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Smart grid energy storage
capacity planning and scheduling
optimization through PSO-GRU
and multihead-attention

Ying Xiao and Lirong Zhang*

Beijing Polytechnic, Beijing, China

The energy problem in today’s society is becoming increasingly prominent,
and the smart grid has become one of the important ways to solve the
energy problem. Smart grid energy storage capacity planning and scheduling
optimization is an important issue in the smart grid, which can make the
grid more efficient, reliable, and sustainable to meet energy demand better
and protect the environment. The core of smart grid energy storage capacity
planning and scheduling optimization is maximizing the use of energy storage
devices to balance the difference between power supply and demand to ensure
the grid operation’s stability. Traditional planning methods are usually based on
experience and rules, have low precision, and cannot adapt to the dynamic
changes in the long-term development of the power grid. Therefore, this paper
proposes a method that combines PSO-GRU (particle swarm Optimization
(PSO)-gated recurrent unit (GRU)) and Multihead-Attention to realize smart grid
energy storage capacity planning. And scheduling optimization. First, PSO-GRU
models and predicts power grid data by searching for the optimal GRU model
parameters; second, Multihead-Attention improves the model’s performance
through the self-attention mechanism. Finally, we use the method to determine
the optimal energy storage capacity and dispatching scheme for the efficient
operation of smart grids. Our experiments use real power grid datasets and
compare them with other common methods. Experimental results show that
our proposed method has higher accuracy and stability than other methods and
can better adapt to the dynamic changes of the power grid. This indicates that
our method has good feasibility and applicability in practical applications and is
significant for realizing the efficient operation of smart grids and energy saving
and emission reduction.

KEYWORDS
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1 Introduction

Energy issues are major challenges facing society today, and smart grids have become a
key solution. One of the key challenges of smart grids is energy storage capacity planning
and dispatch optimization, which involves maximizing the utilization of energy storage
devices to balance the difference between power supply and demand while ensuring stable
operation of the grid (Mohamed et al., 2021). According to statistics, by 2050, global
electricity demandis expected to double, which will require a substantial increase in
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energy storage capacity to ensure reliable and sustainable operation
of the grid. Traditional energy storage capacity planning and
scheduling optimizationmethods are often based on experience and
rules, have low accuracy, and cannot adapt to the dynamic changes in
the long-termdevelopment of the power grid.Thesemethods rely on
statistical analysis, mathematical models, and heuristic algorithms
to make predictions and decisions. However, they have limited
ability to handle the complexity and dynamics of grid data and
may fail to capture underlying relationships and patterns in the data
(Imran et al., 2020).

In recent years, with the emergence of large-scale power
grid data and the advancement of machine learning technology,
people have paid more and more attention to applying machine
learning methods to energy storage capacity planning and dispatch
optimization. Machine learning methods, such as neural networks,
support vector machines, decision trees, random forests, and cluster
analysis, can automatically learn from data and discover complex
relationships and patterns that may not be apparent to traditional
methods. Compared with traditional methods, machine learning
methods have the potential to overcome the limitations of traditional
methods, provide more accurate and reliable forecasts, handle
the complexity and dynamics of power grid data, and adapt
to changing conditions in the long-term development of power
grids.

However, energy storage capacity planning and dispatch
optimization remain a challenging problem due to the dynamics
and complexity of grid data. Existing methods often rely on
traditional optimization techniques, such as linear programming
or dynamic programming, which may have limitations that lead
to poor performance in real-world settings. For example, linear
programmingmethods often require simplifying assumptions about
energy systems, such as assuming fixed energy demand and supply,
which may not accurately reflect the variability and uncertainty
of real-world energy systems. Dynamic programming methods
can be computationally intensive and may not scale well to
larger energy systems (Tian et al., 2023). In addition, both linear
programming and dynamic programming methods may not fully
consider the advantages of energy storage systems, such as their
ability to provide backup power or reduce peak demand. Therefore,
advanced data analysis and machine learning techniques need
to be introduced to improve the accuracy and effectiveness of
energy storage capacity planning and dispatch optimization in smart
grids.

Existing methods for energy storage capacity planning and
scheduling optimization often rely on traditional optimization
techniques such as linear programming or dynamic programming.
While these methods may be effective in certain cases, they often
have limitations that lead to suboptimal performance in real-world
environments. For example, linear programming methods often
require simplifying assumptions about the energy system, such
as assuming fixed energy demand and supply, which may not
accurately reflect the variability anduncertainty of real-world energy
systems. Dynamic programming methods may require extensive
computations and may not scale well to larger energy systems.
Additionally, both linear programming and dynamic programming
methods may not fully consider the advantages of energy storage
systems, such as their ability to provide backup power or reduce peak
demand.

The purpose of this paper is to propose a PSO-GRU and
Multihead-Attention approach for energy storage capacity planning
and scheduling optimization in smart grids. This method combines
Particle Swarm Optimization (PSO) and Gated Recurrent Unit
(GRU) to search for optimal model parameters, while Multihead-
Attention utilizes self-attention mechanisms to weigh different
historical features and improve model performance. The objective
of this paper is to demonstrate the effectiveness of the proposed
method, compare it with existing approaches, and gain insights
into how machine learning techniques can enhance energy
storage capacity planning and scheduling optimization in smart
grids.

PSO-GRU is amodel that combines particle swarmoptimization
(PSO) and gated recurrent unit (GRU) for modeling and predicting
power grid data. GRU is a variant of recurrent neural network
(RNN) that has gating mechanisms to effectively handle long
sequence data, while PSO is a swarm intelligence based optimization
method that can search for optimal model parameters. PSO-
GRU uses PSO algorithm to search for the optimal GRU model
parameters, thereby achieving better modeling and prediction
performance. Multihead-Attention is a self-attention mechanism
used for modeling and predicting historical data. It can weigh
different features of historical data to improve model performance.
Specifically, Multihead-Attention splits historical data into multiple
heads, each of which can learn different feature representations,
and then combines them to obtain the final representation. This
approach can reduce information redundancy and noise, and
improve model robustness and generalization ability. Finally, we
use PSO-GRU and Multihead-Attention methods to determine the
optimal energy storage capacity and scheduling scheme, thereby
achieving efficient operation of the intelligent power grid. We use
PSO-GRU for modeling and predicting power grid load and wind
power data, and then input the predicted results into the Multihead-
Attention model for modeling and predicting historical data,
obtaining the final energy storage capacity and scheduling scheme.
This method can effectively improve the operation efficiency and
reliability of the intelligent power grid.

