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Regulation of tumor
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by the tumor collagen
extracellular matrix
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It has been known for decades that the tumor extracellular matrix (ECM) is

dysfunctional leading to loss of tissue architecture and promotion of tumor

growth. The altered ECM and tumor fibrogenesis leads to tissue stiffness that act

as a physical barrier to immune cell infiltration into the tumor microenvironment

(TME). It is becoming increasingly clear that the ECM plays important roles in

tumor immune responses. A growing body of data now indicates that ECM

components also play a more active role in immune regulation when

dysregulated ECM components act as ligands to interact with receptors on

immune cells to inhibit immune cell subpopulations in the TME. In addition,

immunotherapies such as checkpoint inhibitors that are approved to treat cancer

are often hindered by ECM changes. In this review we highlight the ways by

which ECM alterations affect and regulate immunity in cancer. More specifically,

how collagens and major ECM components, suppress immunity in the complex

TME. Finally, we will review how our increased understanding of immune and

immunotherapy regulation by the ECM is leading towards novel disruptive

strategies to overcome immune suppression.

KEYWORDS
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1 Introduction

Tumors consists of cancer cells and their immediate environment, the tumor

microenvironment (TME) (1). The TME is a heterogeneous amalgamation of non-

malignant stromal cells, immune cells, secreted factors, and the tumor extracellular

matrix (ECM). An overview of the TME is shown in Figure 1. It is now established that

for anti-cancer treatment to be successful, therapeutics needs to not only eradicate the

cancer cells, but it is equally important also target the TME, for example by modulating

stromal cell activity, immune cell activity and phenotype, and by interfering with ECM-cell
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receptor interactions (2–7). Reprogramming of the immune

response from pro-tumorigenic to anti-tumorigenic is an essential

component for therapeutic success and understanding the drivers of

an immunosuppressive environment will help advance the field (8).

It is now evident that the ECM is a major player in facilitating both

tumor progression and resistance to various treatments, including

immunotherapy (9–13).

Research on the regulation of tumor immunity by the tumor

ECM is rapidly expanding. Historically, the tumor ECM has largely

been associated with a physical barrier that excludes immune cell

access to the tumor. An expanding concept is that ligands from the

ECM and its constituent components have direct, active effects on

immune cells by binding to receptors that either stimulate or inhibit

signaling pathways, and thus play a more active role in

cancer immunosurveillance.

Under physiological conditions the ECM forms a proteinaceous

network between cells in the tissue and thereby contributes to the

arrangement and polarity of cells that support their survival and

differentiation and maintain tissue organization (14). The ECM

consists of a complex network of macromolecules including

collagens, elastin, fibronectin, laminins, proteoglycans, and non-

collagenous glycoproteins. Collagens are the major components of

the ECM. Twenty-eight different types of collagen have been

described, each with a unique role in maintaining tissues

structure and function (15).
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ECM biology has been a major area of focus in cancer research

for well over forty years and aberrant production of ECM

constituents is a classic hallmark of cancer progression (10, 16,

17). A wealth of knowledge has been developed that continues to

build on our understanding of just how dramatically different

cancer ECM is from normal EC. This includes the mechanisms

and biophysics that lead to dramatic alterations seen in cancer (18,

19). What has been termed the Matrisome in cancer describes ECM

proteins, particularly collagens, that are not only overexpressed, but

structurally and biochemically aberrant from normal, healthy

tissues (12, 20–22).

Most ECM biology studies in cancer have focused on

understanding how the ECM modifies tumor cell transformation,

growth, movement and metastasis, with less attention paid to its role

in immune surveillance (23). The tools for understanding tumor

immunology and developing novel immunotherapies has exploded

over the past thirty years, largely due to the now well-established

theory of tumor immune surveillance (24). A key aspect of tumor

immune surveillance is that costimulatory or coinhibitory ligands,

such as B7-1 or PD-L1, that interact with cognate costimulatory or

coinhibitory receptors, such as CD28/CTLA-4 or PD-1, on T cells to

elicit or suppress tumor-antigen-specific immune responses,

respectively (25). These types of ligand-receptor interactions have a

direct, active effect on immune cells mediated by downstream

signaling. These studies have been fruitful regarding the
FIGURE 1

Overview of the tumor microenvironment (TME). In addition to the tumor cells, the TME consist of non-malignant stromal cells such as cancer
associated fibroblasts, immune cells such as tumor associated macrophages, tumor associated neutrophils, T cells, secreted factors such proteases,
cytokines and growth factors, and the tumor extracellular matrix (ECM). The ECM include core components such as collagens, fibronectin,
hyaluronan, and laminins, and a wide array of proteoglycans and associated molecules. Tumor ECM changes may alter ECM-cell interactions and
thereby prevent T cell recruitment to the tumor cells (immune exclusion) and drive immune reprogramming and modulation of immune cell activity
(immune suppression) supporting tumor progression and lead to poor efficacy of intervention. Figure created with BioRender.
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development of immune checkpoint inhibitors targeting PD-1/PD-

