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Immunopathogenesis in
Trypanosoma cruzi infection:
a role for suppressed
macrophages and apoptotic cells

Natália S. Vellozo, Thayane C. Matos-Silva
and Marcela F. Lopes*

Instituto de Biofı́sica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
RJ, Brazil
During Trypanosoma cruzi infection, macrophages phagocytose parasites and

remove apoptotic cells through efferocytosis. While macrophage 1 (M1)

produces proinflammatory cytokines and NO and fights infection, M2

macrophages are permissive host cells that express arginase 1 and play a role

in tissue repair. The regulation of M1 and M2 phenotypes might either induce or

impair macrophage-mediated immunity towards parasite control or persistence

in chronic Chagas disease. Here, we highlight a key role of macrophage

activation in early immune responses to T. cruzi that prevent escalating

parasitemia, heart parasitism, and mortality during acute infection. We will

discuss the mechanisms of macrophage activation and deactivation, such as T

cell cytokines and efferocytosis, and how to improve macrophage-mediated

immunity to prevent parasite persistence, inflammation, and the development of

chagasic cardiomyopathy. Potential vaccines or therapy must enhance early T

cell-macrophage crosstalk and parasite control to restrain the pathogenic

outcomes of parasite-induced inflammation in the heart.
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1 Introduction

The protozoan Trypanosoma cruzi infects humans and animals, establishes chronic

infection, and causes Chagas disease by affecting the heart in 30% of patients (1, 2).

Although 13% of the Latin American population is at risk of infection (1, 3), there is no

available vaccine or effective treatment for chronic infection and established pathology (2,

4, 5). Moreover, difficulties in treating and following human patients for decades before the

onset of disease symptoms, as well as the costs of human trials for neglected tropical

diseases, hamper drug development, despite advances in preclinical research (3–5).

Likewise, translation from drug and vaccine research towards human benefits has been
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delayed owing to unsolved scientific controversies about the

mechanisms of Chagas disease pathogenesis (6).

Complex interactions between the parasite, the host, and the

immune system underlie the development of heart pathology in

Chagas disease, characterized by inflammation and fibrosis, which

lead to heart malfunctioning, heart failure, and death (1, 6). Parasite

infection contributes to pathology by destroying infected cells,

including myocytes, and by stimulating pathogenic immune

responses that kill infected cells and cause inflammation (6–8). The

immune system is necessary to control T. cruzi infection, thereby

reducing parasite spread and parasite-induced inflammation (9, 10).

Nonetheless, immune responses are involved in the pathogenesis of

Chagas disease by causing tissue damage and inflammation

(immunopathology) (7, 8, 10, 11), whereas immunoregulatory

mechanisms control immunity and/or immunopathology. The

dissection of the immune response components in T. cruzi

infection and their roles in immunopathogenesis is crucial for the

development of new vaccines or therapeutic tools without

stimulating immunopathology.

Macrophages play multiple and key roles as dedicated

phagocytes that clear tissues from parasites and apoptotic cells,

act as M1 effectors or M2 permissive host cells, and promote

inflammation, tissue repair (12), and fibrosis (13). Here, we

focused on the molecular mechanisms of macrophage activation

and deactivation, the dual role of M1 and M2 macrophages in

antiparasitic immunity, and their modulation by T cell cytokines

and apoptotic cells. We consider classically activated macrophages

to be M1, which express IL-12 and induced NO synthase (iNOS),

produce NO, and exhibit microbicidal activity (14). In contrast,

alternatively activated M2 macrophages are susceptible to parasite

infection (15), express arginase 1 (Arg1) (16), and play a role in

tissue repair (12). Macrophage phenotypes are complex, plastic, and

interchangeable in response to diverse environmental conditions.

Previously published articles provided deeper information on the

full spectrum of macrophage phenotypes beyond the M1 and M2

extremes obtained under defined Th1 and Th2 cytokine conditions

(17–20).

