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Objectives: To explore an intelligent detection technology based on deep 
learning algorithms to assist the clinical diagnosis of distal radius fractures (DRFs), 
and further compare it with human performance to verify the feasibility of this 
method.

Methods: A total of 3,240 patients (fracture: n =  1,620, normal: n =  1,620) were 
included in this study, with a total of 3,276 wrist joint anteroposterior (AP) X-ray 
films (1,639 fractured, 1,637 normal) and 3,260 wrist joint lateral X-ray films (1,623 
fractured, 1,637 normal). We divided the patients into training set, validation set 
and test set in a ratio of 7:1.5:1.5. The deep learning models were developed using 
the data from the training and validation sets, and then their effectiveness were 
evaluated using the data from the test set. Evaluate the diagnostic performance 
of deep learning models using receiver operating characteristic (ROC) curves and 
area under the curve (AUC), accuracy, sensitivity, and specificity, and compare 
them with medical professionals.

Results: The deep learning ensemble model had excellent accuracy (97.03%), 
sensitivity (95.70%), and specificity (98.37%) in detecting DRFs. Among them, the 
accuracy of the AP view was 97.75%, the sensitivity 97.13%, and the specificity 
98.37%; the accuracy of the lateral view was 96.32%, the sensitivity 94.26%, and 
the specificity 98.37%. When the wrist joint is counted, the accuracy was 97.55%, 
the sensitivity 98.36%, and the specificity 96.73%. In terms of these variables, the 
performance of the ensemble model is superior to that of both the orthopedic 
attending physician group and the radiology attending physician group.

Conclusion: This deep learning ensemble model has excellent performance in 
detecting DRFs on plain X-ray films. Using this artificial intelligence model as a 
second expert to assist clinical diagnosis is expected to improve the accuracy of 
diagnosing DRFs and enhance clinical work efficiency.
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Introduction

Distal radius fracture (DRF) is one of the most common fractures, 
accounting for about 20% of all fractures and about 17–25% of 
emergency cases (1, 2). DRFs are more common in middle-aged and 
elderly patients with osteoporosis, typically resulting from low-energy 
injuries like falls, while young patients are mostly caused by high-
energy injuries (3). With the increasing severity of aging, the incidence 
of the disease also shows an increasing trend year by year (4).

As a fast and inexpensive imaging tool, X-ray examination is the 
preferred method for evaluating wrist injuries (5). However, in 
emergency departments or outpatient clinics, non-orthopedic 
surgeons or young radiologists are often the first doctors to evaluate 
X-rays and need to make urgent decisions. Unfortunately, 
misdiagnosis (especially missed fractures) is common in these 
scenarios due to factors such as heavy workloads, fatigue, and lack of 
experience (6).

If patients’ fractures are not diagnosed in a timely manner, it may 
lead to delayed treatment, malunion and osteoarthritis, which will 
seriously affect their functional recovery, reduce their ability to live 
independently, and lower their quality of life (7). Especially for elderly 
patients, due to poor physical fitness and decreased body tissue 
function, if fractures do not get treated in time, the prognosis is more 
likely to be adversely affected (8). Therefore, accurate and efficient 
assistance technology for automated fracture detection has become a 
focus of attention.

Deep learning is a machine learning method, which realizes 
automatic feature extraction and expression by constructing a multi-
layer neural network, so as to complete tasks such as data classification 
or regression (9, 10). Compared with traditional machine learning 
methods, deep learning does not require manual selection of features. 
Instead, it automatically learns features through neural networks, 
which greatly reduces the difficulty and complexity of feature 
engineering (11, 12). In recent years, with the progress in various 
aspects such as big data, high-performance computing, and algorithm 
optimization, deep learning has become a leading machine 
learning technology.

Image segmentation, object detection, and task classification 
based on deep learning technology have been successfully applied in 
the field of medical images, bringing new opportunities for the 
establishment of computer-aided medical imaging diagnosis systems. 
Deep learning techniques have been widely used in image analysis for 
a variety of diseases, including the detection of skin cancer, diabetic 
retinopathy, abnormal thyroid tissue abnormalities, and lung nodules 
(13–16). In recent years, deep learning has also been successfully 
applied to the identification and severity assessment of bone and joint 
lesions, such as knee joint lesions, osteoarthritis, and spinal 
degenerative lesions. In addition, some deep learning-based models 
have been used to assess bone age (17). Recently, more and more 
studies have shown that artificial intelligence models based on deep 
learning have great potential in fracture recognition, classification, 
segmentation, and visual interpretation (18–20). These model can 
significantly improve the accuracy of diagnosis, treatment, and 
prognosis evaluation, indicating its enormous potential applications 
in fractures.

