
TYPE Methods

PUBLISHED 17 August 2023

DOI 10.3389/fdata.2023.846202

OPEN ACCESS

EDITED BY

Venet Osmani,

Fondazione Bruno Kessler Research

Institute, Italy

REVIEWED BY

Filipe Portela,

University of Minho, Portugal

Enrico Capobianco,

Jackson Laboratory, United States

*CORRESPONDENCE

Xi Luo

xi.luo@uth.tmc.edu

RECEIVED 30 December 2021

ACCEPTED 25 July 2023

PUBLISHED 17 August 2023

CITATION

Zhao B, Huepenbecker S, Zhu G, Rajan SS,

Fujimoto K and Luo X (2023) Comorbidity

network analysis using graphical models for

electronic health records.

Front. Big Data 6:846202.

doi: 10.3389/fdata.2023.846202

COPYRIGHT

© 2023 Zhao, Huepenbecker, Zhu, Rajan,

Fujimoto and Luo. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Comorbidity network analysis
using graphical models for
electronic health records

Bo Zhao1, Sarah Huepenbecker2, Gen Zhu1, Suja S. Rajan3,

Kayo Fujimoto4 and Xi Luo1*

1Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health

Science Center, Houston, TX, United States, 2Department of Gynecologic Oncology and Reproductive

Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States, 3Department

of Management, Policy and Community Health, School of Public Health, The University of Texas Health

Science Center, Houston, TX, United States, 4Department of Health Promotion and Behavioral Sciences,

School of Public Health, The University of Texas Health Science Center, Houston, TX, United States

Importance: The comorbidity network represents multiple diseases and their

relationships in a graph. Understanding comorbidity networks among critical care

unit (CCU) patients can help doctors diagnose patients faster, minimize missed

diagnoses, and potentially decrease morbidity and mortality.

Objective: The main objective of this study was to identify the comorbidity

network among CCU patients using a novel application of a machine learning

method (graphical modeling method). The second objective was to compare the

machine learning method with a traditional pairwise method in simulation.

Method: This cross-sectional study used CCU patients’ data from Medical

Information Mart for the Intensive Care-3 (MIMIC-3) dataset, an electronic health

record (EHR) of patients with CCU hospitalizations within Beth Israel Deaconess

Hospital from 2001 to 2012. A machine learning method (graphical modeling

method) was applied to identify the comorbidity network of 654 diagnosis

categories among 46,511 patients.

Results: Out of the 654 diagnosis categories, the graphical modeling method

identified a comorbidity network of 2,806 associations in 510 diagnosis categories.

Two medical professionals reviewed the comorbidity network and confirmed

that the associations were consistent with current medical understanding.

Moreover, the strongest association in our network was between “poisoning by

psychotropic agents” and “accidental poisoning by tranquilizers” (logOR 8.16),

and the most connected diagnosis was “disorders of fluid, electrolyte, and acid–

base balance” (63 associated diagnosis categories). Our method outperformed

traditional pairwise comorbidity network methods in simulation studies. Some

strongest associations between diagnosis categories were also identified, for

example, “diagnoses ofmitral and aortic valve” and “other rheumatic heart disease”

(logOR: 5.15). Furthermore, our method identified diagnosis categories that were

connected with most other diagnosis categories, for example, “disorders of

fluid, electrolyte, and acid–base balance” was associated with 63 other diagnosis

categories. Additionally, using a data-driven approach, our method partitioned the

diagnosis categories into 14 modularity classes.
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Conclusion and relevance: Our graphical modeling method inferred a logical

comorbidity network whose associations were consistent with current medical

understanding and outperformed traditional network methods in simulation. Our

comorbidity network method can potentially assist CCU doctors in diagnosing

patients faster and minimizing missed diagnoses.

KEYWORDS

comorbidity network analysis, graphic modeling method, machine learning, electronic

health records, critical care unit

Introduction

Diseases can share similar genetic and environmental causes
and may correlate with each other. Comorbidity is the concurrent
presence of two or more diseases or medical conditions in the same
patient. A graphical approach called comorbidity network analysis
(CNA) is usually employed to study many comorbidities together
and discover the associations between diseases in a more realistic
sense (Cramer et al., 2010).

CNA is important since it helps us to understand disease
correlations from a broader perspective, and sometimes, it can even
reveal novel correlations for further investigation (Hidalgo et al.,
2009). Compared with the latent variable approach, CNA generates
a representation of candidate pathways between comorbidities
(Cramer et al., 2010; Eaton, 2015). It can inform doctors of
a patient’s possible comorbidities given his primary disease,
helping doctors diagnose their patient faster and minimize missed
diagnoses. In fact, CNA has been used to identify the correlation
between diseases and has mainly been applied to chronic diseases
(Khan et al., 2018; Aguado et al., 2020; Cruz-Ávila et al., 2020;
Sriram et al., 2021). For example, the comorbidity network of
type 2 diabetes was analyzed by Aguado et al. (2020). In 2021,
Sriram et al. also analyzed the comorbidity network among
women with obstetric disorders from UK Biobank (Sriram et al.,
2021).