L1, CTLA-4, LAG-3 and other emerging therapeutics targeting

molecules expressed on immune subpopulations (26). There is

abundant literature that not only T cells, but other immune

subpopulations such as NK cells, B cells, macrophages, dendritic

cells (DCs) and neutrophils are critical to immune surveillance

(reference 23 and new reference Shi et al). Tumors subvert the

function of multiple cell types to cause immune dysfunction and

immune suppression that ultimately leads to immune suppression in

the complex TME. Therapeutics that target these immune

subpopulations are emerging as potential next-generation immune

therapies beyond checkpoint inhibitors (27).

Until recently, much of the work in tumor immune surveillance

has focused on identifying and characterizing inter-cellular immune

ligand-receptor interactions, with little attention to the ECM as a

source of ligands and epitopes with either immune-activating and/or

immune-suppressive signaling capacity, depending on the

architecture and quality of the ECM. However, the fact that the

ECMmay be a storage of ligands and epitopes with signaling capacity

has been known for decades. There are several hundred molecules

that make up the core matrisome and associated ECM constituents

(20). The overall composition and quality of core components and

associated constituents are vastly altered in cancer (12). Continuing

research and new technologies continue to define and elucidate the

wealth of ligands and epitopes that may play a role in cancer immune

surveillance and could be potentially used as cancer biomarkers and

be targeted for cancer immunotherapy.

While it is not the purpose of this review to address all

components of the ECM, collagens are particularly well described

beyond their function as passive, structural molecules in the TME,

and are now being recognized for their active contribution to several

biological effects in the TME. Of the 28 types of collagen, collagens

type IV, XIII, XV, and XVIII have received the most attention in the

cancer field, consequent to the anti-angiogenic and pro-

tumorigenic effects of the cryptic sites and signaling fragments

found in the NC1 domains (28). The best characterized basement

membrane collagen signals are derived from type IV collagen

(Arresten, Canstatin, Tumstatin, Tetrastatin, Pentastatin,

Hexastatin), type VIII collagen (Vastatin), type XV collagen

(Rest in) , and type XVIII col lagen (Endostatin) (29) .

Endothrophin, a signaling fragment derived from type VI

collagen produced by fibroblasts is receiving increased attention

in cancer and other fields where fibroblasts are central players (29,

30). The biological role of endothrophin in cancer is related to

epithelial-to-mesenchymal transition and tumor fibrosis.

Endothrophin is highly expressed in CAFs and is prognostic in a

range of fibrotic diseases, including liver, lung, kidney, and skin

fibrosis (31–36). Understanding how collagens and collagen

fragments actively bind and regulate immune receptors, in

addition to functions described here, will be critical to link cancer

matrix biology and immune oncology.

Strides are being made in understanding how ECM components

actively regulate immune cellular exclusion, activation, and

suppression in cancer. Consequently, targeting the tumor

promoting effects of the dysfunctional ECM is a novel approach

to cancer immunotherapy. Building on recent understanding of the
Frontiers in Immunology 03
ECM-immune cell interplay will help overcome current limitations

in cancer immunotherapy. Recent studies and concepts have started

to combine these fields to identify novel links and biological

understanding of these interactive pathways that will help lead

the next wave of cancer immunotherapies.
2 Tumor ECM acts as a physical
barrier to immune cell infiltration