In this study, we constructed a deep learning model to diagnose 
distal radius fractures using wrist AP and lateral X-ray images. (1) To 
train and evaluate the performance of DRF diagnosis using the 

first-stage model Faster R-CNN, the two-stage model RetinaNet, and 
the multi-stage model Cascade RCNN. (2) To build an expert-assisted 
system based on deep learning algorithm ensemble model through 
algorithm fusion to further improve the diagnostic accuracy of DRF 
and reduce misdiagnosis and missed diagnosis. (3) To compare the 
difference in diagnostic performance between the deep learning 
integrated model and clinical doctors. The results of this study further 
confirm the feasibility of deep learning-based assisted reading 
technology in clinical diagnosis. This technology is expected to 
provide a new, accurate and efficient aid for the clinical 
diagnosis of DRF.

Methods

Patients

This study was approved by our institutional ethics committee 
(IRB No.0840), and the requirement for informed consent was waived 
due to the retrospective nature of the study and negligible risks. All 
methods of this study were conducted in accordance with the 
Declaration of Helsinki.

Eligible patients were screened from the database of Union 
Hospital Affiliated to Tongji Medical College of Huazhong University 
of Science and Technology. Ultimately, 1,620 patients with DRFs who 
received treatment at the hospital from January 2014 to January 2023 
were included. The inclusion criteria for patients are: (1) age over 
18 years old; (2) diagnosed with DRF; (3) received X-ray examination. 
The exclusion criteria for patients include: (1) age under 18 years old; 
(2) old fractures, pathological fractures, and re-fractures after internal 
fixation; (3) foreign objects, such as plaster, jewelry, and clothing, that 
affect the final image judgment. Bilateral distal radius fractures were 
not our exclusion criteria. Furthermore, 1,620 patients without 
fractures whose diagnosis was sprain or carpal tunnel syndrome were 
included. Finally, all patients included in the study were divided into 
training set, validation set and test set according to the ratio of 
7:1.5:1.5. The detailed inclusion process is shown in Figure 1.

Diagnosis and annotation

The diagnosis of DRFs were mainly based on patients’ 
anteroposterior (AP) and lateral radiographs of wrist joint and 
combined with patients’ medical history. In some cases, computerized 
tomography (CT) were also used for a more comprehensive analysis. 
Two chief physicians, one from the orthopedics department and the 
other from the radiology department, with over 15 years of experience 
each, collaborated to make the diagnosis. In the case of disagreement, 
another chief orthopedic expert with 20 years of clinical experience 
would discuss with the two physicians and reached a final conclusion.

All obtained wrist joint radiographic images were saved in high-
quality Joint Photographic Experts Group (JPEG) format. And, in 
order to protect the privacy of patients, all personal information 
(including name, gender, age and identity) on X-rays were hidden in 
the final obtained image.

The region of the distal radius was drawn as a region of interest 
(RoI) using the rectangle tool, and was manually labeled according to 
the final imaging diagnosis (labels were divided into two categories: 
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fracture and normal). We  use the Labelme software package1 for 
manual labeling. Figure  2 provides a detailed illustration of our 
labeling process.

Date set

Finally, we extracted a total of 3,276 images of the distal radius 
X-ray AP positions (1,639 fractures and 1,637 normal) and 3,260 

1 https://github.com/wkentaro/Labelme

images of the distal radius X-ray lateral positions (1,623 fractures 
and 1,637 normal) from the Picture Archiving and Communication 
System (PACS) at Union Hospital, covering a period from January 
2014 to January 2023. A total of 16 lateral fracture radiographs 
were excluded because these images were taken in non-standard 
lateral position, possibly due to severe wrist pain that prevented 
standard positioning. These images were used for training, 
validation, and testing. There are a total of 2,296 AP view images 
in the training set (1,149 with fractures, 1,147 normal) and 2,283 
lateral view images (1,136 with fractures, 1,147 normal). The 
validation set contains a total of 491 AP view images (246 with 
fractures, 245 normal) and 488 lateral view images (243 with 

FIGURE 1

Flowchart of the entire research process.
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fractures, 245 normal). The test set contains a total of 489 AP view 
images (244 with fractures, 245 normal) and 489 lateral view 
images (244 with fractures, 245 normal). The detailed division 
process is shown in Figure 1.