Fotouhi et al. (2018) summarized statistical methods that
were used to construct the comorbidity network. Though with
different metrics (OR, RR, or phi), these methods all used a
pairwise relationship to build the comorbidity network. Recently,
pairwise mutual information with permutation test inference was
employed to study type 2 diabetes risk factors and comorbidity
network modules (Preo and Capobianco, 2019). The drawback
of a pairwise method was that it did not control for other
potentially confounding diseases and might recover superficial or
indirect associations between diseases. For example, from a clinical
perspective, obesity causes diabetes and coronary artery disease.
If left uncontrolled, diabetes can cause diabetic foot ulcers. If
coronary artery disease and diabetic foot ulcer are studied pairwise,
a superficial relationship exists since they share a common cause
(obesity). However, if obesity or diabetes or both are controlled,
then this indirect association between coronary artery disease and
diabetic foot ulcers will disappear.

On the other hand, the introduction of electronic health records
(EHR) brings more challenges to the current method because we

have access to many more covariates and observations. However,
many of the covariates might be irrelevant to the outcome, if
we include all covariates, unnecessary complexity will be added
to our model, which may create an over-fitting problem, and
the model could have low external generalizability in real-world
clinical practice.

To handle these problems, traditional statistics use iterative
variable selection methods, either forward, backward, or
stepwise selection. However, these iterative selection algorithms
might drop significant but correlated covariates because
multicollinearity will inflate the variance dramatically. To
avoid this drawback, an exhaustive search can be utilized by
comparing all possible models. However, it is computationally
prohibitive as one needs to search among all possible models:
when p becomes large, for example, 500, then 3.27∗10150

models are needed to be fit, which is computationally
impossible. Based on these disadvantages, a new statistical
method is needed to control for confounders and be efficient in
model selection.

In this study, we aim to apply a graphical modeling method
(Dalege et al., 2017; Epskamp et al., 2018) to construct a full-
scale comorbidity network from HER data. This differs from state-
of-the-art pairwise methods, where our proposal aims to recover
conditional dependences between diseases that are more likely
to be direct connections. Motivated by the sparse characteristics
of EHR data, we also adapt and compare different choices of
penalty for network estimation using extensive simulation studies.
This leads to an improved method suitable for EHR analysis.
Finally, we assess the validity of our proposal using a real
data analysis validated by two medical professionals. As far as
we are aware, this is among the first applications of graphical
modeling to EHR data. In the Method section, we first describe
the MIMIC-3 EHR dataset and then introduce our proposal
on how to adapt the graphical modeling method for the EHR
setting. We also describe the simulation study to evaluate the
validity of our proposal and compare its performance with the
existing pairwise approach. In the Result section, we present the
comorbidity network recovered from analyzing a critical care unit
(CCU) database. These network connections between diseases
were reviewed and validated by two medical professionals. We
also present the simulation results showing the validity of our
proposal and its improvement over the existing approach. Finally,
the Discussion section presents the implications and limitations of
our results.
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FIGURE 1

Workflow of our data processing, analysis, and evaluation steps.

Method

Study dataset

The Medical Information Mart for Intensive Care-3 (MIMIC-
3) datasets (Johnson et al., 2016) were used in this study, which
are encounter datasets of patients who stayed in the CCUs of the
Beth Israel Deaconess Hospital from 2001 to 2012. Most patients
(83%) had only one encounter. However, if a patient had multiple
encounters, only the last encounter of the patient was kept to
generate an independent sample. The workflow of the study process
can be found in Figure 1, including the data pre-processing and the
analysis process.

Morbidity identification

Patients’ general diagnosis categories were identified by ICD-
9 codes. Following ICD-9 coding syntax (List of ICD-9 codes,
2022) for ICD-9 codes starting with numbers, three-digit codes
were used to determine the patients’ general diagnosis category.
For ICD-9 codes starting with “V” or “E,” two digits after “V” and
three digits after “E” was used. After consolidating ICD-9 codes
into general categories, duplicates of ICD-9 codes within the same
encounter were removed. To only emphasize common diagnosis
categories, we excluded diagnosis categories whose frequencies
were<20 in the sample. This helped improve the fit of the statistical
model by excluding the outcomes that were too less (sparse). The
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number 20 was selected as a rule of thumb. Each encounter was
then double-checked to ensure it had at least one diagnosis after
this step.

Morbidity dataset

Within each encounter, a series of binary dummy variables were
created for all general diagnosis categories, indicating whether or
not the encounter had the diagnosis or not. In this way, a morbidity
dataset was created, with columns representing diagnosis categories
(P) and rows representing patients (N).

Statistical analysis

The graphical modeling method (Strobl et al., 2012) was used to
model the data. It was modified to fit EHR settings by replacing the
LASSO penalty with the elastic net penalty (Zou and Hastie, 2005).
The algorithm iterated over each of the diagnosis categories as
follows: at iteration i, the ith diagnosis category was selected as the
outcome, and a logistic regression with the elastic net penalty was
fitted on all other diagnosis categories as covariates. The resulting
coefficients (logOR) were put into the ith row of the P × P weight
matrix without the diagonal entry. The above process was repeated
until all disease categories had been chosen as outcomes.

