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Introduction: Proteins located in subcellular compartments have played an
indispensable role in the physiological function of eukaryotic organisms. The
pattern of protein subcellular localization is conducive to understanding the
mechanism and function of proteins, contributing to investigating pathological
changes of cells, and providing technical support for targeted drug research on
human diseases. Automated systems based on featurization or representation
learning and classifier design have attracted interest in predicting the subcellular
location of proteins due to a considerable rise in proteins. However, large-scale,
fine-grained protein microscopic images are prone to trapping and losing feature
information in the general deep learning models, and the shallow features derived
from statistical methods have weak supervision abilities.

Methods: In this work, a novel model called HAR_Locator was developed to
predict the subcellular location of proteins by concatenating multi-view abstract
features and shallow features, whose advanced advantages are summarized in the
following three protocols. Firstly, to get discriminative abstract feature information
on protein subcellular location, an abstract feature extractor called HARnet based
on Hybrid Attention modules and Residual units was proposed to relieve gradient
dispersion and focus on protein-target regions. Secondly, it not only improves the
supervision ability of image information but also enhances the generalization
ability of the HAR_Locator through concatenating abstract features and shallow
features. Finally, a multi-category multi-classifier decision system based on an
Artificial Neural Network (ANN) was introduced to obtain the final output results of
samples by fitting the most representative result from five subset predictors.

Results: To evaluate themodel, a collection of 6,778 immunohistochemistry (IHC)
images from the Human Protein Atlas (HPA) database was used to present
experimental results, and the accuracy, precision, and recall evaluation
indicators were significantly increased to 84.73%, 84.77%, and 84.70%,
respectively, compared with baseline predictors.

KEYWORDS

hybrid attentionmodules, residual units, multi-view abstract features, protein subcellular
location prediction, immunohistochemistry images

OPEN ACCESS

EDITED BY

Nathan Olson,
National Institute of Standards and
Technology (NIST), United States

REVIEWED BY

Guohua Huang,
Shaoyang University, China
Pu-Feng Du,
Tianjin University, China
Xiaoyong Pan,
Shanghai Jiao Tong University, China

*CORRESPONDENCE

Fan Yang,
kooyang@aliyun.com

RECEIVED 22 February 2023
ACCEPTED 04 August 2023
PUBLISHED 17 August 2023

CITATION

Zou K, Wang S, Wang Z, Zhang Z and
Yang F (2023), HAR_Locator: a novel
protein subcellular location prediction
model of immunohistochemistry images
based on hybrid attention modules and
residual units.
Front. Mol. Biosci. 10:1171429.
doi: 10.3389/fmolb.2023.1171429

COPYRIGHT

© 2023 Zou, Wang, Wang, Zhang and
Yang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 17 August 2023
DOI 10.3389/fmolb.2023.1171429

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1171429/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1171429/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1171429/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1171429/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1171429/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1171429&domain=pdf&date_stamp=2023-08-17
mailto:kooyang@aliyun.com
mailto:kooyang@aliyun.com
https://doi.org/10.3389/fmolb.2023.1171429
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1171429


1 Introduction

Proteins are important biomacromolecules at the eukaryotic
cellular level and are delivered to appropriate subcellular
compartments where they interact with other biomolecules.
Especially, several diseases have been reported to be significantly
associated with the subcellular location of protein expression. For
instance, Nucelolin in several subcellular locations, such as
nucleolus, nucleoplasm, cytoplasm, and cell membrane impacts
cancer development and therapy (Berger et al., 2015) and the
loss of BRCA1 in nuclear or cytoplasmic is observed as a marker
of breast tumor aggressiveness (Madjd et al., 2011). Therefore,
understanding the subcellular locations of proteins is conducive
to analyzing the functional principle of proteins, comprehending the
complex physiological reaction process, and finding out the cancer
biomarker (Kumar et al., 2014; Thul et al., 2017; Cheng et al., 2019;
Shen et al., 2021). The classical solution that wet-experiment
observation has been used to identify protein subcellular location,
which exposes low-efficiency, time-consuming and labor-intensive
with an increasing number of proteins. A resolution to these issues is
highly desired, with one intriguing option being automated high-
performance predictors, which have been explored to speed up the
study of protein subcellular location (Yu et al., 2006; Chung, 2010;
Du, 2017).