Image processing

To improve the performance of object detection, we  need to 
preprocess the data. To be more specific, we scaled the input image to 
have a short edge of 800 pixels and adjust the size of the long edge 
proportionally. At the same time, each image has a 50% chance of 
being horizontally flipped, increasing the richness of the images. In 
addition, we  normalize the images and improve model training 
stability by converting the original images into a standard format 
through a series of transformations. The specific normalization 
parameters used are as follows: mean = [123.675, 116.28, 103.53] and 
std = [58.395, 57.12, 57.375].

Development of deep learning ensemble 
model

We chose three different types of deep learning models (Figure 3): 
one-stage RetinaNet (21), two-stage Faster RCNN (22), and multi-
stage Cascade RCNN (23). As a first-stage algorithm, RetinaNet 
directly classifies and regresses the entire image to generate object 
detection results, with features such as fast speed and low computational 
complexity. Besides, RetinaNet’s design also incorporates Feature 
Pyramid Network (FPN), which can effectively handle objects of 
different scales, further improving detection accuracy and robustness 
(24). Faster R-CNN’s workflow is mainly divided into two stages: 
regional recommendation and target classification. In the Region 
Proposal phase, a new neural Network structure called Region Proposal 
Network (RPN) is introduced, which generates candidate regions on 
the input image by sliding windows. In the target classification phase, 
each candidate box is converted to a fixed-size feature graph by RoI 
Pooling the RPN-generated candidate boxes, and then entered into a 

FIGURE 2

(A) Schematic diagram of labeling DRF AP radiograph, labeled as “fracture”; (B) DRF lateral radiograph, labeled as “fracture”; (C) Normal AP radiograph, 
labeled as “normal”; (D) Normal lateral radiograph, labeled as “normal”.

https://doi.org/10.3389/fmed.2023.1224489
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhang et al. 10.3389/fmed.2023.1224489

Frontiers in Medicine 05 frontiersin.org

full-connection layer classifier for target classification (25). Cascade 
R-CNN is a multi-stage model which includes three stages: candidate 
box generation, candidate box classification, and candidate box 
regression. In the first stage, Selective Search or other bounding box 
generation algorithms are used to generate a large number of candidate 
boxes. In the second stage, a cascade classifier method is adopted to 
cascade a series of classifiers together, with each classifier being stricter 
than the previous one, for further filtering of candidate boxes and 
selecting more accurate positive samples. In the third stage, a regression 
network is used to fine-tune the filtered candidate boxes to further 
improve detection accuracy (26).

Based on the three pre-trained models, we developed an ensemble 
model combining multiple deep learning algorithms to judge whether 
the input X-ray image of the distal radius is fractured or not. When at 
least two models considered fracture/normal, a joint diagnosis 
opinion was produced, and the average probability of fracture was 
calculated (Figure 4).

We used the Ubuntu 16.04 operating system2 to run the PyTorch 
deep learning framework in an environment equipped with NVIDIA 
V100 GPU (CUDA version 10.2, cuDNN version 7.6.5),3 and 32 GB 
of Video Random Access Memory (VRAM).

Evaluation of deep learning performance

An independent test set was used to test the performance of 
trained deep learning models and evaluate its ability to recognize 
fractures in X-ray images. Evaluated the diagnostic performance of 
the models in three types of radiographic images: AP + lateral view, 
AP view, and lateral view (Figure 5A), and assess the final clinical 
diagnosis results for the wrist joint unit (each wrist joint has one AP 
image and one lateral image) (Figure 5B). Different score probability 
thresholds were set for the trained deep learning model to draw the 
Receiver Operating Characteristic (ROC) curve, and the area under 
the curve (AUC) was calculated to evaluate the performance of the 

2 http://www.ubuntu.com

3 http://developer.nvidia.com

model. The optimal diagnostic score threshold of the model is set on 
the corresponding score threshold when Youden’s index reaches the 
maximum value. According to the optimal score threshold, the 
accuracy, sensitivity and specificity of the model were calculated to 
evaluate the performance of the deep learning models. Finally, the 
accuracy, sensitivity, and specificity of the ensemble model were 
calculated. To obtain point and interval estimators, we  used the 
bootstrap method to resample test date with 1,000 times on the test 
dateset; the mean accuracy, sensitivity, specificity, and 95% CI 
were computed.