The altered production and assembly of ECM proteins and

collagens generally forms a fibrous connective tissue by interacting

with other ECM components and is the major pathological signature

of tumor fibrogenesis (also known as desmoplasia). Cross-linking of

collagens by lysyl oxidase (LOX) enzymes increases the stiffness of

this ECM (37). Transforming growth factor beta (TGF-b) and other

pro-fibrotic cytokines signal to fibroblast and activate them into

cancer associated fibroblasts (CAFs) with associated increased

collagen synthesis (38–41). During cancer, an accumulation of

activated CAFs is observed (42). Enhanced CAF activity results in

increased deposition of a cross-linked collagen matrix in the TME

(43, 44). CAF subtypes is the center of a lot of attention currently and

a detailed description is beyond the scope of this review. However,

evidence shows that some CAF subsets promote tumor progression

and immunosuppression, while others prevent it (45–48), but the

overall consensus is that the fibroblasts drive fibrosis and tumor

progression (29). In fact, several recent studies suggest that alterations

in ECM proteins, fibrillar collagens, CAFs, and increased expression

of TGF-b all contribute to fibrosis and play key roles in resistance to

immunotherapy by creating a physical barrier inhibiting T cell

infiltration (immune exclusion) that is crucial for anti-tumor

immunity and concomitant clinical responses to current checkpoint

inhibitors (49–61).
3 Tumor ECM ligands interact with
immune cell receptors

Beyond the dense and fibrotic tumor ECM barrier associated

with immune exclusion, tumor ECM components also play a more

active role in immune regulation when dysregulated ECM

components act as ligands to interact with receptors on immune

cells to inhibit or activate immune cell subpopulations in the TME.

Thus, an expanding paradigm is that ECM-derived molecules are

capable of interacting with and regulating immune cells not only in

the context of well-described adhesive binding interactions and

barrier function, but also through active interactions with immune

cell inhibitory or stimulatory receptors to modulate T cells, myeloid

cells and other immune cell types in the TME (62).

A primarymechanism of T cell suppression is through interaction of

T cell surface inhibitory receptors with inhibitory ligands expressed on

the cell surface of tumor cells, tumor associated macrophages (TAMs)

and DCs (TADCs), myeloid-derived suppressor cells (MDSCs) or other

suppressive cell types in the TME (63). Under normal conditions,

inhibitory cell-cell interactions between receptors and ligands serve as
frontiersin.org
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a means of communication to maintain T cell tolerance to self, and to

avoid dangerous autoreactive immune responses leading to

autoimmunity. In the TME, aberrant expression of these receptors and

ligands interact to circumvent anti-tumor T cell immunity. Blockade of

cell-cell interaction-mediated immune inhibition is the basis of immune

checkpoint inhibitor (ICI) immunotherapies that promote T cell anti-

tumor immunity mediated by tumor-specific T cells. In addition to cell-

cell molecular interactions, what is becomingmore apparent is that ECM

proteins can also function as inhibitory and stimulatory ligands to

disrupt T cell and myeloid responses in the TME. T cells expressing

inhibitory receptors, often defined as exhausted T cells, and myeloid cells

- TAMs, TADCs and MDSCs – that have a suppressive phenotype, and

are generally associated with poor prognosis in most cancers. There may

be many reasons why tumor associated T cells and myeloid cells develop

suppressive activity, but studies now suggest T cell and myeloid cell

interaction with the ECM, including collagens, and mechanical

properties such as collagen density and stiffness, contribute to direct

suppression of immune function, or polarization of cells towards a

suppressive phenotype and facilitate recruitment of suppressive cells into

the TME (64, 65).

The immune regulatory function of the tumor ECM seems to be

confined to specific ECM receptors, of which integrins and growth

factor receptors are well known ECM binding receptors (reviewed

in (66–69)). More recently, greater attention has been focused on an

emerging set of regulatory receptors specifically expressed on

immune cells that interact with ECM proteins to directly regulate

immune function. The broad dysregulation of collagen and other

ECM proteins that occurs in the TME can interact with aberrant

expression of these inhibitory and stimulatory immune receptors to

drive immune dysfunction in cancer. Emerging receptors in this

context include LAIR-1, OSCAR and DDR1/DDR2, that are

expressed on immune cells and interact with collagens to regulate

immune function. Another receptors emerging in this context is

LILRB4, a protein that interacts with fibronectin, a non-collagen

component of the ECM CD44 and Toll-Like Receptors (TLRs),

which binds more promiscuously ECM and non-ECM ligands.
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3.1 ECM receptors that regulate tumor
immunity

An overview of the ECM receptors that regulate tumor

immunity is shown in Figure 2 and summarized below.

3.1.1 Integrins
Integrins are so-called heterodimeric receptors that are

composed of a and b subunits (there are eight b and 18 a
subunits in the integrin family that combine to form at least 24

distinct integrins). Integrins are cell adhesion receptors that play

important roles during pathological processes and development

(66). Integrins are transmembrane proteins composed of a short

cytoplasmic region mediating the downstream signaling from the

receptor, a transmembrane helix, and a large extracellular domain.