2 Defective M1 macrophage-mediated
immunity plays a pathogenic role in
Chagas disease

During acute infection, both innate and adaptive immunity are

required to fight T. cruzi parasites in the blood, heart, and other

organs (9, 10), yet parasites resist in tissue reservoirs and establish

chronic infection (21). Monocytes are mobilized and recruited to

the heart, where macrophages dominate early protective

inflammatory responses (22). Parasite infection targets myocytes,

fibroblasts, and various cell types, while macrophages continuously

collect parasites released by infected cells. Macrophages can be

detected in the proximity or even inside myocyte parasite nests,

whereas some macrophages interact with lymphocytes or contain

intracellular parasites (22, 23). In rat and mouse experimental

models, macrophage depletion upon silica treatment increased

parasitemia, heart parasitism, tissue damage, and mortality (23,
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24), highlighting macrophage protective immunity in T.

cruzi infection.

CD4 and CD8 T cells play a protective role by inducing NO-

producing M1 macrophages (6, 9, 10). In contrast, Th2 cytokines

and Arg1-expressing M2 macrophages increase susceptibility to T.

cruzi infection (16). Therefore, the activation of M1 and M2

macrophage phenotypes might critically affect disease outcomes.

Next, we will discuss how the mechanisms that govern macrophage

recruitment and M1/M2 phenotypes induce either protective

immunity or parasite persistence and disease progression.

Macrophage activation towards microbicidal M1 responses

relies on macrophage receptors for pathogen-associated molecular

patterns (PAMPs) and T cell-derived cytokines, such as IFN-g and
TNF-a, which induce iNOS expression and help to control

intracellular infection. In addition, M1 macrophages secrete IL-12

and induce IFN-g production by both NK and T cells, further

enhancing type 1 responses (9, 10). Early seminal studies showed

that mice deficient in IFN-g have increased parasitemia, heart

parasitism and mortality (25), even after infection with less

virulent T. cruzi strains (26). Importantly, mice with macrophages

insensitive to IFN-g (MIIG) fail to control parasite infection in vitro

and show increased parasitemia and mortality (27). Higher

mortality, parasitemia, and nervous system inflammation were

also observed upon genetic ablation of IL-12 (25). Moreover, IL-

12-defective macrophages were more susceptible to T. cruzi

infection, expressing a reduced NO response to IFN-g and

increased TGF-b production, similar to M2 macrophages (15).

A series of studies addressed the factors that influence

inflammatory responses in the heart during acute T. cruzi

infection. Silva et al. showed that mice deficient in the

inflammasome components ASC/Caspase-1 and IL-1R have

defective recruitment of CD11b+/F4/80+ macrophages to the

heart associated with increased heart parasitism and mortality

(28). In addition, a direct role of IL-1b in the induction of NO and

parasite killing was suggested as part of macrophage protective

responses (28). Possibly owing to unrestricted parasite infection,

ASC, Caspase-1 or IL-1R knockout (KO) mice developed

increased inflammation and tissue damage during late acute

infection (28).

The association between the presence of the chemokine

receptors CCR2/CCR5 and the chemokines CCL2/CCL3/CCL5/

CXCL9 and macrophages in the hearts of T. cruzi-infected mice

indicates that chemokines and their receptors play a role in

macrophage recruitment or activation to fight infection (29–33).

In agreement with this idea, mice deficient in CCR2, CCR5, CXCL9,

CCL3, and CCL2 developed increased parasitemia and/or heart

parasitism (29–33), whereas higher mortality was also observed in

infected CCR5 and CCL2 KO mice (30, 32). Moreover, the transfer

of CCR5+ splenocytes to CCR5 KO mice rescued macrophage

recruitment to the heart and early protective inflammatory

responses (30). In contrast, the transfer of CCR5-/- splenocytes

failed to generate macrophages in the heart. By addressing the role

of CCL2 in experimental Chagas disease, Paiva et al. showed that

CCL2 is expressed on the heart inflammatory foci (32).

Accordingly, CCL2 KO mice have reduced inflammatory foci and

macrophage activation in the heart, despite increased systemic
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cytokine responses secondary to uncontrolled parasitemia and

tissue parasitism (32).

