, 4, 6, 18; NGF, Nerve Growth Factor; MCP-1, Monocyte chemoattractant protein-1 (CCL2); PAF, Platelet Activating Factor; PGs, 
Prostaglandins; RANTES, Regulated upon Activation, Normal T cell Expressed and Secreted aka (CCL5); SCF, Stem Cell Factor; SMC, Smooth Muscle 
cells; TARC, Thymus and Activation Regulated Chemokine; TGF-β, Transforming Growth factor-β; TNF, Tumor Necrosis Factor; VEGF, Vascular 
Endothelial Growth Factor/vascular permeability factor.
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TABLE 1 Mast cell-released mediators act through their receptors on target cells in various tissues and contribute to physiological functions as well as 
pathophysiological changes.

Mast cell mediators 
and their receptors on 
target cells

Physiological functions Associated diseases

Histamine/H1R

H2R

H3R

H4R

Blood vessels and blood cells Vasodilation, increased permeability (42, 43), 

modulation of functions of monocytes/ 

macrophages (44), eosinophils (44), T-cells (45), 

neutrophils (46), endothelial cells (47–50)

Allergies (51), asthma (52) eczema (53), 

urticaria (hives) (54), anaphylaxis (55), 

mastocytosis (56), Cardiovascular diseases 

(57–60), coronary artery disease (61)

Smooth muscle cells Bronchoconstriction (62) Asthma (62), allergies (63, 64),

Gastrointestinal tract Increased secretion, increased motility, and 

contraction (65)

Inflammatory Bowel Disease (IBD), Irritable 

Bowel Syndrome (IBS) (66, 67)

Skin Pruritus (itching), redness, swelling (68) Eczema, urticaria (53, 54)

Nerves Stimulation, increased pain sensitivity (68, 69) Migraines (70, 71), fibromyalgia (72)

Cytokines

IL-1/IL-1R Induces fever, activates T and B lymphocytes (73), promotes vascular permeability, 

induces the expression of other cytokines (74–76)

Arthritis (77), Covid 19 (74–76)

IL-2/IL-2R Stimulates T cell proliferation and differentiation (78) Allergic dermatitis, chronic inflammation 

(79)

IL-4/IL-4R Stimulates IgE production, enhances Th2 response (80), fibroblast activation (81) Allergic reactions, asthma, eczema, fibrosis 

(80)

IL-5/IL-5R Stimulates eosinophil activation, maturation, and migration (82) Asthma, eosinophilic disorders (82)

IL-6

IL-6R

Differentiation of T-and B-lymphocytes, and proliferation of smooth muscle cells (83), 

monocyte to macrophage maturation (84), induces acute phase response (85)

Atherosclerosis (86, 87), cancer (88)

IL-8/IL-8RA/B Chemotaxis of neutrophils and lymphocytes (89), cell adhesion (90), activation of 

neutrophils (91)

Atherosclerosis (92), cancer (93, 94)

IL-13

IL-13R

Stimulates mucus production (95), enhances Th1 response (96) Asthma, dermatitis (96)

IL-31

IL-31R

Proliferation of epidermal cells (97) Atopic dermatitis (98), osteoporosis

MCP-1 Chemotaxis and activation of monocytes (99) Atherosclerosis (100)

TNF/TNFR1

TNFR2

Activates macrophages, increases vascular permeability of endothelial cells (101, 102), 

and induces glomerular capillary albumin permeability (103), activates T cells (95)

Rheumatoid arthritis (RA) (104), psoriasis 

(105), cancer (88)

TGF-β/TGF-βR Inhibits inflammatory response, promotes wound healing, Treg differentiation (106, 

107)

Autoimmune diseases (108), cancer (88)

Prostaglandins

PGD2/PTGDR1(DP1)

PTGDR2(DP2)

Vasodilation, increased vascular permeability, pain sensitization (51, 109) Allergies, asthma, eczema, rhinitis, urticaria 

(51)

PGE2/PTGER1(EP1)

PTGER2(EP2)

Vasodilation (110), reduces inflammation, stimulates Th2 response (111) Allergic asthma (112)

PGF2α/PTGFR(FP) Contraction of smooth muscle (113) Rheumatoid arthritis (114)

PGI2/PTGIR(IP) Vasodilation (115), inhibits platelet aggregation, inhibits smooth muscle contraction 

(116)

Pulmonary hypertension (116), Raynaud’s 

phenomenon (117), scleroderma (117)

TxA2/Thromboxane 

receptor(TP)

Vasoconstriction (118), promotes platelet aggregation (119) Cardiovascular disease (120), asthma (121)

Leukotrienes

Cys-LTs-LTC4, LTD4, and LTE4/

cysTL1 and cysLT2

Bronchoconstriction (122), increased vascular permeability, mucus secretion, 

chemotaxis (123)

Asthma (123), chronic obstructive 

pulmonary disease (COPD) (124), rhinitis, 

eczema, urticaria, anaphylaxis, IBD (125)

LTB4/BLT1 and BLT2 Induces chemotaxis and activation of neutrophils (126) and eosinophils (127) Psoriasis (128), RA (129), IBD (130)

5-HETE, 12-HETE, 15-HETE/

Oxer, GPR31, BLT2

Induces chemotaxis and activation of neutrophils (131) and eosinophils (132) Asthma (133)

(Continued)
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bronchial epithelial cells (224), induce IL-8 production in endothelial 
cells (225), stimulate collagen synthesis and chemotaxis in fibroblasts 
(226), and initiate angiogenesis (227). Mast cells have been shown to 
modulate cardiomyocyte contractibility via release of tryptase, which 
activates protease-activated receptor 2 (PAR2) (228, 229). Tryptase by 
activating PAR2 also plays a prominent role in LPS-induced neutrophil 
recruitment and lung inflammation in a mouse model (230). 
Furthermore, increased numbers of mast cells and extracellular 
tryptase within the atherosclerotic plaques during initial stages of 
calcification have been demonstrated (231). Presence of mast cells in 
the human heart (232) and the recognition of mast cell chymase as a 
major pathway for the generation of angiotensin II (233, 234) support 
the role of mast cells in both myocardial and vascular functions. In 
addition, tryptase released from mast cells has been shown to activate 
sensory nerves to release substance P and mast cell chymase activates 
angiotensin-renin pathway (235). Mast cell chymase and 
carboxypeptidase A degrade low-density lipoprotein (236, 237). 
Recombinant mouse mast cell protease-6 independently induces 
infiltration of neutrophils in vivo and stimulates IL-8 production by 
cultured endothelial cells (238). These findings underscore the 
importance of mast cell-derived serine proteases in vascular 
inflammation and atherogenesis.

Our studies show that mast cell proteases and endotoxin 
synergistically activate human endothelial cells to generate IL-6 (239), 
and IL-8 (240). Chemokines and IL-6 play significant roles in the 

recruitment of inflammatory cells to the vessel wall. Mast cell 
activation leads to increased recruitment of leukocytes to the plaque 
with neutrophils as the predominant inflammatory cells in response 
to IL-8 (241). In addition, mast cell activation enhances the expression 
of adhesion molecules by endothelial cells which sets the stage for 
further increase in the transmigration of leukocytes to the plaque 
(242). Thus, endothelial activation induced by bacterial toxins and the 
subsequent overproduction of cytokines and chemokines can promote 
vascular inflammation independently as well as synergistically with 
mast cell proteases.

2.4. Heparin

Heparin is another component of mast cell granules with a wide 
range of biological functions including modulation of the release of 
mediators (243–245). In addition to its interaction with antithrombin 
III, heparin interacts with protease factor XII of the coagulation 
cascade. This interaction results in the production of bradykinin 
causing blood vessel dilatation, adhesion of various cell types to 
vascular endothelium, and increased vascular permeability leading 
to edema (246, 247). Heparin is also vital for the mast cell-mediated 
angiogenesis (248–250), and for vascular inflammation by binding 
to molecules such as polycationic peptides and chemokines 
(251, 252).