The limitations of this paper include a focus on specific methods
for energy storage capacity planning and scheduling optimization,
and the evaluation of the proposed method on a limited number of
datasets. Additionally, the proposed method may not be suitable for
all types of energy systems, and further research may be required to
explore its effectiveness in other scenarios.

The research questions addressed in this paper are as follows:

• How can machine learning techniques be utilized to improve
energy storage capacity planning and scheduling optimization
in smart grids?
• What are the advantages of the proposed PSO-GRU

and Multihead-Attention methods compared to existing
approaches?
• How does this method perform in handling the dynamics and

complexities of grid data?

The contribution points of this paper are as follows.

• By using the PSO-GRU and Multihead-Attention methods,
better modeling and prediction of power grid data can be
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achieved, leading to improved prediction accuracy. The PSO-
GRUmethod optimizes the GRUmodel parameters to enhance
the model’s fitting ability, while the Multihead-Attention
method can better handle historical data to obtain more
accurate predictions.
• The PSO-GRU and Multihead-Attention methods can better

determine the energy storage capacity planning and scheduling,
leading to more efficient utilization of energy storage devices
and power grid scheduling. By modeling and predicting power
grid load and wind power data, the PSO-GRU method can
determine the optimal energy storage capacity planning, while
the Multihead-Attention method can determine the optimal
energy storage scheduling by handling historical data.
• By using the PSO-GRU and Multihead-Attention methods,

effective technical support and solutions can be provided
for the application and development of intelligent power
grids. These methods not only improve the efficiency and
energy utilization of power grids but also provide more
scientific and accurate decision-making bases for power grid
management and decision-making, promoting the application
and development of intelligent power grids.

In the rest of this paper, we present recent related work in Section 2.
Section 3 offers our proposed methods: overview, PSO; gated
recurrent unit (GRU); Multihead-Attention. Section 4 presents the
experimental part, details, and comparative experiments. Section 5
concludes.

2 Related work

2.1 Improving energy management
efficiency

Efficient energy management is crucial for the safe and reliable
operation of intelligent power grids (Pawar et al., 2019). Machine
learning techniques can be used to process and analyze large
amounts of data in power grids, including information on load,
generation, and energy storage (Rathor and Saxena, 2020). By
analyzing this data, machine learning models can accurately predict
future load and energy supply, allowing intelligent power grids to
optimize energy management and avoid overloading and under-
supply problems.

Machine learning can also be used to develop intelligent power
management strategies that improve energy efficiency and reduce
operating costs. For example, machine learning algorithms such
as artificial neural networks (ANNs) (Haghnegahdar and Wang,
2020), support vector regression (SVR) Atef and Eltawil (2019), and
decision tree algorithms (He and Ye, 2022) can be used to predict
the power output of hybrid power systems and optimize power
management. Similarly, machine learning algorithms can be used to
optimize the sizing and dispatch of battery energy storage systems
(BESSs) for wind power integration in power systems. Machine
learning has become an important technology for improving energy
management efficiency in intelligent power grids. By providing
more accurate and efficient energy management, machine learning
can help reduce energy waste and promote the development of
sustainable and environmentally friendly power systems.

2.2 Optimize energy storage and dispatch
schemes

Optimizing energy storage and scheduling is crucial for
the efficient and reliable operation of intelligent power grids
(Nguyen et al., 2020). Energy storage devices, such as batteries, are
essential for balancing the supply and demand of energy, and they
play a critical role in improving the efficiency of renewable energy
integration and reducing operating costs. However, optimal sizing,
control, and scheduling of energy storage devices can be challenging
due to the complex and dynamic nature of power grids.

Machine learning algorithms (Kotsiopoulos et al., 2021) can be
used to optimize energy storage and scheduling in several ways.
For example, machine learning algorithms can be used to analyze
historical data and predict future energy demand, which can be used
to optimize the sizing and control of energy storage devices such as
batteries (Wu et al., 2023). Similarly, machine learning algorithms
can be used to analyze real-time data and predict future energy
supply, which can be used to optimize the dispatch of energy storage
devices such as batteries. Machine learning-based approaches can
also be used to schedule energy storage systems formicrogrids based
on hybrid energy sources and demand response programs.

Here are five common machine learning methods:
Neural networks Rangel-Martinez et al. (2021): by combining

and training multiple layers of neurons, neural networks can model
and predict power grid data with good fitting and generalization
abilities. Neural networks can be applied to different types of power
grid data and can improve model performance by increasing the
number of layers and nodes. However, the training process requires
a lot of computing resources and time, and may encounter problems
such as overfitting and underfitting. Designing the model structure
and adjusting parameters require high professional knowledge and
experience.

Support vector machines (Aurangzeb et al., 2022): by
constructing an optimal separation hyperplane, support vector
machines can classify and regress power grid data with good
classification and generalization abilities. Support vector machines
can be applied to different types of power grid data and can
improve the accuracy of classification by selecting appropriate kernel
functions for mapping. However, the training process requires a lot
of computing resources and time, andmay encounter problems such
as insufficient memory. For non-linear problems, appropriate kernel
functions need to be selected for mapping, otherwise, classification
performance may be poor.

Decision trees (Rangel-Martinez et al., 2021): by constructing
multiple decision nodes, decision trees can classify and regress
power grid data with good interpretability and ease of use. Decision
trees can handle numerical and categorical data and can control
the complexity and generalization abilities of the model by pruning.
However, decision trees are sensitive to noise and outliers in the data,
which may lead to overfitting. For non-linear problems, multiple
decision trees may need to be constructed for ensemble learning to
improve classification accuracy.

Random forests (Mostafa et al., 2022): by constructing an
ensemble of multiple decision trees, random forests can classify and
regress power grid data with good accuracy and stability. Random
forests can be applied to different types of power grid data and can
control the complexity and generalization abilities of the model by
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adjusting the number of trees and parameters. However, the training
process requires a lot of computing resources and time, and may
encounter problems such as insufficient memory (Wang C. et al.,
2022). For non-linear problems, multiple decision trees may need
to be constructed for ensemble learning to improve classification
accuracy.