For the P×Pweightmatrix, each off-diagonal element (logORij)
represented the associations between diagnosis category i and
diagnosis category j in the form of a log odds ratio. Due to the elastic
net penalty, logORij for some

(

i, j
)

pairs was set to 0, indicating zero
or undetectable associations. The likelihood function of the elastic
net is shown below (Zou and Hastie, 2005) (Figure 2).

The existing graphical modeling method for binary data (Strobl
et al., 2012) used the LASSO penalty, which corresponds to a special
case of α = 1 in the likelihood. Elastic net usually outperforms
LASSO on data with high collinearity, and this motivated us to
adopt the elastic net penalty for EHR data. In this weight matrix,
logORij and logORji at symmetric positions had differentmeanings:
logORij is the log of the odds ratio of disease category i and j, setting
i as the outcome while j as a covariate in the logistic model, after
adjusting for all other diseases categories. In contrast, logORji was
the log of the odds ratio of disease category j and i, setting j as the
outcome while i as a covariate in the logistic model after adjusting
for all other disease categories.

To be more conservative, for logORij and logORji at symmetric
positions in the matrix, we selected the one with a minimum
absolute value and replaced the other value with it. In this way,
a symmetric matrix was constructed to represent an undirected,
weighted disease network. This disease network was then plotted
using Gephi (Bastian et al., 2009). The graph layout was “Force
Atlas,” with repulsion strength = 10,000. The size of each node
represented its degree, and the color of each node represented
its modularity class. The resulting comorbidity network was then
reviewed by two medical professionals (Dr. Sarah Huepenbecker
and Dr. Bo Zhao).

For comparison, the pairwise OR method (Aguado et al., 2020)
was also applied in the dataset as follows. For each pair of diagnosis

categories, a 2 by 2 contingency table was constructed first. The
odds ratio (OR) and P-value from Fisher’s exact test were calculated
(Rosner, 2010) to assess the associations between the diseases. This
process was repeated for all pairs of diagnosis categories. Then, the
P-value is adjusted using the Bonferroni correction. TheORs whose
adjusted P-values were <0.05 were kept. Unlike our proposal, the
pairwise method did not adjust for all other diseases to assess the
pairwise associations between diseases.

Outcomes

The primary outcome of our analysis method was a P × P

network weight matrix, with off-diagonal elements representing
the associations between different diagnosis categories in terms of
the log odds ratio, after correcting for all other diseases. Graph
theoretical statistics, including edge density, global transitivity,
diameter, and average distance, were used to summarize the overall
characteristics of the recovered network. The weight matrix was
then studied to find the strongest associations, which were denoted
as the top edges, and diagnosis categories that were associated with
most other diagnosis categories were also examined, which were
denoted as the top nodes. The weight matrix was also converted
to a 0/1 adjacency matrix for further unweighted analysis. For the
top nodes, both unweighted and weighted results were presented.
The difference between the two was whether the connections were
treated as binary values (0 or not 0) or not when calculating for the
top nodes.

For further exploration of the recovered network, the diagnosis
categories were partitioned into different subgroups based on their
associations with other diagnosis categories. If some diagnosis
categories were closely associated, they were partitioned into one
subgroup. The subgroups were called modularity classes.

Simulation validation

Our proposed method was compared with traditional methods
in six different scenarios. Two node-sample combinations were
generated: 100 nodes 5k sample size and 100 nodes 10k sample size.
Within each node-sample combination, we simulated three sparse
rates (probability of the existence of an edge): 0.05, 0.1, and 0.2.
This led to a total of six different scenarios, and they were listed
as follows:

1) 100 nodes, 5k sample size, 0.05 sparse rate,
2) 100 nodes, 5k sample size, 0.1 sparse rate,
3) 100 nodes, 5k sample size, 0.2 sparse rate,
4) 100 nodes, 10k sample size, 0.05 sparse rate,
5) 100 nodes, 10k sample size, 0.1 sparse rate, and
6) 100 nodes, 10k sample size, 0.2 sparse rate.

The simulation method for each scenario is described below:

1) Generate a network weight matrix of a random network with
a given number of nodes and sparse rate. It is named as the
“original weight matrix.”
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FIGURE 2

The penalized logistic regression loss with the elastic net penalty. The first two terms are the regular negative log-likelihood function of logistic

regression. The third term is the elastic net penalty function. The third term: λ: penalty coe�cient, chosen by eBIC for best model fit. α: elastic net

tuning parameter, deciding the percentage of LASSO vs. Ridge in the penalty term.
∑p

j=1

∣

∣βj

∣

∣: LASSO penalty.
∑p

j=1 β2
j
: ridge penalty.

2) Given the “original weight matrix” and sample size,
simulate correlated binary data with the Metropolis–
Hastings algorithm (Hastings, 1970) using the R package
IsingSampler. The columns represent the nodes, while the
rows represent samples.

3) Given the simulated data, calculate the weight matrices using
either the traditional method (pairwise OR calculated from a 2
by 2 contingency table) or the graphic modeling methods with
different percentages of LASSO penalty (100%, 90%, and 70%).
They are named as “estimated weight matrices.”