At present, protein expression patterns that are used to study
protein subcellular location prediction systems fall into two types:
amino acid molecular sequence and microscopic image. The former
represents the similarity of subcellular locations between proteins by
quantifying the intermolecular correlation of one-dimensional
amino acid sequences (Shi et al., 2007; Nair and Rost, 2009; Shen
and Chou, 2009; Cheng et al., 2018; Sun and Du, 2021). The latter
expresses the dependability of subcellular locations between
unknown and known proteins by applying advanced image
processing technology to extract two-dimensional image
properties (Chen and Murphy, 2006; Newberg and Murphy,
2008; Coelho et al., 2013; Xu et al., 2013). By comparison,
sequence-based systems have higher accuracy but cannot reflect
changes in the biochemical environment of tissues; On the other
hand, some methods founded on microscopic images provided
researchers with several image views of protein regions, such as
shape, outline, texture, and cell distribution information, which
helps to capture changes in the physiological environment to
screen pathological tissues and cancer biomarkers (Uhlen et al.,
2017). Particularly, with the development of machine learning and
deep learning, considerable progress has been inspired by using
hand-crafted features obtained from featurization or abstract
features derived from representation learning in image-based
models (Bengio et al., 2013; Shao et al., 2017; Xu et al., 2018).

With respect to featurization or hand-crafted features, shallow
features are introduced to describe an image’s global or local
numerical information by statistical methods. For instance,
Subcellular Location Features (SLFs) were employed to describe
the shallow features of microscope images at the global level,
including morphological features, Zernike moment features,
Haralick texture features, and wavelet features (Newberg and
Murphy, 2008). Zernike moment features, obtaining descriptive
features by applying orthogonal Zernike polynomials to a unit
circle of the set of complex functions, have been adopted to

express rotational invariance properties on images (Boland and
Murphy, 2001; Huang and Murphy, 2004; Chebira et al., 2007;
Chen et al., 2007). Haralick features were adopted to quantitatively
describe inertia and isotropy of intuitive pattern of protein
subcellular location relying on omni-directional Gray-Level Co-
occurrence Matrix (GLCM) (Xu et al., 2013). In addition, DNA
distribution information, which means protein and nuclear object
overlap and distance, was deployed to supplement global
information since each protein image was accompanied by
nuclear information (Bengio et al., 2013; Liu et al., 2019; Xue
et al., 2020; Su et al., 2021; Ullah et al., 2021). An image intensity
coding strategy was utilized to quantize frequency features in the
frequency domain space of image wavelet transforms, which was
conducive to releasing sparsity problems of immunohistochemistry
(IHC) images and strengthening discriminative ability (Yang et al.,
2019). To further decrypt images from multi-view, local-level
information was powerfully presented to supplement global
information. Local Binary Patterns (LBP), Local Ternary Patterns
(LTP), and Local Quinary Patterns (LQP) are grounded on the
statistic of the histogram between the center and surrounding pixels
to express local texture information (Xu et al., 2013; Yang et al.,
2014). Speeded-Up Robust Features (SURF) were derived from local
operator features by detecting interesting points using an
approximate Gaussian blob detector in both space and scale
(Coelho et al., 2013). The structural relationship among cellular
components as effective prior information has been considered
advanced in the protein subcellular image feature space by
combining Haralick and LBP features (Shao et al., 2016).
Although the above image feature properties have been effectively
validated, the inherently weak supervisory properties and poor
distinctness of shallow features have been limiting the further
improvement of model performance.

Unlike handcrafted features such as time domain features and
frequency transformation features, the representation learning that
learning representation of IHC images based on deep learning
makes it easier to extract more supervisory and representational
information (Bengio et al., 2013). With the evolution of deep
learning, predictors based on Convolutional Neural Networks
(CNNs) map image feature vectors into high-dimensional space
through numerous nonlinear activation functions to obtain more
robust representations and produce impressive performance in
many fields, such as Face Recognition, Image Recognition, and
Object Detection (Szegedy et al., 2013; Simonyan and Zisserman,
2014; Sun et al., 2015). Meanwhile, various abstract features from
classical deep learning models trained in a fully supervised setting
have consistently proved effective on generic vision tasks, such as
Person Re-identification and Human Activity Recognition
(Donahue et al., 2014; Sani et al., 2017; Nie et al., 2019).
Consequently, feature maps in the last or penultimate layer of
pre-train CNNs were extracted and incorporated into shallow
features to enhance the supervisory and distinctness of protein
subcellular location in the IHC images (Shao et al., 2017; Liu
et al., 2019; Xue et al., 2020; Su et al., 2021; Ullah et al., 2021). It
can be explained that abstract features from deep learning models
describe abstract morphological local regions, edges, corners,
outlines, and other digital image characteristics and serve as a
helpful supplement to texture, inertia, isotropy, and the spatial
ratio of shallow features. An 11-layer neural network trained in
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yeast cells describes basic digital image characteristics and spate
subcellular localization classes with an increasing depth of layer;
besides, abstract features from the neural network have been proven
useful for predicting the subcellular localization of fluorescent
proteins (Pärnamaa and Parts, 2017). Abstract features obtained
from a deep CNN were organized with histomorphologic
information to recognize lesional coordinates of cancer tissue
images (Faust et al., 2018). Abstract features from CNNs do
improve the supervisory and discriminative capabilities of
shallow features in digital images, but they do not account for
the poor information richness and abstraction attributed to some
reasons: firstly, general convolution and pooling operations are
difficult to focus on the protein-target regions in bio-images;
secondly, large-scale bio-images are prone to get stuck in
information degradation resulting in poor performance.