The 24 distinct integrins are divided into four classes (RGD

receptors, leukocyte-specific receptors, laminin receptors, and

collagens receptors). The integrins that function primarily as

collagen receptors are a1b1, a2b1, a3b1, a10b1 and a11b1 (67).

The interplay between integrins and immune cells for cancer

immunity and the role of integrin receptor interactions with the

TME-ECM and targeting for cancer therapy is beyond the scope of

this review and has been reviewed elsewhere (68, 69).

3.1.2 LAIR-1
The coinhibitory Leukocyte-Associated Immunoglobulin-like

Receptor-1 (LAIR-1) is type-I transmembrane receptor expressed

on T cells, NK cells, myeloid cells and other immune cell subsets,

and binds to collagens and proteins with collagen-like domains

(70). LAIR-1 expression is also abundant on TME immune cells and

may increase with stage of disease (71–73). LAIR-1 contains motifs

in its cytoplasmic region, including immunoreceptor tyrosine-based

inhibitory motifs (ITIMs) and (CSK) that induce inhibitory

signaling pathways into cells when LAIR-1 binds to collagen

domain containing ligands (74, 75). As such, LAIR-1 interaction

with collagens plays both a role in cellular adhesion to the ECM,
FIGURE 2

ECM receptors that may regulate tumor immunity in cancers. ECM receptors and their primary ligands (collagens, fibronectin, hyaluronic acid (HA),
proteoglycans). The ECM stimulates or inhibits cellular activity through these receptors in response to, and dependent on, an injured, remodeled, or
dysregulated ECM composition. LAIR-1, Leukocyte-Associated Immunoglobulin-like Receptor-1. LAIR-2, Leukocyte-Associated Immunoglobulin-like
Receptor-2. OSCAR, Osteoclast-associated receptor. DDR-1/2, Discoidin Domain Receptors 1 and 2. LILRB4, Leukocyte immunoglobulin-like
receptor subfamily B member 4 (a.k.a. ILT3). CD44, Cluster of differentiation 44. TLR, Toll-Like Receptor. Figure created with BioRender.
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and at the same time delivers signals to instruct immune cells to

remain in a sub-optimal state of activation. Interestingly, under

normal physiological conditions, LAIR-1 may play a limited role in

maintaining immune homeostasis (76). However, when the ECM

becomes dysfunctional in TMEs, aberrant collagen expression may

both exclude LAIR-1 expressing immune cells from infiltrating the

TME, and at the same time prevent tumor antigen-specific T cells

from becoming activated and developing into cytotoxic effector T

cells through LAIR-1 mediated inhibitory signaling (55, 72, 77, 78)

(Figure 3). Expression of LAIR-1 on myeloid cells in cancer has

been shown to play a role in immune suppression, also mediated

primarily through collagen (79). In contrast, another study

suggested an improved response in a pre-clinical model when

LAIR-1 was present on myeloid cells (80). However, the observed

function was attributed to interaction with a collagen-domain

containing protein, COLEC12, rather than structural collagen of

the ECM. Additional understanding of collagen-LAIR-1 mediated

regulation of T cells and myeloid cells will be an important area of

research for therapeutic targeting in both solid tumors and

hematologic malignancies.

3.1.3 DDR1 and DDR2
Discoidin Domain Receptors 1 and 2 (DDR1 and DDR2) are

receptor tyrosine kinases (RTKs) that uniquely bind to fibrillar

collagens; DDR1 preferentially binds to collagen I–V, VIII (and

Periostin), while DDR2 binds to collagen I–III, V, and X (81, 82).

Indeed, studies have identified multiple effects of DDR1 and DDR2

on tumor growth and metastasis when expressed on tumor and

CAFs (9, 83). DDR2 is also expressed on subpopulations of tumor

myeloid cells and drives myeloid inflammatory pathways via RTK

signaling (83). The composition and quality of the ECM is

important for DDR signaling. For example, protease-cleaved type

I collagen and intact type I collagen were shown to have opposing

tumorigenic effects through DDR1 engagement in pancreatic cancer

(84). Dissection of the role of DDR1/2 in immune regulation will
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shed light on the role of these important collagen receptors

in cancer.