Clustering analysis (Al Khafaf et al., 2022): by dividing power
grid data into different categories, clustering analysis can discover
patterns and rules in the data with good data mining abilities.
Clustering analysis can adapt to different data types and problems
through different distance measures and clustering algorithms,
and can control the complexity and generalization abilities of the
model by adjusting the number of clusters. However, for large-scale
datasets, there may be problems such as insufficient memory, and
clustering analysis is sensitive to noise and outliers in the data, which
may result in poor clustering performance.

The benefits of optimizing energy storage and scheduling using
machine learning are numerous. By providing accurate and efficient
energy storage and scheduling, machine learning can help ensure
the stability and reliability of power grids, promote the development
of sustainable and environmentally friendly power systems, and
reduce energy waste (Pallonetto et al., 2019). Furthermore, machine
learning can help reduce operating costs by optimizing the use of
energy storage devices and improving the efficiency of renewable
energy integration Zhibin et al. (2019).

2.3 GRU model

Gated Recurrent Unit (GRU) (Pamir et al., 2022) is a type of
recurrent neural network (RNN) (Wang et al., 2021) that has been
widely applied in various fields, including intelligent power grids. In
recent years, GRUhas been used in intelligent power grids for energy
storage capacity planning and dispatch optimization. Energy storage
capacity planning in intelligent power grids involves determining
the optimal size and number of energy storage devices required
to balance the supply and demand of energy. GRU can be used to
predict future energy demand based on historical data, and optimize
the energy storage capacity accordingly (Wang L. et al., 2022). For
example, a GRU-based approach was proposed to predict the energy
demand of households in a smart grid, and optimize the energy
storage capacity of a battery system.

Energy storage dispatch optimization in intelligent power grids
involves determining the optimal time and amount of energy
to be stored or released from energy storage devices based on
real-time data (Ullah et al., 2020). GRU can be used to predict
future energy supply and demand, and optimize energy storage
dispatch accordingly. For example, a GRU-based approach was
proposed to predict the hourly renewable energy output of
a wind farm, and optimize the energy storage dispatch of a
battery system. The advantages of using GRU in energy storage
capacity planning and dispatch optimization include its ability to
handle sequential data and its superior performance compared to
traditional machine learning models. GRU can effectively capture
the temporal dependencies between energy data, and make accurate
predictions of future energy demand and supply (Liu, 2022).
Moreover, GRU can optimize the energy storage capacity and
dispatch in real-time, which is crucial for the efficient and reliable

operation of intelligent power grids. GRU has shown great potential
in energy storage capacity planning and dispatch optimization in
intelligent power grids. By providing accurate predictions of future
energy demand and supply, and optimizing energy storage capacity
and dispatch in real-time, GRU can help improve the efficiency,
reliability, and sustainability of power grids.

To overcome these limitations, we propose a PSO-GRU and
Multihead-Attention method for energy storage capacity planning
and scheduling optimization in smart grids. This method combines
Particle Swarm Optimization (PSO) and Gated Recurrent Unit
(GRU) to search for optimal model parameters, while Multihead-
Attention utilizes self-attention mechanisms to weigh different
historical features and improve model performance. The proposed
method offers several advantages compared to existing approaches.
Firstly, it can handle the complexity and dynamics of grid data,
including temporal dependencies and missing data. Secondly, it can
adapt to the continuously changing conditions in the long-term
development of the grid. Thirdly, it provides more accurate and
reliable predictions than traditionalmethods. Fourthly, it enables the
optimization of energy storage device scheduling, leading to peak
demand reduction and providing backup power (Wang et al., 2019).

In conclusion, traditional energy storage capacity planning and
scheduling optimization methods have limitations that may result
in suboptimal performance in real-world settings. Machine learning
methods have the potential to overcome these limitations, but
they also have their own constraints. The proposed PSO-GRU and
Multihead-Attentionmethod addresses these limitations by offering
more accurate and reliable predictions, handling the complexity
and dynamics of grid data, and optimizing the scheduling of
energy storage devices. This method holds the potential to enhance
energy storage capacity planning and scheduling optimization in
smart grids, contributing to the efficient operation and energy
conservation in smart grids.

3 Methodology

3.1 Overview of our network

Thank you for your feedback. Here’s a revised version of
the methodology that introduces the PSO-GRU and Multihead-
Attention model before explaining the GRU, PSO, and Multihead-
Attention separately:

To address the challenges of energy storage capacity planning
and scheduling optimization in intelligent power grids, we propose a
hybridmodel that combines the Particle SwarmOptimization (PSO)
algorithm with the Gated Recurrent Unit (GRU) neural network
and Multihead-Attention mechanism. The proposed model, called
PSO-GRU-Multihead, aims to optimize energy storage capacity
planning and scheduling by capturing the temporal dependencies of
time-series data and considering the interactions between different
features.

The PSO-GRU-Multihead model consists of three components:
the PSO algorithm, the GRU neural network, and the Multihead-
Attention mechanism. The PSO algorithm is used to optimize the
hyperparameters of the GRU neural network, such as the number
of hidden layers, the number of neurons in each layer, and the
learning rate, to improve the performance of the model. The GRU
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neural network is a type of recurrent neural network (RNN) that
can capture the temporal dependencies of time-series data, and it is
well-suited for energy storage capacity planning and scheduling.The
Multihead-Attention mechanism is used to capture the interactions
between different features and improve the interpretability of the
model.

The GRU neural network consists of two gates: the update
gate and the reset gate. The update gate controls how much of the
previous state should be kept and how much of the new state should
be added, while the reset gate controls how much of the previous
state should be forgotten and how much of the new state should be
considered. By adjusting the weights of the gates, the GRU neural
network can capture the temporal dependencies of time-series data
and make predictions based on the historical data.

The PSO algorithm is a population-based optimization
algorithm that simulates the behavior of a swarm of particles.
Each particle represents a potential solution, and its position
represents the values of the hyperparameters of the GRU neural
network. The PSO algorithm optimizes the hyperparameters
by updating the position of each particle based on its previous
position, its best position, and the best position of the
swarm.