In this work, a predictor named HAR_Locator based on the
Hybrid Attention modules and Residual units was proposed to
predict protein subcellular location in IHC images. The
advancement of HAR_Locator has several attractive attributes:
firstly, the features extractor known as HARnet is developed
based on Hybrid Attention modules and Residual units to
effectively highlight discriminating abstract features, convey the
gradient information of IHC image in the network, and prevent
information loss (He et al., 2016); secondly, the multi-view abstract
features from different layers of HARnet were concatenated with
shallow features obtained from statistical methods to improve the
supervised ability of features; thirdly, the Binary Relevance (BR) and
the Stepwise Discriminant Analysis (SDA) were adopted to fit
feature space from concatenation; finally, a multi-category multi-
classifier decision system based on ANN was utilized to output
decision results from multiple confidence levels of multiple
classifiers. In addition, a benchmark dataset of 6778 IHC images
from HPA, including 59 proteins, was collected to verify the
effectiveness of the HAR_Locator. The experimental results show
that the HAR_Locator reaches 84.73%, 84.77%, and 84.70%
respectively in accuracy, precision, and recall, and is significantly
improved compared with other baseline predictors.

2 Materials and methods

2.1 The benchmark dataset

In this study, a benchmark dataset with a total number of
6,778 IHC images was collected from HPA (https://www.
proteinatlas.org/), including 5,725 high-level stain expressions
with Enhance label reliability images and 1,053 high-level stain
expressions with Support label reliability images. The HPA database
was created in 2005 with the goal of providing researchers with
information on the expression and localization of proteins in human
tissues or cells. Researchers can freely access three types of protein
images, namely, immunohistochemistry (IHC) images,
immunofluorescence (IF) images, and pathology (PA) images,
which respectively reflect the protein information at the tissue,
cell, and pathology levels. As IHC images are widely used in
clinical applications and screening cancer biomarkers, this work
selects IHC images as the research target. There are seven subcellular
locations of proteins: Cytosol, Endoplasmic Reticulum (ER), Golgi

apparatus, Nucleoli, Mitochondria, Centrosome, and Vesicles. The
dataset is shown in Table 1. Hereinto, the high-level stain expression
means the protein channel with the best staining in IHC images;
similarly, weaker staining levels include Medium, Low, and Not
detected. Enhanced label reliability refers to the annotation of
proteins being validated by one or several antibodies, and
proteins with the Enhance annotation are not reported in
contradiction with the existing annotation in the HPA database
by published literature. Support label reliability is not validated by
several antibodies like Enhanced, but the annotation of subcellular
localization is described in other literature. Expect for mentioned
two reliability levels, there are two other lower levels of evaluation,
i.e., Improve and Uncertain.

2.2 The HAR_Locator constructed by
concatenating multi-view abstract and
shallow features

The algorithm framework of HAR_Locator is shown in
Figure 1, and it consists of four protocols: A, getting
interesting regions by preprocessing technologies for the
subsequent feature extraction; B, extracting shallow features by
statistical methods and abstract multi-view features from
HARnet; C, the establishment of multiple classifiers through
SDA and BR classifier; D, getting decision result by the ANN.
The details are covered in the next section.

2.2.1 The preprocessing of IHC images
IHC images fromHPAwere photographed at bright field images

of tissue level using an RGB camera, reflecting purple DNA in nuclei
and brown protein in subcellular locations after DNA and proteins
with the corresponding chemical reagent staining, whose size would
be roughly 3,000 × 3,000 resolutions. In order to eliminate badly
stained images, the empirical threshold filtering method was
employed to delete those IHC images with bad staining quality
(Newberg and Murphy, 2008). There are six images with poor
staining, and 6,772 images were left after deletion. After that,
IHC images were unmixed into protein and DNA channels by
Linear Spectral Separation (LIN) (Newberg and Murphy, 2008), as
shown in Figure 1A. LIN was employed to transform the IHC from
RGB to HSV space for calculating the statistic histogram of hue
value. The original IHC image was unmixed out of protein and DNA
channels based on the color conversionmatrix from the two peaks of
the histogram. Moreover, to remove invalid border information
from IHC images, the canny operator with two scale factors is used
to obtain the protein region, and then it is mapped back to the
original IHC image (Bao et al., 2005). After mentioned
preprocessing stags, the protein and DNA channels were adopted
to get shallow features by statistical methods and the new images
with 512 × 512 resolutions were fed into HARnet to gain abstract
features. Details are as described later.