4) Compare “estimated weight matrices” with the “original
weight matrix” and evaluate which method can output a
weight matrix closer to the original one. Evaluation metrics
include Euclidean distance, Spectral distances, and NetSimile
(Tantardini et al., 2019).

Pairwise mutual information networks with permutation-based
inference (Preo and Capobianco, 2019) require high computational
costs for large networks. We thus compared with mutual
information networks using small network simulations with 20
nodes and 5k sample size, while all the other simulation procedures
were kept the same.

Result

Study population

The MIMIC dataset included 46,517 patients, 58,929
encounters, and 1,070 three-digits ICD-9 diagnosis categories
in the MIMIC dataset. The majority of the patients (38,609; 83%)
had only one encounter. After selecting the last encounter for
each patient, and only common diagnosis categories (frequency ≥
20), 46,511 patients/encounters and 654 diagnosis categories were
included in our analysis.

The patient’s demographics are presented in Table 1. Among
the patients, 20,395 (43.8%) were women, and 26,116 (56.2%)
were men. The median age was 61 years, with an interquartile
range of 39–76. In total, 32,434 (69.7%) patients were white,
while 3,870 (8.3%) were Black. Medicare (20,926; 45.0%)
and private insurance (19,157; 41.2%) were the two major
insurance forms.

The median of diagnosis categories per encounter was 8,
and the interquartile range was 6 to 13. The top five most
prevalent diagnosis categories were essential hypertension
(16,791; 36%), cardiac dysrhythmias (13,008; 28%), disorders
of lipoid metabolism (11,302; 24%), other forms of chronic

TABLE 1 Demographic summary statistics of participants included in the

analysis.

Patients demographics-count (%)

Gender

Female 20,395 (43.8%)

Male 26,116 (56.2%)

Age-median (IQR) 61 (39–76)

Race/ethnicity

White 32,434 (69.7%)

Black 3,870 (8.3%)

Hispanic 1,641 (3.5%)

Asian 1,690 (3.6%)

Other/unknown 6,876 (14.8%)

Marital status

Married 18,489 (39.8%)

Single 9,766 (21.0%)

Widowed 5,461 (11.7%)

Divorced or separated 2,713 (5.8%)

Other/unknown 10,082 (21.7%)

Insurance

Medicare 20,926 (45.0%)

Private 19,157 (41.2%)

Medicaid 4,369 (9.4%)

Other 2,059 (3.2%)

ischemic heart disease (11,118; 24%), and disorders of
fluid, electrolyte, and acid–base balance (10,869; 23%). A
distribution table of all 654 diagnosis categories can be found in
Supplementary material 1.

Comorbidity network presentation

Of the 654 diagnosis categories, the graphical modeling
method identified 2,806 associations (edges) among 510
diagnosis categories (nodes). The comorbidity network was
illustrated in Figure 3. The edge density of the network was
0.02, the global transitivity was 0.24, the diameter was 10,
and the average distance was 3.63. A complete list of all 2,806
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FIGURE 3

Graph representation of the comorbidity network by our graphical modeling method. The network summary statistics and the interpretation of the

top network features (edges, nodes, and modularity classes) were discussed in the main text. The disease network was shown in this figure

composed by Gephi12. The graph layout was “Force Atlas,” with repulsion strength = 10,000. The size of node represented its degree and color of

node represented its modularity class. The graph was partitioned into 14 modularity classes. The biggest class are the yellow nodes located in the far

upper right of the graph. They are diseases related with injury and accident. Some representative diseases with high degree are “Fracture of rib(s),

sternum, larynx, and trachea,” “Other motor vehicle tra�c accident involving collision with another motor vehicle,” and “Fall on same level from

slipping, tripping, or stumbling.” The second biggest class are the blue nodes located in the upper left of the graph. They are diseases related with

digestive system. Some representative diseases with high degree are “Intestinal obstruction without mention of hernia,” “Gastrointestinal

hemorrhage,” “Peritonitis” and “Chronic liver disease and cirrhosis.” One disease with highest degree is “Other and unspecified anemias,” and it is

strongly associated with gastrointestinal hemorrhage, and the model include it in this class. The third biggest class are the pink nodes located in the

far lower right of the graph. They are related with neonatal diseases. Some representative diseases with high degree are “Epilepsy,” “Disorders relating

to short gestation and unspecified low birthweight,” and “Other perinatal jaundice.” Other classes are related with heart diseases (red nodes in the

lower left), renal diseases (brown nodes in the upper middle), pulmonary diseases (light brown nodes in the upper middle), mental diseases (dark

green nodes in the lower right), and so on.

edges among 510 diagnosis categories, as well as histograms
representing the distributions of degree and distance, are
provided in Supplementary material 2–4. Interpreting the
full details of this network is challenging. Our discussions in

the following sections focused on the top network features
including edges, nodes, and modularity classes. In brief, in
the context of critical care, these top features implicated the
significant involvement of diagnoses pertaining to poisoning,
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TABLE 2 Top edges/connections between diagnoses by weight (logOR) from our graphical modeling method.