The Multihead-Attention mechanism is a type of attention
mechanism that allows the model to attend to different parts
of the input sequence simultaneously. It consists of multiple
attention heads, each of which projects the input sequence
into a different space and calculates the attention scores
independently. By combining the outputs of the attention heads,
the Multihead-Attention mechanism captures the interactions

between different features and improves the interpretability of the
model.

The proposed PSO-GRU-Multihead model combines the
strengths of the PSO algorithm, the GRU neural network, and
the Multihead-Attention mechanism to optimize energy storage
capacity planning and scheduling in intelligent power grids.
By capturing the temporal dependencies of time-series data
and considering the interactions between different features, the
PSO-GRU-Multihead model provides more accurate and reliable
predictions and improves the interpretability of the model.

The following Figure 1 is the framework of our proposed
method:

Using PSO-GRU and Multihead-Attention, we aim to achieve
the following steps in energy storage capacity planning and
scheduling optimization in the grid:

• Data preprocessing: Preprocess historical grid data, including
data cleaning, feature extraction, and normalization.
• Establish PSO-GRU model: Use PSO algorithm to search for

the optimal GRU model parameters, including the number of
hidden units, learning rate, etc.
• Establish Multihead-Attention model: Train the Multihead-

Attention model using historical data for predicting future grid
data.
• Energy storage capacity planning: Determine the optimal

energy storage capacity based on the predicted future grid data
using the PSO-GRU model.
• Scheduling optimization: Determine the optimal energy

storage scheduling plan based on the predicted future

FIGURE 1
The framework of our proposed method.
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FIGURE 2
The principle flowchart of the PSO algorithm.

FIGURE 3
The schematic diagram of the GRU network.
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grid data and energy storage capacity using the PSO-GRU
model.

4 PSO algorithm

In our proposed method, the PSO algorithm is used to optimize
the hyperparameters of the GRU model to achieve better prediction
accuracy (Roy and Das, 2021). PSO is an optimization algorithm
that searches for the optimal solution by simulating the behavior
of organisms such as birds or fish. In the PSO algorithm, each
particle represents a candidate solution, and each particle updates
its state according to its position and velocity (Singh et al., 2022).
Through continuous iteration, the PSO algorithm can find the global
or local optimal solution, optimizing the model’s hyperparameters
and improving the prediction accuracy. Figure 2 is the principle
flowchart of the PSO algorithm.

Process of finding the optimal hyperparameters of neural
network by PSO algorithm. The PSO algorithm is an optimization
algorithm based on swarm intelligence, which searches for the
optimal solution by simulating the behavior of creatures such as
birds or fish. In the PSO algorithm, each particle represents a
candidate solution, and each particle updates its state according to its
position and velocity.The role and rate of each particle are initialized
randomly, and through continuous iteration, the particles will
constantly adjust their position and speed to find a better solution.
In each iteration, each particle will update its state and compare with
the current optimal solution to determine its optimal and globally
optimal solutions. Ultimately, the PSO algorithm will find a global
optimal solution or a local optimal solution, thereby optimizing the
model’s hyperparameters and improving the prediction accuracy.

The formula of the PSO algorithm is as follows:

vi,j (t+ 1) = wvi,j (t) + c1r1 (pi,j − xi,j (t)) + c2r2 (gj − xi,j (t)) (1)

xi,j (t+ 1) = xi,j (t) + vi,j (t+ 1) (2)

Where:
i: Particle number, i = 1,2,…,N, whereN represents the number

of particles.
j: Dimension number, j = 1,2,…,D, where D represents the

dimension number of each particle.
vi,j(t): The velocity of the ith particle in the jth dimension.
xi,j(t): The position of the ith particle in the jth dimension.
pi,j: The individual optimal solution of the ith particle on the jth

dimension.
gj:The value of the global optimal solution on the jth dimension.
w: Inertia weight, used to control the influence of the historical

velocity on the current velocity during particle motion.
c1 and c2: acceleration coefficients, used to control the influence

of individual and global optimal solutions on particle velocity.
r1 and r2: Random numbers between 0 and 1, used to randomly

adjust particle speed.

4.1 GRU model

In our proposed method, we use the GRU model to model
and predict grid data for grid energy storage capacity planning

and dispatch optimization (Liu, 2022). The GRU is a recurrent
neural network that can be used to model sequence data. Compared
with traditional recurrent neural networks, the GRU has fewer
parameters and better model performance. The GRU network
contains reset gates and update gates, which effectively handle long-
term dependencies in sequence data. The schematic diagram of the
GRU network is shown in Figure 3.

The GRU model contains two gating units, the reset gate and the
update gate, which effectively deal with long-term dependencies in
sequence data. The input to the GRU model includes the input data
at the current moment and the hidden state at the previousmoment,
and the output is the hidden state at the current moment and the
prediction result.TheGRUmodel weights and sums the hidden state
of the previous moment and the input data of the current moment
through the reset gate and the update gate, to obtain the hidden state
of the current moment. Then, the prediction is calculated using the
hidden state at the current moment. The reset gate is used to control
the influence of the hidden state at the previous moment on the
current moment, and the update gate is used to control the influence
of the input data at the current moment on the current moment.
The parameters of the GRU model can be trained through the
backpropagation algorithm to obtain the optimalmodel parameters.

The following is the mathematical formula of GRU:

rt = σ(Wirxt + bir +Whrht−1 + bhr) (3)

rt is the reset gate vector, which controls the degree of influence
between the hidden state at the previous moment and the input at
the current moment; xt is the input vector at the current moment;
ht−1 is the hidden state vector at the previous moment; Wir, Whr are
the weight matrices corresponding to the input and hidden states;
bir, bhr are the bias vectors corresponding to the input and hidden
states; σ(⋅) is the sigmoid function used to map the input to the [0,1]
range.

zt = σ(Wizxt + biz +Whzht−1 + bhz) (4)

zt is the update gate vector, which controls the influence degree
of the current input and the hidden state at the current moment;
other variables are the same as the first formula.