By studying the relevant mechanisms for parasite killing in T.

cruzi infection, Sharma et al. showed that macrophages defective in

phospholipase 2 b (PLA2b) have reduced NO production and

increased parasite replication, whereas parasite nests are abundant

in the hearts of PLA2b KOmice (34). Recently, Silva et al. addressed

the role of phosphatidylinositol 3-kinase-g (PI3Kg), which is

important for macrophage-mediated immunity, as highlighted by

reduced NO production and increased parasite infection in PI3Kg-
defective or inhibitor-treated macrophages (35). Infected PI3Kg KO
mice exhibited increased weight loss, parasitism, heart

inflammation and malfunction, tissue damage, and mortality (35).

Defective downstream PI3Kg signalling in macrophage conditional

AKT1 KO mice also increased parasitism and mortality (35).

Moreover, macrophages are the major players in protective

immune responses mediated by PI3Kg (35). Interestingly, infected
PI3Kg KO mice benefited from treatment with anti-inflammatory

or antiparasitic drugs (35). These results suggest that both parasites

and inflammatory responses contribute to disease secondary to

PI3Kg deficiency.
Next, we will discuss the downregulation/inhibition of

macrophage activation in experimental BALB/c models of T. cruzi

infection. By using CD73 KO mice and/or pharmacological CD73

inhibition, Ponce et al. showed that the CD73 ectonucleotidase

deactivates macrophages during infection (36). CD73 genetic

deficiency or inhibitor restored M1 responses in the heart and
Frontiers in Immunology 03
reduced heart parasitism, inflammation, tissue damage, and

arrythmia (36). Calderon et al. addressed the role of SLAMF1, a

factor that downregulates NADPH oxidase in T. cruzi infection

(37). They show that macrophages from SLAMF1 KO mice show

better control of parasite replication and that SLAMF1 KO mice

have reduced arginase expression in their hearts and reduced

parasitism, tissue damage, and mortality (37).

Altogether, these studies suggest a major protective role of M1-

mediated immunity to T. cruzi during acute infection that reduces

infection, mortality, and pathology (Table 1). Conversely,

macrophage failure to fight parasites might be implicated in

parasite persistence throughout chronic infection and more severe

infection outcomes (38), with continuous or intermittent release of

infected cell contents and antigens further insufflating inflammation

and heart pathology (39).

Importantly, the use of experimental models to follow disease

development shows that the role played by protective versus

pathogenic immune responses is timing dependent in acute

versus chronic infection. During acute infection, CCL3-

chemokine KO mice express increased parasitemia and heart

parasitism, indicating that early CCL3-mediated recruitment of

immune cells to the heart protects against parasite infection (33).

In contrast, chronically infected mice deficient in CCL3 or treated

with a chemokine receptor antagonist show reduced cardiac

inflammation and tissue damage and restored heart function

(33).Therefore, whereas early CCL3 expression in macrophages

correlates with protective immune responses, continuous CCL3-
TABLE 1 Macrophage 1 provides immunity whereas Macrophage 2 promotes infection and pathology.

Cell/molecular
mechanism

Experimental
infection

Macrophage findings Infection and pathology outcomes Ref. n°

Macrophage depletion rats
mice

monocytosis, infection high parasitemia, tissue parasitism, tissue damage (23, 24)

IFNR (activation) B6
MIIG mice

MIIG M2-like macrophages high parasitemia, tissue parasitism, inflammation,
and mortality

(27)

Inflammasome Asc Casp1
IL-1R (activation)

B6 (WT)/ASC KO/Casp1
KO/IL1R KO

heart F4/80+ CD11b+ cell high tissue parasitism and mortality, reduced early
inflammation, increased pathology

(28)

CCR5 (recruitment) B6 (WT) CCR5 KO heart F4/80+ cell;
cell transfer

high parasitemia, tissue parasitism, and mortality,
reduced inflammation

(30)

CXCL9 (recruitment) B6 anti-CXCL9 heart F4/80+ CXCL9+ cell high parasitemia, tissue parasitism (31)

CCL2 (recruitment) B6 (WT) CCL2 KO heart CD11b+ activated cell high parasitemia, tissue parasitism, mortality, r
educed inflammatory foci

(32)

CCL3 (inflammation in
chronic infection)

B6 (WT) CCL3 KO
Met-RANTES

CCL3+ splenic macrophages high parasitemia, tissue parasitism (acute infection);
reduced chronic pathology