Rank Weight Diagnosis 1 Diagnosis 2

Top positive edges

1 8.16 Poisoning by psychotropic agents Accidental poisoning by tranquilizers

2 7.59 Foreign body in pharynx and larynx Inhalation and ingestion of other object causing obstruction of
respiratory tract or suffocation

3 7.22 Poisoning by psychotropic agents Suicide and self-inflicted poisoning by solid or liquid substances

4 7.20 Foreign body in trachea, bronchus, and lung Inhalation and ingestion of other object causing obstruction of
respiratory tract or suffocation

5 6.42 Disorders relating to short gestation and unspecified low birthweight Other multiple, mates all liveborn

6 6.09 Secondary diabetes mellitus Hormones and synthetic substitutes causing adverse effects in
therapeutic use

7 5.65 Poisoning by primarily systemic agents Suicide and self-inflicted poisoning by solid or liquid substances

8 5.58 Disorders relating to short gestation and unspecified low birthweight Twin, mate liveborn

9 5.45 Septicemia Certain adverse effects, not elsewhere classified

10 5.16 Dermatitis due to substances taken internally Antibiotics causing adverse effects in therapeutic use

Top negative edges

1 −7.38 Single liveborn Twin, mate liveborn

2 −5.41 Twin, mate liveborn Other multiple, mates all liveborn

3 −5.10 Single liveborn Other multiple, mates all liveborn

4 −4.63 Suicide and self-inflicted poisoning by solid or liquid substances Poisoning by solid or liquid substances, undetermined whether
accidentally or purposely inflicted

5 −4.59 Fall on same level from slipping, tripping, or stumbling Other and unspecified fall

6 −4.35 Foreign body in pharynx and larynx Foreign body in trachea, bronchus, and lung

7 −4.23 Fall on or from stairs or steps Other and unspecified fall

8 −3.94 Fall on or from stairs or steps Fall on same level from slipping, tripping, or stumbling

9 −3.48 Other motor vehicle traffic accident involving collision with another
motor vehicle

Fall on or from stairs or steps

10 −3.25 Other motor vehicle traffic accident involving collision with another
motor vehicle

Motor vehicle traffic accident due to loss of control, without collision
on the highway

diabetes, accidents, as well as the digestive, renal, and
respiratory systems.

Top edges/associations

The top 10 positive and negative edges are presented in
Table 2. Of the diagnosis categories included in our analysis,
those with the highest positive edges indicate direct “cause-
and-effect” relationships after expert review. The two diagnosis
categories with the highest positive edges were “poisoning by
psychotropic agents” with “accidental poisoning by tranquilizers”
(logOR 8.16). Interestingly, three of the top associations involved
poisoning. In contrast, two top associations involved foreign bodies
in the pharynx and larynx, and two top associations involved
disorders related to short gestation. Other highly correlated
diagnosis categories included “secondary diabetes mellitus” with
“hormones and synthetic substitutes causing adverse events in
therapeutic use” (logOR 6.09) and “dermatitis due to substances
taken internally” with “antibiotics causing adverse events in

therapeutic use” (log OR 5.16). In contrast, the diagnosis categories
with the lowest negative edges, indicating mutually exclusive
events, most often included single vs. multiple live births and
mutually exclusive poisoning, fall, foreign body, and motor vehicle
events (Table 2).

Since negatively correlated diagnosis categories were
often mutually exclusive, aiming for clinical significance, we
focused on positive associations (logOR) that were not <1
for the following analysis, which was 2,590 edges among 509
diagnosis categories.

Top nodes/diagnosis categories

Table 3 provides the top nodes or diagnosis categories that
were connected with most other diagnosis codes. Unweighted,
the top node was “disorders of fluid, electrolyte, and acid–base
balance” (63 associated diagnosis categories), within which the
most commonly associated diagnosis categories were “acute renal
failure” (logOR 1.09), “disorders ofmineralmetabolism” (1.08), and
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TABLE 3 Top nodes or diagnoses by unweighted/weighted degree.

Rank By unweighted degree N associated diseases By weighted degree N associated diseases

1 Disorders of fluid, electrolyte, and
acid-base balance

63 Other motor vehicle traffic accident
involving collision with another motor
vehicle

32

2 Other and unspecified anemias 62 Fracture of base of skull 25

3 Other diseases of lung 53 Fracture of rib(s), sternum, larynx, and
trachea

35

4 Cardiac dysrhythmias 46 Secondary malignant neoplasm of
respiratory and digestive systems

30

5 Acute renal failure 46 Fall on or from stairs or steps 17

6 Other personal history presenting
hazards to health

45 Disorders relating to short gestation and
unspecified low birthweight

18

7 Other and unspecified aftercare 43 Suicide and self-inflicted poisoning by
solid or liquid substances

9

8 Essential hypertension 41 Other and unspecified fall 19

9 Bacterial infection in conditions
classified elsewhere and of unspecified
site

40 Motor vehicle traffic accident involving
collision with pedestrian

17

10 Heart failure 40 Single liveborn 23

“other and unspecified protein-calorie malnutrition” (0.46). “Other
and unspecified anemias” was the second highest unweighted
node (62 associated diagnosis categories), and “other diseases of
lung” (59 associated diagnosis categories) was the third highest
unweighted node. Within “other and unspecified anemias,” the
most commonly associated diagnosis categories were “gastric ulcer”
(0.88), “duodenal ulcer” (0.88), and “gastrointestinal hemorrhage”
(0.73); within “other disease of the lung,” the most commonly
associated diagnosis categories were “other bacterial pneumonia”
(1.53), “pneumonitis due to solids and liquids (1.16),” and “other
disease of respiratory system” (1.10).