3.1.4 OSCAR
The Osteoclast-associated receptor (OSCAR) is a collagen

receptor in the same family as LAIR-1, but with stimulatory

signaling capacity through cytoplasmic association with FcRg,
which contains an Immunoreceptor Tyrosine-based Activation

Motif (ITAM) (85, 86). OSCAR is expressed not only on

osteoclasts, but also on other myeloid cell subsets, and OSCAR

RNA is overexpressed in several cancers (87). Interestingly, despite

OSCAR’s stimulatory capacity, RNA expression appears to

positively associate with M2 macrophage differentiation, T cell

exhaustion, cancer progression and metastasis, although much

remains to be learned in the context of cancer.

3.1.5 LILRB4
Leukocyte immunoglobulin-like receptor subfamily B member

4 (LILRB4/ILT3) is an inhibitory ITIM containing Ig-superfamily

and LILR family receptor that is expressed on DCs and other

myeloid cells that binds to fibronectin (85, 88). In a recent study

it was shown that LILRB4 interactions with fibronectin are capable

of polarizing or maintaining DCs in the TME and draining lymph

nodes in an immunosuppressive state, ultimately leading to

decreased T cell activation and anti-tumor activity (89). Several

additional studies have helped define an immune suppressive role

for LILRB4 in cancer [reviewed in (90)].

LILRB4, LAIR-1 and OSCAR are all members of a larger

Leukocyte Immunoglobulin-Like Receptor (LILR) family (91),

several members of which have been described in cancer (92). It

is interesting to speculate on how many additional members of this

family of receptors, which are largely restricted to expression on

immune subpopulations (93), interact with ECM proteins to

stimulate or inhibit immunity in response to injured, remodeled,

or dysregulated ECM ligands.
FIGURE 3

Tumor ECM as a T cell barrier and regulator of T cell activity. Aberrant collagen expression may both exclude immune cells from infiltrating the TME,
and at the same time prevent T cells from becoming activated and developing into cytotoxic effector T cells. LAIR-1 as an example plays both a role
in cellular adhesion to the ECM, and at the same time delivers signals to instruct immune cells to remain in a sub-optimal state of activation. Figure
created with BioRender.
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3.1.6 CD44 and toll-like receptors
An example of a receptor capable of binding to multiple ECM

constituents is CD44, a receptor expressed on immune and non-

immune cells, whose extracellular domain contains binding sites for

various ECM proteins including collagen, laminin, and fibronectin,

although the primary functional ligand of CD44 is hyaluronic acid

(HA) (9). Versican, another ECM constituent that also binds to

CD44, can bind to PSGL-1 and Toll-Like Receptors (TLR) on

immune cells, demonstrating the potential promiscuity of ECM

protein interactions with multiple receptors (94).

TLRs are immune receptors that are critical for linking innate

immune pathogen-sensing with adaptive immunity (95). However,

reports have shown that TLR2 and TLR4 can interact with ECM-

derived hyaluronan fragments as an endogenous danger signal to

stimulate TLR signaling (96, 97), as well as the ECM proteoglycan

components biglycan and lumican to stimulate cells in cancer (98,

99). TLR4 can also interact with Heparan Sulfate to trigger

inflammatory cytokine production (100). Of course, TLRs and

other immune receptors may interact with their primary ligands

that are embedded in the ECM, or released from the ECM during

collagen remodeling, adding to the complexity of how the ECM

regulated immunity not only in cancer, but also other diseases (101).

As described above, current studies suggest that both inhibitory

and stimulatory collagen receptors are prone to driving immune

dysfunction in cancer. This may be attributable to the inherent

dysregulation of collagen products in the TME that subsequently

drives dysregulation of both stimulatory and inhibitory collagen

receptor signaling in ways that synergize to disrupt TME anti-

tumor immunity. While the list of ECM proteins that interact in

some way with immune and non-immune receptors is extensive,

the continued identification of immune receptors that specifically

bind to collagen and non-collagen ECM core component ligands,

and functionally regulate immune cell responses in cancer, will help

build a more comprehensive understanding of the matrix-mediated

immune suppression in cancer.
4 Novel disruptive strategies to
overcome tumor collagen ECM-
mediated immune suppression

4.1 Tumor ECM restricts the potential of
immune checkpoint inhibitors

Immune checkpoint inhibitors (ICIs) have revolutionized how

cancer is treated and how we think about cancer. ICIs can actively

promote long-term, durable responses that may evolve with and

continue to surveil cancer, resulting in curative outcomes, rather than

a short-term extension of survival (102). ICIs for treating cancer have

demonstrated widespread clinical success over the past decade by

targeting PD-1 and CTLA-4 pathways (102). Nevertheless, a majority

of patients are not responsive to approved immunotherapies (103).