TABLE 1 (Continued)

Mast cell mediators 
and their receptors on 
target cells

Physiological functions Associated diseases

Proteases

Chymase/PAR2 Blood vessels Vasoconstriction (134), extracellular matrix 

degradation (135)

Angiotensin II formation in heart (136)

Hypertension (137) atherosclerosis (138, 

139), cardiovascular disease (140), fibrosis 

(141), COPD (142), cancer (143)

Smooth muscle Contraction (123), Extracellular matrix 

degradation (135)

Asthma (144), atherosclerosis (145)

Gastrointestinal tract Extracellular matrix degradation (135) IBD (146)

Skin Extracellular matrix degradation (135) Aging (147)

Nerves Stimulation (39) Pain (148), itching, mastocytosis (149)

Tryptase/PAR2 Blood vessels Vasodilation, increased permeability (150), 

angiogenesis (151)

Allergies, asthma, eczema, urticaria (Hives), 

atherosclerosis (139)

Smooth muscle cells Contraction (152), proliferation (153) Asthma (154), allergies, mastocytosis (155)

Gastrointestinal tract Increased secretion, increased motility, 

contraction (156)

IBD, IBS, mastocytosis (157)

Skin Pruritus (itching), redness, swelling (158) Eczema (159), urticaria (160)

Nerves Stimulation, increased pain sensitivity (161) Migraines, fibromyalgia (162), IBS, 

mastocytosis (161)

Carboxypeptidase-A3 Degradation of venom peptides 

(163, 164)

reduces inflammatory response by destroying 

peptide signals (163)

Inflammatory diseases, asthma (163)

Heparin Anticoagulant (165) Inhibits coagulation cascade (165) Deep vein thrombosis, pulmonary embolism 

(166)

Anti-inflammatory (167) Inhibits release of histamine and other 

inflammatory mediators (168)

Allergic reactions (168), asthma (169)

Immunomodulatory (170) Modulates immune response (170) Heparin-induced thrombocytopenia (171)
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2.5. Major cytokines and chemokines

TNF is most abundant among the cytokines released by activated 
mast cells (101, 253). TNF causes immediate activation of 
macrophages, modulates the effects of other cytokines, increases 
vascular permeability of endothelial cells (101, 102), and causes 
increases in glomerular capillary albumin permeability in vitro (103). 
It is well-established that TNF facilitates vascular inflammation by 
increasing the expression of adhesion molecules resulting in increased 
binding of leukocytes and other immune cells to endothelial cells 
(254). In combination with IFNγ, TNF can increase vascular 
permeability by disrupting the cell-junction proteins (255). In 
addition, activated mast cells release other de novo synthesized 
cytokines including IL-1, IL-6, IL-8, and MCP-1 (256, 257).

Interleukin-6 (IL-6) is a pleiotropic cytokine secreted by a variety 
of cells including mast cells and endothelial cells and is known to 
stimulate the proliferation and differentiation of T-and B-lymphocytes, 
and smooth muscle cells (83). IL-6 has been shown to contribute to 
allergic conditions. In situ-derived human skin mast cells express 
functional membrane-bound IL-6 receptors. IL-6 enhances FcεRI-
induced COX-2 expression and potentiates PGD2 biosynthesis 
through a STAT-3 dependent mechanism (258). In support of a 
pro-angiogenic role for mast cells, IL-6 was found to induce the 
expression of VEGF and MCP-1 in in situ-derived human skin mast 
cells (28, 258). It also initiates an acute phase response and is 
implicated in many inflammatory and autoimmune diseases (259). 
Elevated levels of IL-6 gene transcripts were found in atherosclerotic 
lesions of genetically hyperlipidemic rabbits (260). Atherosclerotic 
human arteries express 10 to 40-fold higher IL-6 mRNA than 
non-atherosclerotic arteries, and the thickened intimal layers of 
atherosclerotic vessels have higher number of IL-6 gene transcripts 
(86). Recently, IL-6 was shown to increase mast cell proliferation by 
down-regulation of suppressor of cytokine signaling 3 (SOCS3) and 
suppression of the hydrolysis of soluble IL-6 receptor resulting in a 
more reactive mast cell phenotype (261). Attenuation of IL-6 secretion 
has been proposed as a therapeutic approach for mast cell-related 
diseases such as mastocytosis (261).

Mast cells also release IL-8, a chemokine with a pivotal role in 
chemotaxis of neutrophils and inflammation. IL-8 was shown to 
be spontaneously secreted by human skin-derived mast cells (28). The 
diverse biological properties of IL-8 include chemotaxis of neutrophils 
and lymphocytes (89), regulation of cell adhesion (90), and activation 
of neutrophils (91). These pioneering studies implicate IL-8 as a key 
factor in the pathogenesis of vascular disease. In addition to its well-
recognized chemoattractant properties, IL-8 is a potent angiogenic 
factor found at high concentrations in atherosclerotic lesions and 
macrophages collected from patients with the disease (92).

Monocyte chemoattractant protein-1 (MCP-1/CCL2) is a 
chemokine which is also released by mast cells. MCP-1 is a member of 
the CC chemokine family which attracts and activates monocytes (99). 
Mast cell degranulation induces production of MCP-1 and IL-8  in 
endothelial cells that is further amplified by tryptase (262). MCP-1 is 
important for allergen-specific activation of mast cell and acute phase 
inflammation and, it plays a critical role in the initiation and development 
of atherosclerotic lesions as it recruits monocytes into the sub-endothelial 
layers of the vessel wall (263, 264). Besides sub-endothelial macrophages 
and smooth muscle cells, endothelial cells are a major source of MCP-1 in 
atheromatous plaques (263, 264). Abundant amounts of MCP-1 have 
been detected in atherosclerotic lesions (265), and increased expression 

of MCP-1 mRNA has been detected in endothelial cells, macrophages, 
and vascular smooth muscle cells of human atherosclerotic arteries (86, 
266). Studies using MCP-1-deficient and MCP-1 receptor-deficient mice 
have demonstrated decreased presence of macrophages and a reduction 
of atherosclerotic lesions (267).

Mast cells release pruritogenic cytokine IL-31 upon activation by 
antimicrobial peptides [e.g., human beta-defensins, cathelicidin, 
LL-37] (268, 269) and form extracellular traps by releasing DNA, like 
neutrophil extracellular traps, to inhibit bacterial growth (21). Overall, 
cytokines and chemokines released by mast cells enable rapid 
recruitment of neutrophils to the site of infection.

2.6. Major lipid mediators

Mast cells express both cyclooxygenase 1 and 2 (COX1 and 
COX2) (270) that catalyze the oxygenation of arachidonic acid to 
PGG2/PGH2 which are used by specific prostaglandin (PG) syntheses 
to generate PGE2, PGD2, PGF2α, PGI2, and TXA2. Among the PGs, 
PGI2, and TXA2 are well-recognized for their role in cardiovascular 
diseases (271–273). Prostacyclin (PGI2), is a potent vasodilator and an 
inhibitor of leukocyte adhesion, and platelet aggregation, and 
therefore, plays a protective role atherothrombosis (274). TXA2, in 
contrast, is a potent inducer of vasoconstriction, platelet activation 
and platelet adhesion (274). COX2 contributes significantly to 
systemic PGI2 synthesis in humans (275, 276), although COX1 also 
contributes to vascular PGI2 synthesis (272, 277). PGI2 has a protective 
role in vascular remodeling by smooth muscle cells and its absence 
leads to an increased intima/media ratio in response to vascular injury 
following disruption of the gene for the PGI2 receptor in mice (278). 
We  have demonstrated that histamine induces the expression of 
COX2, but not COX1, in endothelial cells resulting in enhanced 
production of PGI2, indicating the vasodilatory effects of mast cells in 
vascular homeostasis (49). Since PGI2 and TXA2 act on vascular 
endothelium in opposing manners, their relative concentrations in the 
microenvironment and systemic circulation are critical for 
cardiovascular protection. These findings underscore the importance 
of mast cells in both cardiovascular health and cardiovascular disease.