When the weighted matrix was used, the top nodes most
commonly included those related to injury and accidents. The top
node was “other motor vehicle traffic involving a collision with
another motor vehicle” (35 associated diagnosis categories), within
which “other and unspecified intracranial hemorrhage following
injury” (2.04), “injury to spleen” (1.86), and “fracture of vertebral
column with spinal cord lesion” (1.75) were the most commonly
associated diagnosis categories. Other top weight nodes included
“fracture of base of skill” (29 associated diagnosis categories) and
“fracture of ribs, sternum, larynx, and trachea” (26 associated
diagnosis categories).

Modularity

The graphwas partitioned into 14modularity classes (Figure 3).
The biggest modularity class (yellow nodes in the top right)
represented diagnosis categories related to injury and accident,
followed by diagnosis categories related to the digestive system
and diagnosis categories related to neonatal diseases (pink nodes
in the bottom right). The top associated diagnosis categories
for the injury and accident, cardiac, and neonatal modularity
classes are shown in Table 4. For example, within the cardiac

modularity, the most commonly associated diagnosis categories
were “diseases of mitral and aortic valve” with “other rheumatic
heart disease” (logOR 5.15), with other common associations
related to chronic ischemic disease and renal hypertensive disease
codes. Within the neonatal modularity, the most commonly
associated diagnosis categories included short gestation and
intellectual disorders, with “disorders relating to short gestation
and unspecified low birth rate” with “other multiple, mates
all liveborn” (6.42) as the most commonly associated diagnosis
categories. Within the accident and trauma modularity, common
associations included unspecified falls, intracranial hemorrhage,
and fractures.

Pairwise result

From the same MIMIC dataset, the pairwise method identified
10,109 associations (edges) among 589 diagnosis categories
(nodes), and the edge list is presented in Supplementary material 5.
It was challenging to interpret such a huge number of associations
by the pairwise method. The most positive edge was between
“effects of reduced temperature” and “excessive cold,” with a logOR
of 10.71. At the same time, the most negative edge was between
“disorders of lipoid metabolism” and “single liveborn,” with a
logOR of −7.80. These associations appeared less insightful in the
critical care setting.

Simulation

Table 5 presents the simulation result. When sparsity was
low (0.05), the pairwise OR method and graphic model methods
performed similarly; the graphic model was a little better in
Euclidean distance and Netsmile, while pairwise OR was better in
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TABLE 4 Top connections by modularity class.

Cardiac Neonatal Injury and accident

Diagnosis 1 Diagnosis 2 Weight Diagnosis 1 Diagnosis 2 Weight Diagnosis 1 Diagnosis 2 Weight

Diseases of mitral and aortic valves Other rheumatic heart disease 5.15 Disorders relating to
short gestation and
unspecified low
birthweight

Other multiple, mates all
liveborn

6.42 Subarachnoid, subdural,
and extradural
hemorrhage, following
injury

Other and unspecified
fall

4.75

Diseases of mitral valve Other rheumatic heart disease 4.8 Disorders relating to
short gestation and
unspecified low
birthweight

Twin, mate liveborn 5.58 Subarachnoid, subdural,
and extradural
hemorrhage, following
injury

Fall on same level from
slipping, tripping, or
stumbling

4.44

Need for isolation and other
prophylactic measures

Personal history of allergy to
medicinal agents

4.39 Unspecified intellectual
disabilities

Infantile cerebral palsy 4.38 Subarachnoid, subdural,
and extradural
hemorrhage, following
injury

Fall on or from stairs or
steps

4.3

Hypertensive renal disease Chronic renal failure 4.07 Need for other
prophylactic vaccination
and inoculation against
single diseases

Single liveborn 4.09 Contusion of upper limb Agents primarily acting
on the smooth and
skeletal muscles and
respiratory system
causing adverse effects in
therapeutic use

3.9

Other acute and subacute form of
ischemic heart disease

Other forms of chronic ischemic
heart disease

3.15 Other specified
intellectual disabilities

Spinocerebellar disease 3.61 Fracture of neck of
femur

Fall on same level from
slipping, tripping, or
stumbling

3.89

Hypertensive heart and renal
disease

Chronic renal failure 2.95 Observation and
evaluation of newborns
and infants for suspected
condition not found

Single liveborn 3.53 Fracture of pelvis Dislocation of hip 3.67

Family history of certain chronic
disabling diseases

Family history of certain other
specific conditions

2.92 Other specified
intellectual disabilities

Infantile cerebral palsy 3.26 Fracture of tibia and
fibula

Motor vehicle traffic
accident involving
collision with pedestrian

3.53

Diseases of mitral and aortic valves Diseases of other endocardial
structures

2.91 Other specified
intellectual disabilities

Chromosomal anomalies 2.88 Other, multiple, and
ill-defined dislocations

Spinal cord injury
without evidence of
spinal bone injury

3.47

Angina pectoris Other forms of chronic ischemic
heart disease

2.73 Dentofacial anomalies,
including malocclusion

Certain congenital
musculoskeletal
deformities

2.84 Contusion of eye and
adnexa

Contusion of upper limb 3.38

Acute myocardial infarction Other forms of chronic ischemic
heart disease

2.47 Disorders relating to
short gestation and
unspecified low
birthweight

Respiratory distress
syndrome

2.51 Fracture of base of skull Fall on or from stairs or
steps

3.37
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TABLE 5 Comparison of di�erent methods in simulation studies.