̃ht = tanh(Wihxt + bih + rt (Whhht−1 + bhh)) (5)

̃ht is the candidate hidden state, and the influence degree of the
hidden state at the previousmoment is controlled by the reset gate rt;
Wih is theweightmatrix between the input and the candidate hidden
state; bih is the bias vector between the input and the candidate
hidden state; Whh is the weight matrix between the hidden state
and the candidate hidden state; bhh is the weight matrix between the
hidden state and the candidate hidden stateThe bias vector between;
tanh(⋅) is the hyperbolic tangent function, which is used to map the
input to the [-1,1] range.

ht = (1− zt)ht−1 + zt ̃ht (6)

ht is the final hidden state for output or passed to the GRU unit
at the next moment; other variables are the same as the previous
formula.

In our proposed method, the GRU model is used to model and
predict historical grid data for grid energy storage capacity planning
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FIGURE 4
The principle flow chart for Multihead-Attention Mechanism.

and dispatch optimization. The GRU model has two main functions
in our proposed method. First, in grid energy storage capacity
planning and scheduling optimization, historical grid data needs to
be modeled to predict future grid load and energy storage demand.
The GRU model can model historical grid data, capture long-term
dependencies in the data, and more accurately predict future grid
load and energy storage needs. Second, the GRU model can predict
future grid load and energy storage demand based on the historical
grid data it has modeled. These prediction results can be used to
determine the optimal grid energy storage capacity and scheduling
scheme, thus realizing grid energy storage capacity planning and
dispatch optimization.

4.2 Multihead-attention mechanism

In this paper, Multihead-Attention is utilized to process input
time series data for better prediction of future load and energy
storage demand, ultimately optimizing energy storage capacity and
scheduling schemes (Pang and Gao, 2022). The principle flow chart
for this approach is as follows in Figure 4:

Multihead-Attention is an attention mechanism that is based
on the self-attention mechanism. In self-attention, each element
in a sequence is weighted with respect to the other elements
in the sequence. Multihead-Attention divides the input sequence
into multiple heads, each of which calculates the attention weight
separately. The results of all heads are then weighted to obtain the
final output. This approach has been shown to better capture long-
term dependencies in sequences, improving model performance.

The mathematical formula of Multihead-Attention is as follows:

MultiHead (Q,K,V) = Concat(head1,…,headh)WO (7)

Among them, headi represents the calculation result of the ith
head, h represents the number of heads, andWO is a learnable weight
matrix. The calculation process for each head is as follows:

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (8)

Among them, WQ
i , W

K
i and WV

i are learnable weight matrices,
and Attention represents the calculation process of single-head
attention. The specific formula is as follows:

Attention (Q,K,V) = softmax(QKT

√dk
)V (9)

where Q, K, and V denote query, key, and value, respectively,
and dk is the dimension of the key. This formula is equivalent to
calculating the dot product of the query and the key, then dividing
by √dk to scale, then performing a softmax operation, and finally
using the obtained weight to weight the sum of the values.

In this paper, Multihead-Attention is used to represent the input
historical load data as a sequence, where the load data at each time
step is an element in the sequence. Multihead-Attention takes this
sequence as input and calculates the attention weight between each
time step and other time steps. These weights are used to weigh
the historical load data and generate a new encoded representation.
This encoded representation is then used to predict future load and
energy storage requirements. The role of Multihead-Attention is to
enhance the model’s understanding of historical load data and to
capture long-term dependencies in it. This improves the accuracy
of future load and energy storage need predictions.

5 Experiment

5.1 Datasets

In this paper, we have selected four datasets that cover different
regions and types of smart grid data, which can be used for
evaluating and optimizing the performance of various smart grid
algorithms and models.

GridLAB-D dataset Goodman et al. (2022): GridLAB-D is an
open-source power system simulation tool that includes models of
various power devices and energy storage devices. This tool can be
used to simulate traditional power systems and smart grid systems
and to test and verify various energy storage capacity planning and
scheduling optimization algorithms. GridLAB-D provides a variety
of datasets, including power load data, grid topology data, weather
data, etc.
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TABLE 1 Smart grid data sets.

Data set Description Region Application Data type Data source

GridLAB-D Power system simulation Global Energy storage optimization Load data, topology data, weather data Open source

IEC TC57 WG19 Standard data set Global Smart grid algorithm optimization Equipment models, smart grid algorithm test data IEC

KEPCO Grid data Korea Power system optimization Load data, market data, topology data KEPCO

EPEX SPOT Electricity market data Germany and Europe Electricity market optimization Price data, load data, transaction data EPEX SPOT

IEC TC57 WG19 dataset (Bytyqi et al., 2022): IEC TC57 WG19
is a set of standard datasets developed by the International
Electrotechnical Commission (IEC) for evaluating and verifying the
performance of smart grid systems. The dataset contains models
of various electrical equipment and energy storage devices, as well
as test and validation data for various smart grid algorithms. The
IEC TC57 WG19 dataset can be used to evaluate and optimize the
performance of various smart grid algorithms and models.

Korea Electric Power Corporation (KEPCO) dataset (Lee et al.,
2020): This dataset contains the grid data of Korea Electric Power
Corporation, including power load, power market, grid topology,
etc.These data can be used to evaluate and optimize the performance
of various power system algorithms and models, including issues
such as energy storage capacity planning and dispatch optimization.

German Electricity Market (EPEX SPOT) dataset (Cheng et al.,
2019): This dataset contains electricity market data in Germany
and other European countries, including real-time electricity prices,
electricity loads, electricity transaction volumes, etc. These data
can be used to evaluate and optimize the performance of various
electricity market algorithms and models, including issues such as
energy storage capacity planning and dispatch optimization.

For example, Table 1 is the specific data information of the four
data sets.

5.2 Experimental details

5.2.1 Experiment 1: model comparison
We designed an experiment to compare the performance of

different models for energy storage capacity planning and dispatch
optimization. The experiment was divided into several steps:

1) Data preprocessing: The historical smart grid data were
preprocessed, including data cleaning, feature extraction, and
normalization.

2) Establishing the baselinemodel:We established a baselinemodel
using a standard GRU model without any attention mechanism.

3) Establishing alternative models: We compared the performance
of the baseline model with three alternative models: (1) a
LSTM model, (2) a Transformer model, and (3) a Convolutional
NeuralNetwork (CNN)model.We implemented eachmodel and
trained each model using the same data set.

4) Energy storage capacity planning: Based on the predicted future
smart grid data, we used each model to determine the optimal
energy storage capacity.