(33)

PLA2b (activation) B6 (WT) PLA2b KO PLA2b -/- M2-like macrophages high tissue parasitism (34)

PI3Kg AKT1 (activation) B6 (WT) PI3Kg KO
AKT1-LysKO

PI3Kg-/- M2-like macrophages high tissue parasitism and mortality, increased
inflammation, tissue damage

(35)

Axl efferocytosis (inhibition) B6 (WT) Ax KO/Mer KO Axl-/- M1-like heart iNOS+ cell reduced parasitemia, heart inflammation,
and fibrosis

(14)

CD73 ecto-nucleotidase
(inhibition)

BALB/c CD73 KO CD73-/- M1-like heart (F4/80+

CD11b+) cell
reduced tissue parasitism and tissue damage,
improved heart function

(36)

SLAMF1 (inhibition) BALB/c SLAMF1 KO reduced Slamf1-/- M2-like reduced tissue parasitism, mortality, and tissue damage (37)
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mediated inflammation throughout chronic infection is deleterious

to the host in Chagas disease (33). These results are consistent with

clinical studies of chronic Chagas disease that show that heart

expression of the proinflammatory cytokines IFN-g and TNF-a, as
well as chemokines, correlates with severe chagasic cardiomyopathy

(1, 40).
3 Apoptosis underlies defective
T cell help to macrophages
in T. cruzi infection

Immunoregulatory mechanisms that defeat T cell-mediated

immunity, such as the death of cytokine-producing T cells, might

affect their ability to help macrophages infected with T. cruzi (41).

By searching for defects in the immune responses underlying

parasite persistence, we found that splenic T cells from infected

mice proliferate less than T cells from healthy mice in response to T

cell receptor (TCR) agonists (42). Moreover, during acute infection,

T cells undergo activation-induced cell death, which correlates with

reduced proliferative responses upon TCR engagement (43, 44).

Other groups also reported increased T and B cell apoptosis in

lymphoid organs during T. cruzi infection (45–51). Furthermore,

apoptosis and defective proliferative responses occur in T cells from

patients with chronic cardiac Chagas disease and heart failure (52,

53). Importantly, apoptotic cells were found in the hearts both in

experimental models and in human patients (54–56).

The molecular mechanisms involved in programmed cell death

have been investigated as potential targets to restore immunity

during parasitic diseases (57, 58). T cells from T. cruzi-infected mice

express increased levels of proapoptotic molecules, such as Fas

(CD95) and Fas ligand (FasL, CD95L), as well as caspase-8 activity

and activated caspase-3 (59–63). The extrinsic apoptotic pathway

ensues during T. cruzi infection through FasL binding to the death

receptor Fas in CD4 and CD8 T cells (59, 62). The antagonist anti-

FasL mAb (62), the caspase-8 inhibitor zIETD, and the pan caspase

inhibitor zVAD (60, 61) prevent activation-induced death in T cells

from infected mice. T cell proliferation increases in the presence of

anti-FasL and in T cells from infected FasL-deficient gld mutant

mice (59, 62). These findings indicate that Fas-mediated apoptosis

might counteract T cell expansion during infection. Moreover,

activation-induced cell death and FasL-Fas expression underlie

defective proliferation in patient T cells (52, 53).

Terminally differentiated effector cells undergo apoptosis to

abbreviate the breadth of potentially pathogenic immune

responses. Nonetheless, early apoptosis of effector T cells might

curtail their ability to kill infected cells or help infected

macrophages. During acute infection, antigen-specific effector

CD8 T cells from infected mice express Fas and a proapoptotic

phenotype (63). Likewise, CD4 T cells undergo Fas-mediated

apoptosis and express a reduced ability to help infected

macrophages (41, 59). The use of anti-FasL or CD4 T cells from

infected gld mice allowed macrophages to control intracellular

infection (41, 59). Pharmacological approaches used injections of

anti-FasL and zVAD in T. cruzi-infected mice to evaluate their
Frontiers in Immunology 04
effects on immune responses during parasite infection (61, 62, 64).

Treatment with zVAD during acute infection reduced parasitemia

and apoptosis in splenocytes (61). Similarly, injection of anti-FasL

reduced peak parasitemia and apoptosis in splenic CD8 T cells (62).