2.2.2 Global and local shallow feature operators
acting on protein and DNA channels

As a classical quantitative representation method of IHC
images, SLFs based on the statistical method have been proven
advanced in describing global and local information (Newberg
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and Murphy, 2008; Xu et al., 2013). The well-known Haralick
features are leveraged to describe the inertia and isotropy of
intuitive patterns of protein subcellular location from a global
perspective (Newberg and Murphy, 2008). Specifically, 836-
dimension Haralick features of the protein channel were
calculated by discrete wavelet transform using the Daubechies
filter, which was extracted by calculating texture feature
components in the horizon, vertical, and two diagonal
directions. Furthermore, 4-dimensional DNA spatial
distribution features were obtained by calculating the DNA
occupancy ratio in the protein and DNA channels. Moreover,
the LBP algorithm is used to capture the histogram statistical

information of protein channels based on the image coding
strategy of the central pixel and peripheral pixels in the local
mask, including 256-dimensional features (Xu et al., 2013).
Finally, the 1096-dimension (836 + 4+256 = 1096) shallow
features that combine the above features are fed into the BR
classifier to construct HAR_LocatorS (Boutell et al., 2004). Above
mentioned process can be shown in Figures 1B, C

2.2.3 Multi-view abstract features derived from
different layers of HARnet

Numerous papers have reported that abstract features
derived from deep learning models are an effective
supplement to shallow features for improving classification
accuracy (Shao et al., 2017; Liu et al., 2019; Xue et al., 2020;
Su et al., 2021; Ullah et al., 2021); most abstract features are from
the last or penultimate layer of CNNs. Furthermore, abstract
features from different depths of deep learning models also
expressed infusive performance (Long et al., 2020). However,
some problems pose challenges for complex, fine-grained, and
large-sized IHC images (SeyedJafari and Hunger, 2017), such as
information loss and feature degradation with deeper depth of
CNNs, which demands a treatment for capturing more robust
abstract features. In this work, a deep feature extraction network
named HARnet based on hybrid attention modules and residual
units was designed to capture multi-view abstract features in
different layers for releasing the problems mentioned. The
extraction of deep features is composed of two steps: in step 1,
the HARnet is trained in an end-to-end training fashion and its

TABLE 1 The data volume of protein subcellular location in the dataset.

Item Subcellular location Number of images

Class0 Cyto. 999

Class1 ER 996

Class2 Golgi 1000

Class3 Nucl. 1000

Class4 Mito. 1000

Class5 Cent. 788

Class6 Vesi. 995

Notes: Cyto., cytosol; ER., endoplasmic reticulum; Golgi, Golgi apparatus; Nucl., nucleoli;

Mito., mitochondria; Cent., centrosome; Vesi., vesicles.

FIGURE 1
The flowchart of HAR_Locator proposed in this work. (A) the preprocessing of IHC images; (B) extracting shallow and abstract features; (C) fitting
multiple BR classifiers in integrated features space; (D) outputting decision result by ANN. Abbreviation definitions: H1, Hybrid attention module 1; H2,
Hybrid attention module 2; H3, Hybrid attention module 3; G, the output of the last Global Average Pooling (GAP) layer; HAR_LocatorH1_S, the predictor
was constructed by concatenating H1 features with shallow features; HAR_LocatorH2_S, the predictor was constructed by concatenating H2 features
with shallow features; HAR_LocatorH3_S, the predictor was constructed by concatenating H3 features with shallow features; HAR_LocatorG_S, the
predictor was constructed by concatenating G features with shallow features.
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architecture is shown at the bottom of Figure 1; in step 2, an IHC
was described by the output of the four modules of HARnet, as
part of which the basic image characteristics and abstract
category properties were highlighted with an increasing depth
of HARnet, i.e., three hybrid attention modules and the last
Global Average Pooling (GAP) layer. The details about HARnet
are described below.