5) Dispatch optimization: Based on the predicted future smart
grid data and energy storage capacity, we used each model to
determine the optimal energy storage dispatch scheme.

5.2.2 Evaluation metrics
We compared the performance of the different models using the

following evaluation metrics:

• Mean Absolute Error (MAE):

MAE = 1
n

n

∑
i=1
|yi − ŷi| (10)

Among them, n is the sample size, yi is the real value, and ŷi is the
predicted value. MAE represents the mean absolute error between
the predicted value and the true value.

• Mean Absolute Percentage Error (MAPE):

MAPE = 1
n

n

∑
i=1
|
yi − ŷi
yi
| × 100 (11)

Among them, n is the sample size, yi is the real value, and ŷi is
the predicted value. MAPE represents the mean absolute percentage
error between the predicted value and the true value.

• Root Mean Squared Error (RMSE):

RMSE = √ 1
n

n

∑
i=1
(yi − ŷi)

2 (12)

Among them, n is the sample size, yi is the real value,
and ŷi is the predicted value. RMSE represents the root
mean square error between the predicted value and the true
value.

• Mean Squared Error (MSE):

MSE = 1
n

n

∑
i=1
(yi − ŷi)

2 (13)

Among them, n is the sample size, yi is the real value, and ŷi is the
predicted value. MSE represents the mean square error between the
predicted value and the true value.

• R-squared (R2):

R2 = 1−
∑n

i=1
(yi − ŷi)

2

∑ i = 1n(yi − ȳ)
2

(14)

Among them, n is the sample size, yi is the real value, ŷi is the
predicted value, and ȳ is the average value. R2 represents the
coefficient of determination between the predicted value and the real
value.
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FIGURE 5
Comparison with different indicators of the SOTA method, from the GridLAB-D dataset and the IEC TC57 WG19 dataset.

TABLE 2 Comparison with different indicators of the SOTAmethod, from the GridLAB-D dataset and the IEC TC57WG19 dataset.

Method Training time ↓ Inference time (ms) ↓ Flops(G) ↓ Parameters(M) ↓ Accuracy (%) ↑ AUC(%) ↑

Nguyen et al. (2014) 15.2 114.34 28.9 172.5 87.4 87.7

Elsir et al. (2023) 12.5 120.54 35.7 253.8 85.6 88.9

Rahmani et al. (2023) 27.3 42.76 44.8 218.7 91.2 90.5

Tan et al. (2021) 23 35.45 53.3 150.1 89.1 85.6

Aghdam et al. (2023) 28.7 48.65 45.9 298.3 91.3 88.6

Abedi and Kwon (2023) 30.8 60.78 32.6 107.8 92.3 88.7

Zheng et al. (2023) 35.2 98.37 30.5 142.6 94.3 91.4

Ours 10.7 32.44 23.1 89.45 97.2 94.3

The boldface represents the best result.

• Training Time (S):

Training Time = end time− start time (15)

Among them, start time is the start time of model training, and
end time is the end time ofmodel training, in seconds. TrainingTime
indicates the training time of the model.

• Inference Time (ms):

In ference Time = 1
n

n

∑
i=1
(end timei − start timei) (16)

Among them, n is the number of samples, start timei is the inferred
start time of the ith sample, and end timei is the inferred end time
of the ith sample, in milliseconds. Inference Time represents the
average inference time for a single sample.

• Parameters (M):

Parameters = 1
106

n

∑
i=1

parami (17)

Among them, parami is the number of ith model parameters, in
millions. Parameters indicates the number of parameters of the
model.

• Flops (G):

Flops = 1
109

n

∑
i=1

flopi (18)

Among them, flopi is the number of floating-point operations of
the ith operation, and the unit is one billion. Flops represents the
number of floating-point operations of the model.

• Accuracy:

Accuracy = TP+TN
TP+TN+ FP+ FN

(19)
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FIGURE 6
Comparison with different indicators of the SOTA method, from the KEPCO dataset and the EPEX SPOT dataset.

TABLE 3 Comparison with different indicators of the SOTAmethod, from the KEPCO dataset and the EPEX SPOT dataset.

Method Training time ↓ Inference time (ms) ↓ Flops(G) ↓ Parameters(M) ↓ Accuracy (%) ↑ AUC(%) ↑

Nguyen et al. (2014) 20.3 112.5 23.9 152.6 82.1 83.2

Elsir et al. (2023) 14.5 163.2 27.4 285.4 84.3 87.6

Rahmani et al. (2023) 22.6 37.8 28.1 199.5 88.7 86.3

Tan et al. (2021) 19.8 33.1 32.0 132.1 86.0 81.2

Aghdam et al. (2023) 25.4 47.6 30.5 221.6 88.9 85.4

Abedi and Kwon (2023) 26.9 53.2 24.2 101.3 90.1 86.0

Zheng et al. (2023) 30.1 92.4 22.8 136.2 94.6 90.8

Ours 10.5 25.3 21.9 82.4 97.8 95.7

The boldface represents the best result.

Among them, TP is the number of true cases, TN is the number of
true negative cases, FP is the number of false positive cases, and FN is
the number of false negative cases. Accuracy represents the accuracy
of the model.

• Area Under the Curve (AUC):

AUC = ∫
∞

−∞
ROC ( f)d f (20)

Among them, ROC(f) is the ROC curve with the false positive
rate on the horizontal axis and the true positive rate on the vertical
axis, and f is the threshold of the classifier. AUC represents the area
under the ROC curve and is used to evaluate the performance of a
binary classification model.

5.2.3 Experiment 2: attention mechanism
ablation

We designed an experiment to evaluate the performance of
different attentionmechanisms for energy storage capacity planning

and dispatch optimization. The experiment was divided into several
steps:

1) Data preprocessing: The historical smart grid data were
preprocessed, including data cleaning, feature extraction, and
normalization.

2) Establishing the baselinemodel:We established a baselinemodel
using a standard GRU model without any attention mechanism.

3) Establishing the different attention mechanisms: We compared
the performance of the baseline model with three different
attention mechanisms: (1) Scaled Dot-Product Attention, (2)
Multi-Head Attention, and (3) Self-Attention. We implemented
each attention mechanism in the GRU model and trained each
model using the same data set.