Sparsity Sample size Method Euclidean distance Spectral distance Netsmile

0.05 5k Pairwise OR 11.52 7.10 14.29

Elastic 100% LASSO 11.00 16.45 12.16

Elastic 90% LASSO 11.12 16.77 12.05

Elastic 70% LASSO 11.42 17.57 11.86

10k Pairwise OR 9.99 5.48 14.63

Elastic 100% LASSO 8.28 12.14 10.12

Elastic 90% LASSO 8.34 12.37 10.08

Elastic 70% LASSO 8.55 12.95 9.84

0.1 5k Pairwise OR 292.79 2,640.70 28.38

Elastic 100% LASSO 17.38 22.24 10.28

Elastic 90% LASSO 17.33 22.27 10.85

Elastic 70% LASSO 17.76 23.44 13.33

10k Pairwise OR 292.47 2,638.95 28.58

Elastic 100% LASSO 14.35 17.75 9.41

Elastic 90% LASSO 14.39 18.18 10.59

Elastic 70% LASSO 14.87 19.50 13.18

0.2 5k Pairwise OR 964.53 9,270.28 30.92

Elastic 100% LASSO 55.31 92.53 21.47

Elastic 90% LASSO 52.47 61.20 19.99

Elastic 70% LASSO 51.79 62.02 20.87

10k Pairwise OR 968.64 9,296.11 31.12

Elastic 100% LASSO 54.42 85.22 20.70

Elastic 90% LASSO 51.58 62.45 18.30

Elastic 70% LASSO 50.96 65.34 19.31

Best performance metrics were highlighted in bold for each loss and each simulation scenario.

spectral distance. However, when sparsity became high (0.1, 0.2),
the pairwise method degenerated rapidly. The distance between
the estimated graph and the original graph by the pairwise OR
method became extremely high to hundreds or thousands, while
the distance by graphic models remained low. For example, at
a sparse rate of 0.1, a sample of 10k, pairwise OR was 292.47
in Euclidean distance, 2,638.95 in spectral distance, and 28.58 in
Netsmile, while the best graphic model was 14.35 in Euclidean
distance, 17.75 in spectral distance, and 9.41 in Netsmile. At a
sparse rate of 0.2, a sample of 10k, pairwise OR was 968.46 in
Euclidean distance, 9,296.11 in spectral distance, 31.12 in Netsmile,
while the best graphic model was 50.96 in Euclidean distance, 62.45
in spectral distance, and 18.30 in Netsmile. The performances of
graphic models using different percentages of the Lasso penalty
were overall similar. In more sparse cases, a higher percentage of
Lasso performed a little better, while in less sparse cases, a lower
percentage of Lasso performed a little better, but they were overall
similar. As a result, 90% Lasso elastic net was used as our graphical
modeling method penalty. Our graphical modeling method also
demonstrated superior performance on small networks when
compared with pairwise OR and mutual information networks, see
Supplementary material 6.

Discussion

Our graphical modeling method was successfully applied in a
CCU EHR to identify disease associations, demonstrating that our
method is valid, useful, and widely applicable in clinical settings.
Compared with the pairwise method, the graphical modeling
method identified much fewer edges in the MIMIC dataset (10,109
vs. 2,806). This indicated that graphical modeling method ruled
out many superficial/indirect associations that the pairwise method
would have kept. Although some authors (Brunson et al., 2020)
suggested pairwise methods were generally robust enough, our
multivariable method outperformed pairwise methods in the
simulation study, especially when the sparse rate was high.

The graphical modeling method was widely used in
psychological studies (Dalege et al., 2017; Epskamp et al.,
2018), and it used the LASSO penalty as a regularization method.
In this study, we improved this method with the elastic net
penalty and applied it to EHR. In EHR settings, usually, multiple
covariates are strongly correlated both with each other and
the outcome. In this scenario, LASSO would choose only one
covariate indifferently, while elastic net (Zou and Hastie, 2005)
would keep all the correlated covariates, generating a more
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realistic result. Because of this, elastic net improved the process
of constructing a disease network in EHR compared with LASSO.
Our method was also shown to perform better than the traditional
method in a simulation study, especially when the sparsity rate
was high. Ninety percent LASSO in the elastic net penalty was
chosen as a convenient model, yet further studies were needed to
fine-tune the LASSO percentage for a better fit of the model. In
addition, patients’ demographics were not included in the model to
construct the comorbidity network. Future studies can improve the
current model by adjusting patients’ demographics when inferring
the network.