2.2.4 The HARnet based on hybrid attention
modules and residual units

In natural image computer vision tasks, by stacking multiple
convolutions, activation, and pooling layers, CNNs with multiple
nonlinear functions can capture abstract image information after
iterative parameter optimization (Ji et al., 2012; Chan et al., 2015;
Mezgec and KoroušićSeljak, 2017). However, simple stacked
convolutional networks are prone to sticking in gradient
dispersion, network degradation, and poor performance due to
complexity and fine-grained IHC images. Hence, the HARnet
based on the Hybrid Attention modules and Residual unit was
first developed to extract abstract features, and its properties can be
summarized as follows: firstly, to effectively capture discriminant
features of IHC images, the hybrid attention modules that fuse
bottom-up top-down feedforward structure and multi-scale channel
attention are introduced to focus on protein-target regions (Wang
et al., 2017; Dai et al., 2021); secondly, the backbone network of
HARnet was superimposed multiple residual units, and the gradient
information can be preferably transmitted (He et al., 2016); finally,
in the last layer of HARnet, the GAP layer rather than Fully
Connection(FC) layer is employed, which not only releases the
training burden and time but also avoids overfitting problems.
The abstract features came from the three hybrid attention
modules and the last GAP layer. The details of HARnet are
displayed at the bottom of Figure 1.

The hybrid attention module is composed of three branches,
among which the top two represent global information of IHC
feature maps at multi-scale channel attention, the bottom one
amplifies local region information through a fusion of bottom-up
top-down feedforward structure, and the equation of hybrid
attention module 2 (H2) is illustrated in Eqs 1–4. The key ideas
of multi-scale channel attention are as follows: firstly, the local
context P(X) from pointwise convolution of the top pipeline was
executed to express pixel-level discriminant features by varying
spatial size; secondly, the global context G(X) from global
average pooling of every channel was described global view in
whole feature maps; thirdly, the pixel-level local context P(X)
and the global view of the global context G(X) enrich the feature
information in the hybrid attention modules, as shown in Eqs 1, 2.
Furthermore, local region features B(X) in the bottom branch of
H2 can be broken down into two steps: in step 1, residual units R are
used to remove irrelevant information and further refine image
abstract information, and the response of the receptive field is
enhanced by performing maxpooling layer M1 in a 3 × 3 local
mask; step 2, after reaching the lowest resolution of feature maps,
bilinear interpolation was executed to achieve the original resolution
of feature maps. The sum of local context P(X) and global context
G(X) is then normalized to (0, 1) through the Sigmoid function and
the result is used as the weight to obtain the local discriminant
features of B(X), as shown in Eqs 3, 4. The hybrid attention modules

1 and 3 (H1 and H3) have a structure that is similar to that of H2,
with the primary exception being that H1 includes an additional
bottom-up top-down feedforward layer in its bottom branch, and
H3 has the identity map in its bottom branch. The process of
refining and modifying of all attention modules are also displayed in
Figure 1.

P X( ) � p1
2 p1

1 X( )( ) (1)
G X( ) � p2

2 p2
1 g X( )( )( ) (2)

B X( ) � R2 I1( M1 R1 X( )( )( ) (3)
X′ � σ P X( ) + G X( )( )*B X( ) (4)

WhereX is the input,X ∈ RC*H*W,X′ is the output of the hybrid
attention module 2, P(X) is the output of top branch of the hybrid
attention module 2 by pointwise convolution, G(X) is the output of
second branch of the hybrid attention module 2, B(X) is the output
of bottom branch of the hybrid attention module 2, the filter size of
p1
1 and p

2
1 is (cr,H,W), r is 4, the filter size of p1

2 and p
2
2 is (C, 1, 1), g

is GAP layer, M1 is MaxPooling, I1 is interpolation function, σ is
sigmoid function, R1 and R2 is Residual identity unit.

2.2.5 Designing multi-classifier of HAR_Locator via
SDA and BR

After the above processing, the integrated features were
concatenated by combing abstract and shallow features. To
avoid irrelevant information or redundant features, SDA is
employed to select a more discriminative feature subset, and
following that, the subset feature is fed into BR. In SDA, Wilks’λ
statistical method was employed to judge iteratively
discriminative features in the original feature space (Huang
et al., 2003). The BR classifier uses seven One-vs-Rest (OvR)
Support Vector Machine (SVM) classifiers, which are effective
at determining class probability (Boutell et al., 2004). There are
five subset classifiers in HAR_Locator: the HAR LocatorHi S (i =
1, 2, 3) and HAR_LocatorG_S are trained by concatenating
shallow and abstract features extracted from three hybrid
attention modules, and the last GAP layer, the HAR_LocatorS

is trained by shallow feature. After that, five classifiers were
generated, that is, five sets of 1*7 confidence vectors from
them were output to express a sample, just as in the section of
Figures 1C, D.