While many factors may be responsible for the lack of response,

stromal dependent mechanisms are thought to play an important role
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(104). These include barrier function and immune exclusion that lead

to so-called cold or excluded tumor types (71). While several more

recent ICI therapeutics targeting LAG-3, TIM-3, TIGIT and others

are currently in various stages of clinical trials or pre-clinical

development, it is likely that these therapeutics will face the same

limitations posed by stromal elements in a large percentage of

patients, and cancer types, similar to the current limitations

observed with approved ICIs (25, 26, 102).

The emerging link between cancer immunity and the ECM is

based on active regulation of immune receptors by ECM core

elements. As such, ECM mechanisms of action become blurred

between barrier function in cold or excluded phenotypes, versus

immunosuppressed phenotypes from, for example, LAIR-1

signaling, since mechanisms of action can and likely often overlap

(71). Understanding the expanding universe of the ECM and how

the various components restrict or promote immunity and

immunotherapy in cancer needs to be dissected to optimize ICI

and other immunotherapies. Studies evaluating collagen-derived

peptides (CDPs) such as type III collagen pro-peptides (PRO-C3) in

the serum of patients treated with PD-1 or CTLA-4 blockade have

suggested an association with poor prognosis (105–108). PRO-C3

has been interpreted as being associated with dense fibrotic TME-

ECM, but could also suggest tumor ECM remodeling (109).

Emerging therapeutics that target multiple immune-ECM

mechanisms of interaction, as well as combination strategies that

synergize by targeting separate immune, TME and ECM

components, will benefit patients who do not otherwise respond

to existing therapies (110).
4.2 Therapeutics that target the
intersection of the ECM and immune cell
receptors

Several studies show that disrupting LAIR-1 interactions with

collagens results in enhanced tumor immunity (55, 72, 77, 79, 111).

Across these studies, it was demonstrated that therapeutic targeting

of the LAIR-1 pathway in tumor models promoted the activation

and function of T cells, NK cells, macrophages, and DCs. LAIR-2 is

a soluble homolog of the transmembrane protein LAIR-1 that is

present in human and non-human primate genomes, but not most

other mammals, including mice (112). LAIR-2 binds to the same

ligands as LAIR-1, but with higher affinity. It acts as a natural decoy

protein in humans to block LAIR-1 interaction with collagen and

downstream signaling, and possibly other collagen binding proteins

(72, 112). This natural mechanism was taken advantage of to

develop a novel therapeutic that would both target collagenous

tumors and prevent LAIR-1 mediated signaling and adhesion.

LAIR-2 fusion proteins generated in independent studies

demonstrated anti-tumor activity of LAIR-2 Fc in multiple tumor

models that was T cell dependent and modified the myeloid

compartment (72, 77, 79). In other studies, in vivo overexpression

of LAIR-2, or LAIR-1 blocking antibodies, were used to block

LAIR-1 with demonstrable anti-tumor effects (55, 111). In studies
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with the collagen binding LAIR-2 IgG1 fusion protein, NC410, it

was suggested that ECM remodeling may be occurring based on

detection in changes in CDPs in the serum of NC410 treated mice

(72). In support, specific collagen fragments of type IV collagen

degraded by granzyme B (C4G) and type VI collagen degraded by

MMP (C6M) has been shown in vivo to increase after induction of T

cell activation by NC410 (72, 113). Additional studies have

indicated that collagen degradative products are suppressive to T

cells and therefore blockade of LAIR-1 and potentially other

collagen receptor interactions with collagen degradative products

may further normalize immune function in cancer (114).

LILRB4 blocking antibodies have demonstrated anti-tumor

effects in solid tumor and hematological malignancies (115, 116).

Additional modalities have also been developed and tested for

targeting LILRB4 in cancer therapy, including antibody drug

conjugates for direct cytotoxicity of LILRB4 expressing tumor

associated myeloid cells, and LILRB4 CAR-T cells for targeting

LILRB4 expressing leukemic cells (117, 118). Dasatinib (BMS-

354825, Sprycel) is a small molecule Src inhibitor that non-

specifically blocks DDR1/2 and other kinase receptors. It is used

to treat chronic myelogenous leukemia and Philadelphia-positive

acute lymphoblastic leukemia, but is also being tested in a wide

range of solid tumors in a variety of combinations (reviewed in

(119)). Recently, blocking DDR1 in vivo was also shown to reverse

immune exclusion by disrupting collagen fiber alignment in breast

cancer (120). A first-in-human study of this anti-DDR1 alone and

in combination with anti-PD1 blockade has recently been initiated

(NCT05753722). DDR2 inhibition in combination with PD-1

blockade has also demonstrated reduced tumor growth (121).