Leukotrienes (LTs) belong to another group of arachidonic acid 
metabolites secreted by mast cells. LTs [LTA to LTE] are formed 
through a series of reactions initiated by 5-lipoxygenase. Due to the 
presence of 5-LO and LTC4 synthase, mast cells and eosinophils show 
a preferential production of LTC4 (279). Cysteinyl-leukotrienes, LTC4, 
LTD4 and LTE4, are important for causing bronchial constriction in 
asthma and play a role in CAD, rheumatoid arthritis, and allergic 
rhinitis. It has been noted that cysteinyl-leukotrienes are increased in 
ischemia–reperfusion injury in murine models and in patients (280, 
281). On the other hand, LTB4 is secreted by mast cells, macrophages, 
and neutrophils. It functions as an autocrine chemoattractant of 
progenitor cells and immature cells (282). Atopic dermatitis patients 
express functional autoantibodies against IgE and/or FcεRI, and these 
antibodies have been shown to induce PGD2 and LTC4 by human 
cardiac mast cells to cause cardiac inflammation (283). Additionally, 
FcεRI-induced expression of COX-2, and presumably PGD2 
biosynthesis but not LTC4, was shown to be, at least in part, controlled 
by miR-155 in human skin mast cells (284). Therefore, patients with 
autoimmune disease may be at increased risk of releasing vasoactive, 
proinflammatory mediators when cardiac mast cells get activated with 
autoantibodies against IgE or/and FcεR1 (283).
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3. Mast cell receptors and the 
significance of toll-like receptors in 
inflammatory response

Mast cells express receptors for a variety of ligands (Figure 1). 
Some of the key receptors most relevant to this article are discussed 
here. Interaction of mast cell Fc receptors with anti-IgE or 
complement-bound pathogens is the most studied field of mast cell 
function through specific ligand binding (285–287). Additionally, 
mast cells utilize the TNF superfamily and TNF receptors (TNFR), 
CD30L-CD30, and pattern recognition receptors (PRRs) to engage in 
an array of interactions (288, 289).

PRRs enable mast cells to detect exogenous and endogenous 
signals and initiate immune surveillance. PRRs can detect, recognize, 
and neutralize pathogens by engaging the microbial pathogen-
associated molecular patterns (PAMPs) and endogenous products 
containing damage-associated molecular patterns (DAMPs). PRRs 
include the C-lectin-type receptors (CLRs), retinoic acid-induced 
gene I-like receptors (RLRs), Nod-like receptors (NLRs) and Toll-like 
receptors (TLRs) (289, 290). Among these, certain TLR isoforms are 
relevant for the present discussion. Briefly, TLRs (isoforms 1–10 in 
humans, a total of 13 isoforms in murine species) are evolutionarily 
conserved, and their activation leads to an inflammatory response 
against microbial pathogens (291). TLRs are localized at the cell 
membrane or in the endosomes (TLR3, TLR7, and TLR9). Membrane-
bound TLRs (TLR1, TLR2, TLR4, TLR5, TLR6, TLR10) contain a 
common intracytoplasmic domain that conveys signals by molecules 
that are shared by interleukin-1 (IL-1) receptor signaling to activate 
the NF-κB pathway and release pro-inflammatory cytokines (292).

Mast cells express most of the known TLR isoforms and among 
them TLR4 mediates responses to LPS (from the cell wall of Gram-
negative bacteria) as well as heat shock protein (HSP60) (293–296). 
TLR2 recognizes several components of Gram-positive bacteria and 
mycobacteria, including peptidoglycan (PGN) and lipoteichoic acid 
(LTA). TLR2 activation results in release of cytokines like IL-4 but its 
activation by peptidoglycan (another TLR2 ligand) results in mast cell 
degranulation and histamine release (294, 297–300). Human 
endothelial cells constitutively express low levels of TLR2 and TLR4 
and are activated by Gram-positive and Gram-negative bacterial 
components (48, 301, 302). The increased levels of TLR2 and TLR4 
gene expression in the endothelium of human atherosclerotic lesions 
(303) and the reduced incidence of atherosclerosis in patients with 
TLR4 polymorphism (304), suggest a role for TLRs in vascular 
inflammation (305). The anecdotal observation that ‘acute coronary 
syndrome’ is common in patients following a viral or bacterial 
infection also supports a role for the TLR pathway in vascular 
inflammation and disease (306, 307).

4. Physiologically significant functions 
of mast cells

4.1. Overview of the physiological 
significance of mast cells

Mast cells are evolutionarily conserved cells dating back to 
thousands of years and their predecessor cells have been reported in 
non-vertebrate Ciona intestinalis (phylum chordata) prior to the 
evolution of adaptive immunity (308). Through their participation in 

both adaptive and innate immune systems by the virtue of their 
flexibility to change phenotypes with the microenvironment, mast 
cells participate in an array of physiological processes (Figure 2). 
Mast cells are present in almost all tissues, and are particularly 
notable in areas such as the mucosa in the respiratory, digestive, and 
urogenital systems, the dermis, blood vessels, lymph vessels, 
fibroblasts, and in the proximity of peripheral nerves, and this 
strategy allows them to function as sensors of changes in their local 
microenvironment (309). The localization of mast cells within the 
vessel wall highlights their involvement in the vasculature, specifically 
in vasodilatory functions and tissue-specific responses against 
circulating agents.

Mast cells play important roles in allergic and hypersensitivity 
reactions, vasodilatation, gastric acid production, angiogenesis, 
pathogen and parasite clearance, venom detoxification, mineral 
homeostasis, bone remodeling, wound healing, reproduction, and 
immune homeostasis, and each of these functions will be discussed.

Mast cells participate in immune homeostasis through multiple 
mechanisms of the innate and adaptive immune system (310–313). 
Although mast cells are not known as classic phagocytes, they are 
active participants in the elimination of bacteria through interactions 
with T and B cells and engaging ICAM-1, ICAM-3, CD43, CD80, 
CD86, and CD40L (73). Mast cells promote the development of Th2 
cells and induce B cells to produce IgE through isotype switching (2).

The best recognized modulatory effects of mast cells are on 
dendritic cells, macrophages, T lymphocytes, natural killer (NK) cells, 
fibroblasts, neurons, endothelial cells, osteoclasts, and smooth muscle 
cells, and they are summarized in Figure 2. The significance of mast 
cells in neurodegenerative diseases is discussed separately.

4.2. Mast cells and infectious or toxic 
agents

4.2.1. Mast cells and bacteria
The evidence supporting the role of mast cells in fighting bacterial 

infections is based on the finding that transfer of wild-type mast cells 
(TLR2+/+) reduced the pathogen load and myeloid cell recruitment in 
TLR2-deficient (TLR2−/−) mice infected with Mycobacterium 
tuberculosis (314). Furthermore, mast cell-deficient mice were found 
to be more susceptible to Group B streptococcus infection (315). Anti-
bacterial response of mast cells is shown to be mediated by release of 
inflammatory molecules resulting in increased vascular permeability 
and fluid accumulation, and recruitment of immune cells (eosinophils, 
NK cells, and neutrophils) (41, 316, 317). Different bacterial genera 
have been shown to elicit distinct secretory responses from mast cells 
in vitro (318). Such specificity in response is due to receptors that are 
expressed in a tissue-specific microenvironment (discussed above). 
Mast cells also generate antibacterial molecules, such as cathelicidins, 
defensins, and psidins (2). Interaction of mast cells with bacterial 
toxins (LPS) is discussed separately in this article. Mast cells are 
important for maintaining the gut microbiome. In the gastrointestinal 
tract mast cells contribute significantly to the homeostasis of the 
commensal bacteria through modulation of IgA maturation and 
follicular helper T cells maturation (2).

4.2.2. Mast cells and helminth infections
The controlled discharge of mast cell mediators through the 

activation of FcεRI by IgE is a vital component of the body’s defense 
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against parasites, particularly helminths (319–322). In certain parasitic 
infections, mast cells are not significantly involved. Instead, the 
immune response relies on the binding of IgE to CD23 receptors 
found on eosinophils, platelets, macrophages, and dendritic cells. This 
leads to antigen presentation and the subsequent production of IgG 
antibodies (323, 324). In contrast, mast cell degranulation may 
be induced without involving IgE (322, 325). Despite its significance 
in some infections, mast cell involvement is neither crucial nor 
beneficial in all parasite-related responses. Mast cell degranulation can 
have harmful consequences, including tissue damage, and their 
activation is not always essential (326, 327). Nevertheless, parasitic 
helminths are sensed via tissue alarmins of the immune system that 
signal the presence of helminthic parasites leading to type 2 immune 
responses. Increased number of intestinal mast cells has been 
associated with Th2 immune response and certain cytokines (SCF, 
IL-3, IL-4, IL-9, IL-10, IL-18) (104). Notch 2 signaling pathway was 
found to mediate mobilization of mast cells to the area of parasite 
infection (328).