Assessment of diagnostic performance by 
medical personnel

To evaluate the diagnostic performance of medical personnel, 
we  established an orthopedic diagnosis team consisting of three 
attending orthopedists and a radiology diagnosis team consisting of 
three attending radiologists. All the included orthopedic attending 
physicians have at least 3 years of experience in trauma orthopedics 
and possess professional X-ray image reading skills. Attending 
radiologists included had at least 3 years of professional experience in 
radiological diagnosis. None of the above physicians participated in 
data collection and labeling.

Participating physicians were informed to perform independent 
analysis and diagnosis of the data in the test set. Diagnostic tests were 
performed by shuffling the test set data using a randomization 
procedure.4 To ensure consistent conditions between the deep learning 
model and the physician, the physician was not informed of the injury 
mechanism and patient age during the entire process of test. In 
addition, in order to avoid any intra-group or inter-group influence, 
all participants were not informed the research plan and diagnostic 
tests were conducted separately.

Finally, we  calculated the average accuracy, sensitivity and 
specificity of each group of physicians in diagnosis and compared 
their performance with that of the deep learning model.

4 https://www.randomizer.org

FIGURE 3

The architecture of three different types detection frameworks: (A) The structure of RetinaNet; (B) The structure of Faster RCNN; (C) The structure of 
Cascade RCNN. “I” is input image, “conv” backbone convolutions, “pool” region-wise feature extraction, “H” network head, “B” bounding box, and “C” 
classification. In RetinaNet, “B0” is proposals in all architecutes. In Faster RCNN and Cascade RCNN, “B0” pre-defined anchor box.
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FIGURE 4

Deep learning ensemble model structure diagram.

FIGURE 5

Two detection modes of deep learning detection model (A) When inputting a single front view or lateral X-ray images, judge whether there is a fracture 
in the distal radius region according to a single radiograph; (B) When the AP and lateral X-ray images of the ipsilateral wrist joint of a patient are 
inputted at the same time, the comprehensive diagnosis concerning the distal radius region is made based on the diagnostic results of the two images. 
If any one of the anteroposterior or lateral images is diagnosed as fractured, the wrist joint is diagnosed as DRF; if no fractures are detected in both the 
anteroposterior and lateral images, the distal radius region is judged as unfractured.
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Statistical analyses

Continuous variables were presented as median [interquartile 
range (IQR)]. Categorical variables were expressed by counts and 
percentages. For the comparison of baseline characteristics among 
different datasets, the ANOVA test was used for continuous variables 
and χ2 test was used for categorical variables. Accuracy, sensitivity, and 
specificity were selected as diagnostic performances, and the 
corresponding 95% confidence intervals were estimated using 
bootstrapping with 1,000 bootstraps. The ANOVA test was used to 
compare diagnostic performances of ensemble model, orthopedists 
and radiologists. The bootstrapping was performed using packages 
“boot” of R 4.1.2 (The R Foundation for Statistical Computing, 
Vienna, Austria). Other statistical analyses were performed using SAS 
Statistics software (version 9.4, SAS Institute Inc., Cary, North 
Carolina, United  States). All statistical tests were two-sided, and 
p < 0.05 was considered statistically significant.

Results

Demographic data of patients

The age difference between the fractured and non-fractured groups 
was not statistically significant (p = 0.433), while there is a statistically 
significant gender difference between the two groups (p < 0.001). In 
addition, there were no significant differences in age (p = 0.619) or 
gender (p = 0.817) among the training set, validation set, and test set. 
Detailed statistical analysis results are provided in Tables 1, 2.

Performance of the deep learning models

After training, the algorithm is able to use the previously learned 
features to diagnose images in the test database. If the diagnosis result 

is DRF, a red rectangle will be displayed on the suspicious area and the 
predicted probability value will also appear (as shown in Figure 6).

Evaluated the deep learning diagnostic models with the test set, and 
the ROC curves of RetinaNet, Faster RCNN, and Cascade RCNN are 
shown in Figure 7. The AUC of RetinaNet for diagnosing fractures on 
the test set is 0.9706, with an AUC of 0.9780 for AP images and an AUC 
of 0.9631 for lateral images. The AUC of Faster RCNN for diagnosing 
fractures on the test set is 0.9658, with an AUC of 0.9761 for AP images 
and an AUC of 0.9556 for lateral images. The AUC of Cascade RCNN 
for diagnosing fractures on the test set is 0.9644, with an AUC of 0.9786 
for AP images and an AUC of 0.9500 for lateral images.