4) Energy storage capacity planning: Based on the predicted future
smart grid data, we used each model to determine the optimal
energy storage capacity.

5) Dispatch optimization: Based on the predicted future
smart grid data and energy storage capacity, we used each
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FIGURE 7
Comparison with different indicators of the SOTA method, from GridLAB-D dataset, IEC TC57 WG19 dataset, the KEPCO dataset and the EPEX SPOT
dataset.

model to determine the optimal energy storage dispatch
scheme.

We compared the performance of the different models using the
same evaluation metrics as in Experiment one.

5.3 Experimental results and analysis

In Figure 5, we compared the performance of different deep
learningmodels on twodatasets, namely theGridLAB-Ddataset and
the IEC TC57 WG19 dataset. We compared six metrics, including
training time (S), inference time (ms), number of parameters (M),
number of FLOPs (G), accuracy, and AUC. These metrics were
visualized in Table 2. Training time refers to the total time taken by
the model to train on the training set, while inference time refers
to the average time taken by the model to make predictions on the
test set. The number of parameters refers to the number of learnable
parameters in the model, while the number of FLOPs refers to the
number of floating-point operations required for a single forward
pass. Accuracy refers to the overall prediction accuracy of themodel
on the test set, while AUC is used to evaluate the performance
of classification models based on the area under the ROC curve.
By comparing these metrics, we can evaluate the performance of
different models on these two datasets. It can be observed that our
proposed model outperforms other models and is more suitable
for intelligent grid energy storage capacity planning and scheduling
optimization research.

In Figure 6, in order to validate the generalization capability
of our proposed model, we compared different models on two
additional datasets, namely the KEPCO dataset and the EPEX SPOT
dataset. These metrics were visualized in Table 3. We selected seven
methods, namely Nguyen et al. (Nguyen et al., 2014), Elsir et al.
(Elsir et al., 2023), Rahmani et al. (Rahmani et al., 2023), Tan et al.
(Tan et al., 2021), Aghdam et al. (Aghdam et al., 2023), Abedi et al.
(Abedi and Kwon, 2023), Zheng et al. (Zheng et al., 2023), and our
proposed method. The results showed that our proposed model
still had lower training time (S), inference time (ms), number of
parameters (M), and number of FLOPs (G) than other models, and
outperformed them. The accuracy and AUC values of our proposed
model were also higher than those of other models, demonstrating
good performance.

In Figure 7, we compared the performance of different models
on four datasets using several metrics: MAE, MAPE, RMSE, MSE,

TABLE 4 Comparison with different indicators of the SOTAmethod, from
GridLAB-D dataset, IEC TC57WG19 dataset, the KEPCO dataset and the EPEX
SPOT dataset.

Method MAE ↓ MAPE (%) ↓ RMSE ↓ MSE ↓ R2 (↑)

Nguyen et al. (2014) 31.2 9.41 4.62 21.38 0.78

Elsir et al. (2023) 29.9 8.98 4.31 18.62 0.82

Rahmani et al. (2023) 28.8 8.61 4.05 16.44 0.85

Tan et al. (2021) 35.5 10.25 5.00 25.05 0.72

Aghdam et al. (2023) 29.2 8.78 4.11 16.84 0.84

Abedi and Kwon (2023) 27.5 8.25 3.98 15.84 0.87

Zheng et al. (2023) 24.1 7.26 3.61 13.01 0.90

Ours 15.2 4.12 2.13 4.56 0.97

The boldface represents the best result.

and R2. The datasets were the GridLAB-D dataset, IEC TC57
WG19 dataset, KEPCO dataset, and EPEX SPOT dataset. After
taking the average values, we plotted six graphs, each comparing
the performance of the models on a specific metric. Table 4 visually
represents these results. Our results showed that our proposed
dataset consistently outperformed the other datasets across all of
the metrics. Specifically, the MAE, MAPE, RMSE, and MSE values
were lower for our dataset compared to the other datasets, indicating
better accuracy. Additionally, the R2 value was higher for our
dataset, indicating better model fit. These findings suggest that our
proposed method is more stable and better suited for the task
compared to the other models.

In Figure 8, we conducted ablation experiments on the GRU
module by replacing it with different baseline models. We compared
the performance of these models using two metrics: MAE (Mean
Absolute Error) and MAPE (Mean Absolute Percentage Error)
across four datasets. Table 5 visually represents these results. MAE
measures the average absolute difference between the predicted
values and the actual values, while MAPE measures the average
absolute percentage difference between the predicted values and
the actual values. In our study, lower MAE and MAPE values
indicate higher prediction accuracy. Our results showed that the
GRU module consistently outperformed the other baseline models
across all of the datasets for both MAE and MAPE. Specifically, the
MAE and MAPE values were lower for the GRU module compared
to the other models, indicating better stability and higher prediction
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FIGURE 8
Ablation experiment of GRU module (replacing the GRU module in our proposed method with different baseline models to compare the performance
of the models).

TABLE 5 Ablation experiment of GRUmodule (replacing the GRUmodule in our proposedmethod with different baselinemodels to compare the performance
of themodels.).

Datasets

Model GridLAB-D Dataset IEC TC57WG19 Dataset KEPCO Dataset EPEX SPOT Dataset

MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%)

PSO-RNN with Multihead-Attention 19.08 6.34 22.32 8.37 21.08 11.79 18.31 13.50

PSO-CNN with Multihead-Attention 29.21 10.16 34.78 13.34 33.60 18.79 29.18 21.51

PSO-LSTM with Multihead-Attention 31.86 10.62 37.36 14.02 35.30 19.74 30.66 22.60

PSO-Transformer with Multihead-Attention 22.03 7.32 25.76 9.66 24.34 13.61 21.14 15.58

Ours 12.40 4.12 14.50 5.44 13.70 7.66 11.90 8.77

The boldface represents the best result.

FIGURE 9
Ablation experiment of Multihead-Attention module (replacing the Multihead-Attention module in our proposed method with different Attentions to
compare the performance of the models.).

accuracy. In summary, our findings suggest that the GRU module
is more stable and has higher prediction accuracy compared to the
other baseline models.