Mast cell degranulation following FcεRI activation by parasite-
specific IgE and antigen is a strong response against certain parasites 
through several mediators. Mast cell proteases may directly act on 
parasites (329); glycosaminoglycans in mast cell granules may 
prevent adult worms from attaching to intestinal mucosa (330); 
cytokines/chemokines/mediators from mast cells modulate 
mobilization or function of other innate immune cells with various 
effects on parasites (331). Leukotriene LTB4 may recruit other 
immune cells to remove certain parasites (332). Mouse mast cell 
protease-6 (mMCP6) promotes eosinophil recruitment that may 
favor the parasite (333); mMCP1 released by mast cells may damage 

the intestinal barrier function thus promoting inflammation and 
pathological changes by degrading occludin and other tight junction 
proteins (334, 335).

Mast cells and basophils can release mediators that favor parasite 
expulsion through increasing vascular permeability (336–339). 
MC-mediated changes in the intestinal barrier function can promote 
the flow of fluid and blood-borne antibodies into the intestinal lumen 
creating an unfavorable environment for the parasites. Activation of 
IgE and/or IgG receptors creates cytotoxic milieu for parasite 
expulsion (340).

Overall, the response of mast cells to parasites depends on several 
factors including the type of parasite, presence of other parasites, 
genetic background of the host, status of intestinal mucosal cells and 
other surrounding cells, host microbiome, levels of parasite-specific 
vs. non-specific IgE, expression of high affinity (FcεRI) and low 
affinity (CD23) receptors for IgE, additional host defense cells 
including the granulating and non-granulating cells. Parasite-specific 
details, potential protective role of mast cells and treatment approaches 
are described in greater detail in more comprehensive reviews 
(24, 341).

4.2.3. Protozoan infections (malaria)
Mast cells play a role in protozoan infections, but their actions can 

be both protective or harmful depending on factors such as parasite 
species, host genetics, and timing of infection. Both innate and 
adaptive immune systems are involved in this process (342). 
Histamine and mast cells promote disease severity (343, 344) and 
intestinal permeability in malaria (345). Mast cell activation during 
mosquito feeding leads to inflammatory response (granulocyte 

FIGURE 2

Schematic diagram showing the effect of mast cell-derived compounds on specific cell types. Mast cells have stimulatory or inhibitory actions on 
many types of cells. A few of those cell types are shown in this diagram. For the simplicity, the scheme shows only most studied effector molecules.
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recruitment, lymph node hyperplasia) (346). Mast cells release TNF 
in response to IgE binding to FcεRI (adaptive immune response) as 
well as TLR4 binding to peroxiredoxin from the parasite (innate 
immune) (347, 348). Mast cell activation by mosquito saliva down 
regulates antigen-specific immune response through MIP2 and IL-10 
and promotes disease through activation of tissue damaging CD8 + T 
cells (349). Malarial parasite antigen induces VEGF release from mast 
cells in cerebral malaria (350), increases co-infection (351). Mast cells 
activation by uric acid released from plasmodium-infected RBS leads 
to activation of the tissue damaging CD8+ T cells (342).

4.2.4. Ixodid ticks
Mast cells along with basophils and IgE have been shown to 

contribute to host resistance to larval Ixodid ticks (352). These 
organisms can mediate the transmission of pathogens to the host. Such 
pathogens include the agents of Rocky Mountain spotted fever 
(Rickettsia rickettsia) (353), Q fever (Coxiella burnetii) (354), tularemia 
(Francisella tularensis) (355), granulocytic ehrlichiosis (Ehrlichia 
ewingii) (356), monocytotropic ehrlichiosis (Ehrlichia chaffeensis) (357).

4.2.5. Fungal infections, venoms
Mast cells are also important players in the host immune response 

to fungi (358, 359). Based on the discovery that activated IgE can 
trigger the release of carboxypeptidase A, it has been established that 
mast cells play a crucial role in both innate and adaptive immune 
responses to a range of venoms. Carboxypeptidase A breaks down 
snake and bee venoms, and endogenous toxins. Detailed discussion of 
the significance of mast cells and IgE in toxic reactions to venoms as 
well as research on their role in host protection can be found in recent 
reviews (321).

4.3. Mast cells in the reproductive system

The role of mast cell mediators in reproductive biology including 
spermatogenesis and pregnancy is currently being investigated and 
reviewed recently (360, 361). In males, two phenotypes of mast cells 
(MCTC, tryptase-positive, chymase-positive, and MCT, tryptase-
positive, chymase-negative) are present in the testis and epididymis. 
Additionally, histamine influences steroidogenesis in Leydig cells 
through H1 or H2R (362, 363). In females, mast cell proteases activate 
MMP2 and MMP9, resulting in matrix degradation during the 
menstrual cycle (364). Mast cell products are important for fertility, 
pregnancy (365), and abortion (366). Mast cells release histamine and 
α-chymase when activated by estradiol and progesterone (367) and 
contribute to uterine remodeling for embryo implantation. During 
childbirth, before the onset of labor, the number of mast cells in the 
cervix increases which contributes to cervical ripening (360, 368). In 
addition, increased number of mast cells (indicated by increased levels 
of TNF-α) is associated with abortion (366, 369).

4.4. Mast cells in the skin and wound 
healing

Mast cells localize close to endothelial cells of the vasculature, hair 
follicles and nerves (370, 371). Dermal mast cells also play a critical 
role in all stages of wound healing. Additionally, mediators released 

by mast cells show pro-inflammatory effects that promote acute 
inflammation. Mast cell mediators also stimulate scarring, 
epithelialization and angiogenesis (372). Further evidence shows that 
in situ-derived human skin mast cells can spontaneously secrete 
several angiogenesis-related factors leading to the speculation that 
mast cells could be involved in vasculogenesis as well as angiogenesis 
and human development (28).

Considerable evidence suggests that mast cells join other cells as 
modulators of acute skin wounds. The role of mast cells in wound 
healing has been summarized in recent reviews (373, 374). The 
process of wound repair in man and experimental models involves 
overlapping events. Studies using rodent models show that mediators 
released by mast cells appear to influence the changes during the 
entire process of wound healing. Studies show that, (i) mast cells 
number and degranulation along the wound area increase within 
minutes and reaches to maximum within 1–3 h after injury 
corresponding with clot (fibrin network) formation during the 
immediate local response/the hemostatic phase (375, 376). Mast cells 
release histamine and TNF that promote endothelial expression of 
adhesion molecules for leukocyte adhesion (253). Leukotrienes and 
cytokines from mast cells promote chemotaxis of neutrophils, 
basophils, and eosinophils. Mast cell secreted tryptase and cathepsin 
G modulate leukocyte adhesion and function and chymase may 
activate eosinophils to release chemokines (377, 378). After the initial 
rise, mast cell numbers return to the base line around 6 h. (ii) 
Vasodilation and plasma exudation with activation of phagocytes and 
granulocytes to clean the wound during the inflammatory phase lasts 
up to 2-3 days and continues into the next phase. Some authors 
suggest that attracting neutrophils during this phase is the main 
function of mast cells (379). (iii) A second increase in the number of 
mast cells is believed to contribute to the proliferative phase (24-72 h). 
Mast cells secrete growth factors and cytokines (TNF, TGF-β, 
proteases) that modulate proliferation of fibroblasts to induce their 
transformation into myofibroblasts and their function leading to 
wound closure (380), basal epithelial proliferation and movement to 
close/contract the wound during the proliferative phase (24-72 h). 
Mast cell secreted transforming growth factor-β (TGF-β), vascular 
endothelial growth factor (VEGF), chymase and tryptase stimulate 
angiogenesis (381–386) while heparin may block pro-angiogenic 
factors (387) (iv) remodeling phase, fibroblasts removed, deposition 
of collagen matrix and ECM resembling skin, scar formation and 
closure of the wound (2–3 weeks and longer) (388). During this phase, 
mast cell tryptase has been found to stimulate collagen synthesis by 
fibroblasts (389).