When the maximum value of Youden’s index is 91.41%, the 
corresponding optimal score threshold for RetinaNet is 0.71. When the 
maximum value of Youden’s index is 91.41%, the corresponding optimal 
score threshold for Faster RCNN is 0.65. When the maximum value of 
Youden’s index is 90.79%, the corresponding optimal score threshold for 
Cascade RCNN is 0.66. The detailed results of accuracy, sensitivity, and 
specificity diagnosed by three deep learning models are shown in Table 3.

Compared with RetinaNet, Faster RCNN, and CASCADE RCNN, 
the ensemble model performed better on the test set, with an accuracy 
of 97.03% (95.71–97.96%), a sensitivity of 95.70% (93.44–97.13%) and 
a specificity of 98.37% (96.73–99.18%). The ensemble model 
outperformed the individual models with higher accuracy and lower 
standard deviation (Figure 8). When the diagnostic performance of 
DRFs were counted in units of wrist joints, the accuracy, sensitivity, 
and specificity reached 97.55% (95.71–98.57%), 98.36% (95.90–
99.59%), and 96.73% (93.47–98.37%), respectively, all of which were 
superior to a single model (Table 3). The detailed results can be seen 
in the confusion matrix of Figure  9. We  therefore use this deep 
learning ensemble model for DRFs detection.

Performance of the medical personnel

The average accuracy, sensitivity, and specificity of the orthopedic 
attending physician group were 93.69% (91.89–94.99%), 91.94% 
(89.21–93.92%), and 95.44% (93.06–97.00%) respectively. The average 
accuracy, sensitivity, and specificity of the attending radiologist group 
were 92.53% (90.73–94.06%), 90.44% (87.43–92.55%), and 94.62% 
(92.24–96.33%) respectively. The data is shown in Table 4. Detailed 
diagnoses results of each physician are provided in the 
Supplementary materials.

Comparison of deep learning models and 
clinical physicians

The results of the ensemble model were compared with those of 
the clinician group. The results are shown in Table 5.

TABLE 1 Clinical information of included patients (Diagnosis-based 
classification).

Variables
Patients 
with DRF

(n  =  1,620)

Patients 
without 

DRF
(n =  1,620)

Total
(n  =  3,240)

p 
value

Age, median 

(IQR)

59 (51–67) 60 (51–69) 60 (51–67) 0.433

Sex, n (%)

Male 494 (30.49) 841 (51.91) 1,335 (41.20) <0.001

Female 1,126 (69.51) 779 (48.09) 1905 (58.80)

IQR, interquartile range.

TABLE 2 Clinical information of included patients (Divide according to the dataset).

Variables
Training set
(n  =  2,268)

Validation set
(n  =  486)

Testing set
(n  =  486)

Total
(n  =  3,240)

p value

Age, median (IQR) 60 (51–67) 61 (51–68) 59 (51–68) 60 (51–67) 0.619

Sex, n (%)

Male 939 (41.40) 201 (41.36) 195 (40.12) 1,335 (41.20) 0.871

Female 1,329 (58.60) 285 (58.64) 291 (59.88) 1905 (58.80)

IQR, interquartile range.
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FIGURE 7

ROC curves output by three deep models during testing: (A) ROC curve output by RetinaNet; (B) ROC curve output by Faster RCNN; (C) ROC curve 
output by Cascade RCNN. (Four digits after the decimal point are kept for this experiment to ensure data precision).

The ensemble model outperformed the orthopedic and radiologist 
groups in terms of diagnostic accuracy, sensitivity, and specificity. 
When collecting statistics on the wrist joint, the ensemble model still 
outperformed the performance of the orthopedic surgeon group and 
the radiologist group in terms of diagnostic accuracy, sensitivity, 
and specificity.

Discussion

The wrist joint is one of the most important joints in the body, 
with high frequency of movement, and a relatively high requirement 

for functional recovery if injured (2). The misdiagnosis or delayed 
treatment of DRFs can cause traumatic arthritis of the wrist joint, 
which can seriously affect the function of the hand. Especially for 
elderly people, the recovery after a bone fracture is relatively slow. If 
not diagnosed or treated in a timely manner, it may lead to adverse 
consequences such as weakness, deformity, shortening, stiffness, pain, 
and limited mobility of the wrist joint, thereby affecting the quality of 
daily life (3, 8). It can also have a certain negative impact on mental 
health, which may increase the psychological burden and anxiety of 
elderly patients, such as anxiety, depression, and loss of independence 
(4). Therefore, timely and accurate post-fracture diagnosis is crucial 
to the treatment and rehabilitation.