Based on the accelerating interest in ECM binding immune

receptors, the number of clinical trials targeting the LAIR,

LILRB4, DDR1, DDR2 and other pathways will continue to

expand from the current ongoing trials listed in Table 1.
4.3 Therapeutics that target the ECM for
immunotherapy combination strategies

Many attempts have been and continue to be made to target

various ECM components in tumors to overcome drug resistance

and for stroma normalization (122–124) Unfortunately, targeting

these pathways alone has not been effective. Drugs that prevent the
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excess accumulation of ECM molecules are important for

controlling tumor fibrosis, and altering the degradation of the

ECM may be equally important for improving tumor immunity

and immunotherapy, and eliminating tumor progression (45, 46,

125–127). It is proposed that targeting the ECM in combination

with immunotherapies could synergize to activate immune cells and

promote immune infiltration into the TME, while simultaneously

disrupting other tumor promoting aspects of the ECM. Several

studies have now indicated that therapeutic targeting of the

collagen:LAIR-1 pathway in combination with PD-1 targeting

therapies yields improved and synergistic activity in pre-clinical

studies (55, 77). Additionally, a recent study that combines NC410

with Bintrafusp-alfa, a PD-L1 mAb fused with TGF-bRII
demonstrated an even better outcome than NC410 with PD-1

blockade, suggesting the combination of checkpoint blockade and

TME-ECM remodeling synergize to remodel immune responses in

favor of anti-tumor immunity (79). This supports previous studies

targeting TGF-b that have demonstrated improvement in anti-

tumor immunity in combination with ICIs (128, 129).

LOX inhibitors have been shown to improve the response to

PD-1 therapy (130). Along the same lines, modulating collagen

expression and deposition in the tumor by targeting intracellular

focal adhesion kinase (FAK) renders pancreatic cancers responsive

to checkpoint inhibitor immunotherapy in vivo (131, 132). These

studies validate the emerging therapeutic strategy of combining

ECM targeting with immune checkpoint inhibitors for optimal

activity and efficacy.

Importantly, collagen remodeling derived products (CDPs) are

emerging as key players for defining the ECM and immune

landscape of tumors and response to immunotherapy (133, 134).

Such ECM protein biomarkers, ideally serum CDPs, may be

identified to select indications and patients that are most likely to

benefit from ECM-immune combination strategies (106, 108).
4.4 Directing and localizing therapeutics by
targeting tumor specific ECM

Targeting therapeutics to and within tumors by targeting

aberrant expression of ECM proteins in tumors is a growing

strategy in cancer therapy. Conjugating PD-1 or CTLA-4

antibodies with ECM targeting agents, or fusing cytokines to
TABLE 1 Clinical trials for LAIR-1, LILRB4 and DDR1 in solid and hematologic cancers.

Target Drug Format Indication Study Identifier Sponsor Status

LAIR-1 NC410 LAIR-2
IgG1
fusion
protein

Advanced or
Metastatic
Solid Tumors

A Phase 1/2, Open-Label, Dose-Escalation,
Safety and Tolerability Study of NC410 in
Subjects With Advanced or Metastatic Solid
Tumors

NCT04408599 NextCure Recruiting

LAIR-1,
PD-1

NC410,
Pembrolizumab

LAIR-2
IgG1
fusion
protein

Advanced or
Metastatic
Solid Tumors

A Safety, Tolerability and Efficacy Study of
NC410 Plus Pembrolizumab in Participants
With Advanced Unresectable or Metastatic
Solid Tumors

NCT05572684 NextCure Recruiting

(Continued)
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ECM targeting agents for tumor localization have demonstrated

positive pre-clinical results (135, 136). Anchoring of intratumorally

administered cytokines to collagen safely potentiates systemic

cancer immunotherapy (136). Cytokines have been fused with

antibodies, or nanobodies, targeting specific domains of

fibronectin (137). Fibronectin, Tenascin-C and other ECM

proteins that are abundant in glioblastoma can be targeted for

delivery of various payloads including RNA interference (138).