In the later phases of wound healing, histamine and serotonin act 
in a stimulating manner on epidermal keratinocytes, while TNF has 
an inhibitory effect on them (390). Additionally, mast cell proteases 
MCP4 and MCP6 play a role in minimizing scar formation in the 
central nervous system after trauma (321). Another study found 
accumulated mast cells and their products chymase, fibroblast growth 
factor 2 (FGF2), TGF-β1 and VEGF at the edge of scald wound in 
mice during the proliferative and remodeling phases at days 14 and 
21. Chymase activity in the injured tissues was decreased in the acute 
phase, but recovered to a no-injury level at days 14 and 21 (386). Thus, 
mast cells influence wound healing by promoting acute inflammation, 
proliferation/re-epithelialization, and angiogenesis, as well as scar 
contraction and collagen cross-linking (372). The available data 
suggests that mast cells may play a role in chronic wound healing, but 
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there is not enough conclusive evidence to make any definitive 
conclusions at this time (391, 392).

5. Abnormal mast cell activation or 
expansion

Although mast cells have been extensively studied for their 
pro-inflammatory effects, they are also known to cause anti-
inflammatory effects (393, 394). The number and activation of mast 
cells are strictly regulated under normal physiological conditions and 
the increased number of mast cells and the overproduction and release 
of mediators by certain mast cell clones reflect pathological changes. 
Two well-defined conditions, namely mastocytosis and mast cell 
activation syndrome (MCAS), are associated with high numbers of 
mast cells and excessive release of pro-inflammatory mediators that 
may affect several organs. Mastocytosis is a rare disorder [1 in 10,000–
20,000] that is characterized by clonal proliferation and accumulation 
of mast cells. Two types of mastocytosis have been described, namely 
cutaneous and systemic mastocytosis. Cutaneous mastocytosis 
indicates accumulation of mast cells in the skin without much 
infiltration elsewhere in the body and mainly affects children (395). 
In contrast, systemic mastocytosis is generally found among adults 
who present with large numbers of mast cells in multiple tissues 
besides the skin, namely the bone marrow, gastrointestinal tract, and 
lymph nodes (396, 397). Recent studies report increased incidence of 
cardiovascular diseases in patients with mastocytosis (398). Mast cell 
activation syndrome (MCAS) represents overproduction or over 
activation of mast cells due to a variety of etiologies. It leads to 
repeated episodes of a spectrum of multisystem dysfunctions and 
several aspects of MACS remain unclear (399). MCAS is currently 
being discussed in the context of inflammation and loss of alveolar 
function in some patients with SARS-CoV-2 infection (76, 399–401).

6. Mast cells and allergic diseases

Mast cells play a pivotal role in the pathogenesis of allergic 
diseases. Since mast cells have been recognized as a major contributor 
in initiating hypersensitivity reactions and the aftermath of the 
episodes leading progression of chronic diseases like asthma, atopic 
dermatitis and urticaria, considerable focus has been given to the field 
of mast cell biology research (402). Since it is far beyond the scope of 
this article to accommodate the vast volume of work done on the role 
mast cells in allergic diseases, we  are providing only a very brief 
commentary in this section.

By virtue of their strategic locations in the skin, mucosa, gut and 
lungs, mast cells are in constant contact with the external environment 
and allergens (403–407). Mast cells are the effector cells responsible 
for the IgE-mediated allergic reactions in which allergens are 
recognized and presented by antigen processing cells to naïve T 
lymphocytes. T cells recognize the antigen as a foreign material and 
differentiate into Th2 lymphocytes. Mast cells also can process and 
present antigens via MHC-I and MHC-II complexes. Because of this 
characteristic feature, mast cells contribute significantly to the 
sensitization process and in directing the adaptive immune system 
toward Th2 pathway in response to antigens (408, 409). Allergies 
develop when components of the immune system, particularly mast 

cells, respond to antigens and release many prestored and newly 
synthesized mediators which in turn interact with a variety of cell 
types including endothelial cells, macrophages, epithelial cells, T and 
B lymphocytes, cardiomyocytes, parietal cells, and neurons. As 
mentioned earlier, mast cell-released mediators include histamine, 
serine proteases and other enzymes, proteoglycans (heparin or 
chondroitin sulphate) and as well as prostaglandins and leukotrienes 
which are rapidly synthesized from arachidonic acid by the enzymes, 
cyclooxygenase, and lipoxygenase, respectively (see mast cell released 
mediators above).

Earlier studies on the association of mast cells in allergic reactions 
were focused on the acute phase of these reactions. In this regard, 
FceR1 stimulation by a polyvalent allergen recognized by the receptor-
bound IgE initiates immediate hypersensitivity reactions by releasing 
pre-formed and newly synthesized mediators from the sensitized mast 
cells. These mediators are responsible for allergic symptoms such as 
erythema, edema, increased vascular permeability, smooth muscle 
contraction and increased mucus secretion (410). The mast cell 
mediator such as histamine, PGD2 and LTC4 contributes to asthmatic 
symptoms, causing bronchoconstriction, mucus secretion and 
respiratory mucosal edema.

It should be emphasized that allergic reactions are complex and 
multiphasic comprising of both acute and chronic outcomes. In later 
episodes, proinflammatory mediators secreted by mast cells induce 
the recruitment of eosinophils, basophils, and T cells to the sites of 
inflammation (410–412). The late phase of the allergic reaction is 
followed by a chronic phase which is associated with persistent 
inflammation, tissue remodeling and fibrosis. These phases are 
prevalent in allergic asthma, rhinitis, and atopic dermatitis (413–415).

It is noteworthy that mast cells are also activated through 
IgE-independent mechanisms in the initial phases of an allergic 
response. Existing evidence suggests that serine proteases can directly 
activate mast cells (416, 417). In addition, a multitude of agonists 
including complement, neuropeptides, cytokines, stress hormones and 
radiocontrast chemicals can activate mast cells directly (418–421).

As described earlier, FceRI cross-linking with polyvalent antigens 
is the primary component initiating allergic responses. The 
uncontrolled and persistent mast cell activation can lead to life 
threatening conditions such as anaphylaxis and chronic inflammatory 
diseases like asthma. Therefore, many recent therapeutic strategies are 
aimed at targeting this pathway to inhibit mast cell degranulation and 
mediator release (422).

7. Mast cells and atherosclerosis

The pathogenesis of atherosclerosis involves endothelial cell 
damage, persistent inflammatory response, increased expression of 
adhesion molecules and accumulation of a variety of cell types (423–
426). There is ample evidence in the literature to demonstrate the role 
of mast cells in vascular inflammation and atherosclerosis progression 
(2, 57, 87, 120, 220, 221, 231, 236, 237, 427, 428). Pro-inflammatory 
and anti-inflammatory substances released by mast cells (175–178) are 
important modulators of vascular homeostasis particularly in relation 
to atherosclerosis and cardiovascular diseases (115, 116, 118, 120, 124, 
134, 136–139, 429–433). Pro-inflammatory activation of vascular 
endothelium by mast cell mediators, cytokines such as TNF and IL1-β, 
bacterial cell wall components, viruses, and thrombin can induce local 
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thrombosis, endothelial production of cytokines, loss of vessel barrier 
function, and enhanced leukocyte adhesion. Such chronic or 
subclinical inflammatory activation of the endothelium is a part of 
host defense mechanisms, and its dysfunctional response leads to early 
events in the onset and progression of atherosclerosis (434, 435).

7.1. Mast cells as mediators of inflammation 
during the initial stages of atherosclerosis

Mast cells play a critical role in the complex process of immune 
response during acute and chronic inflammatory states and they are 
implicated in the progression of atherosclerosis (59, 87, 217, 231, 236, 
237, 423–426, 436). The adventitia of coronary arteries of patients with 
atherosclerotic plaques contain increased number of mast cells (57, 
120, 231, 427, 437). Histological studies have demonstrated several 
hundred-fold increase in the number of activated mast cells in the 
atherosclerotic plaque rupture regions of coronary arteries. Mast cells 
in degranulated state were considered to have already undergone 
activation (438). Besides the adventitial layer, epicardial adipose tissue 
around the coronary artery also contains increased number of mast 
cells in CAD patients compared to controls (439). Increased number 
of mast cells were reported in the adventitia of the thrombosed veins, 
in vicinity of the vasa vasorum (440). Mast cells are considered, at least 
partially, to contribute to thrombosis through histamine release and 
by stimulating endothelial activation (441).

Mast cell granules have been identified within endothelial cells in 
vivo (442) and are known to cause proliferation of human 
microvascular endothelial cells (443). Furthermore, mast cell granule 
remnants have been shown to bind to low-density lipoproteins (LDL) 
and enhance their uptake by macrophages leading to the development 
of foam cells (236, 237).