FIGURE 6

Part of output X-rays dignose results. The above figures show some of the output results in the test dataset. The algorithm used red rectangles to mark 
suspicious fractures and provided corresponding fracture prediction probability values.
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In this study, we constructed an ensemble model consisting of 
three different deep learning algorithms for the detection of DRFs. 
Our research confirmed that the trained and integrated model 
demonstrates excellent performance in distinguishing fractured or 
unfractured in the structure of the distal radius. The overall dignostic 
accuracy of the model has reached 97.03%, the sensitivity 95.70%, the 
specificity 98.37%. These results were better than the performance of 
orthopedic attending physicians and radiology attending physicians. 
In the diagnostic analysis of subdivided AP or lateral radiographs, it 

is also significantly better than the attending physicians in orthopedics 
and radiology. When using the wrist joint as a unit and simultaneously 
inputting two X-ray images of the AP and lateral positions for 
comprehensive diagnosis, the accuracy rate can reach 97.75%, with 
sensitivity and specificity of 98.36 and 96.73%, respectively, which is 
better than that of physicians in orthopedics and radiology.

Wrist X-ray examination in the AP and lateral views are the most 
commonly used imaging examination for diagnosing DRFs. However, 
the misdiagnosis of fractures in radiology is a common problem for 
non-specialist physicians or radiology resident doctors, especially in 
emergency environments, which can easily lead to extra harm or 
delayed treatment for patients (27). According to relevant studies, 
misdiagnosis of fractures accounts for 24% of harmful diagnostic 
errors in the emergency department, and misdiagnosis of hand and 
wrist fractures accounts for 29% of all misdiagnosed fractures (28). In 
addition, for patient admissions during night shifts, inconsistent 
imaging diagnosis opinions of fractures are more common, which 
may be related to non-expert reading and fatigue (29).

Deep learning is a branch of artificial intelligence that trains 
models by inputting data such as images, text, or sound, and enables 
models to learn to perform more complex classification tasks (30). 
Compared to traditional machine learning methods, deep learning 
has higher performance. In the field of medical image analysis, trained 
deep learning algorithms can simulate clinical doctors’ judgments and 
accurately detect fractures (31). Deep learning algorithms for fracture 
detection offer significant advantages in clinical settings. Firstly, AI 
can be an effective tool for triage in emergency situations. AI can 
perform preliminary screening and discover positive results, which 
can allow doctors to prioritize the imaging data with fracture signs to 
reduce adverse effects caused by delayed diagnosis. Secondly, 

TABLE 3 Diagnostic performance of each deep learning model.

Model Type Date type Accuracy % (CI) Sensitivity % (CI) Specificity % (CI)

RetinaNet One-stage

Testing set

(AP + Lateral)
95.71 (94.17–96.83) 94.47 (92.05–96.11) 96.94 (94.82–98.16)

AP 96.52 (94.27–97.75) 95.90 (92.21–97.54) 97.14 (93.88–98.37)

Lateral 94.89 (92.23–96.32) 93.03 (89.34–95.90) 96.73 (93.06–98.37)

Wrist 95.71 (93.46–97.34) 97.54 (94.67–98.77) 94.29 (90.20–96.33)

Faster RCNN Two-stage

Testing set

(AP + Lateral)
95.71 (94.22–96.83) 94.47 (92.05–96.11) 96.94 (94.90–98.16)

AP 96.32 (94.07–97.55) 95.9 (91.80–97.54) 96.73 (93.05–97.96)

Lateral 95.09 (92.64–96.52) 93.03 (89.34–95.90) 97.14 (93.47–98.37)

Wrist 95.91 (93.46–97.30) 97.13 (93.21–98.36) 94.29 (90.42–96.33)

Cascade RCNN Multi-stage

Testing set

(AP + Lateral)
95.4 (93.66–96.42) 94.06 (91.39–95.70) 96.73 (94.49–97.96)

AP 96.93 (94.89–98.16) 96.31 (93.03–97.95) 97.55 (93.82–98.78)

Lateral 93.87 (91.00–95.50) 91.8 (86.48–94.26) 95.92 (92.65–97.55)

Wrist 95.5 (93.05–96.73) 97.54 (93.60–98.77) 93.47 (89.39–95.92)

Ensemble model –

Testing set

(AP + Lateral)
97.03 (95.71–97.96) 95.7 (93.44–97.13) 98.37 (96.73–99.18)

AP 97.75 (96.11–98.77) 97.13 (93.75–98.36) 98.37 (95.10–99.18)

Lateral 96.32 (93.87–97.55) 94.26 (90.57–96.31) 98.37 (95.10–99.18)

Wrist 97.55 (95.71–98.57) 98.36 (95.90–99.59) 96.73 (93.47–98.37)

FIGURE 8

Under the test set, our ensemble model (red line) shows higher 
accuracy and stability than RetinaNet (blue line), Faster RCNN 
(orange line), and Cascade RCNN (green line). This study uses the 
bootstrap method. The X-axis and Y-axis, respectively, represent the 
number of times and accuracy of each resampling.
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TABLE 4 Diagnostic performance of medical personnel.