Moreover, in both cases, infected mice had increased cytokine

responses, and their macrophages expressed an improved ability

to control parasite infection (61, 62, 64).

To directly address whether CD8 T cells cooperate with

macrophages to fight T. cruzi parasites, splenic or peritoneal CD8

T cells and macrophages from infected mice were cocultured to

evaluate IFN-g production, T cell apoptosis and macrophage

responses (64). Upon T cell activation, the failure of macrophages

to produce NO and restrict parasite infection correlated with

increased CD8 T cell apoptosis and development of the M2

phenotype (64). Treatment in vitro or in vivo with anti-FasL

reduced T cell apoptosis, improved M1 responses, and restored

macrophage-mediated immunity to T. cruzi infection (64).

Altogether, these results suggest that the induction of T cell

apoptosis during infection contributes to defective T cell and

macrophage immune responses, allowing a permissive

environment for parasite persistence towards the development of

chronic infection.

Although these studies are useful as a proof of principle that

apoptosis negatively regulates protective immune responses

mediated by T cells, pharmacological and genetic ablation of

apoptosis pathways during infection opens a “Pandora box” of

undesirable effects such as the onset of autoimmunity in gld/lpr

models (65–67) or increased inflammation in the hearts of T. cruzi-

infected mice treated with anti-FasL (58). Genetic inhibition of the

FasL-Fas or caspase-8 pathways also dysregulated Th2 cytokine

responses and increased parasite infection (48, 59, 60). Moreover,

these studies revealed that caspase-8 is also required for CD8 T cell

expansion during T. cruzi infection (60). Finally, Bim-deleted mice

are more susceptible to T. cruzi infection, most likely owing to

defective macrophage and T cell responses (68). Therefore, the

translation of apoptosis inhibition into treatment for chronic

diseases is unlikely so far. Nonetheless, vaccine approaches might

be useful to prevent the development of proapoptotic T cells,

thereby improving antiparasitic immune responses (63).
4 Efferocytosis suppresses
macrophage-mediated immunity

Apoptotic cells express ‘eat me signals’ in the outer membrane,

such as phosphatidylserine, allowing their detection and clearance by

phagocytes, a process named efferocytosis. The phagocytosis and

dismounting of apoptotic cells prevent their accumulation in tissues

and the release of proinflammatory cell content through secondary

necrosis (69, 70). Several receptorsmight be involved in the detection of

phosphatidylserine and phagocytosis (69, 70). In addition, apoptotic

cells actively signal through macrophage receptors and induce anti-

inflammatory responses (71, 72). How these receptors cooperate with

each other and engage signaling pathways to convey proper responses

to apoptotic cells is a complex scenario under investigation (72–74).
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By using electron and light microscopy and immunofluorescence,

we detected apoptotic lymphocytes inside macrophages from the

spleen (75) and peritoneum (64) during T. cruzi infection. We found

an apoptotic CD8 T cell inside a peritoneal macrophage and

macrophages containing both parasites and apoptotic bodies during

T. cruzi infection (64). To investigate how efferocytosis directly affects

macrophage ability to fight T. cruzi parasites, we added apoptotic T

cells to peritoneal macrophages from infected mice and evaluated

endogenous infection by assessing parasites released from

macrophages (76). Treatment with apoptotic but not necrotic cells

exacerbated T. cruzi infection within macrophages and increased

parasitemia upon injection in infected mice (76). Moreover, the

receptor avb3 mediates apoptotic cell uptake and macrophage

responses, such as the production of TGF-b and PGE2 and

ornithine decarboxylase activity (76). These findings indicated that

efferocytosis diverts L-arginine metabolism towards polyamine

synthesis, which favors parasite survival and replication (76).

To address the role of efferocytosis during T. cruzi infection, we

employed two mouse strains individually defective in Axl and Mer,

two out of three TAM receptors involved in efferocytosis (14). Double

Mer-/-Axl-/- and single Mer-defective strains have been previously

used in Leishmania infection to show that infected neutrophils

transfer Leishmania parasites to macrophages or DCs through

efferocytosis and reduce macrophage and T cell responses (77, 78).