7.2. A dual role for mast cells in 
infection-induced inflammation

A potential role for infection in the development of 
atherosclerosis has been considered for several decades. The first 
experimental evidence for infection-induced atherosclerosis was 
demonstrated in chickens using the herpes virus model (444). Later, 
many infectious agents were found to be  associated with 
atherosclerosis. Interest in this topic has re-emerged because of 
several observations (445–451).

Vascular endothelial cells are critical targets for microbial 
pathogens and their activation by LPS results in the production of 
various inflammatory cytokines, chemokines, and cell adhesion 
molecules. The role of mast cells in these processes was demonstrated 
by a synergistic enhancement of LPS/LTA-induced production of 
IL-6 and IL-8 production by endothelial cells (48, 239). These 
amplifying effects have been shown to be due to histamine-induced 
overexpression of active TLR2 and TLR4 on endothelial cells (48). 
Furthermore, in a follow-up study, we  demonstrated that LPS 
induces the expression of H1 receptor in endothelial cells (50). 
Collectively, these bidirectional effects of histamine and bacterial cell 
components lead to amplified inflammatory responses in the 
vascular endothelium via upregulation of the expression and TLR2, 
TLR4 and H1 receptors. Therefore, persistent infections together 

with mast cell degranulation provide ideal environments for the 
progression of atherosclerosis.

It is well-recognized that the immune response to bacterial 
products may recruit and sensitize inflammatory cells including mast 
cells, to potentiate localized inflammation. Microorganisms such as 
cytomegalovirus, Chlamydia pneumoniae and Helicobactor pylori are 
found in atherosclerotic lesions (426, 452, 453). The relationship 
between infection and inflammation to atherosclerosis has been 
further strengthened by the recognition of C. pneumoniae in patients 
with the disease (454–456). C. pneumoniae, which localizes in human 
atheroma, may contribute to inflammation during atherogenesis by 
activating endothelial cells, smooth muscle cells and macrophages 
(457–460). These findings are consistent with the risk of myocardial 
infarction and stroke observed in patients with systemic and 
respiratory tract infections (461). Therefore, it can be postulated that 
a cooperative action of bacterial products and mast cell mediators may 
amplify endothelial cell activation and progression of atherosclerosis.

7.3. Mast cells and inflammation linked to 
changes in microvessel integrity and, 
plaque growth and disruption

The development of atherosclerosis involves highly coordinated 
involvements of macrophages, mast cells and subsets of T cells (462–
465). Mast cells strategically reside near microvessels, but very few are 
localized in the vascular intima. In contrast, the adventitia is densely 
populated with mast cells (466, 467). In conditions of persistent 
vascular inflammation and onset of atherosclerosis progression the 
mast cell population increases in the adventitia. Whether the increased 
mast cell population in the plaque region promotes atherogenesis or 
does it enhance plaque stability or both, is an open question. However, 
the available reports suggest that mast cells promote vascularization 
in atherosclerotic plaques by providing angiogenic factors such as 
VEGF-A and β-FGF as well as other proangiogenic mediators like 
heparin, tryptase and chymase (468, 469). Because neovascularization 
and vasodilation can improve oxygen supply to the affected hypoxic 
areas of the plaque, this process can stabilize the atherosclerotic plaque 
(470). It should be emphasized that mast cell proteases can degrade 
basement membranes of microvessels in the plaque causing 
intraplaque hemorrhage and plaque rupture (463).

Mast cells migrate into the plaque by the influence of chemokine 
CCL-1 present in the plaque, and CCR-2 expressed on the mast cell 
surface (217, 471). An increased number of tissue mast cells was 
suggested to be associated with thrombus formation mast cells (437). 
Mast cells in atherosclerotic plaques may also contribute to 
atherothrombosis through the formation of DNA extracellular traps 
(267, 472). Thus, the effects of activated mast cells in the 
neovascularized regions of atherosclerotic plaques appear to be both 
protective and harmful. This might be due to the unique characteristics 
of the mast cell to differentiate into different phenotypes based on the 
microenvironment. In this regard, mast cell mediators have been 
shown to play protective roles via immune homeostasis in a mouse 
model of systemic vasculitis (473).

Upon degranulation, mast cells release histamine and matrix-
degrading proteases, which can cause microvessel leakage and rupture, 
leading to intraplaque hemorrhage. Mast cell activation during the 
progression of atherosclerosis has been shown to increase plaque size 
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in the brachiocephalic artery of apoE-deficient mice (221). This 
response was prevented by administering cromolyn, a mast cell 
stabilizing agent. Role of mast cells in the progression of atherosclerosis 
has been further confirmed by findings that mast cell deficiency 
attenuated the development of atherosclerotic plaque in both LDL 
receptor-deficient LDLr−/− /KitW-sh/W−/sh mouse model (87) and apoE-
deficient apoE−/−/KitW-sh/W−/sh mouse model (436).

The work summarized in this section supports a major role of 
mast cells in vascular inflammation, progression of atherosclerosis and 
plaque rupture. On the other hand, mast cells can exert protective 
effects in other vascular diseases such as systemic vasculitis. We believe 
that systemic vascular changes influence other organs. Tissue-specific 
resident mast cells participate in response to systemic vascular changes 
through sensing inflammation and then participate in the response 
mounted distally.

8. Mast cells mediate vascular 
inflammation caused by microbial 
infection and lifestyle choices such as 
cigarette smoking

Cigarette smoke extract-treated mast cells induce macrophage 
infiltration and M2 polarization (474). Recent studies have shown that 
cigarette smoke affects mast cell development and their response to 
activation in a TLR4-independent manner. Cigarette smoke attenuates 
the granularity and expression of surface c-kit and FcεRI in maturing 
mast cells resulting in decreased degranulation and release of Th1 and 
Th2 cytokines upon stimulation (475). Cigarette smoke induces the 
expression of chemokines and serine protease member S31 in mast 
cells (474).

Cigarette smoke increases susceptibility to bacterial infection and 
infection-related mortality among smokers (476–478) and mast cells 
respond to both cigarette smoke and microbial toxins. Since both 
endothelial cells and mast cells express TLRs that are activated by 
microbial toxins (48, 50, 479), pro-inflammatory constituents of 
cigarette smoke create conditions favorable for endothelial activation 
and mast cell degranulation. As mentioned previously, histamine 
activates endothelial cells via H1R (48, 436). These observations led 
us to propose that cigarette smoke amplifies activation of endothelial 
cells and inflammation through H1R-TLR2/4-COX2 axis (480). Thus, 
our results indicate a synergistic effect of cigarette smoke and the 
bacterial toxin LPS on endothelial cells in the presence of histamine.

9. Mast cells and viral infection with 
special reference to severe acute 
respiratory syndrome 
coronavirus-2 (SARS-CoV-2)

Research on the role of mast cells in viral infections is relatively 
new compared to the extensive work on bacterial infections and 
bacterial toxins. Viral infections are associated with mast cell-
mediated aberrant inflammatory response, vascular leakage, and 
fibrosis (479, 481). Mast cells participate in host defense against 
viruses recruiting CD8+ T cells, which produce IFN-α and IFN-β. 
Dendritic cells function as antigen presenting cells and mast cells 
support dendritic cells for T-cell activation in adaptive immunity 

(321). Thus, while some of these actions are directly mediated by 
them, mast cells may also prompt or tune other innate, adaptive, or 
structural cells to engage in physiological actions. Influenza A virus 
infection was shown to activate mast cells leading to the release of 
histamine, proteases, leukotrienes, inflammatory cytokines, and 
antiviral chemokines (482). HIV-1 viral infection-mediated 
immunosuppression has been found to be linked to mast cell-released 
histamine (483).

The recent pandemic caused by SARS-CoV-2 appears to primarily 
affect the dense capillary network in the lungs causing high morbidity 
and mortality. Published data suggest a role for mast cells in the 
pulmonary complications associated with SARS-CoV-2 infection. 
Hyperactivation of proinflammatory cytokines [‘the cytokine storm’] 
is detected in nearly 20% patients with COVID-19 who experience a 
severe course of the infection for reasons [s] not well understood. 
Similar cytokine storms also characterize a multisystem disorder 
associated with idiopathic MCAS affecting approximately 17% 
population (301, 399). In line with that, higher numbers of mast cells 
were detected in the lungs of patients who died of COVID-19 
infection (484).