Date type Accuracy % (CI) Sensitivity % (CI) Specificity % (CI)

Orthopedist group

(average)

Testing set

(AP + Lateral)

93.69 (91.89–94.99) 91.94 (89.21–93.92) 95.44 (93.06–97.00)

AP 94.48 (91.96–96.18) 93.30 (89.89–96.27) 95.65 (92.05–97.82)

Lateral 92.91 (90.02–94.82) 90.57 (86.61–94.13) 95.23 (91.59–97.55)

Wrist 93.87 (91.29–95.64) 95.90 (92.21–97.54) 91.84 (87.48–95.03)

Radiologist group

(average)

Testing set

(AP + Lateral)

92.53 (90.73–94.06) 90.44 (87.43–92.55) 94.62 (92.24–96.33)

AP 93.32 (90.72–95.29) 91.66 (87.70–94.54) 94.96 (91.18–97.01)

Lateral 91.75 (88.91–93.93) 89.20 (84.97–92.76) 94.29 (90.42–96.33)

Wrist 92.91 (90.41–94.96) 95.35 (91.39–97.40) 90.48 (86.39–93.47)

CI = 95% confidence interval.

AI-assisted fracture identification can enhance the diagnostic ability 
of both clinical and radiological doctors. It can detect small lesions 
that are easily overlooked by human eyes, and also reduce the 
possibility of decreased attention and fracture detection ability due to 
visual fatigue and mental exhaustion caused by long shifts. Lastly, 
another potential benefit of AI is shortening reading and diagnosis 
time. For radiologists who need to review a large number of images 
every day and emergency doctors who need to make multiple urgent 
judgments, AI is an important auxiliary tool because it can save a lot 

of time. In short, the application of AI-assisted fracture diagnosis 
models can reduce missed diagnoses of DRFs. It can quickly and 
effectively diagnose patient imaging data, thereby speeding up medical 
workflows and improving patient outcomes.

Previous researches investigated the feasibility of using deep 
learning to detect fractures on X-ray films and showed good results, 
which is consistent with our study (Table 6). Zech et al. (17) trained 
the Faster RCNN model for the detection of carpal fractures in 
children groups, and reached an accuracy of 88%, a sensitivity of 88%, 

FIGURE 9

Confusion matrix.
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and a specificity of 89%, and the use of this model was effective in 
improving the diagnostic ability of radiology trainees. Ashkani-
Esfahani et al. (32) trained two deep learning models, Inception V3 
and Renet-50, for the detection of ankle fractures. The results showed 
that Inception V3 had better diagnostic performance, with a sensitivity 
of 98.7% and a specificity of 98.6%. Yoon et al. (33) trained a DCNN 
model based on the EfficientNetB3 structure to classify normal and 
scaphoids scaphoids with a sensitivity and specificity of 87.1 and 
92.1%, respectively. Liu et al. (34) applied a Faster RCNN algorithm 
for training and FIF detection on X-ray images and compared it with 
orthopedic attending. The results showed that the Faster RCNN 
algorithm performed better in terms of accuracy, specificity and 
efficiency. Li et  al. (35) constructed an artificial intelligence deep 
learning model framework including target detection, data 
preprocessing of radiographs and classification for detecting vertebral 
fractures. The AI model of this integrated approach had excellent 
accuracy (93%), sensitivity (91%), and specificity (93%) in detecting 
lumbar vertebral fractures. In addition to the diagnosis of fractures, 
AI has also improved the determination of bone age, as well as the 
diagnosis of other orthopedic diseases such as osteoarthritis, 
spondylolisthesis, and bone tumors (18–20, 36).

However, we  must be  aware that algorithms still inevitably 
produce diagnostic errors and potential medical risks. Therefore, it is 

currently best to use AI as a second expert to assist clinicians in 
making a diagnosis, rather than replacing doctors for the 
final diagnosis.