2.2.6 Multi-category multi-classifier decision
system of HAR_Locator based on ANN

Taking up the above multi-classifier, an effective decision system
is also helpful to further improve output results from the multi-
classifier. In previous work, the output confidence was the mean of
all classifier output probabilities, where the largest was the output
label (Newberg and Murphy, 2008). However, this approach would
weaken the representation of sample confidence. Based on the
previous work, the ANN is designed with three hidden layers to
get decision results; the hidden neurons of n1, n2, and n3 are 256, 128,
and 64 respectively. The ReLU activation function and Softmax
function were adopted in this ANN (Cao et al., 2018). In the
experiment, the output confidence of five predictors was
concatenated into a 1*35-D vector to fit the network parameters.
Finally, the test dataset was used to assess the performance of the
HAR_Locator, as shown in the section of Figure 1D.
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3 Results

In this section, the 10-fold cross-validating strategy is used
to assess HAR_Locator and compare its performance to other
predictors. The training process of HARnet is completed in
300 iterations using GPU parallel computing architecture and
the Tensorflow-gpu2.4.0 deep learning framework. The BR
classifiers were executed by Matlab software. Furthermore,
the initial learning rate of the training process of HARnet is
0.001, which is multiplied by 0.1 around 60 epochs. Adam was
utilized to optimize the parameters of HARnet.

3.1 HAR_Locator outperforms other
baseline predictors

The baseline predictors were compared with HAR_Locator in
performance evaluation indices like accuracy, precision, and
recall (Newberg and Murphy, 2008; Xu et al., 2013; Jiao and
Du, 2016), and the results showed that HAR_Locator ranks first
among them. This was done to objectively and thoroughly verify
the performance of HAR_Locator. The experimental results are
shown in Table 2. From these three indexes, the predictor built by
Newberg et al. through adopting Haralick features with different
values of 8.0%, 7.63%, and 8.28% is inferior to the predictor built
by Xu et al. through concatenating LBP features. However, the
result of HAR_Locator was over 18.78%, 20.0%, and 19.11%
higher than the method proposed by Xu et al. HAR_Locator
significantly improves prediction performance, the main
advances include the following. Firstly, the feature space
composition of each image in HAR_Locator consists of two
parts, namely, abstract features extracted from some modules
of HARnet and shallow features based on the statistical method.
After concatenating, the supervision ability of feature maps is
significantly enhanced. Secondly, the HARnet built by hybrid
attention modules and residual units was imported to extract
abstract features, and the gradient information of IHC images
can be effectively transmitted. The discriminative regions of
feature maps in HARnet can be retained and enhanced, so
abstract features with more supervisory and discriminative
information have a better supplementary for shallow features
and improve the performance of baseline predictors. Finally, a
multi-category multi-classifier decision system is constructed to
obtain the final output results of samples by fitting the most
representative results in five basic predictors through ANN; it
further improves the performance of HAR_Locator. It can be
demonstrated that the HAR_locator has better experimental
performance than baseline predictors based on shallow
features by concatenating multi-view abstract features

obtained from HARnet with shallow features derived from
statistical methods.

3.2 HAR_Locator outshined other deep
networks and derived models

The performance of HARnet was confirmed when using
512*512 revolution IHC images as input and achieved the
best performance in the mainstream network, such as
InceptionV3, Resnet56, Densenet121, and MobilenetV3 (He
et al., 2016; Szegedy et al., 2016; Huang et al., 2017; Hu
et al., 2018; Howard et al., 2019). The experimental results of
various CNNs were presented in Figure 2. The scatter plot of
Figure 2A shows that HARnet outperformed other mainstream
CNNs with 67.18% overall accuracy; multiple accuracies of
different protein subcellular locations were higher than those
of other CNNs, such as Golgi apparatus, Centrosome, Vesicles,
and Cytosol. However, InceptionV3 achieved the last results in
terms of accuracy. Among the protein subcellular locations
involved, the prediction accuracy of the Nucleoli and
Mitochondria exceeded that of the other subcellular locations
in all models. Additionally, HARnet’s accuracy in the Nucleoli
and Mitochondria was 81.5%, placing it second and third,
respectively, among the CNNs mentioned. Correspondingly,
the Receiver Operating Characteristic curve (ROC) was
visualized to show fluctuations of various mainstream CNNs
stimulated by different thresholds in Figure 2B. It can be seen
that HARnet ranks first with an Area Under Curve (AUC) of
0.90. This shows that HARnet has the highest permutation ratio
of positive samples to negative samples and the highest true
validity of the test. In model structure, the advantages of
HARnet can be summarized in the following aspects for IHC
images: firstly, using a smaller filter size for the convolution
kernel instead of stacking simply general convolution operation
would conducive to capturing fine details and keeping feature
information richness; secondly, the GAP layer rather than the
FC layer was adapted to map three-dimensional deep features
into a one-dimensional feature vector and sent into the Softmax
layer, which is prone to overcome overfitting problems due to
substantially increased training parameters. Expect for these,
Resnet_SE refers to the network in which the attention module
is replaced by the Squeeze Excitation (SE) module from the
HARnet (Hu et al., 2018). The results of Resnet56, Resnet_SE,
and HARnet show that the network with added attention
modules has better performance than the models without
attention modules, but the hybrid attention module utilized
in HARnet allows more efficient acquisition for discriminative
features of protein subcellular location patterns in IHC images.