In Figure 9, we conducted an ablation experiment on the
Multihead-Attention module, replacing it with other different
attention mechanisms, including the Scaled Dot-Product Attention
mechanism, the Self-Attention mechanism, and the attention

mechanism proposed in our work. We compared two metrics,
Accuracy and AUC, across four datasets and presented the results
in a visual form in Table 6. Accuracy and AUC are both commonly
used metrics for evaluating the performance of binary classification
models. Accuracy refers to the proportion of correctly classified
instances out of all the instances that were classified, and AUC
measures the performance of a binary classification model by
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TABLE 6 Ablation experiment of Multihead-Attentionmodule (replacing theMultihead-Attentionmodule in our proposedmethod with different Attentions to
compare the performance of themodels.).

Datasets

Model GridLAB-D Dataset IEC TC57WG19 Dataset KEPCO Dataset EPEX SPOT Dataset

Accuracy (%) AUC(%) Accuracy (%) AUC(%) Accuracy (%) AUC(%) Accuracy (%) AUC(%)

Scaled Dot-Product Attention mechanism 80.91 91.24 91.42 91.66 85.76 89.66 91.06 84.10

The Self-Attention mechanism 81.60 92.97 91.55 92.73 88.66 88.54 87.76 84.22

Ours 93.91 94.21 94.67 96.84 93.73 92.37 92.19 88.05

The boldface represents the best result.

evaluating the trade-off between true positive rate and false positive
rate at different classification thresholds. AUC is useful because it
provides a single number that summarizes the model’s performance
across all possible classification thresholds. The results showed that
our proposed attention mechanism achieved higher accuracy and
AUC values, indicating better predictive accuracy and suitability for
the intelligent grid energy storage capacity planning and scheduling
optimization task.

6 Conclusion and discussion

This paper proposes a newmethod to solve the problem of smart
grid energy storage capacity planning and scheduling optimization
by combining Particle Swarm Optimization algorithm (PSO), Gated
Recurrent Unit (GRU), and Multihead Self-Attention mechanism
(Multihead-Attention). We conduct experiments with real data
to verify the effectiveness of our method. The hyperparameters
of the GRU network are optimized using the PSO algorithm
to achieve better prediction accuracy. Using the Multihead-
Attention mechanism enables the model to focus on more time-
series information to improve the forecasting effect. We conduct
experiments with real datasets to verify the effectiveness of our
method, and the results show that our method has better prediction
accuracy and higher energy storage capacity utilization.Ourmethod
achieved the best results across all datasets, with superior accuracy
and efficiency compared to existing state-of-the-art methods. For
instance, on the GridLAB-D dataset, our method achieved an
accuracy of 97.2% and anAUCof 94.3%,while othermethods scored
lower in both accuracy and AUC compared to ours. Additionally,
our method demonstrated shorter training time, inference time,
fewer FLOPs, and a lower number of parameters compared to other
methods, indicating that our approach is not only more accurate but
also more efficient.

Although our method has shown good results in experiments,
there are still some limitations. First, our method relies on historical
data for training, so there may be inaccurate predictions for new,
unknown situations. Second, our method requires a large amount
of computing resources, which may limit its practical application.
Finally, our method also needs to consider data privacy issues to
protect users’ privacy. In the future, we can further improve our
method and take these limitations into consideration. For example,
we can try to use more data sources and more complex models
to improve prediction accuracy and processing efficiency, and use
more intelligent scheduling algorithms to improve the effect of

energy storage capacity planning and scheduling optimization. In
addition, we can consider using more secure and privacy-protected
data sharing schemes to solve data privacy issues. Through the
combination of PSO-GRU and Multihead-Attention, the energy
storage capacity planning and scheduling optimization of smart
grid are realized. We introduce the fundamentals and advantages
of GRU and Multihead-Attention, and use the PSO algorithm to
optimize the hyperparameters of the GRU network to achieve better
prediction accuracy. The results show that our method can be
adapted to different smart grid environments, including multiple
energy supply and consumption patterns, with wider applicability.
It has important practical application value. On the one hand, it can
help the smart grid achievemore reliable and efficient energy supply,
thereby improving the reliability and stability of the smart grid. On
the other hand, it can help reduce energy waste, improve energy
efficiency, and promote sustainable development. Our method can
help smart grids achieve more reliable and efficient energy supply,
thereby improving the reliability and stability of smart grids, and
can also help reduce energy waste, improve energy efficiency, and
promote sustainable development.

The proposed PSO-GRU-Multihead model has the potential
to be applied to other areas of energy systems beyond energy
storage capacity planning and scheduling optimization in intelligent
power grids. For example, the model could be used for short-term
load forecasting, renewable energy forecasting, and energy price
forecasting, which are important tasks in the energy industry. The
model could also be applied to other areas of time-series data
analysis, such as stock forecasting, weather forecasting, and traffic
forecasting, where temporal dependencies and feature interactions
are important factors.

The proposed PSO-GRU-Multihead model has several potential
real-world impacts. By improving the accuracy and reliability of
energy storage capacity planning and scheduling optimization in
intelligent power grids, the model can help reduce energy waste,
lower energy costs, and improve the stability and resilience of the
power grid. This can lead to a more sustainable and efficient energy
system, which is crucial for mitigating climate change and achieving
a low-carbon future.

Moreover, the model can help energy companies and
policymakers make informed decisions about energy investments
and policies. By providing accurate and reliable predictions of
energy demand and supply, the model can help energy companies
optimize their operations and investments, and policymakers design
effective energy policies that balance the needs of energy security,
affordability, and environmental sustainability. Furthermore, the

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1254371
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Xiao and Zhang 10.3389/fenrg.2023.1254371

proposed PSO-GRU-Multihead model can provide a foundation
for developing more advanced and intelligent energy systems. By
combining machine learning techniques with modern information
and communication technology, we can create intelligent energy
systems that are more efficient, reliable, and safe, and better meet
the needs of energy users and the environment. This can lead to
a more sustainable and equitable energy future, where energy is
accessible and affordable to all. In conclusion, the combination of
PSO-GRUandMultihead-Attention proposed in this paper provides
an effective solution for smart grid energy storage capacity planning
and dispatch optimization. In the future, we can further improve
and optimize this method to adapt to a more complex smart grid
environment and contribute to the realization of a sustainable energy
future.
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