Our study also has some limitations. (1) This is a retrospective 
study, and all imaging examinations did not have complete clinical 
medical records. During the testing process, the participating doctors 
diagnosed only through imaging data, just like deep learning models. 
However, in a real clinical environment, non-radiologists can examine 
patients physically and obtain detailed medical history information, 
while radiologists can also access patient medical records to identify 
areas of concern, which, combined this with X-ray films, improves the 
sensitivity and specificity of fracture diagnosis. Therefore, the results 
of the physician group in this study only represent the level achieved 
when diagnosing based on imaging data merely, and cannot represent 
the diagnostic level in a completely real clinical environment. (2) The 
dataset in the database only contains data from a single medical center. 
Although the dataset is large and experimental results demonstrate 
excellent performance of the model, obtaining more images from 
different medical institutions would increase the diversity of data 
sources, which may further improve the reliability of the results. (3) 
The ensemble model we trained can be used for detecting DRFs, but 
cannot further classify the type of fractures. Accurately determining 
the type of fracture is also important for treatment as different types 

TABLE 5 Comparison between the ensemble model and physicians.

Factor Date Type Ensemble model Orthopedists Radiologists p

Accuracy

% (CI)

Testing set

(AP + Lateral)

97.03 (95.71–97.96) 93.69 (91.89–94.99) 92.53 (90.73–94.06) <0.001

AP 97.75 (96.11–98.77) 94.48 (91.96–96.18) 93.32 (90.72–95.29) <0.001

Lateral 96.32 (93.87–97.55) 92.91 (90.02–94.82) 91.75 (88.91–93.93) <0.001

Wrist 97.55 (95.71–98.57) 93.87 (91.29–95.64) 92.91 (90.41–94.96) <0.001

Sensitivity

% (CI)

Testing Set

(AP + Lateral)

95.7 (93.44–97.13) 91.94 (89.21–93.92) 90.44 (87.43–92.55) <0.001

AP 97.13 (93.75–98.36) 93.30 (89.89–96.27) 91.66 (87.70–94.54) <0.001

Lateral 94.26 (90.57–96.31) 90.57 (86.61–94.13) 89.20 (84.97–92.76) <0.001

Wrist 98.36 (95.90–99.59) 95.90 (92.21–97.54) 95.35 (91.39–97.40) <0.001

Specificity

% (CI)

Testing set

(AP + Lateral)

98.37 (96.73–99.18) 95.44 (93.06–97.00) 94.62 (92.24–96.33) <0.001

AP 98.37 (95.10–99.18) 95.65 (92.05–97.82) 94.96 (91.18–97.01) <0.001

Lateral 98.37 (95.10–99.18) 95.23 (91.59–97.55) 94.29 (90.42–96.33) <0.001

Wrist 96.73 (93.47–98.37) 91.84 (87.48–95.03) 90.48 (86.39–93.47) <0.001

TABLE 6 Summary of the performance of DL in fracture diagnosis.

Fracture diagnosis Data size Accuracy Sensitivity Specificity Reference

Pediatric wrist fractures 395 0.88 0.88 0.89 Zech et al. (17)

Ankle fractures 2,100 0.99 0.99 0.99 Ashkani-Esfahani et al. (32)

Scaphoid fractures 11,838 0.91 0.88 0.92 Yoon et al. (33)

Femoral intertrochanteric fractures 700 0.88 0.89 0.87 Liu et al. (34)

Vertebral fractures 941 0.93 0.91 0.93 Li et al. (35)

Distal radius fractures (this study) 6,536 0.97 0.96 0.98 -
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require different treatment plans. In the future, we will further develop 
related models to achieve intelligent classification of DRFs and provide 
assistance in determining more accurate treatment plans.

Although these factors may affect the performance of our 
detection model, but our research results are still worth serious 
consideration. This fast, accurate, and intelligent fracture detection 
algorithm can be used by junior doctors in emergency rooms and 
outpatient clinics to assist clinical diagnosis. This not only helps 
reduce clinical workloads, but also the risk of misdiagnosis.

Conclusion

We have developed an ensemble model based on deep learning 
algorithms for detecting DRFs and demonstrated excellent diagnostic 
performance. The results of this study demonstrate the feasibility of 
the fracture detection technology based on deep learning, and will 
contribute to further research on fracture detection in more types and 
locations in the future. At the same time, we will build larger datasets 
in the future and train advanced algorithms to achieve automatic 
detection of DFR and intelligent determination of fracture types. In 
summary, this fast and accurate diagnostic tool is expected to become 
the second expert for doctors in clinical practice, improving the 
accuracy of diagnosis of DRFs and reducing their burden in 
clinical work.
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