TABLE 2 Comparison of HAR_Locator with baseline protein location predictors.

Model Accuracy (%) Precision (%) Recall (%)

Newberg and Murphy (2008) 57.95 57.14 57.31

Xu et al. (2013) 65.95 64.77 65.59

HAR_Locator 84.73 84.77 84.70
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In addition, some handcrafted predictors were constructed by
feature fusion and BR classifier to recognize protein subcellular
location. For example, the Resnet_SEG_BR in Table 3 is built
from the following pipelines: firstly, similar to HARnet, the
Resnet_SE is the backbone network built by residual units and
embedded with SE modules; secondly, the G feature maps were
derived from the GAP layer of trained Resnet_SE; finally, the
Resnet_SEG_BR is successfully constructed by feeding the
features into the SDA feature reduction dimension and BR
classifier. The Resnet56G_BR is similar to the Resnet_SEG_BR
except that the Resnet56G_BR consists of residual units only.
Then, the Resnet56G_S_BR and the Resnet_SEG_S_BR are akin to
the Resnet_SEG_BR; however, they do so by introducing shallow
features. The derived models are inferior to the HAR_Locator
with different experimental indices from Table 3. Some
conclusions can be summarized as follows: firstly, it can be
informed that the predictor trained by abstract features and
shallow features can further improve its performance;
secondly, the Resnet_SE achieved the best performance
expected for HARnet in mentioned CNNs, and the derived

models are similar to these experimental results; finally, the
HARnet based on hybrid attention modules and residual units
can present more effective feature maps, and the advanced HAR_
Locator was proven.

3.3 Comparison of abstract features and
shallow features before and after
concatenating

Some digital image characteristics of abstract features in
HARnet, such as morphological local regions, edges, corners,
and outlines, were collected to supplement the properties of
shallow features. A crucial fact is that HAR_Locator
performance may unquestionably be enhanced by concatenating
shallow and deep features. In this part, multi-view features from
HARnet were adopted to investigate the feature prediction effect
under different module depths, with the results shown in Figure 3.
It can be seen that the prediction performance obtained only by
shallow features is inferior to that obtained by concatenating
abstract and shallow features. For example, HAR_LocatorS can
reach 65.95%, 64.77%, and 65.59% in accuracy, precision, and
recall, while HAR_LocatorG_S constructed by connecting with GAP
layer abstract features, can reach 84.22%, 82.94%, and 84.02%. The
latter significantly improves the experimental results. The
advanced performance mainly attributes to the following four
aspects: firstly, the abstract features obtained from HARnet
underwent multiple nonlinear function mappings and hybrid
attention modules, which purposefully highlighted the
subcellular location properties of the protein-target regions.
Secondly, shallow features can be described by basic digital
image characteristics, such as texture, inertia, isotropy, and
spatial ratio, while abstract features express the structural
components of the feature maps of the protein-target regions
from different layers of HARnet and enrich the information

FIGURE 2
Visualization of performance evaluation in mainstream CNNs; (A) Single-class and overall predictive accuracy of protein subcellular location in
different CNNs; (B) Receiver Operating Characteristic curve and Area Under Curve of various CNNs.

TABLE 3 Comparison of results between the handcraft predictors models and
sub-classifier of HAR_Locator.

Predictor Accuracy (%) Precision (%) Recall (%)

Resnet56G_BR 59.68 59.27 59.36

Resnet56G_S_BR 74.56 73.22 74.38

Resnet_SEG_BR 57.84 57.39 57.18

Resnet_SEG_S_BR 72.67 71.56 72.47

HAR_LocatorA3_S 82.90 81.61 82.81

HAR_LocatorG_S 84.22 82.94 84.20

HAR_Locator 84.48 84.43 84.42
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richness of the protein subcellular location. Thirdly, as HARnet’s
depth increases, feature maps transition from describing
fundamental features of digital images to describing abstract
features of the categories to which IHC images belong. The
feature maps at different depths represent protein-target regions
from different views and express the different generalization
abilities of the abstract features at different layers of HARnet.
Finally, the weakness caused by the poor supervisory and
discriminative properties of shallow features can be addressed
by combining shallow features with abstract features.

4 Discussion

4.1 Analyzing the composition of subset
feature spaces after SDA

A few ratios of various feature components were determined, as
shown in Figure 4, to better understand the effect of the feature
following SDA. Abstract features, Haralick features, LBP features,
and DNA features all played a role in the integrated feature space.
The figure respectively shows the feature selection distribution ratios

FIGURE 3
Comparison of multiple evaluation criteria after and before concatenating in multiple classifiers; (A) Classification performance after feature
concatenation; (B) Experimental results before feature concatenation.