These strategies and methodologies will undoubtedly be improved

upon with advanced understanding of immune-ECM biology and

may likely enter clinical testing soon.
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The overall means of strategies described above to overcome

tumor ECM/collagen-mediated immune suppression is shown

in Figure 4.
5 Conclusion

Our expanded understanding in the fields of matrix biology,

cancer biology, and immunobiology have contributed

independently to improving upon the efficacy of cancer

therapeutics. However, limited interaction and overlap has
TABLE 1 Continued

Target Drug Format Indication Study Identifier Sponsor Status

LAIR-1 NGM438,
Pembrolizumab

N/A 16 tumor types A Phase 1/1b Dose Escalation/Expansion Study
of NGM438 as Monotherapy and in
Combination With Pembrolizumab in
Advanced or Metastatic Solid Tumors

NCT05311618 NGM
Biopharmaceuticals,
Inc

Active,
not
recruiting

LAIR-1 NC525 IgG1 Relapsed
Refractory (R/
R) AML,
CMML, MDS

A Phase 1, Multicenter, Open-Label, Dose-
Escalation and Expansion, Safety,
Pharmacokinetic, Pharmacodynamic, and
Clinical Activity Study of Intravenously
Administered NC525

N/A NextCure Recruiting

LILRB4 IO-202,
Azacitidine,
Venetoclax

IgG4 AML With
Monocytic
Differentiation
CMML

A Phase 1, Multicenter, Open-Label, Dose-
Escalation and Expansion, Safety,
Pharmacokinetic, Pharmacodynamic, and
Clinical Activity Study of Intravenously
Administered IO-202 and IO-202 +
Azacitidine ± Venetoclax in Acute Myeloid
Leukemia (AML) Patients With Monocytic
Differentiation and in Chronic
Myelomonocytic Leukemia (CMML) Patients

NCT04372433 Immune-Onc
Therapeutics

Recruiting

LILRB4 IO-202,
Pembrolizumab

IgG1 Solid Tumor,
Adult

A Phase 1, Multicenter, Open-Label, Dose-
Escalation, and Dose-Expansion Study of IO-
202 in Combination With Pembrolizumab in
Subjects With Advanced, Relapsed, or
Refractory Solid Tumors

NCT05309187 Immune-Onc
Therapeutics

Recruiting

LILRB4 LILRB4 STAR-
T

chimeric
antigen
receptors
(CAR)
targeting
cells
expressing
LILRB4

Relapsed/
Refractory
Acute Myeloid
Leukemia

An Exploratory (Ph1) Clinical Study on the
Safety and Efficacy of LILRB4 STAR-T Cells in
the Treatment of Relapsed/Refractory Acute
Myeloid Leukemia (R/R AML)

NCT05518357 Hebei Yanda
Ludaopei Hospital

Completed

LILRB4
and
LILRB1

NGM707,
pembrolizumab

Bispecific
mAb

15 tumor types A Phase 1/2 Dose Escalation/Expansion Study
of NGM707 as Monotherapy and in
Combination with Pembrolizumab in
Advanced or Metastatic Solid Tumor
Malignancies

NCT04913337 NGM
Biopharmaceuticals,
Inc

Recruiting

DDR1 PRTH-101,
pembrolizumab

N/A Solid Tumors A First-in-human Study of PRTH-101
Monotherapy +/- Pembrolizumab in Subjects
With Advanced Malignancies

NCT05753722 Parthenon
Therapeutics

Recruiting
fro
N/A, Not available.
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FIGURE 4

Three potential strategies to overcome tumor ECM/collagen-mediated immune suppression. 1) Developing therapeutics that targets ECM-immune
cell receptors such as interfering with the immunosuppressive role of LAIR-1 by treatment with LAIR-2/NC410. 2) Developing combination strategies
with therapeutics such as TGF-b inhibitors or LOX inhibitors that may target the tumor ECM for normalization and thereby improve efficacy of
immunotherapy (anti-PD-1) combination strategies. 3) Directing and localizing therapeutics such as cytokines to the TME by fusing cytokines to ECM
targeting agents for tumor localization. Figure created with BioRender.
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occurred to bring these fields together for developing novel cancer

treatments. Expanding knowledge of the effects of collagen and

other ECM components that actively regulate populations of

immune cells in cancer will be important in helping to advance

this emerging and exciting field of research. Importantly, it will also

aid our ability to develop new classes of therapeutics to treat cancer

and patients with unmet needs.
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