By employing bone marrow-derived macrophages treated with

a TAM receptor inhibitor or Mer- and Axl-defective macrophages,
Frontiers in Immunology 05
we investigated macrophage responses to T cells from T. cruzi-

infected mice, which bear both effector activity and proapoptotic

cells (14). Efferocytosis of apoptotic T cells was blocked by a TAM

receptor inhibitor, whereas Mer or Axl deficiency partially inhibited

efferocytosis (14). Remarkably, TAM inhibition and Axl but not

Mer deficiency improved M1 responses to T cells from T. cruzi-

infected mice (14). These results indicate that Axl downregulates

M1 macrophages, despite predominant Mer expression and the

major role of Mer in efferocytosis. More importantly, Axl

suppressed the expression of iNOS, NO production, and the

ability of macrophages to fight parasite infection (14).

Zagorska et al. (79) previously reported that Mer and Axl play

distinct roles inmacrophage function. At homeostasis, constitutiveMer

expression is important for the clearance of continuously generated

apoptotic cells and to prevent inflammatory responses upon secondary

necrosis. During immune responses, macrophage activation induces

Axl expression to counteract increased inflammatory responses (79).

To address the role of Axl in the removal of apoptotic cells during T.

cruzi infection, we treated peritoneal macrophages from infected WT

and Axl-/- mice with fluorescent apoptotic T cells. Detection of

apoptotic cells undergoing efferocytosis was reduced in Axl-defective

macrophages from infected mice (14). In addition, the

overaccumulation of splenic apoptotic T cells in infected Axl-/- mice

is further evidence of defective Axl-mediated efferocytosis (14).

During T. cruzi infection, Axl-/- mice expressed reduced peak

parasitemia coupled with increased M1 responses in the spleen,
B

C

A

FIGURE 1

Macrophages play a key role in T. cruzi infection and Chagas disease pathology. (A) Monocytes recruited to lymphoid and other tissues differentiate
into M1 macrophages under stimulation by the type 1 cytokines IFN-g and TNF-a produced by T cells. M1 macrophages produce NO to control
parasite infection and proinflammatory cytokines, such as IL-12 and TNF-a. (B) Alternatively, Th2 cytokines or the uptake of apoptotic cells
(efferocytosis) induce parasite permissive M2 host cells that express Arg1 and fail to produce NO. The balance between M1 and M2 macrophages
determines parasite control or escape and the development of chronic infection. (C) Pseudocysts of parasites within myocytes can rupture and
release parasites in the heart. Foci of inflammatory macrophages clear heart tissues from parasites and apoptotic cells. M1 macrophages that control
parasites prevent further inflammation and fibrosis, thereby reducing heart pathology. Otherwise, suppressed macrophages promote infection,
inflammation, and fibrosis in the heart. Axl receptor-mediated efferocytosis might underlie macrophage suppression by apoptotic cells.
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peritoneum, and heart tissues (14). Furthermore, hearts collected

from infected Axl-/- but not Mer-/- mice had reduced inflammation

and fibrosis characteristics of heart pathology in Chagas disease

(14). Overall, these findings indicate that Axl disrupts M1-mediated

immunity to T. cruzi, fostering inflammatory responses and fibrosis

in the heart (Figure 1).
5 Concluding remarks

The development of antiparasitic therapy to treat T. cruzi

infection has progressed recently (4). Likewise, the new vaccine

generations tested for COVID-19 will help vaccine development for

Chagas disease and other neglected diseases. Since early

macrophage responses to T cell cytokines and apoptotic cells

control macrophage M1/M2 responses and disease outcomes, the

use of appropriate vaccine adjuvants to target macrophage

activation and dampen regulatory circuits might upregulate early

protective responses. In agreement with this, experimental vaccines

induced protective cytokine responses by T cells and macrophages

and reduced parasitemia, tissue parasitism, heart pathology, and

mortality (80, 81). Improved T cell and macrophage responses

induced upon vaccination in endemic areas might help to prevent

the formation of larger parasite reservoirs in tissues and

intermittent cycles of infection that underly inflammatory

responses (38, 39) and the pathogenesis of Chagas disease.
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