Few studies have analyzed CNA in CCUs, where patients
often have critical concomitant medical problems in multiple
organ systems that may impact survival (Simpson et al., 2021).
CNA could benefit CCU settings when a patient’s status is often
critical, and doctors need to diagnose and treat the patient
immediately. Within this setting, having a valid comorbidity
network could ensure that all likely comorbidities of a patient
are identified and addressed, which could ultimately improve
morbidity and mortality.

By examining the diagnosis categories with the highest positive
and lowest negative edges, we demonstrated that our method
successfully identified associated comorbidities that make sense
in the clinical setting of the CCU. For example, several of our
top positive edges involved poisonings with suicide and self-harm;
clinically, exposure to any poison is associated with attempted
suicide in between 29.7 and 50.5% of cases (Gummin et al.,
2019); thus, it makes sense that these were highly correlated
in our dataset. Similarly, multifetal gestations, including twins
and higher-order multiples, commonly result in preterm delivery
(ACOGPractice Bulletins, 2021), findings that were also commonly
correlated in our analysis. The diagnosis categories with the
lowest negative edges make sense clinically—you cannot have
both a single liveborn and a twin or other multi-gestational
liveborn pregnancy.

In addition to identifying diagnosis categories commonly
associated across all disease sites, our method was also able
to examine top edges within specific modularity classes. As
previously, we also found that highly correlated diagnoses are
clinically valid, such as the association between rheumatic heart
disease with mitral and aortic value disease (Marijon et al.,
2012) in the cardiac modularity. Because much of intensive care
is now segmented into subspecialized settings such as cardiac
critical care, surgical intensive care, and neonatal intensive care,
it is important to have analytic methods adaptable to both
general and specialized units. For example, using our CNA
method within a specialized cardiac ICU could identify not
only diagnoses correlated with cardiac diseases but also non-
cardiac diagnoses that providers should be aware of. Knowing
which diagnoses are correlated could avert missed diagnoses and
potentially translate into decreased morbidity and mortality for
ICU patients (Silfvast et al., 2003; Combes et al., 2004; Pastores et al.,
2007).

Our analysis of the top nodes in this dataset provides
interesting and useful information. While several top nodes and
modularity classes we identified are commonly found in ICU
settings, such as electrolyte/fluid imbalance (Lee, 2010), anemia
(Napolitano, 2004), and poisoning (Rasimas and Sinclair, 2017;

Mégarbane et al., 2020), it is helpful from an institutional and
health system perspective to identify the most common diseases
to plan resource acquisition and management. For example,
knowing that anemia is common might prompt an ICU or
healthcare administrator to ensure that there is a functioning
and well-stocked blood bank in their hospital, or seeing a rise
in cardiac cases may mean that a hospital needs to hire more
cardiologists. In addition, being aware of the most common or
most commonly associated diseases could prompt more accurate
coding and ensure correct medical billing within a hospital system
by suggesting missed common diagnoses to providers. Avoiding
missed diagnoses to increase billing in ICU settings has the
potential to substantially increase hospital income (Hendershot
et al., 2009).

Beyond making sense clinically, our analysis provides
potentially novel diagnosis associations that could be
used as hypothesis-generating ideas or prompt further
investigations. For example, our result found that upper
limb contusion and “agents primarily acting on the smooth
and skeletal muscles and respiratory system causing adverse
effects in therapeutic use” were highly correlated within
the injuries modularity; investigators could examine which
agents are associated with contusions, how they are causing
contusions, and whether this could be prevented. Our study
examined an EHR specifically within one CCU setting.
Nevertheless, it could be equally applied to other EHRs or
across EHRs, providing a larger dataset to look for novel
diagnostic associations.

In addition to the importance of CNA, our research had several
limitations. The first limitation was phenotyping. Phenotyping
arises because the presence of a code does not mean the presence
of a disease. For example, sometimes differential diagnosis tests
require using a disease code for billing purposes, and there might
be errors or typos when inputting the code. To address this
limitation, further studies could validate the diagnosis information
with support information, such as more than one code, in different
types of encounters/claims separated by a certain number of days
and having relevant procedure codes/treatment codes. Second,
the association identified by CNAs is not causal. For example,
the current method did not indicate if “diseases of mitral and
aortic valves” cause “rheumatic heart disease” or vice versa.
Clinical knowledge is needed to infer and validate the causalities;
for example, clinical knowledge is needed to understand the
association between “rheumatic heart disease” and “diseases of
mitral and aortic valves.”

Conclusion

Comorbidity networks are important in clinical practice. This
study introduced and improved a graphical modeling method to
infer comorbidity networks under the EHR settings. This method
outperformed the traditional pairwise method in simulation.When
applying this method in CCU settings, a reasonable comorbidity
network was constructed, and its associations were consistent
with current medical understanding. The comorbidity network
method has the potential to help CCU doctors to diagnose patients
faster and minimize missed diagnoses. Future studies can be

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2023.846202
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Zhao et al. 10.3389/fdata.2023.846202

done to fine-tune the LASSO percentage to better fit the model
or include patients’ demographics in the model to construct an
adjusted network.
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