SARS-CoV-2-triggered MC degranulation leading to alveolar 
epithelial inflammation and lung injury has been reported in ACE-1 
humanized mice and rhesus macaques (485). Several molecules 
expressed/released by mast cells may contribute to the interaction 
between mast cells and SARS-CoV-2. Mast cells express the surface 
angiotensin converting enzyme 2 (ACE2) receptor of the renin-
angiotensin system that is considered to be a candidate receptor for 
SARS-CoV-2 binding to cells (486, 487). A role for histamine released 
by mast cells in lung inflammation associated with SARS-CoV-2 
infection was proposed almost immediately after the outbreak of the 
COVID-19 pandemic (75). Later, a report showed that histamine 
signaling through H2 receptor was essential for SARS-CoV-2 spike 
protein-mediated ACE2 internalization in endothelial cells (488). 
Mast cell-derived serine proteases, e.g., transmembrane serine 
protease 2 (TMPRSS2) facilitate the priming of the corona spike 
protein, and tryptase also has a role in SARS-CoV-2 infection (489, 
490). Tryptase levels have been found to be  associated with the 
severity of COVID-19 (491, 492). Tryptase secretion from mast cells 
activated via complement and IgE-dependent pathways is much 
higher compared to their direct activation via Mas-related G Protein 
coupled receptor X2 (MRGPRX2) (493). Tryptase hast been known 
to activate PAR2 on fibroblasts and induce collagen synthesis, 
fibroblast proliferation, and migration, airway remodeling/lung and 
development of fibrosis (494, 495). Although a direct link between 
mast cell proteases and matrix degrading metalloproteases (MMP) in 
COVID-19 remains to be  established, elevated levels of plasma 
MMP2 and MMP9 have been shown to be  associated with the 
severity and mortality of patients with COVID-19 (496). MMP2 and 
MMP9 were found to facilitate viral entry into the cell and were 
postulated to have a role in cytotoxicity of the virus and outcome of 
the disease (497). Increased MMPs (MMP8, MMP9, and MMP14) 
and matrix degradation in the lungs of mice infected with SARS-
CoV-2 have been reported (497, 498). In support of activation of 
MMPs by tryptase, mast cell tryptase has been shown to activate lung 
MMP1 from pro-MMP1  in asthma and increase disease 
severity (499).

Aside from eicosanoids and other mast cell-released molecules, 
IL-1 is uniquely positioned to cause tissue damage due to its broad 
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spectrum of biological effects and role in both innate and acquired 
immunity. Additionally, IL-1 induces multiple cytokines/chemokines 
in both macrophages and mast cells. Release of IL-1 following SARS-
CoV-2 infection increases the levels of TNF, IL-6, and other cytokines. 
IL-1 also induces upregulation of nitric oxide, prostaglandins, and 
TXA2. Thus, IL-1 may be responsible for the ‘cytokine storm’ and 
inflammation, lung disease and death. Anti-IL-1 agents may be  a 
valuable new line of treatment for SARS-CoV-2. In this regard, anti-
inflammatory effects of IL-37, IL-1Rα are being studied to neutralize 
the effects and levels of IL-1 (75, 76).

Earlier studies have shown that, in addition to activation of 
monocytes/macrophages, dendritic cells, T cells, mast cells, and 
neutrophils, and the induction of cytokine storm in the lung, 
COVID-19 also affects other cells including neurons, glial cells, and 
endothelial cells thus causing neuroinflammation and psychological 
stress (500). A recent report showed the presence of CD117+ cells 
and IL-4-expressing cells in perivascular and alveolar septa that 
provide the interface between capillaries and the environment for gas 
exchange in the lungs in post-mortem biopsy samples of COVID-19 
patients. The number of mast cells found in these biopsies were 
higher than previously reported in samples collected from patients 
with pandemic H1N1-induced pneumonia. Resulting upregulations 
of chemokine/cytokines cause alveolar injury and immune-
thrombosis (484). However, it remains to be proven that endothelial 
dysfunction due to hyperactive mast cells results in interstitial edema 
in the alveolar septa triggering diffusion of pro-coagulative plasma 
factors leading to fibrin-dependent generation of the hyaline 
membrane. It is also noteworthy, that abnormally high mast cell 
activation has been observed in ‘long COVID/post-COVID 
syndrome’ where some patients experience lasting effects of SARS-
CoV-2 infection in different organs (501, 502). A perspective on the 
involvement of mast cells in SARS-CoV-2-mediated organ damage is 
illustrated in Figure 3.

10. Mast cells as effectors for 
integrating systemic inflammation, 
neuroinflammation, and 
neurodegenerative diseases

In the brain, mast cells are mostly localized in the immediate 
vicinity of blood vessels and cerebrospinal fluid (CSF)-containing 
spaces (503) notable in the hippocampus and thalamic hypothalamic 
region, 3rd ventricle, choroid plexus and innermost meninges 
(leptomeninges) (504–508). The number of mast cells in the human 
brain is low compared to the rodent brain and these cells are found 
mostly along meninges and perivascular regions (509–511). Studies 
using rat and human brain tissues show that majority of mast cells 
(>95%) localize on the abluminal side of blood vessel (brain side) 
during development (507, 512). However, peripherally injected mast 
cells were also found to enter the basal lamina (matrix) of blood 
vessels and localize close to astrocyte (astroglial) processes and 
microglia (506, 513, 514). Such localization allows mast cells to 
perform their role as transducers of signals and as first line defenders 
(515). Activation and proliferation of mast cells due to injury-induced 
derangement of blood–brain barrier in traumatic brain injury (TBI) 
suggests that mast cells may be  potential targets for therapeutic 
approaches (516).

10.1. Mast cell-microglial interactions

Interactions between mast cells and microglia are a subject of 
growing research interest because unique structural and functional 
features of microglia allow mast cells to influence both physiological 
functions as well as pathological changes (511, 517). Structural and 
molecular features enable reciprocal interaction between mast cells 
and microglia (518) discussed under the following three 
categories (a-c).

10.1.1. Reciprocal interaction between mast cells 
and microglia

(a) P2 channel/receptor activation by ATP increases IL-33 release 
in activated microglia (by PAMPs via TLRs). In turn, IL-33 binding to 
mast cells induces IL-6, IL-13 and MCP-1 secretion that modulates 
microglial function (519–521). (b) activation of TLR2/4 induces 
phagocytosis and production of IL-6 and CCL5  in microglia that 
induce TLR2/4 expression in mast cells. In turn, activation of 
TLR2/4  in mast cells upregulates cytokine/chemokine formation. 
CCL5/RANTES activates microglia and promotes immune cell 
movement to the location of injury (522, 523). (c) Mast cell tryptase 
activates PAR2 in microglia causing increased synthesis and release of 
BDNP, increased release of pro-inflammatory molecules (IL-6 and 
TNF) by upregulating MAPK-NF-kB. In turn, IL-6 and TNF from 
microglia upregulate PAR2 on mast cells (524).

10.1.2. Mast cells and microglia as dual targets of 
inflammatory molecules/conditions

(a) Binding of chemokine (CXCL12) to its receptor (CXCR4) 
induces microglial activation and mobility under ischemia/hypoxia. 
CXCL12 is also a chemotaxin for mast cells (525). (b) Co-culture of 
mast cells with glial cells caused increased synthesis of CCL2 and 
IL-33 by mast cells and acceleration of Aβ oligomerization by 
microglia. CCL2 (monocyte chemoattractant protein-1 or MCP-1), 
and its receptor CCR2 are expressed on monocytes. Several recent 
studies suggest increased CCL2 in Alzheimer’s disease (AD) (516). 
Elucidation of the significance of CCL2-CCR2 axis in AD requires 
further studies. (c) Neuroinflammation induces release of complement 
protein C5a and upregulation of C5aR in microglia. Similarly, 
activation of mast cells is associated with C5aR upregulation attracting 
C5a peptides. Both cell types show crosstalk between C5a and 
TLR4 (526).

10.1.3. Activated mast cells modulate microglial 
function

(i) Experimental release of granules from mast cells upregulates 
histamine receptors, MAPK, AKT proteins and cytokine production 
in hypothalamic microglia (511, 527). (ii) Mast cell-released histamine 
elicits a pro-inflammatory response in quiescent microglia through 
H1 receptor and an anti-inflammatory response in activated microglia 
through the H4 receptor (528, 529).