FIGURE 4
The feature ratios in different modules of HARnet.
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of HAR LocatorHi S (i = 1, 2, 3) and HAR_locatorG_S after SDA
through 10-fold cross validation. For instance, the 3144-dimension
feature of HAR_LocatorG_S was composed of 2048-dimension
abstract features derived from the GAP layer of HARnet, 836-
dimension Haralick features, 256-dimension LBP features, and 4-
dimension DNA features. It reveals that shallow features make up
20.14% of the total, while abstract features account for 79.86%. In
keeping with the aforementioned experimental results, we also
discovered that the fraction of abstract characteristics increased
as the depth of HARnet increased. Compared with the result of
Table 2, the performance of some predictors constructed by shallow
features, i.e., the automated framework proposed by Newberg et al.
and the iLocator proposed by Xu et al., are far inferior to HAR_
Locator. The complementarity between abstract features acquired by
HARnet and shallow features can effectively enrich the information
richness of protein subcellular location patterns and improve the
model’s performance. Specifically, feature maps represent the
various spatial information from the IHC image in various
HARnet layers. The abstract representation and identifiability of
feature maps are also significantly improved with increasing
HARnet depth, which enhances the HAR_Locator’s
generalization capabilities.

4.2 Investigating feature maps under
different modules

The outputs of a few attention modules and LBP were
represented in Figure 5 to help more easily comprehend the
specifics of feature maps under various modules. H1, H2, and
H3 are the outputs of three hybrid attention modules of HARnet,
SE_3 is the output of Resnet_SE in the third module of the Resnet_
SE, and the last column is texture image under LBP. As can be seen

from Figure 5, each row of the visualization represents the
subcellular location pattern of one protein IHC image under
different modules, namely, Centrosome, Cytosol, and
Mitochondria. The second to fourth columns show that the
protein-target regions in the feature map are gradually
highlighted with the deepening of HARnet. Specifically, the
H1 feature maps tend to express the contours and edges of
protein-target regions; the H2 feature maps gradually started to
focus on protein-target regions, but it was not inaccurate; and the
H3 feature maps correctly identified the protein-target regions and
displayed the target abstract morphology and protein highlight
properties. As can be seen in the red box of Figure 5, the feature
maps of SE_3 in Resnet_SE can highlight some protein-target
regions, but they are weaker than H3 from HARnet. Meanwhile,
the protein-target regions exhibited by the texture features in LBP
are ambiguous. These investigations show that the high-level
abstract features derived from HARnet are a potential addition to
shallow features and can capture abstract information for boosting
model performance. Also noteworthy is the fact that H3 typically
captures local abstract information of the IHC image, whereas
H2 typically captures global concrete information of the image.
This further demonstrates how the integrated feature space collected
from the HARnet’s multi-view layers may be mutually
complementary and enhance the HAR_Locator’s robustness and
generalizability.

5 Conclusion

In this study, an exact and effective model called HAR_Locator
has been developed for predicting protein subcellular location.
Concerning the complex and fine-grained IHC images, an
integrated feature space made up of multi-view abstract features

FIGURE 5
Feature maps visualization in different modules.
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from HARnet and shallow features derived from statistical methods
was used to improve information richness, supervision, and
discriminant, which is helpful to increase performance. The
HARnet assembled by hybrid attention modules and residual
units was designed to spotlight discriminative regions of protein-
target subcellular location patterns in IHC images, and aim to
capture more robust abstract features from different layers;
moreover, multiple sub-classifiers constructed by different depth
abstract features and shallow features were adopted to output the
probability that IHC images belong to the subcellular location;
finally, a decision system based on ANN has been embraced to
produce a nondestructive decision result. The experimental results
reveal that HAR_Locator can achieve 84.73% prediction accuracy in
the benchmark dataset from HPA, which is better than other
baseline models’ performance. HAR_Locator participated in
multi-view feature maps of HARnet and significantly improved
feature richness and discriminant, in contrast to other baseline
models based on shallow features and a last or penultimate
abstract feature. The effectiveness of the combination of the
hybrid attention modules and residual units has been verified by
quantitative and qualitative analysis. Taken together, it shows that
HAR_Locator is effective for accurately analyzing protein
subcellular location patterns. Naturally, there is also a crucial
problem that necessitates consideration. The remaining feature
dimensions of abstract features after SDA were decreased
substantially compared with the original abstract feature
dimension, which indicates that the original feature space has
great redundancy. The subsequent research strategy for protein
subcellular pattern analysis will therefore involve screening more
discriminant feature maps from various layers.
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