10.2. Significance of mast cell-neural cell 
interactions in CNS pathophysiology

Neuroinflammation drives the processes leading to acute as well 
as progressive neurodegeneration. A growing number of studies 
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suggest that neuroinflammation is not isolated from peripheral 
conditions and that mast cells may play a significant role through their 
interaction with neurons, astrocytes, and glia, particularly with 
microglia (see above).

Increased numbers and activation of brain mast cells are 
associated with various neuropathological changes starting with 
increased blood brain permeability and leading to neurodegenerative 
diseases. In addition, their activation in response to physical injury 
and inflammatory conditions, the role of mast cells in the 
pathophysiology of neuropsychiatric conditions is also a subject of 
growing interest (530). Due to their ability to respond in a very short 
time, mast cells have been considered as potential ‘first responders’ 
(531). The following outlines the significance of mast cells in selected 
neuropathological conditions including TBI, stroke, Alzheimer’s 
disease, and certain neuropsychological disorders.

10.2.1. Traumatic brain injury (TBI), hypoxia, 
ischemia, and intracranial hemorrhage

Neuroinflammation is associated with TBI that may lead to 
neurodegenerative changes often observed in AD-like dementias. 
Tissue injury due to hypoxia, ischemia (stroke) and intracranial 
hemorrhage also results in mast cell accumulation and degranulation 
with common features. Persistent inflammation due to moderate and 
severe TBI causes progressive tissue damage and has been linked to a 
greater susceptibility to AD-like dementia (532–534). Long term 
effects of TBI in humans and mouse models include cognitive deficit, 
deposition of amyloid precursor protein (APP), amyloid-beta peptide 
and tau protein intracellular neurofibrillary tangles (535, 536).

Immediate increases in the number and degranulation of mast 
cells in the injured brain area have been demonstrated in experimental 

models. Mast cell degranulation were shown to start immediately after 
TBI in a mouse model (537). Mast cell numbers increase rapidly along 
with the release of mediators including histamine, heparin, 
leukotrienes and tryptase and changes in histamine receptors 
(decreased H1, H3) and superoxide dismutase (SOD) in the brain 
(thalamic region) after TBI in rats (538). Persistent high number and 
degranulation of mast cells in the dura in a mouse model was 
correlated with post-traumatic headache in TBI patients (539).

Ischemia/hypoxia involve increased numbers and activation of 
mast cells indicated by increased brain histamine levels and increased 
cytokines (540, 541). These changes result in increased blood brain 
permeability (542, 543), interaction with microglia and influx of 
peripheral leukocyte leading to prolonged inflammation and 
consequent demyelination (508, 544, 545). Changes in the blood brain 
barrier characteristics are invariably linked to its constituents, namely 
endothelial cells and astrocytes (546). Due to shared tissue changes 
and injury, mast cells are considered as targets for treating TBI, 
hypoxia-ischemia, ischemic stroke, and intracranial hemorrhage (547).

10.2.2. Alzheimer’s disease (AD)
Inflammation in Alzheimer’s disease has been a subject of ongoing 

investigation and the role of mast cells in neuroinflammatory 
processes of AD continues to be studied (548–550). Higher numbers 
of tryptase positive mast cells and metallothionein positive astrocytes 
have been observed near amyloid plaques in patients with AD (551). 
Likewise, microglial clusters around plaques have been reported in 
human specimens as well as in mouse models (552). Glial clusters 
secrete proteins and chemoattractant for mast cells (552). However, 
the idea of mast cells being ‘first responders’ suggests that these cells 
reach the plaque site and activate microglia and other cells (553). In 

FIGURE 3

Schematic representation of the potential role of mast cells in SARS-CoV-12- induced tissue/organ damage. Spike protein of SARS-CoV-2 binds to ACE2 
receptor on mast cells to cause degranulation. The hyperactive mast cells-derived granules contain various bioactive molecules that affect organ systems 
as mentioned. Notably, mast cell activation is now considered to be a key mechanism involved in various organ-related symptoms indicating long COVID.
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either case, as discussed above, a reciprocal interaction between the 
two cell types is clear. In a rodent model (APPswe/PS1dE9 mice) of 
AD, increased numbers of mast cells were reported in the 
hippocampus and cerebral cortex even before amyloid plaques were 
observed. This led the authors to hypothesize that mast cells act as 
early sensors of amyloid peptide and facilitate mobilization of other 
cells to the site of inflammation promoting the onset and progression 
of AD (554). Cytokines including TNF, IL-1β, and IL-6 released by 
mast cells can contribute to toxic neuroinflammation as well as to 
cyto-protective processes determined by their levels and duration of 
expression. These cytokines may affect tight junction proteins 
resulting in altered blood brain barrier permeability and mobilization 
of circulating pro-inflammatory cells and molecules. Attenuation of 
cognitive decline by tyrosine kinase inhibitor masitinib that targets 
mast cell through the receptor c-kit and Lyn tyrosine kinase was 
concluded to indicate a role of mast cell-released mediators in 
progression of AD (555, 556).

10.2.3. Anxiety, depression, and behavioral 
disorders

Cross-sectional human studies showed association of food 
allergies with anxiety (557) attention deficit and hyperactivity disorder 
(558) and anorexia nervosa (559, 560). Analysis of data on food 
allergies in children showed association of these conditions with 
changes in emotions and behavior. Using a mouse model of food 
allergy authors showed increased cortisone levels, changes in brain 
areas associated with emotional and affective behavior (anxiety and 
stress responses) that were partially mediated by C-sensitive afferent 
inputs and mast cells (561). Increased incidence of headache 
(migraine) anxiety, depression, and cognitive changes in human 
subjects have been reported to associate with mastocytosis (562, 563).

11. Concluding comments and 
perspectives

Mast cells are recognized for their role in maintaining immune 
homeostasis in health as well as in the pathobiology of many diseases. 
They are strategically residing throughout the body in almost all 
organs. Most of the published work has focused on their roles in skin, 
connective tissues, blood vessels, mucosa, lungs, and heart. Mast cells 
function as a cellular interface between the external and internal 
environments and initiate and coordinate innate and adaptive immune 
responses by interacting with a variety of cell types. The ability of the 
mast cell to act both as a sensor and responder while maintaining 
flexible mobility and adaptability enables this “master cell” to play a 
leading role in the complex process of immune homeostasis. In this 
article we highlighted selected functions of the mast cell to describe 
how these functional alterations affect the pathobiology of diseases.

Our work has been focused on understanding the mechanisms of 
mast-cell mediated immune alterations in cardiovascular diseases. In 
this regard, the synergy between mast cells and endothelial cells and 
the suppressive effects of mast cells on macrophage functions are 
intriguing findings. We have coined a novel term “H1R-TLR-COX2 
axis” to describe these interactions. Chronic or sub-clinical infections 
and lifestyle choices such as cigarette smoking add additional 
dimensions to innate immune upregulation in cardiovascular diseases.

We also wish to bring attention to the role that mast cells play in 
angiogenesis which may have implications for tissue growth and 
wound healing. A brief review of their role in tissue repair processes 
points to future success of the ongoing efforts in exploring the 
potential using mast cells as target for developing novel treatments for 
diabetic wounds. On the flip side, inhibition of the pro-angiogenic role 
of mast cells is being explored for suppressing tumor growth. In this 
regard, we believe there will be much to gain by understanding the 
selective secretion of mediators by mast cells.

We hope that discussion on the role of mast cells as ‘first 
responders’ in neuroinflammation will stimulate greater interest in the 
field of pathobiology of neurological diseases. The significant influence 
of mast cells on both sides of the blood–brain barrier adds a new 
dimension to the field of developing therapeutic strategies for systemic 
vascular biology dysfunctions in cardiovascular and 
neurovascular diseases.

We believe that mast cells stand in the forefront of candidates for 
future work for exploring the impact of immunomodulatory 
dysfunctions in health and disease. It is nature’s rule that there are no 
“Good Guys” or “Bad Guys,” but it is the environment that influences 
the switch. Although a great amount of information has been gathered 
regarding the physiological role of mast cells, much remains to 
be learned about their participation as the ‘good guys’. Perhaps a better 
understanding at the epigenomic level will enable a greater utilization 
of their anti-inflammatory functions at the interface of tissues and 
the vasculature.
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